/** @file * * Copyright (c) 2018, Pete Batard * Copyright (c) 2017-2018, Andrei Warkentin * Copyright (c) 2016, Linaro Ltd. All rights reserved. * Copyright (c) 2015-2016, Red Hat, Inc. * Copyright (c) 2014-2020, ARM Ltd. All rights reserved. * Copyright (c) 2004-2016, Intel Corporation. All rights reserved. * Copyright (c) 2021, Semihalf All rights reserved. * * SPDX-License-Identifier: BSD-2-Clause-Patent * **/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "PlatformBm.h" #define BOOT_PROMPT L"ESC (setup), F1 (shell), ENTER (boot)" #define DP_NODE_LEN(Type) { (UINT8)sizeof (Type), (UINT8)(sizeof (Type) >> 8) } #pragma pack (1) typedef struct { VENDOR_DEVICE_PATH SerialDxe; UART_DEVICE_PATH Uart; VENDOR_DEFINED_DEVICE_PATH TermType; EFI_DEVICE_PATH_PROTOCOL End; } PLATFORM_SERIAL_CONSOLE; #pragma pack () typedef struct { VENDOR_DEVICE_PATH Custom; USB_DEVICE_PATH Hub; USB_DEVICE_PATH Dev; EFI_DEVICE_PATH_PROTOCOL EndDevicePath; } PLATFORM_USB_DEV; typedef struct { VENDOR_DEVICE_PATH Custom; EFI_DEVICE_PATH_PROTOCOL EndDevicePath; } PLATFORM_SD_DEV; #define ARASAN_MMC_DXE_FILE_GUID \ { 0x100c2cfa, 0xb586, 0x4198, { 0x9b, 0x4c, 0x16, 0x83, 0xd1, 0x95, 0xb1, 0xda } } #define SDHOST_MMC_DXE_FILE_GUID \ { 0x58abd787, 0xf64d, 0x4ca2, { 0xa0, 0x34, 0xb9, 0xac, 0x2d, 0x5a, 0xd0, 0xcf } } #define SERIAL_DXE_FILE_GUID \ { 0xD3987D4B, 0x971A, 0x435F, { 0x8C, 0xAF, 0x49, 0x67, 0xEB, 0x62, 0x72, 0x41 } } STATIC PLATFORM_SD_DEV mArasan = { // // VENDOR_DEVICE_PATH ArasanMMCHostDxe // { { HARDWARE_DEVICE_PATH, HW_VENDOR_DP, DP_NODE_LEN (VENDOR_DEVICE_PATH) }, ARASAN_MMC_DXE_FILE_GUID }, // // EFI_DEVICE_PATH_PROTOCOL End // { END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE, DP_NODE_LEN (EFI_DEVICE_PATH_PROTOCOL) } }; STATIC PLATFORM_SD_DEV mSDHost = { // // VENDOR_DEVICE_PATH SdHostDxe // { { HARDWARE_DEVICE_PATH, HW_VENDOR_DP, DP_NODE_LEN (VENDOR_DEVICE_PATH) }, SDHOST_MMC_DXE_FILE_GUID }, // // EFI_DEVICE_PATH_PROTOCOL End // { END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE, DP_NODE_LEN (EFI_DEVICE_PATH_PROTOCOL) } }; STATIC PLATFORM_SERIAL_CONSOLE mSerialConsole = { // // VENDOR_DEVICE_PATH SerialDxe // { { HARDWARE_DEVICE_PATH, HW_VENDOR_DP, DP_NODE_LEN (VENDOR_DEVICE_PATH) }, SERIAL_DXE_FILE_GUID }, // // UART_DEVICE_PATH Uart // { { MESSAGING_DEVICE_PATH, MSG_UART_DP, DP_NODE_LEN (UART_DEVICE_PATH) }, 0, // Reserved FixedPcdGet64 (PcdUartDefaultBaudRate), // BaudRate FixedPcdGet8 (PcdUartDefaultDataBits), // DataBits FixedPcdGet8 (PcdUartDefaultParity), // Parity FixedPcdGet8 (PcdUartDefaultStopBits) // StopBits }, // // VENDOR_DEFINED_DEVICE_PATH TermType // { { MESSAGING_DEVICE_PATH, MSG_VENDOR_DP, DP_NODE_LEN (VENDOR_DEFINED_DEVICE_PATH) } // // Guid to be filled in dynamically // }, // // EFI_DEVICE_PATH_PROTOCOL End // { END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE, DP_NODE_LEN (EFI_DEVICE_PATH_PROTOCOL) } }; #pragma pack (1) typedef struct { USB_CLASS_DEVICE_PATH Keyboard; EFI_DEVICE_PATH_PROTOCOL End; } PLATFORM_USB_KEYBOARD; #pragma pack () STATIC PLATFORM_USB_KEYBOARD mUsbKeyboard = { // // USB_CLASS_DEVICE_PATH Keyboard // { { MESSAGING_DEVICE_PATH, MSG_USB_CLASS_DP, DP_NODE_LEN (USB_CLASS_DEVICE_PATH) }, 0xFFFF, // VendorId: any 0xFFFF, // ProductId: any 3, // DeviceClass: HID 1, // DeviceSubClass: boot 1 // DeviceProtocol: keyboard }, // // EFI_DEVICE_PATH_PROTOCOL End // { END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE, DP_NODE_LEN (EFI_DEVICE_PATH_PROTOCOL) } }; STATIC EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *mSerialConProtocol; /** Check if the handle satisfies a particular condition. @param[in] Handle The handle to check. @param[in] ReportText A caller-allocated string passed in for reporting purposes. It must never be NULL. @retval TRUE The condition is satisfied. @retval FALSE Otherwise. This includes the case when the condition could not be fully evaluated due to an error. **/ typedef BOOLEAN (EFIAPI *FILTER_FUNCTION) ( IN EFI_HANDLE Handle, IN CONST CHAR16 *ReportText ); /** Process a handle. @param[in] Handle The handle to process. @param[in] ReportText A caller-allocated string passed in for reporting purposes. It must never be NULL. **/ typedef VOID (EFIAPI *CALLBACK_FUNCTION) ( IN EFI_HANDLE Handle, IN CONST CHAR16 *ReportText ); /** Locate all handles that carry the specified protocol, filter them with a callback function, and pass each handle that passes the filter to another callback. @param[in] ProtocolGuid The protocol to look for. @param[in] Filter The filter function to pass each handle to. If this parameter is NULL, then all handles are processed. @param[in] Process The callback function to pass each handle to that clears the filter. **/ STATIC VOID FilterAndProcess ( IN EFI_GUID *ProtocolGuid, IN FILTER_FUNCTION Filter OPTIONAL, IN CALLBACK_FUNCTION Process ) { EFI_STATUS Status; EFI_HANDLE *Handles; UINTN NoHandles; UINTN Idx; Status = gBS->LocateHandleBuffer (ByProtocol, ProtocolGuid, NULL /* SearchKey */, &NoHandles, &Handles); if (EFI_ERROR (Status)) { // // This is not an error, just an informative condition. // DEBUG ((DEBUG_VERBOSE, "%a: %g: %r\n", __FUNCTION__, ProtocolGuid, Status)); return; } ASSERT (NoHandles > 0); for (Idx = 0; Idx < NoHandles; ++Idx) { CHAR16 *DevicePathText; STATIC CHAR16 Fallback[] = L""; // // The ConvertDevicePathToText() function handles NULL input transparently. // DevicePathText = ConvertDevicePathToText ( DevicePathFromHandle (Handles[Idx]), FALSE, // DisplayOnly FALSE // AllowShortcuts ); if (DevicePathText == NULL) { DevicePathText = Fallback; } if (Filter == NULL || Filter (Handles[Idx], DevicePathText)) { Process (Handles[Idx], DevicePathText); } if (DevicePathText != Fallback) { FreePool (DevicePathText); } } gBS->FreePool (Handles); } /** This CALLBACK_FUNCTION retrieves the EFI_DEVICE_PATH_PROTOCOL from the handle, and adds it to ConOut and ErrOut. **/ STATIC VOID EFIAPI AddOutput ( IN EFI_HANDLE Handle, IN CONST CHAR16 *ReportText ) { EFI_STATUS Status; EFI_DEVICE_PATH_PROTOCOL *DevicePath; DevicePath = DevicePathFromHandle (Handle); if (DevicePath == NULL) { DEBUG ((DEBUG_ERROR, "%a: %s: handle %p: device path not found\n", __FUNCTION__, ReportText, Handle)); return; } Status = EfiBootManagerUpdateConsoleVariable (ConOut, DevicePath, NULL); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_ERROR, "%a: %s: adding to ConOut: %r\n", __FUNCTION__, ReportText, Status)); return; } Status = EfiBootManagerUpdateConsoleVariable (ErrOut, DevicePath, NULL); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_ERROR, "%a: %s: adding to ErrOut: %r\n", __FUNCTION__, ReportText, Status)); return; } DEBUG ((DEBUG_VERBOSE, "%a: %s: added to ConOut and ErrOut\n", __FUNCTION__, ReportText)); } /** This CALLBACK_FUNCTION attempts to connect a handle non-recursively, asking the matching driver to produce all first-level child handles. **/ STATIC VOID EFIAPI Connect ( IN EFI_HANDLE Handle, IN CONST CHAR16 *ReportText ) { EFI_STATUS Status; Status = gBS->ConnectController ( Handle, // ControllerHandle NULL, // DriverImageHandle NULL, // RemainingDevicePath -- produce all children FALSE // Recursive ); DEBUG ((EFI_ERROR (Status) ? EFI_D_ERROR : EFI_D_VERBOSE, "%a: %s: %r\n", __FUNCTION__, ReportText, Status)); } STATIC INTN PlatformRegisterBootOption ( EFI_DEVICE_PATH_PROTOCOL *DevicePath, CHAR16 *Description, UINT32 Attributes ) { EFI_STATUS Status; INTN OptionIndex; EFI_BOOT_MANAGER_LOAD_OPTION NewOption; EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions; UINTN BootOptionCount; Status = EfiBootManagerInitializeLoadOption ( &NewOption, LoadOptionNumberUnassigned, LoadOptionTypeBoot, Attributes, Description, DevicePath, NULL, 0 ); ASSERT_EFI_ERROR (Status); BootOptions = EfiBootManagerGetLoadOptions (&BootOptionCount, LoadOptionTypeBoot); OptionIndex = EfiBootManagerFindLoadOption (&NewOption, BootOptions, BootOptionCount); if (OptionIndex == -1) { Status = EfiBootManagerAddLoadOptionVariable (&NewOption, MAX_UINTN); ASSERT_EFI_ERROR (Status); OptionIndex = BootOptionCount; } EfiBootManagerFreeLoadOption (&NewOption); EfiBootManagerFreeLoadOptions (BootOptions, BootOptionCount); return OptionIndex; } STATIC INTN PlatformRegisterFvBootOption ( CONST EFI_GUID *FileGuid, CHAR16 *Description, UINT32 Attributes ) { EFI_STATUS Status; MEDIA_FW_VOL_FILEPATH_DEVICE_PATH FileNode; EFI_LOADED_IMAGE_PROTOCOL *LoadedImage; EFI_DEVICE_PATH_PROTOCOL *DevicePath; INTN OptionIndex; Status = gBS->HandleProtocol ( gImageHandle, &gEfiLoadedImageProtocolGuid, (VOID**)&LoadedImage ); ASSERT_EFI_ERROR (Status); EfiInitializeFwVolDevicepathNode (&FileNode, FileGuid); DevicePath = DevicePathFromHandle (LoadedImage->DeviceHandle); ASSERT (DevicePath != NULL); DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL*)&FileNode); ASSERT (DevicePath != NULL); OptionIndex = PlatformRegisterBootOption (DevicePath, Description, Attributes); FreePool (DevicePath); return OptionIndex; } STATIC VOID RemoveStaleBootOptions ( VOID ) { EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions; UINTN BootOptionCount; UINTN Index; EFI_STATUS Status; BootOptions = EfiBootManagerGetLoadOptions (&BootOptionCount, LoadOptionTypeBoot); for (Index = 0; Index < BootOptionCount; ++Index) { EFI_DEVICE_PATH_PROTOCOL *DevicePath = BootOptions[Index].FilePath; if (CompareMem (&mArasan, DevicePath, GetDevicePathSize (DevicePath)) == 0) { if (PcdGet32 (PcdSdIsArasan) || RPI_MODEL == 4) { continue; } } else if (CompareMem (&mSDHost, DevicePath, GetDevicePathSize (DevicePath)) == 0) { if (!PcdGet32 (PcdSdIsArasan)) { continue; } } else { continue; } // // Delete the boot options corresponding to stale SD controllers. // Status = EfiBootManagerDeleteLoadOptionVariable ( BootOptions[Index].OptionNumber, LoadOptionTypeBoot); DEBUG_CODE ( CHAR16 *DevicePathString; DevicePathString = ConvertDevicePathToText(BootOptions[Index].FilePath, FALSE, FALSE); DEBUG (( EFI_ERROR (Status) ? EFI_D_WARN : EFI_D_INFO, "%a: removing stale Boot#%04x %s: %r\n", __FUNCTION__, (UINT32)BootOptions[Index].OptionNumber, DevicePathString == NULL ? L"" : DevicePathString, Status )); if (DevicePathString != NULL) { FreePool (DevicePathString); } ); } EfiBootManagerFreeLoadOptions (BootOptions, BootOptionCount); } STATIC VOID PlatformRegisterOptionsAndKeys ( VOID ) { EFI_STATUS Status; EFI_INPUT_KEY Enter; EFI_INPUT_KEY F1; EFI_INPUT_KEY Esc; EFI_BOOT_MANAGER_LOAD_OPTION BootOption; INTN ShellOption; RemoveStaleBootOptions (); ShellOption = PlatformRegisterFvBootOption (&gUefiShellFileGuid, L"UEFI Shell", 0); if (ShellOption != -1) { // // F1 boots Shell. // F1.ScanCode = SCAN_F1; F1.UnicodeChar = CHAR_NULL; Status = EfiBootManagerAddKeyOptionVariable (NULL, (UINT16)ShellOption, 0, &F1, NULL); ASSERT (Status == EFI_SUCCESS || Status == EFI_ALREADY_STARTED); } // // Register ENTER as CONTINUE key // Enter.ScanCode = SCAN_NULL; Enter.UnicodeChar = CHAR_CARRIAGE_RETURN; Status = EfiBootManagerRegisterContinueKeyOption (0, &Enter, NULL); ASSERT_EFI_ERROR (Status); // // Map ESC to Boot Manager Menu // Esc.ScanCode = SCAN_ESC; Esc.UnicodeChar = CHAR_NULL; Status = EfiBootManagerGetBootManagerMenu (&BootOption); ASSERT_EFI_ERROR (Status); Status = EfiBootManagerAddKeyOptionVariable (NULL, (UINT16)BootOption.OptionNumber, 0, &Esc, NULL); ASSERT (Status == EFI_SUCCESS || Status == EFI_ALREADY_STARTED); } STATIC VOID SerialConPrint ( IN CHAR16 *Text ) { if (mSerialConProtocol != NULL) { mSerialConProtocol->OutputString (mSerialConProtocol, Text); } } // // BDS Platform Functions // /** Do the platform init, can be customized by OEM/IBV Possible things that can be done in PlatformBootManagerBeforeConsole: > Update console variable: 1. include hot-plug devices; > 2. Clear ConIn and add SOL for AMT > Register new Driver#### or Boot#### > Register new Key####: e.g.: F12 > Signal ReadyToLock event > Authentication action: 1. connect Auth devices; > 2. Identify auto logon user. **/ VOID EFIAPI PlatformBootManagerBeforeConsole ( VOID ) { EFI_STATUS Status; ESRT_MANAGEMENT_PROTOCOL *EsrtManagement; if (GetBootModeHob () == BOOT_ON_FLASH_UPDATE) { DEBUG ((DEBUG_INFO, "ProcessCapsules Before EndOfDxe ......\n")); Status = ProcessCapsules (); DEBUG ((DEBUG_INFO, "ProcessCapsules returned %r\n", Status)); } else { Status = gBS->LocateProtocol (&gEsrtManagementProtocolGuid, NULL, (VOID**)&EsrtManagement); if (!EFI_ERROR (Status)) { EsrtManagement->SyncEsrtFmp (); } } // // Now add the device path of all handles with GOP on them to ConOut and // ErrOut. // FilterAndProcess (&gEfiGraphicsOutputProtocolGuid, NULL, AddOutput); // // Add the hardcoded short-form USB keyboard device path to ConIn. // EfiBootManagerUpdateConsoleVariable (ConIn, (EFI_DEVICE_PATH_PROTOCOL*)&mUsbKeyboard, NULL); // // Add the hardcoded serial console device path to ConIn, ConOut, ErrOut. // ASSERT (FixedPcdGet8 (PcdDefaultTerminalType) == 4); CopyGuid (&mSerialConsole.TermType.Guid, &gEfiTtyTermGuid); EfiBootManagerUpdateConsoleVariable (ConIn, (EFI_DEVICE_PATH_PROTOCOL*)&mSerialConsole, NULL); EfiBootManagerUpdateConsoleVariable (ConOut, (EFI_DEVICE_PATH_PROTOCOL*)&mSerialConsole, NULL); EfiBootManagerUpdateConsoleVariable (ErrOut, (EFI_DEVICE_PATH_PROTOCOL*)&mSerialConsole, NULL); // // Signal EndOfDxe PI Event // EfiEventGroupSignal (&gEfiEndOfDxeEventGroupGuid); // // Dispatch deferred images after EndOfDxe event and ReadyToLock installation. // EfiBootManagerDispatchDeferredImages (); // // Ensure that USB is initialized by connecting the PCI root bridge so // that the xHCI PCI controller gets enumerated (Pi 4) or by connecting // to the DesignWare USB OTG controller directly. FilterAndProcess (&gEfiPciRootBridgeIoProtocolGuid, NULL, Connect); FilterAndProcess (&gEfiUsb2HcProtocolGuid, NULL, Connect); } /** Connect device specified by BootDiscoverPolicy variable and refresh Boot order for newly discovered boot device. @retval EFI_SUCCESS Devices connected succesfully or connection not required. @retval others Return values from GetVariable(), LocateProtocol() and ConnectDeviceClass(). --*/ STATIC EFI_STATUS BootDiscoveryPolicyHandler ( VOID ) { EFI_STATUS Status; UINT32 DiscoveryPolicy; UINTN Size; EFI_BOOT_MANAGER_POLICY_PROTOCOL *BMPolicy; EFI_GUID *Class; Size = sizeof (DiscoveryPolicy); Status = gRT->GetVariable ( BOOT_DISCOVERY_POLICY_VAR, &gBootDiscoveryPolicyMgrFormsetGuid, NULL, &Size, &DiscoveryPolicy ); if (Status == EFI_NOT_FOUND) { Status = PcdSet32S (PcdBootDiscoveryPolicy, PcdGet32 (PcdBootDiscoveryPolicy)); DiscoveryPolicy = PcdGet32 (PcdBootDiscoveryPolicy); if (Status == EFI_NOT_FOUND) { return EFI_SUCCESS; } else if (EFI_ERROR (Status)) { return Status; } } else if (EFI_ERROR (Status)) { return Status; } if (DiscoveryPolicy == BDP_CONNECT_MINIMAL) { return EFI_SUCCESS; } switch (DiscoveryPolicy) { case BDP_CONNECT_NET: Class = &gEfiBootManagerPolicyNetworkGuid; break; case BDP_CONNECT_ALL: Class = &gEfiBootManagerPolicyConnectAllGuid; break; default: DEBUG (( DEBUG_INFO, "%a - Unexpected DiscoveryPolicy (0x%x). Run Minimal Discovery Policy\n", __FUNCTION__, DiscoveryPolicy )); return EFI_SUCCESS; } Status = gBS->LocateProtocol ( &gEfiBootManagerPolicyProtocolGuid, NULL, (VOID **)&BMPolicy ); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_ERROR, "%a - Failed to locate gEfiBootManagerPolicyProtocolGuid - %r\n", __FUNCTION__, Status)); return Status; } Status = BMPolicy->ConnectDeviceClass (BMPolicy, Class); if (EFI_ERROR (Status)){ DEBUG ((DEBUG_ERROR, "%a - ConnectDeviceClass returns - %r\n", __FUNCTION__, Status)); return Status; } EfiBootManagerRefreshAllBootOption(); return EFI_SUCCESS; } /** Do the platform specific action after the console is ready Possible things that can be done in PlatformBootManagerAfterConsole: > Console post action: > Dynamically switch output mode from 100x31 to 80x25 for certain senarino > Signal console ready platform customized event > Run diagnostics like memory testing > Connect certain devices > Dispatch aditional option roms > Special boot: e.g.: USB boot, enter UI **/ VOID EFIAPI PlatformBootManagerAfterConsole ( VOID ) { ESRT_MANAGEMENT_PROTOCOL *EsrtManagement; EFI_STATUS Status; EFI_HANDLE SerialHandle; Status = EfiBootManagerConnectDevicePath ((EFI_DEVICE_PATH_PROTOCOL*)&mSerialConsole, &SerialHandle); if (Status == EFI_SUCCESS) { gBS->HandleProtocol (SerialHandle, &gEfiSimpleTextOutProtocolGuid, (VOID**)&mSerialConProtocol); } // // Show the splash screen. // Status = BootLogoEnableLogo (); if (Status == EFI_SUCCESS) { SerialConPrint (BOOT_PROMPT); } else { Print (BOOT_PROMPT); } Status = BootDiscoveryPolicyHandler (); if (EFI_ERROR(Status)) { DEBUG ((DEBUG_INFO, "Error applying Boot Discovery Policy:%r\n", Status)); } Status = BootDiscoveryPolicyHandler (); if (EFI_ERROR(Status)) { DEBUG ((DEBUG_INFO, "Error applying Boot Discovery Policy:%r\n", Status)); } Status = gBS->LocateProtocol (&gEsrtManagementProtocolGuid, NULL, (VOID**)&EsrtManagement); if (!EFI_ERROR (Status)) { EsrtManagement->SyncEsrtFmp (); } if (GetBootModeHob () == BOOT_ON_FLASH_UPDATE) { DEBUG ((DEBUG_INFO, "ProcessCapsules After EndOfDxe ......\n")); Status = ProcessCapsules (); DEBUG ((DEBUG_INFO, "ProcessCapsules returned %r\n", Status)); } PlatformRegisterOptionsAndKeys (); } /** This function is called each second during the boot manager waits the timeout. @param TimeoutRemain The remaining timeout. **/ VOID EFIAPI PlatformBootManagerWaitCallback ( IN UINT16 TimeoutRemain ) { EFI_GRAPHICS_OUTPUT_BLT_PIXEL_UNION Black; EFI_GRAPHICS_OUTPUT_BLT_PIXEL_UNION White; UINT16 Timeout; EFI_STATUS Status; Timeout = PcdGet16 (PcdPlatformBootTimeOut); Black.Raw = 0x00000000; White.Raw = 0x00FFFFFF; Status = BootLogoUpdateProgress ( White.Pixel, Black.Pixel, BOOT_PROMPT, White.Pixel, (Timeout - TimeoutRemain) * 100 / Timeout, 0 ); if (Status == EFI_SUCCESS) { SerialConPrint (L"."); } else { Print (L"."); } } /** The function is called when no boot option could be launched, including platform recovery options and options pointing to applications built into firmware volumes. If this function returns, BDS attempts to enter an infinite loop. **/ VOID EFIAPI PlatformBootManagerUnableToBoot ( VOID ) { EFI_STATUS Status; EFI_INPUT_KEY Key; EFI_BOOT_MANAGER_LOAD_OPTION BootManagerMenu; UINTN Index; EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions; UINTN OldBootOptionCount; UINTN NewBootOptionCount; // // Record the total number of boot configured boot options // BootOptions = EfiBootManagerGetLoadOptions (&OldBootOptionCount, LoadOptionTypeBoot); EfiBootManagerFreeLoadOptions (BootOptions, OldBootOptionCount); // // Connect all devices, and regenerate all boot options // EfiBootManagerConnectAll (); EfiBootManagerRefreshAllBootOption (); // // Record the updated number of boot configured boot options // BootOptions = EfiBootManagerGetLoadOptions (&NewBootOptionCount, LoadOptionTypeBoot); EfiBootManagerFreeLoadOptions (BootOptions, NewBootOptionCount); // // If the number of configured boot options has changed, reboot // the system so the new boot options will be taken into account // while executing the ordinary BDS bootflow sequence. // if (NewBootOptionCount != OldBootOptionCount) { DEBUG ((DEBUG_WARN, "%a: rebooting after refreshing all boot options\n", __FUNCTION__)); gRT->ResetSystem (EfiResetCold, EFI_SUCCESS, 0, NULL); } // // BootManagerMenu doesn't contain the correct information when return status // is EFI_NOT_FOUND. // Status = EfiBootManagerGetBootManagerMenu (&BootManagerMenu); if (EFI_ERROR (Status)) { return; } // // Normally BdsDxe does not print anything to the system console, but this is // a last resort -- the end-user will likely not see any DEBUG messages // logged in this situation. // // AsciiPrint() will NULL-check gST->ConOut internally. We check gST->ConIn // here to see if it makes sense to request and wait for a keypress. // if (gST->ConIn != NULL) { AsciiPrint ( "%a: No bootable option or device was found.\n" "%a: Press any key to enter the Boot Manager Menu.\n", gEfiCallerBaseName, gEfiCallerBaseName); Status = gBS->WaitForEvent (1, &gST->ConIn->WaitForKey, &Index); ASSERT_EFI_ERROR (Status); ASSERT (Index == 0); // // Drain any queued keys. // while (!EFI_ERROR (gST->ConIn->ReadKeyStroke (gST->ConIn, &Key))) { // // just throw away Key // } } for (;;) { EfiBootManagerBoot (&BootManagerMenu); } }