# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Convenience wrapper around Keras' MNIST and Fashion MNIST data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow.compat.v2 as tf INPUT_SHAPE = (28, 28, 1) NUM_CLASSES = 10 def load_reshaped_data(use_fashion_mnist=False, fake_tiny_data=False): """Returns MNIST or Fashion MNIST train and test data.""" if fake_tiny_data: num_fakes = 10 x_train = x_test = np.zeros((num_fakes, 28, 28), dtype=np.uint8) y_train = y_test = np.zeros((num_fakes,), dtype=np.int64) else: mnist = (tf.keras.datasets.fashion_mnist if use_fashion_mnist else tf.keras.datasets.mnist) (x_train, y_train), (x_test, y_test) = mnist.load_data() return ((_prepare_image(x_train), _prepare_label(y_train)), (_prepare_image(x_test), _prepare_label(y_test))) def _prepare_image(x): """Converts images to [n,h,w,c] format in range [0,1].""" return x[..., None].astype('float32') / 255. def _prepare_label(y): """Conerts labels to one-hot encoding.""" return tf.keras.utils.to_categorical(y, NUM_CLASSES)