/** @file This driver is responsible for the registration of child drivers and the abstraction of the PCH SMI sources. Copyright (c) 2017, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "PchSmmHelpers.h" // // Help handle porting bit shifts to IA-64. // #define BIT_ZERO 0x00000001 /** Publish SMI Dispatch protocols. **/ VOID PchSmmPublishDispatchProtocols ( VOID ) { EFI_STATUS Status = EFI_SUCCESS; UINTN Index; // // Install protocol interfaces. // for (Index = 0; Index < PCH_SMM_PROTOCOL_TYPE_MAX; Index++) { Status = gSmst->SmmInstallProtocolInterface ( &mPrivateData.InstallMultProtHandle, mPrivateData.Protocols[Index].Guid, EFI_NATIVE_INTERFACE, &mPrivateData.Protocols[Index].Protocols.Generic ); } ASSERT_EFI_ERROR (Status); } /** Initialize bits that aren't necessarily related to an SMI source. @retval EFI_SUCCESS SMI source initialization completed. @retval Asserts Global Smi Bit is not enabled successfully. **/ EFI_STATUS PchSmmInitHardware ( VOID ) { EFI_STATUS Status; /// /// Clear all SMIs /// PchSmmClearSmi (); Status = PchSmmEnableGlobalSmiBit (); ASSERT_EFI_ERROR (Status); /// /// Be *really* sure to clear all SMIs /// PchSmmClearSmi (); return EFI_SUCCESS; } /** Enables the PCH to generate SMIs. Note that no SMIs will be generated if no SMI sources are enabled. Conversely, no enabled SMI source will generate SMIs if SMIs are not globally enabled. This is the main switchbox for SMI generation. @retval EFI_SUCCESS Enable Global Smi Bit completed **/ EFI_STATUS PchSmmEnableGlobalSmiBit ( VOID ) { UINT32 SmiEn; SmiEn = IoRead32 ((UINTN) (mAcpiBaseAddr + R_PCH_SMI_EN)); /// /// Set the "global smi enable" bit /// SmiEn |= B_PCH_SMI_EN_GBL_SMI; IoWrite32 ((UINTN) (mAcpiBaseAddr + R_PCH_SMI_EN), SmiEn); return EFI_SUCCESS; } /** Clears the SMI after all SMI source have been processed. Note that this function will not work correctly (as it is written) unless all SMI sources have been processed. A revision of this function could manually clear all SMI status bits to guarantee success. @retval EFI_SUCCESS Clears the SMIs completed @retval Asserts EOS was not set to a 1 **/ EFI_STATUS PchSmmClearSmi ( VOID ) { BOOLEAN EosSet; BOOLEAN SciEn; UINT32 Pm1Cnt; UINT16 Pm1Sts; UINT32 Gpe0Sts; UINT32 SmiSts; UINT16 DevActSts; UINT16 Tco1Sts; Gpe0Sts = 0; /// /// Determine whether an ACPI OS is present (via the SCI_EN bit) /// Pm1Cnt = IoRead32 ((UINTN) (mAcpiBaseAddr + R_PCH_ACPI_PM1_CNT)); SciEn = (BOOLEAN) ((Pm1Cnt & B_PCH_ACPI_PM1_CNT_SCI_EN) == B_PCH_ACPI_PM1_CNT_SCI_EN); if (!SciEn) { /// /// Clear any SMIs that double as SCIs (when SCI_EN==0) /// Pm1Sts = IoRead16 ((UINTN) (mAcpiBaseAddr + R_PCH_ACPI_PM1_STS)); Gpe0Sts = IoRead32 ((UINTN) (mAcpiBaseAddr + R_PCH_ACPI_GPE0_STS_127_96)); Pm1Sts |= ( B_PCH_ACPI_PM1_STS_WAK | B_PCH_ACPI_PM1_STS_PRBTNOR | B_PCH_ACPI_PM1_STS_RTC | B_PCH_ACPI_PM1_STS_PWRBTN | B_PCH_ACPI_PM1_STS_GBL | B_PCH_ACPI_PM1_STS_TMROF ); Gpe0Sts |= ( B_PCH_ACPI_GPE0_STS_127_96_PME_B0 | B_PCH_ACPI_GPE0_STS_127_96_PME | B_PCH_ACPI_GPE0_STS_127_96_BATLOW | B_PCH_ACPI_GPE0_STS_127_96_PCI_EXP | B_PCH_ACPI_GPE0_STS_127_96_RI | B_PCH_ACPI_GPE0_STS_127_96_SMB_WAK | B_PCH_ACPI_GPE0_STS_127_96_TC0SCI | B_PCH_ACPI_GPE0_STS_127_96_HOT_PLUG | B_PCH_ACPI_GPE0_STS_127_96_BATLOW | B_PCH_ACPI_GPE0_STS_127_96_LAN_WAKE ); IoWrite16 ((UINTN) (mAcpiBaseAddr + R_PCH_ACPI_PM1_STS), (UINT16) Pm1Sts); IoWrite32 ((UINTN) (mAcpiBaseAddr + R_PCH_ACPI_GPE0_STS_127_96), (UINT32) Gpe0Sts); } /// /// Clear all SMIs that are unaffected by SCI_EN /// SmiSts = IoRead32 ((UINTN) (mAcpiBaseAddr + R_PCH_SMI_STS)); DevActSts = IoRead16 ((UINTN) (mAcpiBaseAddr + R_PCH_DEVACT_STS)); Tco1Sts = IoRead16 ((UINTN) (mTcoBaseAddr + R_PCH_TCO1_STS)); SmiSts |= ( B_PCH_SMI_STS_SMBUS | B_PCH_SMI_STS_PERIODIC | B_PCH_SMI_STS_TCO | B_PCH_SMI_STS_MCSMI | B_PCH_SMI_STS_SWSMI_TMR | B_PCH_SMI_STS_APM | B_PCH_SMI_STS_ON_SLP_EN | B_PCH_SMI_STS_BIOS ); DevActSts |= ( B_PCH_DEVACT_STS_KBC | B_PCH_DEVACT_STS_PIRQDH | B_PCH_DEVACT_STS_PIRQCG | B_PCH_DEVACT_STS_PIRQBF | B_PCH_DEVACT_STS_PIRQAE ); Tco1Sts |= ( B_PCH_TCO1_STS_DMISERR | B_PCH_TCO1_STS_DMISMI | B_PCH_TCO1_STS_DMISCI | B_PCH_TCO1_STS_BIOSWR | B_PCH_TCO1_STS_NEWCENTURY | B_PCH_TCO1_STS_TIMEOUT | B_PCH_TCO1_STS_TCO_INT | B_PCH_TCO1_STS_SW_TCO_SMI ); GpioClearAllGpiSmiSts (); // // If NewCentury Sts is set here, it must clear the NewCentury Sts separately. // PchTcoClearNewCenturySts (NULL); IoWrite16 ((UINTN) (mTcoBaseAddr + R_PCH_TCO1_STS), Tco1Sts); // // We do not want to write 1 to clear INTRD_DET bit. // IoWrite16 ((UINTN) (mTcoBaseAddr + R_PCH_TCO2_STS), (UINT16) ~B_PCH_TCO2_STS_INTRD_DET); IoWrite32 ((UINTN) (mAcpiBaseAddr + R_PCH_SMI_STS), SmiSts); IoWrite16 ((UINTN) (mAcpiBaseAddr + R_PCH_DEVACT_STS), DevActSts); /// /// Try to clear the EOS bit. ASSERT on an error /// EosSet = PchSmmSetAndCheckEos (); ASSERT (EosSet); return EFI_SUCCESS; } /** Set the SMI EOS bit after all SMI source have been processed. @retval FALSE EOS was not set to a 1; this is an error @retval TRUE EOS was correctly set to a 1 **/ BOOLEAN PchSmmSetAndCheckEos ( VOID ) { UINT32 SmiEn; SmiEn = IoRead32 ((UINTN) (mAcpiBaseAddr + R_PCH_SMI_EN)); /// /// Reset the PCH to generate subsequent SMIs /// SmiEn |= B_PCH_SMI_EN_EOS; IoWrite32 ((UINTN) (mAcpiBaseAddr + R_PCH_SMI_EN), SmiEn); /// /// Double check that the assert worked /// SmiEn = IoRead32 ((UINTN) (mAcpiBaseAddr + R_PCH_SMI_EN)); /// /// Return TRUE if EOS is set correctly /// if ((SmiEn & B_PCH_SMI_EN_EOS) == 0) { /// /// EOS was not set to a 1; this is an error /// return FALSE; } else { /// /// EOS was correctly set to a 1 /// return TRUE; } } /** Determine whether an ACPI OS is present (via the SCI_EN bit) @retval TRUE ACPI OS is present @retval FALSE ACPI OS is not present **/ BOOLEAN PchSmmGetSciEn ( VOID ) { BOOLEAN SciEn; UINT32 Pm1Cnt; /// /// Determine whether an ACPI OS is present (via the SCI_EN bit) /// Pm1Cnt = IoRead32 ((UINTN) (mAcpiBaseAddr + R_PCH_ACPI_PM1_CNT)); SciEn = (BOOLEAN) ((Pm1Cnt & B_PCH_ACPI_PM1_CNT_SCI_EN) == B_PCH_ACPI_PM1_CNT_SCI_EN); return SciEn; } /** Read a specifying bit with the register These may or may not need to change w/ the PCH version; they're highly IA-32 dependent, though. @param[in] BitDesc The struct that includes register address, size in byte and bit number @retval TRUE The bit is enabled @retval FALSE The bit is disabled **/ BOOLEAN ReadBitDesc ( CONST PCH_SMM_BIT_DESC *BitDesc ) { EFI_STATUS Status; UINT64 Register; UINT32 PciBus; UINT32 PciDev; UINT32 PciFun; UINT32 PciReg; UINTN RegSize; BOOLEAN BitWasOne; UINTN ShiftCount; UINTN RegisterOffset; UINT32 BaseAddr; UINTN PciBaseAddress; ASSERT (BitDesc != NULL); ASSERT (!IS_BIT_DESC_NULL (*BitDesc)); RegSize = 0; Register = 0; ShiftCount = 0; BitWasOne = FALSE; switch (BitDesc->Reg.Type) { case ACPI_ADDR_TYPE: case TCO_ADDR_TYPE: if (BitDesc->Reg.Type == ACPI_ADDR_TYPE) { RegisterOffset = BitDesc->Reg.Data.acpi; BaseAddr = mAcpiBaseAddr; } else { RegisterOffset = BitDesc->Reg.Data.tco; BaseAddr = mTcoBaseAddr; } switch (BitDesc->SizeInBytes) { case 0: /// /// Chances are that this field didn't get initialized. /// Check your assignments to bit descriptions. /// ASSERT (FALSE); break; case 1: RegSize = SMM_IO_UINT8; break; case 2: RegSize = SMM_IO_UINT16; break; case 4: RegSize = SMM_IO_UINT32; break; case 8: RegSize = SMM_IO_UINT64; break; default: /// /// Unsupported or invalid register size /// ASSERT (FALSE); break; } /// /// Double check that we correctly read in the acpi base address /// ASSERT ((BaseAddr != 0x0) && ((BaseAddr & 0x1) != 0x1)); ShiftCount = BitDesc->Bit; /// /// As current CPU Smm Io can only support at most /// 32-bit read/write,if Operation is 64 bit, /// we do a 32 bit operation according to BitDesc->Bit /// if (RegSize == SMM_IO_UINT64) { RegSize = SMM_IO_UINT32; /// /// If the operation is for high 32 bits /// if (BitDesc->Bit >= 32) { RegisterOffset += 4; ShiftCount -= 32; } } Status = gSmst->SmmIo.Io.Read ( &gSmst->SmmIo, RegSize, BaseAddr + RegisterOffset, 1, &Register ); ASSERT_EFI_ERROR (Status); if ((Register & (LShiftU64 (BIT_ZERO, ShiftCount))) != 0) { BitWasOne = TRUE; } else { BitWasOne = FALSE; } break; case GPIO_ADDR_TYPE: case MEMORY_MAPPED_IO_ADDRESS_TYPE: /// /// Read the register, and it with the bit to read /// switch (BitDesc->SizeInBytes) { case 1: Register = (UINT64) MmioRead8 ((UINTN) BitDesc->Reg.Data.Mmio); break; case 2: Register = (UINT64) MmioRead16 ((UINTN) BitDesc->Reg.Data.Mmio); break; case 4: Register = (UINT64) MmioRead32 ((UINTN) BitDesc->Reg.Data.Mmio); break; case 8: Register = (UINT64) MmioRead32 ((UINTN) BitDesc->Reg.Data.Mmio); *((UINT32 *) (&Register) + 1) = MmioRead32 ((UINTN) BitDesc->Reg.Data.Mmio + 4); break; default: /// /// Unsupported or invalid register size /// ASSERT (FALSE); break; } Register = Register & (LShiftU64 (BIT0, BitDesc->Bit)); if (Register) { BitWasOne = TRUE; } else { BitWasOne = FALSE; } break; case PCIE_ADDR_TYPE: PciBus = BitDesc->Reg.Data.pcie.Fields.Bus; PciDev = BitDesc->Reg.Data.pcie.Fields.Dev; PciFun = BitDesc->Reg.Data.pcie.Fields.Fnc; PciReg = BitDesc->Reg.Data.pcie.Fields.Reg; PciBaseAddress = MmPciBase (PciBus, PciDev, PciFun); switch (BitDesc->SizeInBytes) { case 0: /// /// Chances are that this field didn't get initialized. /// Check your assignments to bit descriptions. /// ASSERT (FALSE); break; case 1: Register = (UINT64) MmioRead8 (PciBaseAddress + PciReg); break; case 2: Register = (UINT64) MmioRead16 (PciBaseAddress + PciReg); break; case 4: Register = (UINT64) MmioRead32 (PciBaseAddress + PciReg); break; default: /// /// Unsupported or invalid register size /// ASSERT (FALSE); break; } if ((Register & (LShiftU64 (BIT_ZERO, BitDesc->Bit))) != 0) { BitWasOne = TRUE; } else { BitWasOne = FALSE; } break; case PCR_ADDR_TYPE: /// /// Read the register, and it with the bit to read /// switch (BitDesc->SizeInBytes) { case 1: PchPcrRead8 (BitDesc->Reg.Data.Pcr.Fields.Pid, BitDesc->Reg.Data.Pcr.Fields.Offset, (UINT8*) &Register); break; case 2: PchPcrRead16 (BitDesc->Reg.Data.Pcr.Fields.Pid, BitDesc->Reg.Data.Pcr.Fields.Offset, (UINT16*) &Register); break; case 4: PchPcrRead32 (BitDesc->Reg.Data.Pcr.Fields.Pid, BitDesc->Reg.Data.Pcr.Fields.Offset, (UINT32*) &Register); break; default: /// /// Unsupported or invalid register size /// ASSERT (FALSE); break; } Register = Register & (LShiftU64 (BIT0, BitDesc->Bit)); if (Register) { BitWasOne = TRUE; } else { BitWasOne = FALSE; } break; default: /// /// This address type is not yet implemented /// ASSERT (FALSE); break; } return BitWasOne; } /** Write a specifying bit with the register @param[in] BitDesc The struct that includes register address, size in byte and bit number @param[in] ValueToWrite The value to be wrote @param[in] WriteClear If the rest bits of the register is write clear **/ VOID WriteBitDesc ( CONST PCH_SMM_BIT_DESC *BitDesc, CONST BOOLEAN ValueToWrite, CONST BOOLEAN WriteClear ) { EFI_STATUS Status; UINT64 Register; UINT64 AndVal; UINT64 OrVal; UINT32 RegSize; UINT32 PciBus; UINT32 PciDev; UINT32 PciFun; UINT32 PciReg; UINTN RegisterOffset; UINT32 BaseAddr; UINTN PciBaseAddress; ASSERT (BitDesc != NULL); ASSERT (!IS_BIT_DESC_NULL (*BitDesc)); RegSize = 0; Register = 0; if (WriteClear) { AndVal = LShiftU64 (BIT_ZERO, BitDesc->Bit); } else { AndVal = ~(LShiftU64 (BIT_ZERO, BitDesc->Bit)); } OrVal = (LShiftU64 ((UINT32) ValueToWrite, BitDesc->Bit)); switch (BitDesc->Reg.Type) { case ACPI_ADDR_TYPE: case TCO_ADDR_TYPE: if (BitDesc->Reg.Type == ACPI_ADDR_TYPE) { RegisterOffset = BitDesc->Reg.Data.acpi; BaseAddr = mAcpiBaseAddr; } else { RegisterOffset = BitDesc->Reg.Data.tco; BaseAddr = mTcoBaseAddr; } switch (BitDesc->SizeInBytes) { case 0: /// /// Chances are that this field didn't get initialized. /// Check your assignments to bit descriptions. /// ASSERT (FALSE); break; case 1: RegSize = SMM_IO_UINT8; break; case 2: RegSize = SMM_IO_UINT16; break; case 4: RegSize = SMM_IO_UINT32; break; case 8: RegSize = SMM_IO_UINT64; break; default: /// /// Unsupported or invalid register size /// ASSERT (FALSE); break; } /// /// Double check that we correctly read in the acpi base address /// ASSERT ((BaseAddr != 0x0) && ((BaseAddr & 0x1) != 0x1)); /// /// As current CPU Smm Io can only support at most /// 32-bit read/write,if Operation is 64 bit, /// we do a 32 bit operation according to BitDesc->Bit /// if (RegSize == SMM_IO_UINT64) { RegSize = SMM_IO_UINT32; /// /// If the operation is for high 32 bits /// if (BitDesc->Bit >= 32) { RegisterOffset += 4; if (WriteClear) { AndVal = LShiftU64 (BIT_ZERO, BitDesc->Bit - 32); } else { AndVal = ~(LShiftU64 (BIT_ZERO, BitDesc->Bit - 32)); } OrVal = LShiftU64 ((UINT32) ValueToWrite, BitDesc->Bit - 32); } } Status = gSmst->SmmIo.Io.Read ( &gSmst->SmmIo, RegSize, BaseAddr + RegisterOffset, 1, &Register ); ASSERT_EFI_ERROR (Status); Register &= AndVal; Register |= OrVal; Status = gSmst->SmmIo.Io.Write ( &gSmst->SmmIo, RegSize, BaseAddr + RegisterOffset, 1, &Register ); ASSERT_EFI_ERROR (Status); break; case GPIO_ADDR_TYPE: case MEMORY_MAPPED_IO_ADDRESS_TYPE: /// /// Read the register, or it with the bit to set, then write it back. /// switch (BitDesc->SizeInBytes) { case 1: MmioAndThenOr8 ((UINTN) BitDesc->Reg.Data.Mmio, (UINT8) AndVal, (UINT8) OrVal); break; case 2: MmioAndThenOr16 ((UINTN) BitDesc->Reg.Data.Mmio, (UINT16) AndVal, (UINT16) OrVal); break; case 4: MmioAndThenOr32 ((UINTN) BitDesc->Reg.Data.Mmio, (UINT32) AndVal, (UINT32) OrVal); break; case 8: Register = (UINT64) MmioRead32 ((UINTN) BitDesc->Reg.Data.Mmio); *((UINT32 *) (&Register) + 1) = MmioRead32 ((UINTN) BitDesc->Reg.Data.Mmio + 4); Register &= AndVal; Register |= OrVal; MmioWrite32 ((UINTN) BitDesc->Reg.Data.Mmio, (UINT32) Register); MmioWrite32 ((UINTN) BitDesc->Reg.Data.Mmio + 4, *((UINT32 *) (&Register) + 1)); break; default: /// /// Unsupported or invalid register size /// ASSERT (FALSE); break; } break; case PCIE_ADDR_TYPE: PciBus = BitDesc->Reg.Data.pcie.Fields.Bus; PciDev = BitDesc->Reg.Data.pcie.Fields.Dev; PciFun = BitDesc->Reg.Data.pcie.Fields.Fnc; PciReg = BitDesc->Reg.Data.pcie.Fields.Reg; PciBaseAddress = MmPciBase (PciBus, PciDev, PciFun); switch (BitDesc->SizeInBytes) { case 0: /// /// Chances are that this field didn't get initialized -- check your assignments /// to bit descriptions. /// ASSERT (FALSE); break; case 1: MmioAndThenOr8 (PciBaseAddress + PciReg, (UINT8) AndVal, (UINT8) OrVal); break; case 2: MmioAndThenOr16 (PciBaseAddress + PciReg, (UINT16) AndVal, (UINT16) OrVal); break; case 4: MmioAndThenOr32 (PciBaseAddress + PciReg, (UINT32) AndVal, (UINT32) OrVal); break; default: /// /// Unsupported or invalid register size /// ASSERT (FALSE); break; } break; case PCR_ADDR_TYPE: /// /// Read the register, or it with the bit to set, then write it back. /// switch (BitDesc->SizeInBytes) { case 1: PchPcrAndThenOr8 ((PCH_SBI_PID) BitDesc->Reg.Data.Pcr.Fields.Pid, (UINT16) BitDesc->Reg.Data.Pcr.Fields.Offset, (UINT8) AndVal, (UINT8) OrVal); break; case 2: PchPcrAndThenOr16 ((PCH_SBI_PID) BitDesc->Reg.Data.Pcr.Fields.Pid, (UINT16) BitDesc->Reg.Data.Pcr.Fields.Offset, (UINT16) AndVal, (UINT16) OrVal); break; case 4: PchPcrAndThenOr32 ((PCH_SBI_PID) BitDesc->Reg.Data.Pcr.Fields.Pid, (UINT16) BitDesc->Reg.Data.Pcr.Fields.Offset, (UINT32) AndVal, (UINT32) OrVal); break; default: /// /// Unsupported or invalid register size /// ASSERT (FALSE); break; } break; default: /// /// This address type is not yet implemented /// ASSERT (FALSE); break; } }