# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Load and use text embedding module in sequential Keras.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import app from absl import flags import numpy as np import tensorflow.compat.v2 as tf from tensorflow.examples.saved_model.integration_tests import util FLAGS = flags.FLAGS flags.DEFINE_string("model_dir", None, "Directory to load SavedModel from.") def train(fine_tuning): """Build a Keras model and train with mock data.""" features = np.array(["my first sentence", "my second sentence"]) labels = np.array([1, 0]) dataset = tf.data.Dataset.from_tensor_slices((features, labels)) module = tf.saved_model.load(FLAGS.model_dir) # Create the sequential keras model. l = tf.keras.layers model = tf.keras.Sequential() model.add(l.Reshape((), batch_input_shape=[None, 1], dtype=tf.string)) model.add(util.CustomLayer(module, output_shape=[10], trainable=fine_tuning)) model.add(l.Dense(100, activation="relu")) model.add(l.Dense(50, activation="relu")) model.add(l.Dense(1, activation="sigmoid")) model.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"], # TODO(b/124446120): Remove after fixed. run_eagerly=True) model.fit_generator(generator=dataset.batch(1), epochs=5) def main(argv): del argv train(fine_tuning=False) train(fine_tuning=True) if __name__ == "__main__": tf.enable_v2_behavior() app.run(main)