#include "DefineHeader.h" UINT gTable_Crc32[256] = { 0x00000000, 0x04c10db7, 0x09821b6e, 0x0d4316d9, 0x130436dc, 0x17c53b6b, 0x1a862db2, 0x1e472005, 0x26086db8, 0x22c9600f, 0x2f8a76d6, 0x2b4b7b61, 0x350c5b64, 0x31cd56d3, 0x3c8e400a, 0x384f4dbd, 0x4c10db70, 0x48d1d6c7, 0x4592c01e, 0x4153cda9, 0x5f14edac, 0x5bd5e01b, 0x5696f6c2, 0x5257fb75, 0x6a18b6c8, 0x6ed9bb7f, 0x639aada6, 0x675ba011, 0x791c8014, 0x7ddd8da3, 0x709e9b7a, 0x745f96cd, 0x9821b6e0, 0x9ce0bb57, 0x91a3ad8e, 0x9562a039, 0x8b25803c, 0x8fe48d8b, 0x82a79b52, 0x866696e5, 0xbe29db58, 0xbae8d6ef, 0xb7abc036, 0xb36acd81, 0xad2ded84, 0xa9ece033, 0xa4aff6ea, 0xa06efb5d, 0xd4316d90, 0xd0f06027, 0xddb376fe, 0xd9727b49, 0xc7355b4c, 0xc3f456fb, 0xceb74022, 0xca764d95, 0xf2390028, 0xf6f80d9f, 0xfbbb1b46, 0xff7a16f1, 0xe13d36f4, 0xe5fc3b43, 0xe8bf2d9a, 0xec7e202d, 0x34826077, 0x30436dc0, 0x3d007b19, 0x39c176ae, 0x278656ab, 0x23475b1c, 0x2e044dc5, 0x2ac54072, 0x128a0dcf, 0x164b0078, 0x1b0816a1, 0x1fc91b16, 0x018e3b13, 0x054f36a4, 0x080c207d, 0x0ccd2dca, 0x7892bb07, 0x7c53b6b0, 0x7110a069, 0x75d1adde, 0x6b968ddb, 0x6f57806c, 0x621496b5, 0x66d59b02, 0x5e9ad6bf, 0x5a5bdb08, 0x5718cdd1, 0x53d9c066, 0x4d9ee063, 0x495fedd4, 0x441cfb0d, 0x40ddf6ba, 0xaca3d697, 0xa862db20, 0xa521cdf9, 0xa1e0c04e, 0xbfa7e04b, 0xbb66edfc, 0xb625fb25, 0xb2e4f692, 0x8aabbb2f, 0x8e6ab698, 0x8329a041, 0x87e8adf6, 0x99af8df3, 0x9d6e8044, 0x902d969d, 0x94ec9b2a, 0xe0b30de7, 0xe4720050, 0xe9311689, 0xedf01b3e, 0xf3b73b3b, 0xf776368c, 0xfa352055, 0xfef42de2, 0xc6bb605f, 0xc27a6de8, 0xcf397b31, 0xcbf87686, 0xd5bf5683, 0xd17e5b34, 0xdc3d4ded, 0xd8fc405a, 0x6904c0ee, 0x6dc5cd59, 0x6086db80, 0x6447d637, 0x7a00f632, 0x7ec1fb85, 0x7382ed5c, 0x7743e0eb, 0x4f0cad56, 0x4bcda0e1, 0x468eb638, 0x424fbb8f, 0x5c089b8a, 0x58c9963d, 0x558a80e4, 0x514b8d53, 0x25141b9e, 0x21d51629, 0x2c9600f0, 0x28570d47, 0x36102d42, 0x32d120f5, 0x3f92362c, 0x3b533b9b, 0x031c7626, 0x07dd7b91, 0x0a9e6d48, 0x0e5f60ff, 0x101840fa, 0x14d94d4d, 0x199a5b94, 0x1d5b5623, 0xf125760e, 0xf5e47bb9, 0xf8a76d60, 0xfc6660d7, 0xe22140d2, 0xe6e04d65, 0xeba35bbc, 0xef62560b, 0xd72d1bb6, 0xd3ec1601, 0xdeaf00d8, 0xda6e0d6f, 0xc4292d6a, 0xc0e820dd, 0xcdab3604, 0xc96a3bb3, 0xbd35ad7e, 0xb9f4a0c9, 0xb4b7b610, 0xb076bba7, 0xae319ba2, 0xaaf09615, 0xa7b380cc, 0xa3728d7b, 0x9b3dc0c6, 0x9ffccd71, 0x92bfdba8, 0x967ed61f, 0x8839f61a, 0x8cf8fbad, 0x81bbed74, 0x857ae0c3, 0x5d86a099, 0x5947ad2e, 0x5404bbf7, 0x50c5b640, 0x4e829645, 0x4a439bf2, 0x47008d2b, 0x43c1809c, 0x7b8ecd21, 0x7f4fc096, 0x720cd64f, 0x76cddbf8, 0x688afbfd, 0x6c4bf64a, 0x6108e093, 0x65c9ed24, 0x11967be9, 0x1557765e, 0x18146087, 0x1cd56d30, 0x02924d35, 0x06534082, 0x0b10565b, 0x0fd15bec, 0x379e1651, 0x335f1be6, 0x3e1c0d3f, 0x3add0088, 0x249a208d, 0x205b2d3a, 0x2d183be3, 0x29d93654, 0xc5a71679, 0xc1661bce, 0xcc250d17, 0xc8e400a0, 0xd6a320a5, 0xd2622d12, 0xdf213bcb, 0xdbe0367c, 0xe3af7bc1, 0xe76e7676, 0xea2d60af, 0xeeec6d18, 0xf0ab4d1d, 0xf46a40aa, 0xf9295673, 0xfde85bc4, 0x89b7cd09, 0x8d76c0be, 0x8035d667, 0x84f4dbd0, 0x9ab3fbd5, 0x9e72f662, 0x9331e0bb, 0x97f0ed0c, 0xafbfa0b1, 0xab7ead06, 0xa63dbbdf, 0xa2fcb668, 0xbcbb966d, 0xb87a9bda, 0xb5398d03, 0xb1f880b4, }; #define rr_max 104 /* Number of parity checks, rr = deg[g(x)] */ #define parallel 8 //bit count #define mm 13//limit count #define nn 8191//code size #define kk 4120//info length #define tt 8//correct count #define tt2 2*tt UINT s[tt2 + 1]; // Syndrome values UINT rr;//redundant length // BCH code parameters UINT p[mm + 1]; UINT alpha_to[nn + 1], index_of[nn + 1] ; // Galois field UINT gg[rr_max + 1] ; // Generator polynomial UINT ggx1 = 0; UINT ggx2 = 0; UINT ggx3 = 0; UINT ggx4 = 0; // get crc32 value UINT CRC_32(unsigned char *pData, UINT ulSize, UINT uiPreviousValue = 0) { UINT i; UINT nAccum = uiPreviousValue; for (i = 0; i < ulSize; i++) { nAccum = (nAccum << 8)^gTable_Crc32[(nAccum >> 24) ^ (*pData++)]; } return nAccum; } #define CRC16_CCITT 0x1021 //CRC operator void CRCBuildTable16(unsigned short aPoly, unsigned short *crcTable) { unsigned short i, j; unsigned short nData; unsigned short nAccum; for (i = 0; i < 256; i++) { nData = (unsigned short)(i << 8); nAccum = 0; for (j = 0; j < 8; j++) { if ((nData ^ nAccum) & 0x8000) { nAccum = (nAccum << 1) ^ aPoly; } else { nAccum <<= 1; } nData <<= 1; } crcTable[i] = nAccum; } } unsigned short CRC_16(unsigned char *aData, UINT aSize) { UINT i; unsigned short nAccum = 0; unsigned short crcTable[256]; CRCBuildTable16(CRC16_CCITT, crcTable); for (i = 0; i < aSize; i++) { nAccum = (nAccum << 8) ^ crcTable[(nAccum >> 8) ^ *aData++]; } return nAccum; } void P_RC4(unsigned char *buf, unsigned short len) { unsigned char S[256], K[256], temp; unsigned short i, j, t, x; unsigned char key[16] = {124, 78, 3, 4, 85, 5, 9, 7, 45, 44, 123, 56, 23, 13, 23, 17}; j = 0; for (i = 0; i < 256; i++) { S[i] = (unsigned char)i; j &= 0x0f; K[i] = key[j]; j++; } j = 0; for (i = 0; i < 256; i++) { j = (j + S[i] + K[i]) % 256; temp = S[i]; S[i] = S[j]; S[j] = temp; } i = j = 0; for (x = 0; x < len; x++) { i = (i + 1) % 256; j = (j + S[i]) % 256; temp = S[i]; S[i] = S[j]; S[j] = temp; t = (S[i] + (S[j] % 256)) % 256; buf[x] = buf[x] ^ S[t]; } } void bch_encode(unsigned char *encode_in, unsigned char *encode_out) { UINT i, j; bool feed_back; UINT bch1 = 0; UINT bch2 = 0; UINT bch3 = 0; UINT bch4 = 0; for (i = 0; i < 515; i++) { for (j = 0; j < 8; j++) { feed_back = (bch1 & 1) ^ ((encode_in[i] >> j) & 1); bch1 = ((bch1 >> 1) | ((bch2 & 1) * 0x80000000)) ^ (ggx1 * feed_back); bch2 = ((bch2 >> 1) | ((bch3 & 1) * 0x80000000)) ^ (ggx2 * feed_back); bch3 = ((bch3 >> 1) | ((bch4 & 1) * 0x80000000)) ^ (ggx3 * feed_back); bch4 = (((bch4 >> 1) ^ (ggx4 * feed_back))) | (feed_back * 0x80); } } //********Handle FF*********************** bch1 = ~(bch1 ^ 0xad6273b1); bch2 = ~(bch2 ^ 0x348393d2); bch3 = ~(bch3 ^ 0xe6ebed3c); bch4 = ~(bch4 ^ 0xc8); //********************************************* for (i = 0; i < 515; i++) { encode_out[i] = encode_in[i]; } encode_out[515] = bch1 & 0x000000ff; encode_out[516] = (bch1 & 0x0000ff00) >> 8; encode_out[517] = (bch1 & 0x00ff0000) >> 16; encode_out[518] = (bch1 & 0xff000000) >> 24; encode_out[519] = bch2 & 0x000000ff; encode_out[520] = (bch2 & 0x0000ff00) >> 8; encode_out[521] = (bch2 & 0x00ff0000) >> 16; encode_out[522] = (bch2 & 0xff000000) >> 24; encode_out[523] = bch3 & 0x000000ff; encode_out[524] = (bch3 & 0x0000ff00) >> 8; encode_out[525] = (bch3 & 0x00ff0000) >> 16; encode_out[526] = (bch3 & 0xff000000) >> 24; encode_out[527] = bch4 & 0x000000ff; } #define poly16_CCITT 0x1021 /* crc-ccitt mask */ unsigned short CRC_Calculate(unsigned short crc, unsigned char ch) { UINT i; for (i = 0x80; i != 0; i >>= 1) { if ((crc & 0x8000) != 0) { crc <<= 1; crc ^= poly16_CCITT; } else { crc <<= 1; } if ((ch & i) != 0) { crc ^= poly16_CCITT; } } return crc; } unsigned short CRC_CCITT(unsigned char *p, UINT CalculateNumber) { unsigned short crc = 0xffff; while (CalculateNumber--) { crc = CRC_Calculate(crc, *p); p++; } return crc; } void gen_poly() { UINT gen_roots[nn + 1], gen_roots_true[nn + 1] ; // Roots of generator polynomial UINT i, j, Temp ; // Initialization of gen_roots for (i = 0; i <= nn; i++) { gen_roots_true[i] = 0; gen_roots[i] = 0; } // Cyclotomic cosets of gen_roots for (i = 1; i <= 2 * tt ; i++) { for (j = 0; j < mm; j++) { Temp = ((1 << j) * i) % nn; gen_roots_true[Temp] = 1; } } rr = 0; // Count thenumber of parity check bits for (i = 0; i < nn; i++) { if (gen_roots_true[i] == 1) { rr++; gen_roots[rr] = i; } } // Compute generator polynomial based on its roots gg[0] = 2 ; // g(x) = (X + alpha) initially gg[1] = 1 ; for (i = 2; i <= rr; i++) { gg[i] = 1 ; for (j = i - 1; j > 0; j--) if (gg[j] != 0) { gg[j] = gg[j - 1] ^ alpha_to[(index_of[gg[j]] + index_of[alpha_to[gen_roots[i]]]) % nn] ; } else { gg[j] = gg[j - 1] ; } gg[0] = alpha_to[(index_of[gg[0]] + index_of[alpha_to[gen_roots[i]]]) % nn] ; } ggx1 = gg[103] | (gg[102] << 1) | (gg[101] << 2) | (gg[100] << 3) | (gg[99] << 4) | (gg[98] << 5) | (gg[97] << 6) | (gg[96] << 7) | (gg[95] << 8) | (gg[94] << 9) | (gg[93] << 10) | (gg[92] << 11) | (gg[91] << 12) | (gg[90] << 13) | (gg[89] << 14) | (gg[88] << 15) | (gg[87] << 16) | (gg[86] << 17) | (gg[85] << 18) | (gg[84] << 19) | (gg[83] << 20) | (gg[82] << 21) | (gg[81] << 22) | (gg[80] << 23) | (gg[79] << 24) | (gg[78] << 25) | (gg[77] << 26) | (gg[76] << 27) | (gg[75] << 28) | (gg[74] << 29) | (gg[73] << 30) | (gg[72] << 31); ggx2 = gg[71] | (gg[70] << 1) | (gg[69] << 2) | (gg[68] << 3) | (gg[67] << 4) | (gg[66] << 5) | (gg[65] << 6) | (gg[64] << 7) | (gg[63] << 8) | (gg[62] << 9) | (gg[61] << 10) | (gg[60] << 11) | (gg[59] << 12) | (gg[58] << 13) | (gg[57] << 14) | (gg[56] << 15) | (gg[55] << 16) | (gg[54] << 17) | (gg[53] << 18) | (gg[52] << 19) | (gg[51] << 20) | (gg[50] << 21) | (gg[49] << 22) | (gg[48] << 23) | (gg[47] << 24) | (gg[46] << 25) | (gg[45] << 26) | (gg[44] << 27) | (gg[43] << 28) | (gg[42] << 29) | (gg[41] << 30) | (gg[40] << 31); ggx3 = gg[39] | (gg[38] << 1) | (gg[37] << 2) | (gg[36] << 3) | (gg[35] << 4) | (gg[34] << 5) | (gg[33] << 6) | (gg[32] << 7) | (gg[31] << 8) | (gg[30] << 9) | (gg[29] << 10) | (gg[28] << 11) | (gg[27] << 12) | (gg[26] << 13) | (gg[25] << 14) | (gg[24] << 15) | (gg[23] << 16) | (gg[22] << 17) | (gg[21] << 18) | (gg[20] << 19) | (gg[19] << 20) | (gg[18] << 21) | (gg[17] << 22) | (gg[16] << 23) | (gg[15] << 24) | (gg[14] << 25) | (gg[13] << 26) | (gg[12] << 27) | (gg[11] << 28) | (gg[10] << 29) | (gg[9] << 30) | (gg[8] << 31); ggx4 = gg[7] | (gg[6] << 1) | (gg[5] << 2) | (gg[4] << 3) | (gg[3] << 4) | (gg[2] << 5) | (gg[1] << 6); } void generate_gf() { UINT i; UINT mask ; // Register states // Primitive polynomials for (i = 1; i < mm; i++) { p[i] = 0; } p[0] = p[mm] = 1; if (mm == 2) { p[1] = 1; } else if (mm == 3) { p[1] = 1; } else if (mm == 4) { p[1] = 1; } else if (mm == 5) { p[2] = 1; } else if (mm == 6) { p[1] = 1; } else if (mm == 7) { p[1] = 1; } else if (mm == 8) { p[4] = p[5] = p[6] = 1; } else if (mm == 9) { p[4] = 1; } else if (mm == 10) { p[3] = 1; } else if (mm == 11) { p[2] = 1; } else if (mm == 12) { p[3] = p[4] = p[7] = 1; } else if (mm == 13) { p[1] = p[2] = p[3] = p[5] = p[7] = p[8] = p[10] = 1; // 25AF } else if (mm == 14) { p[2] = p[4] = p[6] = p[7] = p[8] = 1; // 41D5 } else if (mm == 15) { p[1] = 1; } else if (mm == 16) { p[2] = p[3] = p[5] = 1; } else if (mm == 17) { p[3] = 1; } else if (mm == 18) { p[7] = 1; } else if (mm == 19) { p[1] = p[5] = p[6] = 1; } else if (mm == 20) { p[3] = 1; } // Galois field implementation with shift registers // Ref: L&C, Chapter 6.7, pp. 217 mask = 1 ; alpha_to[mm] = 0 ; for (i = 0; i < mm; i++) { alpha_to[i] = mask ; index_of[alpha_to[i]] = i ; if (p[i] != 0) { alpha_to[mm] ^= mask ; } mask <<= 1 ; } index_of[alpha_to[mm]] = mm ; mask >>= 1 ; for (i = mm + 1; i < nn; i++) { if (alpha_to[i - 1] >= mask) { alpha_to[i] = alpha_to[mm] ^ ((alpha_to[i - 1] ^ mask) << 1) ; } else { alpha_to[i] = alpha_to[i - 1] << 1 ; } index_of[alpha_to[i]] = i ; } index_of[0] = -1 ; }