/* * Copyright (c) 2011-2015, Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "FixedPointParameterType.h" #include #include #include #include #include #include "Parameter.h" #include "ParameterAccessContext.h" #include "ConfigurationAccessContext.h" #include "Utility.h" #include #include #define base CParameterType using std::string; CFixedPointParameterType::CFixedPointParameterType(const string &strName) : base(strName) { } string CFixedPointParameterType::getKind() const { return "FixedPointParameter"; } // Element properties void CFixedPointParameterType::showProperties(string &strResult) const { base::showProperties(strResult); // Notation strResult += "Notation: Q"; strResult += std::to_string(_uiIntegral); strResult += "."; strResult += std::to_string(_uiFractional); strResult += "\n"; } // XML Serialization value space handling // Value space handling for configuration import void CFixedPointParameterType::handleValueSpaceAttribute( CXmlElement &xmlConfigurableElementSettingsElement, CConfigurationAccessContext &configurationAccessContext) const { // Direction? if (!configurationAccessContext.serializeOut()) { string strValueSpace; xmlConfigurableElementSettingsElement.getAttribute("ValueSpace", strValueSpace); configurationAccessContext.setValueSpaceRaw(strValueSpace == "Raw"); } else { // Provide value space only if not the default one if (configurationAccessContext.valueSpaceIsRaw()) { xmlConfigurableElementSettingsElement.setAttribute("ValueSpace", "Raw"); } } } bool CFixedPointParameterType::fromXml(const CXmlElement &xmlElement, CXmlSerializingContext &serializingContext) { // Size size_t sizeInBits = 0; xmlElement.getAttribute("Size", sizeInBits); // Q notation xmlElement.getAttribute("Integral", _uiIntegral); xmlElement.getAttribute("Fractional", _uiFractional); // Size vs. Q notation integrity check if (sizeInBits < getUtilSizeInBits()) { std::string size; xmlElement.getAttribute("Size", size); serializingContext.setError( "Inconsistent Size vs. Q notation for " + getKind() + " " + xmlElement.getPath() + ": Summing (Integral + _uiFractional + 1) should not exceed given Size (" + size + ")"); return false; } // Set the size setSize(sizeInBits / 8); return base::fromXml(xmlElement, serializingContext); } bool CFixedPointParameterType::toBlackboard(const string &strValue, uint32_t &uiValue, CParameterAccessContext ¶meterAccessContext) const { bool bValueProvidedAsHexa = utility::isHexadecimal(strValue); // Check data integrity if (bValueProvidedAsHexa && !parameterAccessContext.valueSpaceIsRaw()) { parameterAccessContext.setError("Hexadecimal values are not supported for " + getKind() + " when selected value space is real:"); return false; } if (parameterAccessContext.valueSpaceIsRaw()) { if (bValueProvidedAsHexa) { return convertFromHexadecimal(strValue, uiValue, parameterAccessContext); } return convertFromDecimal(strValue, uiValue, parameterAccessContext); } return convertFromQnm(strValue, uiValue, parameterAccessContext); } void CFixedPointParameterType::setOutOfRangeError( const string &strValue, CParameterAccessContext ¶meterAccessContext) const { std::ostringstream stream; stream << "Value " << strValue << " standing out of admitted "; if (!parameterAccessContext.valueSpaceIsRaw()) { // Min/Max computation double dMin = 0; double dMax = 0; getRange(dMin, dMax); stream << std::fixed << std::setprecision(_uiFractional) << "real range [" << dMin << ", " << dMax << "]"; } else { // Min/Max computation int32_t iMax = getMaxValue(); int32_t iMin = -iMax - 1; stream << "raw range ["; if (utility::isHexadecimal(strValue)) { stream << std::hex << std::uppercase << std::setw(static_cast(getSize()) * 2) << std::setfill('0'); // Format Min stream << "0x" << makeEncodable(iMin); // Format Max stream << ", 0x" << makeEncodable(iMax); } else { stream << iMin << ", " << iMax; } stream << "]"; } stream << " for " << getKind(); parameterAccessContext.setError(stream.str()); } bool CFixedPointParameterType::fromBlackboard(string &strValue, const uint32_t &value, CParameterAccessContext ¶meterAccessContext) const { // Check encodability assert(isEncodable(value, false)); // Format std::ostringstream stream; // Raw formatting? if (parameterAccessContext.valueSpaceIsRaw()) { // Hexa formatting? if (parameterAccessContext.outputRawFormatIsHex()) { uint32_t data = static_cast(value); stream << "0x" << std::hex << std::uppercase << std::setw(static_cast(getSize() * 2)) << std::setfill('0') << data; } else { int32_t data = value; // Sign extend signExtend(data); stream << data; } } else { int32_t data = value; // Sign extend signExtend(data); // Conversion stream << std::fixed << std::setprecision(_uiFractional) << binaryQnmToDouble(data); } strValue = stream.str(); return true; } // Value access bool CFixedPointParameterType::toBlackboard(double dUserValue, uint32_t &uiValue, CParameterAccessContext ¶meterAccessContext) const { // Check that the value is within the allowed range for this type if (!checkValueAgainstRange(dUserValue)) { // Illegal value provided parameterAccessContext.setError("Value out of range"); return false; } // Do the conversion int32_t iData = doubleToBinaryQnm(dUserValue); // Check integrity assert(isEncodable((uint32_t)iData, true)); uiValue = iData; return true; } bool CFixedPointParameterType::fromBlackboard(double &dUserValue, uint32_t uiValue, CParameterAccessContext & /*ctx*/) const { int32_t iData = uiValue; // Check unsigned value is encodable assert(isEncodable(uiValue, false)); // Sign extend signExtend(iData); dUserValue = binaryQnmToDouble(iData); return true; } // Util size size_t CFixedPointParameterType::getUtilSizeInBits() const { return _uiIntegral + _uiFractional + 1; } // Compute the range for the type (minimum and maximum values) void CFixedPointParameterType::getRange(double &dMin, double &dMax) const { dMax = ((1U << (_uiIntegral + _uiFractional)) - 1) / double(1U << _uiFractional); dMin = -((1U << (_uiIntegral + _uiFractional)) / double(1U << _uiFractional)); } bool CFixedPointParameterType::convertFromHexadecimal( const string &strValue, uint32_t &uiValue, CParameterAccessContext ¶meterAccessContext) const { // For hexadecimal representation, we need full 32 bit range conversion. if (!convertTo(strValue, uiValue) || !isEncodable(uiValue, false)) { setOutOfRangeError(strValue, parameterAccessContext); return false; } signExtend(reinterpret_cast(uiValue)); // check that the data is encodable and can been safely written to the blackboard assert(isEncodable(uiValue, true)); return true; } bool CFixedPointParameterType::convertFromDecimal( const string &strValue, uint32_t &uiValue, CParameterAccessContext ¶meterAccessContext) const { if (!convertTo(strValue, reinterpret_cast(uiValue)) || !isEncodable(uiValue, true)) { setOutOfRangeError(strValue, parameterAccessContext); return false; } return true; } bool CFixedPointParameterType::convertFromQnm(const string &strValue, uint32_t &uiValue, CParameterAccessContext ¶meterAccessContext) const { double dData = 0; if (!convertTo(strValue, dData) || !checkValueAgainstRange(dData)) { setOutOfRangeError(strValue, parameterAccessContext); return false; } uiValue = static_cast(doubleToBinaryQnm(dData)); // check that the data is encodable and has been safely written to the blackboard assert(isEncodable(uiValue, true)); return true; } // Check that the value is within available range for this type bool CFixedPointParameterType::checkValueAgainstRange(double dValue) const { double dMin = 0; double dMax = 0; getRange(dMin, dMax); return (dValue <= dMax) && (dValue >= dMin); } // Data conversion int32_t CFixedPointParameterType::doubleToBinaryQnm(double dValue) const { // For Qn.m number, multiply by 2^n and round to the nearest integer int32_t iData = static_cast(round(dValue * double(1UL << _uiFractional))); // Left justify // For a Qn.m number, shift 32 - (n + m + 1) bits to the left (the rest of // the bits aren't used) iData <<= getSize() * 8 - getUtilSizeInBits(); return iData; } double CFixedPointParameterType::binaryQnmToDouble(int32_t iValue) const { // Unjustify iValue >>= getSize() * 8 - getUtilSizeInBits(); return static_cast(iValue) / double(1UL << _uiFractional); } // From IXmlSource void CFixedPointParameterType::toXml(CXmlElement &xmlElement, CXmlSerializingContext &serializingContext) const { // Size xmlElement.setAttribute("Size", getSize() * 8); // Integral xmlElement.setAttribute("Integral", _uiIntegral); // Fractional xmlElement.setAttribute("Fractional", _uiFractional); base::toXml(xmlElement, serializingContext); }