import numpy as np import cv2 from rknn.api import RKNN if __name__ == '__main__': # Create RKNN object rknn = RKNN(verbose=True) # Pre-process config print('--> Config model') rknn.config(mean_values=[[127.5, 127.5, 127.5], [0, 0, 0], [0, 0, 0], [127.5]], std_values=[[128, 128, 128], [1, 1, 1], [1, 1, 1], [128]]) print('done') # Load model print('--> Loading model') ret = rknn.load_tensorflow(tf_pb='./conv_128.pb', inputs=['input1', 'input2', 'input3', 'input4'], outputs=['output'], input_size_list=[[1, 128, 128, 3], [1, 128, 128, 3], [1, 128, 128, 3], [1, 128, 128, 1]]) if ret != 0: print('Load model failed!') exit(ret) print('done') # Build model print('--> Building model') ret = rknn.build(do_quantization=True, dataset='./dataset.txt') if ret != 0: print('Build model failed!') exit(ret) print('done') # Export rknn model print('--> Export rknn model') ret = rknn.export_rknn('./conv_128.rknn') if ret != 0: print('Export rknn model failed!') exit(ret) print('done') # Init runtime environment print('--> Init runtime environment') ret = rknn.init_runtime() if ret != 0: print('Init runtime environment failed!') exit(ret) print('done') # Set inputs img = cv2.imread('./dog_128x128.jpg') img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img_gray = cv2.imread('./dog_128x128_gray.png', cv2.IMREAD_GRAYSCALE) img_gray = np.expand_dims(img_gray, -1) input2 = np.load('input2.npy').astype('float32') input3 = np.load('input3.npy').astype('float32') # Inference print('--> Running model') outputs = rknn.inference(inputs=[img, input2, input3, img_gray]) np.save('./functions_multi_input_test_0.npy', outputs[0]) print('done') outputs[0] = outputs[0].reshape((1, -1)) print('inference result: ', outputs) rknn.release()