/* * BK Id: SCCS/s.fec.c 1.30 09/11/02 14:55:08 paulus */ /* * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) * * This version of the driver is specific to the FADS implementation, * since the board contains control registers external to the processor * for the control of the LevelOne LXT970 transceiver. The MPC860T manual * describes connections using the internal parallel port I/O, which * is basically all of Port D. * * Includes support for the following PHYs: QS6612, LXT970, LXT971/2. * * Right now, I am very wasteful with the buffers. I allocate memory * pages and then divide them into 2K frame buffers. This way I know I * have buffers large enough to hold one frame within one buffer descriptor. * Once I get this working, I will use 64 or 128 byte CPM buffers, which * will be much more memory efficient and will easily handle lots of * small packets. * * Much better multiple PHY support by Magnus Damm. * Copyright (c) 2000 Ericsson Radio Systems AB. * * Make use of MII for PHY control configurable. * Some fixes. * Copyright (c) 2000-2002 Wolfgang Denk, DENX Software Engineering. * * Fixes for tx_full condition and relink when using MII. * Support for AMD AM79C874 added. * Thomas Lange, thomas@corelatus.com * * Added code for Multicast support, Frederic Goddeeris, Paul Geerinckx * Copyright (c) 2002 Siemens Atea * * Ported to RTnet from "linuxppc_2_4_devel/arch/ppc/8xx_io/fec.c". * Copyright (c) 2003 Wolfgang Grandegger (wg@denx.de) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO #error "MDIO for PHY configuration is not yet supported!" #endif #include MODULE_AUTHOR("Maintainer: Wolfgang Grandegger "); MODULE_DESCRIPTION("RTnet driver for the MPC8xx FEC Ethernet"); MODULE_LICENSE("GPL"); static unsigned int rx_pool_size = 0; MODULE_PARM(rx_pool_size, "i"); MODULE_PARM_DESC(rx_pool_size, "Receive buffer pool size"); #define RT_DEBUG(fmt,args...) /* multicast support */ /* #define DEBUG_MULTICAST */ /* CRC polynomium used by the FEC for the multicast group filtering */ #define FEC_CRC_POLY 0x04C11DB7 #ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO /* Forward declarations of some structures to support different PHYs */ typedef struct { uint mii_data; void (*funct)(uint mii_reg, struct net_device *dev, uint data); } phy_cmd_t; typedef struct { uint id; char *name; const phy_cmd_t *config; const phy_cmd_t *startup; const phy_cmd_t *ack_int; const phy_cmd_t *shutdown; } phy_info_t; #endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */ /* The number of Tx and Rx buffers. These are allocated from the page * pool. The code may assume these are power of two, so it is best * to keep them that size. * We don't need to allocate pages for the transmitter. We just use * the skbuffer directly. */ #define FEC_ENET_RX_PAGES 4 #define FEC_ENET_RX_FRSIZE 2048 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE) #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES) #define TX_RING_SIZE 8 /* Must be power of two */ #define TX_RING_MOD_MASK 7 /* for this to work */ /* Interrupt events/masks. */ #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */ #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */ #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */ #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */ #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */ #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */ #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */ #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */ #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */ #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */ /* */ #define FEC_ECNTRL_PINMUX 0x00000004 #define FEC_ECNTRL_ETHER_EN 0x00000002 #define FEC_ECNTRL_RESET 0x00000001 #define FEC_RCNTRL_BC_REJ 0x00000010 #define FEC_RCNTRL_PROM 0x00000008 #define FEC_RCNTRL_MII_MODE 0x00000004 #define FEC_RCNTRL_DRT 0x00000002 #define FEC_RCNTRL_LOOP 0x00000001 #define FEC_TCNTRL_FDEN 0x00000004 #define FEC_TCNTRL_HBC 0x00000002 #define FEC_TCNTRL_GTS 0x00000001 /* Delay to wait for FEC reset command to complete (in us) */ #define FEC_RESET_DELAY 50 /* The FEC stores dest/src/type, data, and checksum for receive packets. */ #define PKT_MAXBUF_SIZE 1518 #define PKT_MINBUF_SIZE 64 #define PKT_MAXBLR_SIZE 1520 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and * tx_bd_base always point to the base of the buffer descriptors. The * cur_rx and cur_tx point to the currently available buffer. * The dirty_tx tracks the current buffer that is being sent by the * controller. The cur_tx and dirty_tx are equal under both completely * empty and completely full conditions. The empty/ready indicator in * the buffer descriptor determines the actual condition. */ struct fec_enet_private { /* The addresses of a Tx/Rx-in-place packets/buffers. */ struct rtskb *tx_skbuff[TX_RING_SIZE]; ushort skb_cur; ushort skb_dirty; /* CPM dual port RAM relative addresses. */ cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */ cbd_t *tx_bd_base; cbd_t *cur_rx, *cur_tx; /* The next free ring entry */ cbd_t *dirty_tx; /* The ring entries to be free()ed. */ /* Virtual addresses for the receive buffers because we can't * do a __va() on them anymore. */ unsigned char *rx_vaddr[RX_RING_SIZE]; struct net_device_stats stats; uint tx_full; rtdm_lock_t lock; rtdm_irq_t irq_handle; #ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO uint phy_id; uint phy_id_done; uint phy_status; uint phy_speed; phy_info_t *phy; struct tq_struct phy_task; uint sequence_done; uint phy_addr; struct timer_list phy_timer_list; u16 old_status; #endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */ int link; int old_link; int full_duplex; }; static int fec_enet_open(struct rtnet_device *rtev); static int fec_enet_start_xmit(struct rtskb *skb, struct rtnet_device *rtdev); static void fec_enet_tx(struct rtnet_device *rtdev); static void fec_enet_rx(struct rtnet_device *rtdev, int *packets, nanosecs_abs_t *time_stamp); static int fec_enet_interrupt(rtdm_irq_t *irq_handle); static int fec_enet_close(struct rtnet_device *dev); static void fec_restart(struct rtnet_device *rtdev, int duplex); static void fec_stop(struct rtnet_device *rtdev); #ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO static void fec_enet_mii(struct net_device *dev); #endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */ static struct net_device_stats *fec_enet_get_stats(struct rtnet_device *rtdev); #ifdef ORIGINAL_VERSION static void set_multicast_list(struct net_device *dev); #endif /* ORIGINAL_VERSION */ static struct rtnet_device *rtdev_root = NULL; /* for cleanup */ static ushort my_enet_addr[3]; #ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO static int fec_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); static int netdev_ethtool_ioctl(struct net_device *dev, void *useraddr); static void mdio_callback(uint regval, struct net_device *dev, uint data); static int mdio_read(struct net_device *dev, int phy_id, int location); #if defined(CONFIG_FEC_DP83846A) static void mdio_timer_callback(unsigned long data); #endif /* CONFIG_FEC_DP83846A */ /* MII processing. We keep this as simple as possible. Requests are * placed on the list (if there is room). When the request is finished * by the MII, an optional function may be called. */ typedef struct mii_list { uint mii_regval; void (*mii_func)(uint val, struct net_device *dev, uint data); struct mii_list *mii_next; uint mii_data; } mii_list_t; #define NMII 20 mii_list_t mii_cmds[NMII]; mii_list_t *mii_free; mii_list_t *mii_head; mii_list_t *mii_tail; typedef struct mdio_read_data { u16 regval; struct task_struct *sleeping_task; } mdio_read_data_t; static int mii_queue(struct net_device *dev, int request, void (*func)(uint, struct net_device *, uint), uint data); static void mii_queue_relink(uint mii_reg, struct net_device *dev, uint data); /* Make MII read/write commands for the FEC. */ #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18)) #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \ (VAL & 0xffff)) #define mk_mii_end 0 #endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */ /* Transmitter timeout. */ #define TX_TIMEOUT (2*HZ) #ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO /* Register definitions for the PHY. */ #define MII_REG_CR 0 /* Control Register */ #define MII_REG_SR 1 /* Status Register */ #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */ #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */ #define MII_REG_ANAR 4 /* A-N Advertisement Register */ #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */ #define MII_REG_ANER 6 /* A-N Expansion Register */ #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */ #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */ /* values for phy_status */ #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */ #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */ #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */ #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */ #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */ #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */ #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */ #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */ #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */ #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */ #define PHY_STAT_SPMASK 0xf000 /* mask for speed */ #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */ #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */ #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */ #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */ #endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */ static int fec_enet_start_xmit(struct rtskb *skb, struct rtnet_device *rtdev) { struct fec_enet_private *fep; volatile fec_t *fecp; volatile cbd_t *bdp; rtdm_lockctx_t context; RT_DEBUG(__FUNCTION__": ...\n"); fep = rtdev->priv; fecp = (volatile fec_t*)rtdev->base_addr; if (!fep->link) { /* Link is down or autonegotiation is in progress. */ return 1; } /* Fill in a Tx ring entry */ bdp = fep->cur_tx; #ifndef final_version if (bdp->cbd_sc & BD_ENET_TX_READY) { /* Ooops. All transmit buffers are full. Bail out. * This should not happen, since dev->tbusy should be set. */ rtdm_printk("%s: tx queue full!.\n", rtdev->name); return 1; } #endif /* Clear all of the status flags. */ bdp->cbd_sc &= ~BD_ENET_TX_STATS; /* Set buffer length and buffer pointer. */ bdp->cbd_bufaddr = __pa(skb->data); bdp->cbd_datlen = skb->len; /* Save skb pointer. */ fep->tx_skbuff[fep->skb_cur] = skb; fep->stats.tx_bytes += skb->len; fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK; rtdm_lock_get_irqsave(&fep->lock, context); /* Get and patch time stamp just before the transmission */ if (skb->xmit_stamp) *skb->xmit_stamp = cpu_to_be64(rtdm_clock_read() + *skb->xmit_stamp); /* Push the data cache so the CPM does not get stale memory * data. */ flush_dcache_range((unsigned long)skb->data, (unsigned long)skb->data + skb->len); /* Send it on its way. Tell FEC its ready, interrupt when done, * its the last BD of the frame, and to put the CRC on the end. */ bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC); //rtdev->trans_start = jiffies; /* Trigger transmission start */ fecp->fec_x_des_active = 0x01000000; /* If this was the last BD in the ring, start at the beginning again. */ if (bdp->cbd_sc & BD_ENET_TX_WRAP) { bdp = fep->tx_bd_base; } else { bdp++; } if (bdp->cbd_sc & BD_ENET_TX_READY) { rtnetif_stop_queue(rtdev); fep->tx_full = 1; } fep->cur_tx = (cbd_t *)bdp; rtdm_lock_put_irqrestore(&fep->lock, context); return 0; } #ifdef ORIGINAL_VERSION static void fec_timeout(struct net_device *dev) { struct fec_enet_private *fep = rtdev->priv; if (fep->link || fep->old_link) { /* Link status changed - print timeout message */ printk("%s: transmit timed out.\n", rtdev->name); } fep->stats.tx_errors++; #ifndef final_version if (fep->link) { int i; cbd_t *bdp; printk ("Ring data dump: " "cur_tx %p%s dirty_tx %p cur_rx %p\n", fep->cur_tx, fep->tx_full ? " (full)" : "", fep->dirty_tx, fep->cur_rx); bdp = fep->tx_bd_base; printk(" tx: %u buffers\n", TX_RING_SIZE); for (i = 0 ; i < TX_RING_SIZE; i++) { printk(" %08x: %04x %04x %08x\n", (uint) bdp, bdp->cbd_sc, bdp->cbd_datlen, bdp->cbd_bufaddr); bdp++; } bdp = fep->rx_bd_base; printk(" rx: %lu buffers\n", RX_RING_SIZE); for (i = 0 ; i < RX_RING_SIZE; i++) { printk(" %08x: %04x %04x %08x\n", (uint) bdp, bdp->cbd_sc, bdp->cbd_datlen, bdp->cbd_bufaddr); bdp++; } } #endif if (!fep->tx_full) { netif_wake_queue(dev); } } #endif /* ORIGINAL_VERSION */ /* The interrupt handler. * This is called from the MPC core interrupt. */ static int fec_enet_interrupt(rtdm_irq_t *irq_handle) { struct rtnet_device *rtdev = rtdm_irq_get_arg(irq_handle, struct rtnet_device); int packets = 0; volatile fec_t *fecp; uint int_events; nanosecs_abs_t time_stamp = rtdm_clock_read(); fecp = (volatile fec_t*)rtdev->base_addr; /* Get the interrupt events that caused us to be here. */ while ((int_events = fecp->fec_ievent) != 0) { fecp->fec_ievent = int_events; if ((int_events & (FEC_ENET_HBERR | FEC_ENET_BABR | FEC_ENET_BABT | FEC_ENET_EBERR)) != 0) { rtdm_printk("FEC ERROR %x\n", int_events); } /* Handle receive event in its own function. */ if (int_events & FEC_ENET_RXF) { fec_enet_rx(rtdev, &packets, &time_stamp); } /* Transmit OK, or non-fatal error. Update the buffer descriptors. FEC handles all errors, we just discover them as part of the transmit process. */ if (int_events & FEC_ENET_TXF) { fec_enet_tx(rtdev); } if (int_events & FEC_ENET_MII) { #ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO fec_enet_mii(dev); #else rtdm_printk("%s[%d] %s: unexpected FEC_ENET_MII event\n", __FILE__,__LINE__,__FUNCTION__); #endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */ } } if (packets > 0) rt_mark_stack_mgr(rtdev); return RTDM_IRQ_HANDLED; } static void fec_enet_tx(struct rtnet_device *rtdev) { struct rtskb *skb; struct fec_enet_private *fep = rtdev->priv; volatile cbd_t *bdp; rtdm_lock_get(&fep->lock); bdp = fep->dirty_tx; while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) { if (bdp == fep->cur_tx && fep->tx_full == 0) break; skb = fep->tx_skbuff[fep->skb_dirty]; /* Check for errors. */ if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) { fep->stats.tx_errors++; if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */ fep->stats.tx_heartbeat_errors++; if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */ fep->stats.tx_window_errors++; if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */ fep->stats.tx_aborted_errors++; if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */ fep->stats.tx_fifo_errors++; if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */ fep->stats.tx_carrier_errors++; } else { fep->stats.tx_packets++; } #ifndef final_version if (bdp->cbd_sc & BD_ENET_TX_READY) rtdm_printk("HEY! Enet xmit interrupt and TX_READY.\n"); #endif /* Deferred means some collisions occurred during transmit, * but we eventually sent the packet OK. */ if (bdp->cbd_sc & BD_ENET_TX_DEF) fep->stats.collisions++; /* Free the sk buffer associated with this last transmit. */ dev_kfree_rtskb(skb); fep->tx_skbuff[fep->skb_dirty] = NULL; fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK; /* Update pointer to next buffer descriptor to be transmitted. */ if (bdp->cbd_sc & BD_ENET_TX_WRAP) bdp = fep->tx_bd_base; else bdp++; /* Since we have freed up a buffer, the ring is no longer * full. */ if (fep->tx_full) { fep->tx_full = 0; if (rtnetif_queue_stopped(rtdev)) rtnetif_wake_queue(rtdev); } } fep->dirty_tx = (cbd_t *)bdp; rtdm_lock_put(&fep->lock); } /* During a receive, the cur_rx points to the current incoming buffer. * When we update through the ring, if the next incoming buffer has * not been given to the system, we just set the empty indicator, * effectively tossing the packet. */ static void fec_enet_rx(struct rtnet_device *rtdev, int *packets, nanosecs_abs_t *time_stamp) { struct fec_enet_private *fep; volatile fec_t *fecp; volatile cbd_t *bdp; struct rtskb *skb; ushort pkt_len; __u8 *data; fep = rtdev->priv; fecp = (volatile fec_t*)rtdev->base_addr; /* First, grab all of the stats for the incoming packet. * These get messed up if we get called due to a busy condition. */ bdp = fep->cur_rx; while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) { #ifndef final_version /* Since we have allocated space to hold a complete frame, * the last indicator should be set. */ if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0) rtdm_printk("FEC ENET: rcv is not +last\n"); #endif /* Check for errors. */ if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) { fep->stats.rx_errors++; if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { /* Frame too long or too short. */ fep->stats.rx_length_errors++; } if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */ fep->stats.rx_frame_errors++; if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */ fep->stats.rx_crc_errors++; if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */ fep->stats.rx_crc_errors++; } /* Report late collisions as a frame error. * On this error, the BD is closed, but we don't know what we * have in the buffer. So, just drop this frame on the floor. */ if (bdp->cbd_sc & BD_ENET_RX_CL) { fep->stats.rx_errors++; fep->stats.rx_frame_errors++; goto rx_processing_done; } /* Process the incoming frame. */ fep->stats.rx_packets++; pkt_len = bdp->cbd_datlen; fep->stats.rx_bytes += pkt_len; data = fep->rx_vaddr[bdp - fep->rx_bd_base]; /* This does 16 byte alignment, exactly what we need. * The packet length includes FCS, but we don't want to * include that when passing upstream as it messes up * bridging applications. */ skb = rtnetdev_alloc_rtskb(rtdev, pkt_len-4); if (skb == NULL) { rtdm_printk("%s: Memory squeeze, dropping packet.\n", rtdev->name); fep->stats.rx_dropped++; } else { rtskb_put(skb,pkt_len-4); /* Make room */ memcpy(skb->data, data, pkt_len-4); skb->protocol=rt_eth_type_trans(skb,rtdev); skb->time_stamp = *time_stamp; rtnetif_rx(skb); (*packets)++; } rx_processing_done: /* Clear the status flags for this buffer. */ bdp->cbd_sc &= ~BD_ENET_RX_STATS; /* Mark the buffer empty. */ bdp->cbd_sc |= BD_ENET_RX_EMPTY; /* Update BD pointer to next entry. */ if (bdp->cbd_sc & BD_ENET_RX_WRAP) bdp = fep->rx_bd_base; else bdp++; /* Doing this here will keep the FEC running while we process * incoming frames. On a heavily loaded network, we should be * able to keep up at the expense of system resources. */ fecp->fec_r_des_active = 0x01000000; } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */ fep->cur_rx = (cbd_t *)bdp; } #ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO static void fec_enet_mii(struct net_device *dev) { struct fec_enet_private *fep; volatile fec_t *ep; mii_list_t *mip; uint mii_reg; fep = (struct fec_enet_private *)dev->priv; ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec); mii_reg = ep->fec_mii_data; if ((mip = mii_head) == NULL) { printk("MII and no head!\n"); return; } if (mip->mii_func != NULL) (*(mip->mii_func))(mii_reg, dev, mip->mii_data); mii_head = mip->mii_next; mip->mii_next = mii_free; mii_free = mip; if ((mip = mii_head) != NULL) { ep->fec_mii_data = mip->mii_regval; } } static int mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *, uint), uint data) { struct fec_enet_private *fep; unsigned long flags; mii_list_t *mip; int retval; /* Add PHY address to register command. */ fep = dev->priv; regval |= fep->phy_addr << 23; retval = 0; save_flags(flags); cli(); if ((mip = mii_free) != NULL) { mii_free = mip->mii_next; mip->mii_regval = regval; mip->mii_func = func; mip->mii_next = NULL; mip->mii_data = data; if (mii_head) { mii_tail->mii_next = mip; mii_tail = mip; } else { mii_head = mii_tail = mip; (&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec))->fec_mii_data = regval; } } else { retval = 1; } restore_flags(flags); return(retval); } static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c) { int k; if(!c) return; for(k = 0; (c+k)->mii_data != mk_mii_end; k++) mii_queue(dev, (c+k)->mii_data, (c+k)->funct, 0); } static void mii_parse_sr(uint mii_reg, struct net_device *dev, uint data) { volatile struct fec_enet_private *fep = dev->priv; uint s = fep->phy_status; s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC); if (mii_reg & 0x0004) s |= PHY_STAT_LINK; if (mii_reg & 0x0010) s |= PHY_STAT_FAULT; if (mii_reg & 0x0020) s |= PHY_STAT_ANC; fep->phy_status = s; fep->link = (s & PHY_STAT_LINK) ? 1 : 0; } static void mii_parse_cr(uint mii_reg, struct net_device *dev, uint data) { volatile struct fec_enet_private *fep = dev->priv; uint s = fep->phy_status; s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP); if (mii_reg & 0x1000) s |= PHY_CONF_ANE; if (mii_reg & 0x4000) s |= PHY_CONF_LOOP; fep->phy_status = s; } static void mii_parse_anar(uint mii_reg, struct net_device *dev, uint data) { volatile struct fec_enet_private *fep = dev->priv; uint s = fep->phy_status; s &= ~(PHY_CONF_SPMASK); if (mii_reg & 0x0020) s |= PHY_CONF_10HDX; if (mii_reg & 0x0040) s |= PHY_CONF_10FDX; if (mii_reg & 0x0080) s |= PHY_CONF_100HDX; if (mii_reg & 0x0100) s |= PHY_CONF_100FDX; fep->phy_status = s; } /* ------------------------------------------------------------------------- */ /* The Level one LXT970 is used by many boards */ #ifdef CONFIG_FEC_LXT970 #define MII_LXT970_MIRROR 16 /* Mirror register */ #define MII_LXT970_IER 17 /* Interrupt Enable Register */ #define MII_LXT970_ISR 18 /* Interrupt Status Register */ #define MII_LXT970_CONFIG 19 /* Configuration Register */ #define MII_LXT970_CSR 20 /* Chip Status Register */ static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev, uint data) { volatile struct fec_enet_private *fep = dev->priv; uint s = fep->phy_status; s &= ~(PHY_STAT_SPMASK); if (mii_reg & 0x0800) { if (mii_reg & 0x1000) s |= PHY_STAT_100FDX; else s |= PHY_STAT_100HDX; } else { if (mii_reg & 0x1000) s |= PHY_STAT_10FDX; else s |= PHY_STAT_10HDX; } fep->phy_status = s; } static phy_info_t phy_info_lxt970 = { 0x07810000, "LXT970", (const phy_cmd_t []) { /* config */ { mk_mii_read(MII_REG_CR), mii_parse_cr }, { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, { mk_mii_end, } }, (const phy_cmd_t []) { /* startup - enable interrupts */ { mk_mii_write(MII_LXT970_IER, 0x0002), NULL }, { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ { mk_mii_end, } }, (const phy_cmd_t []) { /* ack_int */ /* read SR and ISR to acknowledge */ { mk_mii_read(MII_REG_SR), mii_parse_sr }, { mk_mii_read(MII_LXT970_ISR), NULL }, /* find out the current status */ { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr }, { mk_mii_end, } }, (const phy_cmd_t []) { /* shutdown - disable interrupts */ { mk_mii_write(MII_LXT970_IER, 0x0000), NULL }, { mk_mii_end, } }, }; #endif /* CONFIG_FEC_LXT970 */ /* ------------------------------------------------------------------------- */ /* The Level one LXT971 is used on some of my custom boards */ #ifdef CONFIG_FEC_LXT971 /* register definitions for the 971 */ #define MII_LXT971_PCR 16 /* Port Control Register */ #define MII_LXT971_SR2 17 /* Status Register 2 */ #define MII_LXT971_IER 18 /* Interrupt Enable Register */ #define MII_LXT971_ISR 19 /* Interrupt Status Register */ #define MII_LXT971_LCR 20 /* LED Control Register */ #define MII_LXT971_TCR 30 /* Transmit Control Register */ /* * I had some nice ideas of running the MDIO faster... * The 971 should support 8MHz and I tried it, but things acted really * weird, so 2.5 MHz ought to be enough for anyone... */ static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev, uint data) { volatile struct fec_enet_private *fep = dev->priv; uint s = fep->phy_status; s &= ~(PHY_STAT_SPMASK); if (mii_reg & 0x4000) { if (mii_reg & 0x0200) s |= PHY_STAT_100FDX; else s |= PHY_STAT_100HDX; } else { if (mii_reg & 0x0200) s |= PHY_STAT_10FDX; else s |= PHY_STAT_10HDX; } if (mii_reg & 0x0008) s |= PHY_STAT_FAULT; fep->phy_status = s; } static phy_info_t phy_info_lxt971 = { 0x0001378e, "LXT971", (const phy_cmd_t []) { /* config */ // { mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10 Mbps, HD */ { mk_mii_read(MII_REG_CR), mii_parse_cr }, { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, { mk_mii_end, } }, (const phy_cmd_t []) { /* startup - enable interrupts */ { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL }, { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ /* Somehow does the 971 tell me that the link is down * the first read after power-up. * read here to get a valid value in ack_int */ { mk_mii_read(MII_REG_SR), mii_parse_sr }, { mk_mii_end, } }, (const phy_cmd_t []) { /* ack_int */ /* find out the current status */ { mk_mii_read(MII_REG_SR), mii_parse_sr }, { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 }, /* we only need to read ISR to acknowledge */ { mk_mii_read(MII_LXT971_ISR), NULL }, { mk_mii_end, } }, (const phy_cmd_t []) { /* shutdown - disable interrupts */ { mk_mii_write(MII_LXT971_IER, 0x0000), NULL }, { mk_mii_end, } }, }; #endif /* CONFIG_FEC_LXT971 */ /* ------------------------------------------------------------------------- */ /* The Quality Semiconductor QS6612 is used on the RPX CLLF */ #ifdef CONFIG_FEC_QS6612 /* register definitions */ #define MII_QS6612_MCR 17 /* Mode Control Register */ #define MII_QS6612_FTR 27 /* Factory Test Register */ #define MII_QS6612_MCO 28 /* Misc. Control Register */ #define MII_QS6612_ISR 29 /* Interrupt Source Register */ #define MII_QS6612_IMR 30 /* Interrupt Mask Register */ #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */ static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev, uint data) { volatile struct fec_enet_private *fep = dev->priv; uint s = fep->phy_status; s &= ~(PHY_STAT_SPMASK); switch((mii_reg >> 2) & 7) { case 1: s |= PHY_STAT_10HDX; break; case 2: s |= PHY_STAT_100HDX; break; case 5: s |= PHY_STAT_10FDX; break; case 6: s |= PHY_STAT_100FDX; break; } fep->phy_status = s; } static phy_info_t phy_info_qs6612 = { 0x00181440, "QS6612", (const phy_cmd_t []) { /* config */ // { mk_mii_write(MII_REG_ANAR, 0x061), NULL }, /* 10 Mbps */ /* The PHY powers up isolated on the RPX, * so send a command to allow operation. */ { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL }, /* parse cr and anar to get some info */ { mk_mii_read(MII_REG_CR), mii_parse_cr }, { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, { mk_mii_end, } }, (const phy_cmd_t []) { /* startup - enable interrupts */ { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL }, { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ { mk_mii_end, } }, (const phy_cmd_t []) { /* ack_int */ /* we need to read ISR, SR and ANER to acknowledge */ { mk_mii_read(MII_QS6612_ISR), NULL }, { mk_mii_read(MII_REG_SR), mii_parse_sr }, { mk_mii_read(MII_REG_ANER), NULL }, /* read pcr to get info */ { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr }, { mk_mii_end, } }, (const phy_cmd_t []) { /* shutdown - disable interrupts */ { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL }, { mk_mii_end, } }, }; #endif /* CONFIG_FEC_QS6612 */ /* ------------------------------------------------------------------------- */ /* The Advanced Micro Devices AM79C874 is used on the ICU862 */ #ifdef CONFIG_FEC_AM79C874 /* register definitions for the 79C874 */ #define MII_AM79C874_MFR 16 /* Miscellaneous Features Register */ #define MII_AM79C874_ICSR 17 /* Interrupt Control/Status Register */ #define MII_AM79C874_DR 18 /* Diagnostic Register */ #define MII_AM79C874_PMLR 19 /* Power Management & Loopback Register */ #define MII_AM79C874_MCR 21 /* Mode Control Register */ #define MII_AM79C874_DC 23 /* Disconnect Counter */ #define MII_AM79C874_REC 24 /* Receiver Error Counter */ static void mii_parse_amd79c874_dr(uint mii_reg, struct net_device *dev, uint data) { volatile struct fec_enet_private *fep = dev->priv; uint s = fep->phy_status; s &= ~(PHY_STAT_SPMASK); /* Register 18: Bit 10 is data rate, 11 is Duplex */ switch ((mii_reg >> 10) & 3) { case 0: s |= PHY_STAT_10HDX; break; case 1: s |= PHY_STAT_100HDX; break; case 2: s |= PHY_STAT_10FDX; break; case 3: s |= PHY_STAT_100FDX; break; } fep->phy_status = s; } static phy_info_t phy_info_amd79c874 = { 0x00022561, "AM79C874", (const phy_cmd_t []) { /* config */ // { mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10 Mbps, HD */ { mk_mii_read(MII_REG_CR), mii_parse_cr }, { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, { mk_mii_end, } }, (const phy_cmd_t []) { /* startup - enable interrupts */ { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL }, { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ { mk_mii_end, } }, (const phy_cmd_t []) { /* ack_int */ /* find out the current status */ { mk_mii_read(MII_REG_SR), mii_parse_sr }, { mk_mii_read(MII_AM79C874_DR), mii_parse_amd79c874_dr }, /* we only need to read ICSR to acknowledge */ { mk_mii_read(MII_AM79C874_ICSR), NULL }, { mk_mii_end, } }, (const phy_cmd_t []) { /* shutdown - disable interrupts */ { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL }, { mk_mii_end, } }, }; #endif /* CONFIG_FEC_AM79C874 */ /* -------------------------------------------------------------------- */ /* The National Semiconductor DP83843BVJE is used on a Mediatrix board */ /* -------------------------------------------------------------------- */ #ifdef CONFIG_FEC_DP83843 /* Register definitions */ #define MII_DP83843_PHYSTS 0x10 /* PHY Status Register */ #define MII_DP83843_MIPSCR 0x11 /* Specific Status Register */ #define MII_DP83843_MIPGSR 0x12 /* Generic Status Register */ static void mii_parse_dp83843_physts(uint mii_reg, struct net_device *dev, uint data) { volatile struct fec_enet_private *fep = dev->priv; uint s = fep->phy_status; s &= ~(PHY_STAT_SPMASK); if (mii_reg & 0x0002) { if (mii_reg & 0x0004) s |= PHY_STAT_10FDX; else s |= PHY_STAT_10HDX; } else { if (mii_reg & 0x0004) s |= PHY_STAT_100FDX; else s |= PHY_STAT_100HDX; } fep->phy_status = s; } static phy_info_t phy_info_dp83843 = { 0x020005c1, "DP83843BVJE", (const phy_cmd_t []) { /* config */ { mk_mii_write(MII_REG_ANAR, 0x01E1), NULL }, /* Auto-Negociation Register Control set to */ /* auto-negociate 10/100MBps, Half/Full duplex */ { mk_mii_read(MII_REG_CR), mii_parse_cr }, { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, { mk_mii_end, } }, (const phy_cmd_t []) { /* startup */ { mk_mii_write(MII_DP83843_MIPSCR, 0x0002), NULL }, /* Enable interrupts */ { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* Enable and Restart Auto-Negotiation */ { mk_mii_read(MII_REG_SR), mii_parse_sr }, { mk_mii_read(MII_REG_CR), mii_parse_cr }, { mk_mii_read(MII_DP83843_PHYSTS), mii_parse_dp83843_physts }, { mk_mii_end, } }, (const phy_cmd_t []) { /* ack_int */ { mk_mii_read(MII_DP83843_MIPGSR), NULL }, /* Acknowledge interrupts */ { mk_mii_read(MII_REG_SR), mii_parse_sr }, /* Find out the current status */ { mk_mii_read(MII_REG_CR), mii_parse_cr }, { mk_mii_read(MII_DP83843_PHYSTS), mii_parse_dp83843_physts }, { mk_mii_end, } }, (const phy_cmd_t []) { /* shutdown - disable interrupts */ { mk_mii_end, } } }; #endif /* CONFIG_FEC_DP83843 */ /* ----------------------------------------------------------------- */ /* The National Semiconductor DP83846A is used on a Mediatrix board */ /* ----------------------------------------------------------------- */ #ifdef CONFIG_FEC_DP83846A /* Register definitions */ #define MII_DP83846A_PHYSTS 0x10 /* PHY Status Register */ static void mii_parse_dp83846a_physts(uint mii_reg, struct net_device *dev, uint data) { volatile struct fec_enet_private *fep = (struct fec_enet_private *)dev->priv; uint s = fep->phy_status; int link_change_mask; s &= ~(PHY_STAT_SPMASK); if (mii_reg & 0x0002) { if (mii_reg & 0x0004) s |= PHY_STAT_10FDX; else s |= PHY_STAT_10HDX; } else { if (mii_reg & 0x0004) s |= PHY_STAT_100FDX; else s |= PHY_STAT_100HDX; } fep->phy_status = s; link_change_mask = PHY_STAT_LINK | PHY_STAT_10FDX | PHY_STAT_10HDX | PHY_STAT_100FDX | PHY_STAT_100HDX; if(fep->old_status != (link_change_mask & s)) { fep->old_status = (link_change_mask & s); mii_queue_relink(mii_reg, dev, 0); } } static phy_info_t phy_info_dp83846a = { 0x020005c2, "DP83846A", (const phy_cmd_t []) { /* config */ { mk_mii_write(MII_REG_ANAR, 0x01E1), NULL }, /* Auto-Negociation Register Control set to */ /* auto-negociate 10/100MBps, Half/Full duplex */ { mk_mii_read(MII_REG_CR), mii_parse_cr }, { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, { mk_mii_end, } }, (const phy_cmd_t []) { /* startup */ { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* Enable and Restart Auto-Negotiation */ { mk_mii_read(MII_REG_SR), mii_parse_sr }, { mk_mii_read(MII_REG_CR), mii_parse_cr }, { mk_mii_read(MII_DP83846A_PHYSTS), mii_parse_dp83846a_physts }, { mk_mii_end, } }, (const phy_cmd_t []) { /* ack_int */ { mk_mii_read(MII_REG_SR), mii_parse_sr }, { mk_mii_read(MII_REG_CR), mii_parse_cr }, { mk_mii_read(MII_DP83846A_PHYSTS), mii_parse_dp83846a_physts }, { mk_mii_end, } }, (const phy_cmd_t []) { /* shutdown - disable interrupts */ { mk_mii_end, } } }; #endif /* CONFIG_FEC_DP83846A */ static phy_info_t *phy_info[] = { #ifdef CONFIG_FEC_LXT970 &phy_info_lxt970, #endif /* CONFIG_FEC_LXT970 */ #ifdef CONFIG_FEC_LXT971 &phy_info_lxt971, #endif /* CONFIG_FEC_LXT971 */ #ifdef CONFIG_FEC_QS6612 &phy_info_qs6612, #endif /* CONFIG_FEC_QS6612 */ #ifdef CONFIG_FEC_AM79C874 &phy_info_amd79c874, #endif /* CONFIG_FEC_AM79C874 */ #ifdef CONFIG_FEC_DP83843 &phy_info_dp83843, #endif /* CONFIG_FEC_DP83843 */ #ifdef CONFIG_FEC_DP83846A &phy_info_dp83846a, #endif /* CONFIG_FEC_DP83846A */ NULL }; static void mii_display_status(struct net_device *dev) { volatile struct fec_enet_private *fep = dev->priv; uint s = fep->phy_status; if (!fep->link && !fep->old_link) { /* Link is still down - don't print anything */ return; } printk("%s: status: ", dev->name); if (!fep->link) { printk("link down"); } else { printk("link up"); switch(s & PHY_STAT_SPMASK) { case PHY_STAT_100FDX: printk(", 100 Mbps Full Duplex"); break; case PHY_STAT_100HDX: printk(", 100 Mbps Half Duplex"); break; case PHY_STAT_10FDX: printk(", 10 Mbps Full Duplex"); break; case PHY_STAT_10HDX: printk(", 10 Mbps Half Duplex"); break; default: printk(", Unknown speed/duplex"); } if (s & PHY_STAT_ANC) printk(", auto-negotiation complete"); } if (s & PHY_STAT_FAULT) printk(", remote fault"); printk(".\n"); } static void mii_display_config(struct net_device *dev) { volatile struct fec_enet_private *fep = dev->priv; uint s = fep->phy_status; printk("%s: config: auto-negotiation ", dev->name); if (s & PHY_CONF_ANE) printk("on"); else printk("off"); if (s & PHY_CONF_100FDX) printk(", 100FDX"); if (s & PHY_CONF_100HDX) printk(", 100HDX"); if (s & PHY_CONF_10FDX) printk(", 10FDX"); if (s & PHY_CONF_10HDX) printk(", 10HDX"); if (!(s & PHY_CONF_SPMASK)) printk(", No speed/duplex selected?"); if (s & PHY_CONF_LOOP) printk(", loopback enabled"); printk(".\n"); fep->sequence_done = 1; } static void mii_relink(struct net_device *dev) { struct fec_enet_private *fep = dev->priv; int duplex; fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0; mii_display_status(dev); fep->old_link = fep->link; if (fep->link) { duplex = 0; if (fep->phy_status & (PHY_STAT_100FDX | PHY_STAT_10FDX)) duplex = 1; fec_restart(dev, duplex); if (netif_queue_stopped(dev)) { netif_wake_queue(dev); } } else { netif_stop_queue(dev); fec_stop(dev); } } static void mii_queue_relink(uint mii_reg, struct net_device *dev, uint data) { struct fec_enet_private *fep = dev->priv; fep->phy_task.routine = (void *)mii_relink; fep->phy_task.data = dev; schedule_task(&fep->phy_task); } static void mii_queue_config(uint mii_reg, struct net_device *dev, uint data) { struct fec_enet_private *fep = dev->priv; fep->phy_task.routine = (void *)mii_display_config; fep->phy_task.data = dev; schedule_task(&fep->phy_task); } phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_REG_CR), mii_queue_relink }, { mk_mii_end, } }; phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_REG_CR), mii_queue_config }, { mk_mii_end, } }; /* Read remainder of PHY ID. */ static void mii_discover_phy3(uint mii_reg, struct net_device *dev, uint data) { struct fec_enet_private *fep; int i; fep = dev->priv; fep->phy_id |= (mii_reg & 0xffff); for(i = 0; phy_info[i]; i++) if(phy_info[i]->id == (fep->phy_id >> 4)) break; if(!phy_info[i]) panic("%s: PHY id 0x%08x is not supported!\n", dev->name, fep->phy_id); fep->phy = phy_info[i]; fep->phy_id_done = 1; printk("%s: Phy @ 0x%x, type %s (0x%08x)\n", dev->name, fep->phy_addr, fep->phy->name, fep->phy_id); } /* Scan all of the MII PHY addresses looking for someone to respond * with a valid ID. This usually happens quickly. */ static void mii_discover_phy(uint mii_reg, struct net_device *dev, uint data) { struct fec_enet_private *fep; uint phytype; fep = dev->priv; if ((phytype = (mii_reg & 0xffff)) != 0xffff) { /* Got first part of ID, now get remainder. */ fep->phy_id = phytype << 16; mii_queue(dev, mk_mii_read(MII_REG_PHYIR2), mii_discover_phy3, 0); } else { fep->phy_addr++; if (fep->phy_addr < 32) { mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy, 0); } else { printk("fec: No PHY device found.\n"); } } } #endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */ #ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO /* This interrupt occurs when the PHY detects a link change. */ static void #ifdef CONFIG_RPXCLASSIC mii_link_interrupt(void *dev_id) #else mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs) #endif { struct net_device *dev = dev_id; struct fec_enet_private *fep = dev->priv; volatile immap_t *immap = (immap_t *)IMAP_ADDR; volatile fec_t *fecp = &(immap->im_cpm.cp_fec); unsigned int ecntrl = fecp->fec_ecntrl; /* * Acknowledge the interrupt if possible. If we have not * found the PHY yet we can't process or acknowledge the * interrupt now. Instead we ignore this interrupt for now, * which we can do since it is edge triggered. It will be * acknowledged later by fec_enet_open(). */ if (fep->phy) { /* * We need the FEC enabled to access the MII */ if ((ecntrl & FEC_ECNTRL_ETHER_EN) == 0) { fecp->fec_ecntrl |= FEC_ECNTRL_ETHER_EN; } mii_do_cmd(dev, fep->phy->ack_int); mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */ if ((ecntrl & FEC_ECNTRL_ETHER_EN) == 0) { fecp->fec_ecntrl = ecntrl; /* restore old settings */ } } } #endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */ static int fec_enet_open(struct rtnet_device *rtdev) { struct fec_enet_private *fep = rtdev->priv; /* I should reset the ring buffers here, but I don't yet know * a simple way to do that. */ #ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO fep->sequence_done = 0; fep->link = 0; if (fep->phy) { mii_do_cmd(dev, fep->phy->config); mii_do_cmd(dev, phy_cmd_config); /* display configuration */ while(!fep->sequence_done) schedule(); mii_do_cmd(dev, fep->phy->startup); #if defined(CONFIG_XENO_DRIVERS_NET_USE_MDIO) && defined(CONFIG_FEC_DP83846A) if(fep->phy == &phy_info_dp83846a) { /* Initializing timers */ init_timer( &fep->phy_timer_list ); /* Starting timer for periodic link status check * After 100 milli-seconds, mdio_timer_callback function is called. */ fep->phy_timer_list.expires = jiffies + (100 * HZ / 1000); fep->phy_timer_list.data = (unsigned long)dev; fep->phy_timer_list.function = mdio_timer_callback; add_timer( &fep->phy_timer_list ); } #if defined(CONFIG_IP_PNP) rtdm_printk("%s: Waiting for the link to be up...\n", rtdev->name); while(fep->link == 0 || ((((volatile fec_t*)rtdev->base_addr)->fec_ecntrl & FEC_ECNTRL_ETHER_EN) == 0)) { schedule(); } #endif /* CONFIG_IP_PNP */ #endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO && CONFIG_FEC_DP83846A */ netif_start_queue(dev); return 0; /* Success */ } return -ENODEV; /* No PHY we understand */ #else /* !CONFIG_XENO_DRIVERS_NET_USE_MDIO */ fep->link = 1; rtnetif_start_queue(rtdev); return 0; /* Success */ #endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */ } static int fec_enet_close(struct rtnet_device *rtdev) { /* Don't know what to do yet. */ rtnetif_stop_queue(rtdev); fec_stop(rtdev); return 0; } static struct net_device_stats *fec_enet_get_stats(struct rtnet_device *rtdev) { struct fec_enet_private *fep = (struct fec_enet_private *)rtdev->priv; return &fep->stats; } #ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO #if defined(CONFIG_FEC_DP83846A) /* Execute the ack_int command set and schedules next timer call back. */ static void mdio_timer_callback(unsigned long data) { struct net_device *dev = (struct net_device *)data; struct fec_enet_private *fep = (struct fec_enet_private *)(dev->priv); mii_do_cmd(dev, fep->phy->ack_int); if(fep->link == 0) { fep->phy_timer_list.expires = jiffies + (100 * HZ / 1000); /* Sleep for 100ms */ } else { fep->phy_timer_list.expires = jiffies + (1 * HZ); /* Sleep for 1 sec. */ } add_timer( &fep->phy_timer_list ); } #endif /* CONFIG_FEC_DP83846A */ static void mdio_callback(uint regval, struct net_device *dev, uint data) { mdio_read_data_t* mrd = (mdio_read_data_t *)data; mrd->regval = 0xFFFF & regval; wake_up_process(mrd->sleeping_task); } static int mdio_read(struct net_device *dev, int phy_id, int location) { uint retval; mdio_read_data_t* mrd = (mdio_read_data_t *)kmalloc(sizeof(*mrd), GFP_KERNEL); mrd->sleeping_task = current; set_current_state(TASK_INTERRUPTIBLE); mii_queue(dev, mk_mii_read(location), mdio_callback, (unsigned int) mrd); schedule(); retval = mrd->regval; kfree(mrd); return retval; } void mdio_write(struct net_device *dev, int phy_id, int location, int value) { mii_queue(dev, mk_mii_write(location, value), NULL, 0); } static int fec_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct fec_enet_private *cep = (struct fec_enet_private *)dev->priv; struct mii_ioctl_data *data = (struct mii_ioctl_data *)&rq->ifr_data; int phy = cep->phy_addr & 0x1f; int retval; if (data == NULL) { retval = -EINVAL; } else { switch(cmd) { case SIOCETHTOOL: return netdev_ethtool_ioctl(dev, (void*)rq->ifr_data); break; case SIOCGMIIPHY: /* Get address of MII PHY in use. */ case SIOCDEVPRIVATE: /* for binary compat, remove in 2.5 */ data->phy_id = phy; case SIOCGMIIREG: /* Read MII PHY register. */ case SIOCDEVPRIVATE+1: /* for binary compat, remove in 2.5 */ data->val_out = mdio_read(dev, data->phy_id & 0x1f, data->reg_num & 0x1f); retval = 0; break; case SIOCSMIIREG: /* Write MII PHY register. */ case SIOCDEVPRIVATE+2: /* for binary compat, remove in 2.5 */ if (!capable(CAP_NET_ADMIN)) { retval = -EPERM; } else { mdio_write(dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in); retval = 0; } break; default: retval = -EOPNOTSUPP; break; } } return retval; } static int netdev_ethtool_ioctl (struct net_device *dev, void *useraddr) { u32 ethcmd; /* dev_ioctl() in ../../net/core/dev.c has already checked capable(CAP_NET_ADMIN), so don't bother with that here. */ if (copy_from_user (ðcmd, useraddr, sizeof (ethcmd))) return -EFAULT; switch (ethcmd) { case ETHTOOL_GDRVINFO: { struct ethtool_drvinfo info = { ETHTOOL_GDRVINFO }; strcpy (info.driver, dev->name); strcpy (info.version, "0.3"); strcpy (info.bus_info, ""); if (copy_to_user (useraddr, &info, sizeof (info))) return -EFAULT; return 0; } default: break; } return -EOPNOTSUPP; } #endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */ #ifdef ORIGINAL_VERSION /* Returns the CRC needed when filling in the hash table for * multicast group filtering * pAddr must point to a MAC address (6 bytes) */ static u32 fec_mulicast_calc_crc(char *pAddr) { u8 byte; int byte_count; int bit_count; u32 crc = 0xffffffff; u8 msb; for (byte_count=0; byte_count<6; byte_count++) { byte = pAddr[byte_count]; for (bit_count=0; bit_count<8; bit_count++) { msb = crc >> 31; crc <<= 1; if (msb ^ (byte & 0x1)) { crc ^= FEC_CRC_POLY; } byte >>= 1; } } return (crc); } /* Set or clear the multicast filter for this adaptor. * Skeleton taken from sunlance driver. * The CPM Ethernet implementation allows Multicast as well as individual * MAC address filtering. Some of the drivers check to make sure it is * a group multicast address, and discard those that are not. I guess I * will do the same for now, but just remove the test if you want * individual filtering as well (do the upper net layers want or support * this kind of feature?). */ static void set_multicast_list(struct net_device *dev) { struct fec_enet_private *fep; volatile fec_t *ep; fep = (struct fec_enet_private *)dev->priv; ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec); if (dev->flags&IFF_PROMISC) { /* Log any net taps. */ printk("%s: Promiscuous mode enabled.\n", dev->name); ep->fec_r_cntrl |= FEC_RCNTRL_PROM; } else { ep->fec_r_cntrl &= ~FEC_RCNTRL_PROM; if (dev->flags & IFF_ALLMULTI) { /* Catch all multicast addresses, so set the * filter to all 1's. */ ep->fec_hash_table_high = 0xffffffff; ep->fec_hash_table_low = 0xffffffff; } else { struct dev_mc_list *pmc = dev->mc_list; /* Clear Hash-Table */ ep->fec_hash_table_high = 0; ep->fec_hash_table_low = 0; /* Now populate the hash table */ #ifdef DEBUG_MULTICAST if (pmc) { printk ("%s: Recalculating hash-table:\n", dev->name); printk (" MAC Address high low\n"); } #endif while (pmc) { u32 crc; int temp; u32 csrVal; int hash_index; crc = fec_mulicast_calc_crc(pmc->dmi_addr); temp = (crc & 0x3f) >> 1; hash_index = ((temp & 0x01) << 4) | ((temp & 0x02) << 2) | ((temp & 0x04)) | ((temp & 0x08) >> 2) | ((temp & 0x10) >> 4); csrVal = (1 << hash_index); if (crc & 1) { ep->fec_hash_table_high |= csrVal; } else { ep->fec_hash_table_low |= csrVal; } #ifdef DEBUG_MULTICAST printk (" %02x:%02x:%02x:%02x:%02x:%02x %08x %08x\n", (int)pmc->dmi_addr[0], (int)pmc->dmi_addr[1], (int)pmc->dmi_addr[2], (int)pmc->dmi_addr[3], (int)pmc->dmi_addr[4], (int)pmc->dmi_addr[5], ep->fec_hash_table_high, ep->fec_hash_table_low ); #endif pmc = pmc->next; } } } } #endif /* ORIGINAL_VERSION */ /* Initialize the FEC Ethernet on 860T. */ int __init fec_enet_init(void) { struct rtnet_device *rtdev = NULL; struct fec_enet_private *fep; int i, j, k; unsigned char *eap, *iap, *ba; unsigned long mem_addr; volatile cbd_t *bdp; cbd_t *cbd_base; volatile immap_t *immap; volatile fec_t *fecp; bd_t *bd; immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */ bd = (bd_t *)__res; if (!rx_pool_size) rx_pool_size = RX_RING_SIZE * 2; rtdev = rtdev_root = rt_alloc_etherdev(sizeof(struct fec_enet_private), rx_pool_size + TX_RING_SIZE); if (rtdev == NULL) { printk(KERN_ERR "enet: Could not allocate ethernet device.\n"); return -1; } rtdev_alloc_name(rtdev, "rteth%d"); rt_rtdev_connect(rtdev, &RTDEV_manager); rtdev->vers = RTDEV_VERS_2_0; fep = (struct fec_enet_private *)rtdev->priv; fecp = &(immap->im_cpm.cp_fec); /* Whack a reset. We should wait for this. */ fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET; for (i = 0; (fecp->fec_ecntrl & FEC_ECNTRL_RESET) && (i < FEC_RESET_DELAY); ++i) { udelay(1); } if (i == FEC_RESET_DELAY) { printk ("FEC Reset timeout!\n"); } /* Set the Ethernet address. If using multiple Enets on the 8xx, * this needs some work to get unique addresses. */ eap = (unsigned char *)my_enet_addr; iap = bd->bi_enetaddr; #if defined(CONFIG_SCC_ENET) && !defined(ORIGINAL_VERSION) /* * If a board has Ethernet configured both on a SCC and the * FEC, it needs (at least) 2 MAC addresses (we know that Sun * disagrees, but anyway). For the FEC port, we create * another address by setting one of the address bits above * something that would have (up to now) been allocated. */ { unsigned char tmpaddr[6]; for (i=0; i<6; i++) tmpaddr[i] = *iap++; tmpaddr[3] |= 0x80; iap = tmpaddr; } #endif for (i=0; i<6; i++) { rtdev->dev_addr[i] = *eap++ = *iap++; } /* Allocate memory for buffer descriptors. */ if (((RX_RING_SIZE + TX_RING_SIZE) * sizeof(cbd_t)) > PAGE_SIZE) { printk("FEC init error. Need more space.\n"); printk("FEC initialization failed.\n"); return 1; } cbd_base = (cbd_t *)consistent_alloc(GFP_KERNEL, PAGE_SIZE, (void *)&mem_addr); /* Set receive and transmit descriptor base. */ fep->rx_bd_base = cbd_base; fep->tx_bd_base = cbd_base + RX_RING_SIZE; fep->skb_cur = fep->skb_dirty = 0; /* Initialize the receive buffer descriptors. */ bdp = fep->rx_bd_base; k = 0; for (i=0; icbd_sc = BD_ENET_RX_EMPTY; bdp->cbd_bufaddr = mem_addr; fep->rx_vaddr[k++] = ba; mem_addr += FEC_ENET_RX_FRSIZE; ba += FEC_ENET_RX_FRSIZE; bdp++; } } rtdm_lock_init(&fep->lock); /* Set the last buffer to wrap. */ bdp--; bdp->cbd_sc |= BD_SC_WRAP; /* Install our interrupt handler. */ rt_stack_connect(rtdev, &STACK_manager); if ((i = rtdm_irq_request(&fep->irq_handle, FEC_INTERRUPT, fec_enet_interrupt, 0, "rt_mpc8xx_fec", rtdev))) { printk(KERN_ERR "Couldn't request IRQ %d\n", rtdev->irq); rtdev_free(rtdev); return i; } rtdev->base_addr = (unsigned long)fecp; #ifdef CONFIG_RPXCLASSIC /* If MDIO is disabled the PHY should not be allowed to * generate interrupts telling us to read the PHY. */ # ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO /* Make Port C, bit 15 an input that causes interrupts. */ immap->im_ioport.iop_pcpar &= ~0x0001; immap->im_ioport.iop_pcdir &= ~0x0001; immap->im_ioport.iop_pcso &= ~0x0001; immap->im_ioport.iop_pcint |= 0x0001; cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev); # endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */ /* Make LEDS reflect Link status. */ *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE; #endif /* CONFIG_RPXCLASSIC */ #ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO # ifndef PHY_INTERRUPT # error Want to use MII, but PHY_INTERRUPT not defined! # endif ((immap_t *)IMAP_ADDR)->im_siu_conf.sc_siel |= (0x80000000 >> PHY_INTERRUPT); if (request_8xxirq(PHY_INTERRUPT, mii_link_interrupt, 0, "mii", dev) != 0) panic("Could not allocate MII IRQ!"); #endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */ rtdev->base_addr = (unsigned long)fecp; /* The FEC Ethernet specific entries in the device structure. */ rtdev->open = fec_enet_open; rtdev->hard_start_xmit = fec_enet_start_xmit; rtdev->stop = fec_enet_close; rtdev->hard_header = &rt_eth_header; rtdev->get_stats = fec_enet_get_stats; if ((i = rt_register_rtnetdev(rtdev))) { rtdm_irq_disable(&fep->irq_handle); rtdm_irq_free(&fep->irq_handle); rtdev_free(rtdev); return i; } #ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO dev->do_ioctl = fec_enet_ioctl; for (i=0; iim_ioport.iop_pdpar = 0x1fff; #else /* CONFIG_ICU862 */ /* Configure port A for MII. */ /* Has Utopia been configured? */ if (immap->im_ioport.iop_pdpar & (0x8000 >> 1)) { /* * YES - Use MUXED mode for UTOPIA bus. * This frees Port A for use by MII (see 862UM table 41-6). */ immap->im_ioport.utmode &= ~0x80; } else { /* * NO - set SPLIT mode for UTOPIA bus. * * This doesn't really effect UTOPIA (which isn't * enabled anyway) but just tells the 862 * to use port A for MII (see 862UM table 41-6). */ immap->im_ioport.utmode |= 0x80; } # ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO /* Now configure MII_MDC pin */ immap->im_ioport.iop_pdpar |= (0x8000 >> 8); # endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */ #endif /* CONFIG_ICU862 */ /* Bits moved from Rev. D onward. */ if ((mfspr(IMMR) & 0xffff) < 0x0501) immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */ else immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */ #ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO /* Set MII speed to 2.5 MHz */ fecp->fec_mii_speed = fep->phy_speed = ((((bd->bi_intfreq + 4999999) / 2500000) / 2 ) & 0x3F ) << 1; #else fecp->fec_mii_speed = 0; /* turn off MDIO */ #endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */ #ifndef ORIGINAL_VERSION printk("%s: FEC ENET Version 0.3, irq %d, addr %02x:%02x:%02x:%02x:%02x:%02x\n", rtdev->name, FEC_INTERRUPT, rtdev->dev_addr[0], rtdev->dev_addr[1], rtdev->dev_addr[2], rtdev->dev_addr[3], rtdev->dev_addr[4], rtdev->dev_addr[5]); #else printk ("%s: FEC ENET Version 0.3, FEC irq %d" #ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO ", with MDIO" #endif #ifdef PHY_INTERRUPT ", MII irq %d" #endif ", addr ", dev->name, FEC_INTERRUPT #ifdef PHY_INTERRUPT , PHY_INTERRUPT #endif ); for (i=0; i<6; i++) printk("%02x%c", rtdev->dev_addr[i], (i==5) ? '\n' : ':'); #endif /* ORIGINAL_VERSION */ #ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO /* start in full duplex mode, and negotiate speed */ fec_restart (dev, 1); #else /* always use half duplex mode only */ fec_restart (rtdev, 0); #endif #ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO /* Queue up command to detect the PHY and initialize the * remainder of the interface. */ fep->phy_id_done = 0; fep->phy_addr = 0; mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy, 0); fep->old_status = 0; #endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */ return 0; } /* This function is called to start or restart the FEC during a link * change. This only happens when switching between half and full * duplex. */ static void fec_restart(struct rtnet_device *rtdev, int duplex) { struct fec_enet_private *fep; int i; volatile cbd_t *bdp; volatile immap_t *immap; volatile fec_t *fecp; immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */ fecp = &(immap->im_cpm.cp_fec); fep = rtdev->priv; /* Whack a reset. We should wait for this. */ fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET; for (i = 0; (fecp->fec_ecntrl & FEC_ECNTRL_RESET) && (i < FEC_RESET_DELAY); ++i) { udelay(1); } if (i == FEC_RESET_DELAY) { printk ("FEC Reset timeout!\n"); } /* Set station address. */ fecp->fec_addr_low = (my_enet_addr[0] << 16) | my_enet_addr[1]; fecp->fec_addr_high = my_enet_addr[2]; /* Reset all multicast. */ fecp->fec_hash_table_high = 0; fecp->fec_hash_table_low = 0; /* Set maximum receive buffer size. */ fecp->fec_r_buff_size = PKT_MAXBLR_SIZE; fecp->fec_r_hash = PKT_MAXBUF_SIZE; /* Set receive and transmit descriptor base. */ fecp->fec_r_des_start = iopa((uint)(fep->rx_bd_base)); fecp->fec_x_des_start = iopa((uint)(fep->tx_bd_base)); fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; fep->cur_rx = fep->rx_bd_base; /* Reset SKB transmit buffers. */ fep->skb_cur = fep->skb_dirty = 0; for (i=0; i<=TX_RING_MOD_MASK; i++) { if (fep->tx_skbuff[i] != NULL) { dev_kfree_rtskb(fep->tx_skbuff[i]); fep->tx_skbuff[i] = NULL; } } /* Initialize the receive buffer descriptors. */ bdp = fep->rx_bd_base; for (i=0; icbd_sc = BD_ENET_RX_EMPTY; bdp++; } /* Set the last buffer to wrap. */ bdp--; bdp->cbd_sc |= BD_SC_WRAP; /* ...and the same for transmmit. */ bdp = fep->tx_bd_base; for (i=0; icbd_sc = 0; bdp->cbd_bufaddr = 0; bdp++; } /* Set the last buffer to wrap. */ bdp--; bdp->cbd_sc |= BD_SC_WRAP; /* Enable MII mode. */ if (duplex) { fecp->fec_r_cntrl = FEC_RCNTRL_MII_MODE; /* MII enable */ fecp->fec_x_cntrl = FEC_TCNTRL_FDEN; /* FD enable */ } else { fecp->fec_r_cntrl = FEC_RCNTRL_MII_MODE | FEC_RCNTRL_DRT; fecp->fec_x_cntrl = 0; } fep->full_duplex = duplex; /* Enable big endian and don't care about SDMA FC. */ fecp->fec_fun_code = 0x78000000; #ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO /* Set MII speed. */ fecp->fec_mii_speed = fep->phy_speed; #endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */ /* Clear any outstanding interrupt. */ fecp->fec_ievent = 0xffc0; fecp->fec_ivec = (FEC_INTERRUPT/2) << 29; /* Enable interrupts we wish to service. */ fecp->fec_imask = ( FEC_ENET_TXF | FEC_ENET_TXB | FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII ); /* And last, enable the transmit and receive processing. */ fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN; fecp->fec_r_des_active = 0x01000000; /* The tx ring is no longer full. */ if(fep->tx_full) { fep->tx_full = 0; rtnetif_wake_queue(rtdev); } } static void fec_stop(struct rtnet_device *rtdev) { volatile immap_t *immap; volatile fec_t *fecp; int i; struct fec_enet_private *fep; immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */ fecp = &(immap->im_cpm.cp_fec); if ((fecp->fec_ecntrl & FEC_ECNTRL_ETHER_EN) == 0) return; /* already down */ fep = rtdev->priv; fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */ for (i = 0; ((fecp->fec_ievent & 0x10000000) == 0) && (i < FEC_RESET_DELAY); ++i) { udelay(1); } if (i == FEC_RESET_DELAY) { printk ("FEC timeout on graceful transmit stop\n"); } /* Clear outstanding MII command interrupts. */ fecp->fec_ievent = FEC_ENET_MII; /* Enable MII command finished interrupt */ fecp->fec_ivec = (FEC_INTERRUPT/2) << 29; fecp->fec_imask = FEC_ENET_MII; #ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO /* Set MII speed. */ fecp->fec_mii_speed = fep->phy_speed; #endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */ /* Disable FEC */ fecp->fec_ecntrl &= ~(FEC_ECNTRL_ETHER_EN); } static void __exit fec_enet_cleanup(void) { struct rtnet_device *rtdev = rtdev_root; struct fec_enet_private *fep = rtdev->priv; if (rtdev) { rtdm_irq_disable(&fep->irq_handle); rtdm_irq_free(&fep->irq_handle); consistent_free(fep->rx_bd_base); rt_stack_disconnect(rtdev); rt_unregister_rtnetdev(rtdev); rt_rtdev_disconnect(rtdev); printk("%s: unloaded\n", rtdev->name); rtdev_free(rtdev); rtdev_root = NULL; } } module_init(fec_enet_init); module_exit(fec_enet_cleanup);