/* * eth1394.h -- RTnet Driver for Ethernet emulation over FireWire * (adapted from Linux1394) * * Copyright (C) 2005 Zhang Yuchen * * Mainly based on work by Emanuel Pirker and Andreas E. Bombe * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include #include #include #include #include #include #include #define rtos_spinlock_t rtdm_lock_t #define nanosecs_abs_t nanosecs_t #include #include #include #include #include #include #include #include #define driver_name "RT-ETH1394" #define ETH1394_PRINT_G(level, fmt, args...) \ rtdm_printk(level "%s: " fmt, driver_name, ## args) #define ETH1394_PRINT(level, dev_name, fmt, args...) \ rtdm_printk(level "%s: %s: " fmt, driver_name, dev_name, ## args) //#define ETH1394_DEBUG 1 #ifdef ETH1394_DEBUG #define DEBUGP(fmt, args...) \ rtdm_printk(KERN_ERR "%s:%s[%d]: " fmt "\n", driver_name, __FUNCTION__, __LINE__, ## args) #else #define DEBUGP(fmt, args...) #endif #define TRACE() rtdm_printk(KERN_ERR "%s:%s[%d] ---- TRACE\n", driver_name, __FUNCTION__, __LINE__) /* Change this to IEEE1394_SPEED_S100 to make testing easier */ #define ETH1394_SPEED_DEF 0x03 /*IEEE1394_SPEED_MAX*/ /* For now, this needs to be 1500, so that XP works with us */ #define ETH1394_DATA_LEN 1500/*ETH_DATA_LEN*/ struct fragment_info { struct list_head list; int offset; int len; }; struct partial_datagram { struct list_head list; u16 dgl; u16 dg_size; u16 ether_type; struct rtskb *skb; char *pbuf; struct list_head frag_info; }; static const u16 eth1394_speedto_maxpayload[] = { /* S100, S200, S400, S800, S1600, S3200 */ 512, 1024, 2048, 4096, 4096, 4096 }; static struct hpsb_highlevel eth1394_highlevel; /* Use common.lf to determine header len */ static const int hdr_type_len[] = { sizeof (struct eth1394_uf_hdr), sizeof (struct eth1394_ff_hdr), sizeof (struct eth1394_sf_hdr), sizeof (struct eth1394_sf_hdr) }; /* The max_partial_datagrams parameter is the maximum number of fragmented * datagrams per node that eth1394 will keep in memory. Providing an upper * bound allows us to limit the amount of memory that partial datagrams * consume in the event that some partial datagrams are never completed. This * should probably change to a sysctl item or the like if possible. */ static int max_partial_datagrams = 25; module_param(max_partial_datagrams, int, 0444); MODULE_PARM_DESC(max_partial_datagrams, "Maximum number of partially received fragmented datagrams " "(default = 25)."); static int eth1394_header(struct rtskb *skb, struct rtnet_device *dev, unsigned short type, void *daddr, void *saddr, unsigned len); static int eth1394_write(struct hpsb_host *host,struct hpsb_packet *packet, unsigned int length); static inline void purge_partial_datagram(struct list_head *old); static int eth1394_tx(struct rtskb *skb, struct rtnet_device *dev); static void eth1394_iso(struct hpsb_iso *iso, void *arg); /* Function for incoming 1394 packets */ static struct hpsb_address_ops eth1394_ops = { .write = eth1394_write, }; static void eth1394_add_host (struct hpsb_host *host); static void eth1394_remove_host (struct hpsb_host *host); static void eth1394_host_reset (struct hpsb_host *host); /* Ieee1394 highlevel driver functions */ static struct hpsb_highlevel eth1394_highlevel = { .name = driver_name, .add_host = eth1394_add_host, .remove_host = eth1394_remove_host, .host_reset = eth1394_host_reset, }; static void eth1394_iso_shutdown(struct eth1394_priv *priv) { priv->bc_state = ETHER1394_BC_CLOSED; if (priv->iso != NULL) { //~ if (!in_interrupt()) hpsb_iso_shutdown(priv->iso); priv->iso = NULL; } } static int eth1394_init_bc(struct rtnet_device *dev) { struct eth1394_priv *priv = (struct eth1394_priv *)dev->priv; /* First time sending? Need a broadcast channel for ARP and for * listening on */ if (priv->bc_state == ETHER1394_BC_CHECK) { quadlet_t bc; /* Get the local copy of the broadcast channel and check its * validity (the IRM should validate it for us) */ bc = priv->host->csr.broadcast_channel; if ((bc & 0x80000000) != 0x80000000) { //used to be 0xc0000000 /* broadcast channel not validated yet */ ETH1394_PRINT(KERN_WARNING, dev->name, "Error BROADCAST_CHANNEL register valid " "bit not set, can't send IP traffic\n"); eth1394_iso_shutdown(priv); return -EAGAIN; } if (priv->broadcast_channel != (bc & 0x3f)) { /* This really shouldn't be possible, but just in case * the IEEE 1394 spec changes regarding broadcast * channels in the future. */ eth1394_iso_shutdown(priv); //~ if (in_interrupt()) //~ return -EAGAIN; priv->broadcast_channel = bc & 0x3f; ETH1394_PRINT(KERN_INFO, dev->name, "Changing to broadcast channel %d...\n", priv->broadcast_channel); priv->iso = hpsb_iso_recv_init(priv->host, 16 * 4096, 16, priv->broadcast_channel, HPSB_ISO_DMA_PACKET_PER_BUFFER, 1, eth1394_iso, 0, "eth1394_iso", IEEE1394_PRIORITY_HIGHEST); if (priv->iso == NULL) { ETH1394_PRINT(KERN_ERR, dev->name, "failed to change broadcast " "channel\n"); return -EAGAIN; } } if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0) { ETH1394_PRINT(KERN_ERR, dev->name, "Could not start data stream reception\n"); eth1394_iso_shutdown(priv); return -EAGAIN; } priv->bc_state = ETHER1394_BC_OPENED; } return 0; } static int eth1394_open (struct rtnet_device *dev) { struct eth1394_priv *priv = (struct eth1394_priv *)dev->priv; rtdm_lockctx_t context; int ret; /* Something bad happened, don't even try */ if (priv->bc_state == ETHER1394_BC_CLOSED) { return -EAGAIN; } rtdm_lock_get_irqsave(&priv->lock, context); ret = eth1394_init_bc(dev); rtdm_lock_put_irqrestore(&priv->lock, context); if (ret) return ret; rt_stack_connect(dev,&STACK_manager); rtnetif_start_queue (dev); return 0; } static int eth1394_stop (struct rtnet_device *dev) { rtnetif_stop_queue (dev); rt_stack_disconnect(dev); return 0; } /* Return statistics to the caller */ static struct net_device_stats *eth1394_stats (struct rtnet_device *dev) { return &(((struct eth1394_priv *)dev->priv)->stats); } static inline void eth1394_register_limits(int nodeid, u16 maxpayload, unsigned char sspd, struct eth1394_priv *priv) { if (nodeid < 0 || nodeid >= ALL_NODES) { ETH1394_PRINT_G (KERN_ERR, "Cannot register invalid nodeid %d\n", nodeid); return; } priv->maxpayload[nodeid] = maxpayload; priv->sspd[nodeid] = sspd; priv->maxpayload[ALL_NODES] = min(priv->maxpayload[ALL_NODES], maxpayload); priv->sspd[ALL_NODES] = min(priv->sspd[ALL_NODES], sspd); return; } static void eth1394_reset_priv (struct rtnet_device *dev, int set_mtu) { rtdm_lockctx_t context; int i; struct eth1394_priv *priv = (struct eth1394_priv *)dev->priv; struct hpsb_host *host = priv->host; int phy_id = NODEID_TO_NODE(host->node_id); u16 maxpayload = 1 << (host->csr.max_rec + 1); rtdm_lock_get_irqsave(&priv->lock, context); /* Clear the speed/payload/offset tables */ memset (priv->maxpayload, 0, sizeof (priv->maxpayload)); memset (priv->sspd, 0, sizeof (priv->sspd)); priv->sspd[ALL_NODES] = ETH1394_SPEED_DEF; priv->maxpayload[ALL_NODES] = eth1394_speedto_maxpayload[priv->sspd[ALL_NODES]]; priv->bc_state = ETHER1394_BC_CHECK; /* Register our limits now */ eth1394_register_limits(phy_id, maxpayload, host->speed_map[(phy_id << 6) + phy_id], priv); /* We'll use our maxpayload as the default mtu */ if (set_mtu) { dev->mtu = min(ETH1394_DATA_LEN, (int)(priv->maxpayload[phy_id] - (sizeof(union eth1394_hdr) + ETHER1394_GASP_OVERHEAD))); //~ /* Set our hardware address while we're at it */ //~ *(u64*)dev->dev_addr = guid; //~ *(u64*)dev->broadcast = ~0x0ULL; *(u16*)dev->dev_addr = LOCAL_BUS | phy_id; //we directly use FireWire address for our MAC address *(u16*)dev->broadcast = LOCAL_BUS | ALL_NODES; } rtdm_lock_put_irqrestore(&priv->lock, context); for (i = 0; i < ALL_NODES; i++) { struct list_head *lh, *n; rtdm_lock_get_irqsave(&priv->pdg[i].lock, context); if (!set_mtu) { list_for_each_safe(lh, n, &priv->pdg[i].list) { //~ purge_partial_datagram(lh); } } INIT_LIST_HEAD(&(priv->pdg[i].list)); priv->pdg[i].sz = 0; rtdm_lock_put_irqrestore(&priv->pdg[i].lock, context); } } static void eth1394_add_host (struct hpsb_host *host) { int i; struct host_info *hi = NULL; //*******RTnet******** struct rtnet_device *dev = NULL; // struct eth1394_priv *priv; /* We should really have our own alloc_hpsbdev() function in * net_init.c instead of calling the one for ethernet then hijacking * it for ourselves. That way we'd be a real networking device. */ //******RTnet****** dev = rt_alloc_etherdev(sizeof (struct eth1394_priv), RX_RING_SIZE * 2 + TX_RING_SIZE); if (dev == NULL) { ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to allocate " "etherdevice for IEEE 1394 device\n"); goto free_dev; } rtdev_alloc_name(dev, "rteth%d"); memset(dev->priv, 0, sizeof(struct eth1394_priv)); rt_rtdev_connect(dev, &RTDEV_manager); //dev->init = eth1394_init_dev; dev->vers = RTDEV_VERS_2_0; dev->open = eth1394_open; dev->hard_start_xmit = eth1394_tx; dev->stop = eth1394_stop; dev->hard_header = eth1394_header; dev->get_stats = eth1394_stats; dev->flags = IFF_BROADCAST | IFF_MULTICAST; dev->addr_len = ETH_ALEN; dev->hard_header_len = ETH_HLEN; dev->type = ARPHRD_IEEE1394; //rtdev->do_ioctl = NULL; priv = (struct eth1394_priv *)dev->priv; rtdm_lock_init(&priv->lock); priv->host = host; for (i = 0; i < ALL_NODES; i++) { rtdm_lock_init(&priv->pdg[i].lock); INIT_LIST_HEAD(&priv->pdg[i].list); priv->pdg[i].sz = 0; } hi = hpsb_create_hostinfo(ð1394_highlevel, host, sizeof(*hi)); if (hi == NULL) { ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to create " "hostinfo for IEEE 1394 device\n"); goto free_hi; } if(rt_register_rtnetdev(dev)) { ETH1394_PRINT (KERN_ERR, dev->name, "Error registering network driver\n"); goto free_hi; } ETH1394_PRINT (KERN_ERR, dev->name, "IEEE-1394 IPv4 over 1394 Ethernet\n"); hi->host = host; hi->dev = dev; eth1394_reset_priv (dev, 1); /* Ignore validity in hopes that it will be set in the future. It'll * be checked when the eth device is opened. */ priv->broadcast_channel = host->csr.broadcast_channel & 0x3f; priv->iso = hpsb_iso_recv_init(host, (ETHER1394_GASP_BUFFERS * 2 * 2048), // XXX workaround for limitation in rawiso //(1 << (host->csr.max_rec + 1))), ETHER1394_GASP_BUFFERS, priv->broadcast_channel, HPSB_ISO_DMA_PACKET_PER_BUFFER, 1, eth1394_iso, 0, "eth1394_iso", IEEE1394_PRIORITY_HIGHEST); if (priv->iso == NULL) { ETH1394_PRINT(KERN_ERR, dev->name, "Could not allocate isochronous receive context " "for the broadcast channel\n"); priv->bc_state = ETHER1394_BC_ERROR; goto unregister_dev; } else { if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0){ priv->bc_state = ETHER1394_BC_STOPPED; goto unregister_dev; } else priv->bc_state = ETHER1394_BC_RUNNING; } hpsb_register_addrspace(ð1394_highlevel, host, ð1394_ops, ETHER1394_REGION_ADDR, ETHER1394_REGION_ADDR_END); return; unregister_dev: rt_unregister_rtnetdev(dev); free_hi: hpsb_destroy_hostinfo(ð1394_highlevel, host); free_dev: rtdev_free(dev); return; } static void eth1394_remove_host (struct hpsb_host *host) { struct host_info *hi = hpsb_get_hostinfo(ð1394_highlevel, host); if (hi != NULL) { struct eth1394_priv *priv = (struct eth1394_priv *)hi->dev->priv; eth1394_iso_shutdown(priv); if (hi->dev) { rt_stack_disconnect(hi->dev); rt_unregister_rtnetdev (hi->dev); rtdev_free(hi->dev); } } return; } static void eth1394_host_reset (struct hpsb_host *host) { struct host_info *hi = hpsb_get_hostinfo(ð1394_highlevel, host); struct rtnet_device *dev; /* This can happen for hosts that we don't use */ if (hi == NULL) return; dev = hi->dev; /* Reset our private host data, but not our mtu */ rtnetif_stop_queue (dev); eth1394_reset_priv (dev, 1); rtnetif_wake_queue (dev); } /****************************************** * HW Header net device functions ******************************************/ /* These functions have been adapted from net/ethernet/eth.c */ /* Create a fake MAC header for an arbitrary protocol layer. * saddr=NULL means use device source address * daddr=NULL means leave destination address (eg unresolved arp). */ static int eth1394_header(struct rtskb *skb, struct rtnet_device *dev, unsigned short type, void *daddr, void *saddr, unsigned len) { struct ethhdr *eth = (struct ethhdr *)rtskb_push(skb,ETH_HLEN); memset(eth, 0, sizeof(*eth)); eth->h_proto = htons(type); if (saddr) memcpy(eth->h_source, saddr, sizeof(nodeid_t)); else memcpy(eth->h_source, dev->dev_addr, sizeof(nodeid_t)); if (dev->flags & (IFF_LOOPBACK|IFF_NOARP)) { memset(eth->h_dest, 0, dev->addr_len); return(dev->hard_header_len); } if (daddr) { memcpy(eth->h_dest,daddr, sizeof(nodeid_t)); return dev->hard_header_len; } return -dev->hard_header_len; } /****************************************** * Datagram reception code ******************************************/ /* Copied from net/ethernet/eth.c */ static inline u16 eth1394_type_trans(struct rtskb *skb, struct rtnet_device *dev) { struct ethhdr *eth; unsigned char *rawp; skb->mac.raw = skb->data; rtskb_pull (skb, ETH_HLEN); eth = (struct ethhdr*)skb->mac.raw; if (*eth->h_dest & 1) { if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len)==0) skb->pkt_type = PACKET_BROADCAST; } else { if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len)) skb->pkt_type = PACKET_OTHERHOST; } if (ntohs (eth->h_proto) >= 1536) return eth->h_proto; rawp = skb->data; if (*(unsigned short *)rawp == 0xFFFF) return htons (ETH_P_802_3); return htons (ETH_P_802_2); } /* Parse an encapsulated IP1394 header into an ethernet frame packet. * We also perform ARP translation here, if need be. */ static inline u16 eth1394_parse_encap(struct rtskb *skb, struct rtnet_device *dev, nodeid_t srcid, nodeid_t destid, u16 ether_type) { struct eth1394_priv *priv = (struct eth1394_priv *)dev->priv; unsigned short ret = 0; /* If this is an ARP packet, convert it. First, we want to make * use of some of the fields, since they tell us a little bit * about the sending machine. */ if (ether_type == __constant_htons (ETH_P_ARP)) { rtdm_lockctx_t context; struct eth1394_arp *arp1394 = (struct eth1394_arp*)((u8 *)skb->data); struct arphdr *arp = (struct arphdr *)((u8 *)skb->data); unsigned char *arp_ptr = (unsigned char *)(arp + 1); u8 max_rec = min(priv->host->csr.max_rec, (u8)(arp1394->max_rec)); int sspd = arp1394->sspd; u16 maxpayload; /* Sanity check. MacOSX seems to be sending us 131 in this * field (atleast on my Panther G5). Not sure why. */ if (sspd > 5 || sspd < 0) sspd = 0; maxpayload = min(eth1394_speedto_maxpayload[sspd], (u16)(1 << (max_rec + 1))); /* Update our speed/payload/fifo_offset table */ rtdm_lock_get_irqsave(&priv->lock, context); eth1394_register_limits(NODEID_TO_NODE(srcid), maxpayload, arp1394->sspd, priv); rtdm_lock_put_irqrestore(&priv->lock, context); /* Now that we're done with the 1394 specific stuff, we'll * need to alter some of the data. Believe it or not, all * that needs to be done is sender_IP_address needs to be * moved, the destination hardware address get stuffed * in and the hardware address length set to 8. * * IMPORTANT: The code below overwrites 1394 specific data * needed above data so keep the call to * eth1394_register_limits() before munging the data for the * higher level IP stack. */ arp->ar_hln = ETH_ALEN; arp_ptr += arp->ar_hln; /* skip over sender unique id */ *(u32*)arp_ptr = arp1394->sip; /* move sender IP addr */ arp_ptr += arp->ar_pln; /* skip over sender IP addr */ if (arp->ar_op == 1) /* just set ARP req target unique ID to 0 */ memset(arp_ptr, 0, ETH_ALEN); else memcpy(arp_ptr, dev->dev_addr, ETH_ALEN); } /* Now add the ethernet header. */ //no need to add ethernet header now, since we did not get rid of it on the sending side if (dev->hard_header (skb, dev, __constant_ntohs (ether_type), &destid, &srcid, skb->len) >= 0) ret = eth1394_type_trans(skb, dev); return ret; } static inline int fragment_overlap(struct list_head *frag_list, int offset, int len) { struct list_head *lh; struct fragment_info *fi; list_for_each(lh, frag_list) { fi = list_entry(lh, struct fragment_info, list); if ( ! ((offset > (fi->offset + fi->len - 1)) || ((offset + len - 1) < fi->offset))) return 1; } return 0; } static inline struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl) { struct list_head *lh; struct partial_datagram *pd; list_for_each(lh, pdgl) { pd = list_entry(lh, struct partial_datagram, list); if (pd->dgl == dgl) return lh; } return NULL; } /* Assumes that new fragment does not overlap any existing fragments */ static inline int new_fragment(struct list_head *frag_info, int offset, int len) { struct list_head *lh; struct fragment_info *fi, *fi2, *new; list_for_each(lh, frag_info) { fi = list_entry(lh, struct fragment_info, list); if ((fi->offset + fi->len) == offset) { /* The new fragment can be tacked on to the end */ fi->len += len; /* Did the new fragment plug a hole? */ fi2 = list_entry(lh->next, struct fragment_info, list); if ((fi->offset + fi->len) == fi2->offset) { /* glue fragments together */ fi->len += fi2->len; list_del(lh->next); kfree(fi2); } return 0; } else if ((offset + len) == fi->offset) { /* The new fragment can be tacked on to the beginning */ fi->offset = offset; fi->len += len; /* Did the new fragment plug a hole? */ fi2 = list_entry(lh->prev, struct fragment_info, list); if ((fi2->offset + fi2->len) == fi->offset) { /* glue fragments together */ fi2->len += fi->len; list_del(lh); kfree(fi); } return 0; } else if (offset > (fi->offset + fi->len)) { break; } else if ((offset + len) < fi->offset) { lh = lh->prev; break; } } new = kmalloc(sizeof(struct fragment_info), GFP_ATOMIC); if (!new) return -ENOMEM; new->offset = offset; new->len = len; list_add(&new->list, lh); return 0; } static inline int new_partial_datagram(struct rtnet_device *dev, struct list_head *pdgl, int dgl, int dg_size, char *frag_buf, int frag_off, int frag_len) { struct partial_datagram *new; struct eth1394_priv *priv = (struct eth1394_priv *)dev->priv; new = kmalloc(sizeof(struct partial_datagram), GFP_ATOMIC); if (!new) return -ENOMEM; INIT_LIST_HEAD(&new->frag_info); if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) { kfree(new); return -ENOMEM; } new->dgl = dgl; new->dg_size = dg_size; new->skb = rtnetdev_alloc_rtskb(dev, dg_size + dev->hard_header_len + 15); if (!new->skb) { struct fragment_info *fi = list_entry(new->frag_info.next, struct fragment_info, list); kfree(fi); kfree(new); return -ENOMEM; } rtskb_reserve(new->skb, (dev->hard_header_len + 15) & ~15); new->pbuf = rtskb_put(new->skb, dg_size); memcpy(new->pbuf + frag_off, frag_buf, frag_len); list_add(&new->list, pdgl); return 0; } static inline int update_partial_datagram(struct list_head *pdgl, struct list_head *lh, char *frag_buf, int frag_off, int frag_len) { struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list); if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0) { return -ENOMEM; } memcpy(pd->pbuf + frag_off, frag_buf, frag_len); /* Move list entry to beginnig of list so that oldest partial * datagrams percolate to the end of the list */ list_del(lh); list_add(lh, pdgl); return 0; } static inline void purge_partial_datagram(struct list_head *old) { struct partial_datagram *pd = list_entry(old, struct partial_datagram, list); struct list_head *lh, *n; list_for_each_safe(lh, n, &pd->frag_info) { struct fragment_info *fi = list_entry(lh, struct fragment_info, list); list_del(lh); kfree(fi); } list_del(old); kfree_rtskb(pd->skb); kfree(pd); } static inline int is_datagram_complete(struct list_head *lh, int dg_size) { struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list); struct fragment_info *fi = list_entry(pd->frag_info.next, struct fragment_info, list); return (fi->len == dg_size); } /* Packet reception. We convert the IP1394 encapsulation header to an * ethernet header, and fill it with some of our other fields. This is * an incoming packet from the 1394 bus. */ static int eth1394_data_handler(struct rtnet_device *dev, int srcid, int destid, char *buf, int len, nanosecs_abs_t time_stamp) { struct rtskb *skb; rtdm_lockctx_t context; struct eth1394_priv *priv; union eth1394_hdr *hdr = (union eth1394_hdr *)buf; u16 ether_type = 0; /* initialized to clear warning */ int hdr_len; //~ nanosecs_abs_t time_stamp = rtdm_clock_read(); priv = (struct eth1394_priv *)dev->priv; /* First, did we receive a fragmented or unfragmented datagram? */ hdr->words.word1 = ntohs(hdr->words.word1); hdr_len = hdr_type_len[hdr->common.lf]; if (hdr->common.lf == ETH1394_HDR_LF_UF) { DEBUGP("a single datagram has been received\n"); /* An unfragmented datagram has been received by the ieee1394 * bus. Build an skbuff around it so we can pass it to the * high level network layer. */ //~ if(rtpkb_acquire((struct rtpkb*)packet, &priv->skb_pool)){ //~ HPSB_PRINT (KERN_ERR, "eth1394 rx: low on mem\n"); //~ priv->stats.rx_dropped++; //~ return -1; //~ } skb = rtnetdev_alloc_rtskb(dev, len + dev->hard_header_len + 15); if (!skb) { ETH1394_PRINT_G(KERN_ERR, "eth1394 rx: low on mem\n"); priv->stats.rx_dropped++; return -1; } //~ skb = (struct rtskb *)packet;//we can do this, because these two belong to the same common object, rtpkb. //~ rtpkb_put(skb, len-hdr_len); //~ skb->data = (u8 *)packet->data + hdr_len; //we jump over the 1394-specific fragment overhead //~ rtskb_put(skb, ); rtskb_reserve(skb, (dev->hard_header_len + 15) & ~15);//we reserve the space to put in fake MAC address memcpy(rtskb_put(skb, len - hdr_len), buf + hdr_len, len - hdr_len); ether_type = hdr->uf.ether_type; } else { /* A datagram fragment has been received, now the fun begins. */ struct list_head *pdgl, *lh; struct partial_datagram *pd; int fg_off; int fg_len = len - hdr_len; int dg_size; int dgl; int retval; int sid = NODEID_TO_NODE(srcid); struct pdg_list *pdg = &(priv->pdg[sid]); DEBUGP("a datagram fragment has been received\n"); hdr->words.word3 = ntohs(hdr->words.word3); /* The 4th header word is reserved so no need to do ntohs() */ if (hdr->common.lf == ETH1394_HDR_LF_FF) { //first fragment ether_type = hdr->ff.ether_type; dgl = hdr->ff.dgl; dg_size = hdr->ff.dg_size + 1; fg_off = 0; } else { hdr->words.word2 = ntohs(hdr->words.word2); dgl = hdr->sf.dgl; dg_size = hdr->sf.dg_size + 1; fg_off = hdr->sf.fg_off; } rtdm_lock_get_irqsave(&pdg->lock, context); pdgl = &(pdg->list); lh = find_partial_datagram(pdgl, dgl); if (lh == NULL) { if (pdg->sz == max_partial_datagrams) { /* remove the oldest */ purge_partial_datagram(pdgl->prev); pdg->sz--; } retval = new_partial_datagram(dev, pdgl, dgl, dg_size, buf + hdr_len, fg_off, fg_len); if (retval < 0) { rtdm_lock_put_irqrestore(&pdg->lock, context); goto bad_proto; } pdg->sz++; lh = find_partial_datagram(pdgl, dgl); } else { struct partial_datagram *pd; pd = list_entry(lh, struct partial_datagram, list); if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) { /* Overlapping fragments, obliterate old * datagram and start new one. */ purge_partial_datagram(lh); retval = new_partial_datagram(dev, pdgl, dgl, dg_size, buf + hdr_len, fg_off, fg_len); if (retval < 0) { pdg->sz--; rtdm_lock_put_irqrestore(&pdg->lock, context); goto bad_proto; } } else { retval = update_partial_datagram(pdgl, lh, buf + hdr_len, fg_off, fg_len); if (retval < 0) { /* Couldn't save off fragment anyway * so might as well obliterate the * datagram now. */ purge_partial_datagram(lh); pdg->sz--; rtdm_lock_put_irqrestore(&pdg->lock, context); goto bad_proto; } } /* fragment overlap */ } /* new datagram or add to existing one */ pd = list_entry(lh, struct partial_datagram, list); if (hdr->common.lf == ETH1394_HDR_LF_FF) { pd->ether_type = ether_type; } if (is_datagram_complete(lh, dg_size)) { ether_type = pd->ether_type; pdg->sz--; //skb = skb_get(pd->skb); skb = pd->skb; purge_partial_datagram(lh); rtdm_lock_put_irqrestore(&pdg->lock, context); } else { /* Datagram is not complete, we're done for the * moment. */ rtdm_lock_put_irqrestore(&pdg->lock, context); return 0; } } /* unframgented datagram or fragmented one */ /* Write metadata, and then pass to the receive level */ skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */ /* Parse the encapsulation header. This actually does the job of * converting to an ethernet frame header, aswell as arp * conversion if needed. ARP conversion is easier in this * direction, since we are using ethernet as our backend. */ skb->protocol = eth1394_parse_encap(skb, dev, srcid, destid, ether_type); rtdm_lock_get_irqsave(&priv->lock, context); if (!skb->protocol) { DEBUG_PRINT("pointer to %s(%s)%d\n",__FILE__,__FUNCTION__,__LINE__); priv->stats.rx_errors++; priv->stats.rx_dropped++; //dev_kfree_skb_any(skb); kfree_rtskb(skb); goto bad_proto; } skb->time_stamp = time_stamp; /*if (netif_rx(skb) == NET_RX_DROP) { priv->stats.rx_errors++; priv->stats.rx_dropped++; goto bad_proto; }*/ rtnetif_rx(skb);//finally, we deliver the packet /* Statistics */ priv->stats.rx_packets++; priv->stats.rx_bytes += skb->len; rt_mark_stack_mgr(dev); bad_proto: if (rtnetif_queue_stopped(dev)) rtnetif_wake_queue(dev); rtdm_lock_put_irqrestore(&priv->lock, context); //dev->last_rx = jiffies; return 0; } static int eth1394_write(struct hpsb_host *host, struct hpsb_packet *packet, unsigned int length) { struct host_info *hi = hpsb_get_hostinfo(ð1394_highlevel, host); int ret; if (hi == NULL) { ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n", host->driver->name); return RCODE_ADDRESS_ERROR; } //we need to parse the packet now ret = eth1394_data_handler(hi->dev, packet->header[1]>>16, //source id packet->header[0]>>16, //dest id (char *)packet->data, //data packet->data_size, packet->time_stamp); //we only get the request packet, serve it, but dont free it, since it does not belong to us!!!! if(ret) return RCODE_ADDRESS_ERROR; else return RCODE_COMPLETE; } /** * callback function for broadcast channel * called from hpsb_iso_wake( ) */ static void eth1394_iso(struct hpsb_iso *iso, void *arg) { quadlet_t *data; char *buf; struct rtnet_device *dev; unsigned int len; u32 specifier_id; u16 source_id; int i; int nready; struct host_info *hi = hpsb_get_hostinfo(ð1394_highlevel, iso->host); if (hi == NULL) { ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n", iso->host->driver->name); return; } dev = hi->dev; nready = hpsb_iso_n_ready(iso); for (i = 0; i < nready; i++) { struct hpsb_iso_packet_info *info = &iso->infos[(iso->first_packet + i) % iso->buf_packets]; data = (quadlet_t*) (iso->data_buf.kvirt + info->offset); /* skip over GASP header */ buf = (char *)data + 8; len = info->len - 8; specifier_id = (((be32_to_cpu(data[0]) & 0xffff) << 8) | ((be32_to_cpu(data[1]) & 0xff000000) >> 24)); source_id = be32_to_cpu(data[0]) >> 16; if (info->channel != (iso->host->csr.broadcast_channel & 0x3f) || specifier_id != ETHER1394_GASP_SPECIFIER_ID) { /* This packet is not for us */ continue; } eth1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES, buf, len, rtdm_clock_read()); } hpsb_iso_recv_release_packets(iso, i); //dev->last_rx = jiffies; } /****************************************** * Datagram transmission code ******************************************/ /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire * arphdr) is the same format as the ip1394 header, so they overlap. The rest * needs to be munged a bit. The remainder of the arphdr is formatted based * on hwaddr len and ipaddr len. We know what they'll be, so it's easy to * judge. * * Now that the EUI is used for the hardware address all we need to do to make * this work for 1394 is to insert 2 quadlets that contain max_rec size, * speed, and unicast FIFO address information between the sender_unique_id * and the IP addresses. */ //we dont need the EUI id now. fifo_hi should contain the bus id and node id. //fifo_lo should contain the highest 32 bits of in-node address. static inline void eth1394_arp_to_1394arp(struct rtskb *skb, struct rtnet_device *dev) { struct eth1394_priv *priv = (struct eth1394_priv *)(dev->priv); u16 phy_id = NODEID_TO_NODE(priv->host->node_id); struct arphdr *arp = (struct arphdr *)skb->data; unsigned char *arp_ptr = (unsigned char *)(arp + 1); struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data; arp1394->hw_addr_len = 6; arp1394->sip = *(u32*)(arp_ptr + ETH_ALEN); arp1394->max_rec = priv->host->csr.max_rec; arp1394->sspd = priv->sspd[phy_id]; return; } /* We need to encapsulate the standard header with our own. We use the * ethernet header's proto for our own. */ static inline unsigned int eth1394_encapsulate_prep(unsigned int max_payload, int proto, union eth1394_hdr *hdr, u16 dg_size, u16 dgl) { unsigned int adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_UF]; /* Does it all fit in one packet? */ if (dg_size <= adj_max_payload) { hdr->uf.lf = ETH1394_HDR_LF_UF; hdr->uf.ether_type = proto; } else { hdr->ff.lf = ETH1394_HDR_LF_FF; hdr->ff.ether_type = proto; hdr->ff.dg_size = dg_size - 1; hdr->ff.dgl = dgl; adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF]; } return((dg_size + (adj_max_payload - 1)) / adj_max_payload); } static inline unsigned int eth1394_encapsulate(struct rtskb *skb, unsigned int max_payload, union eth1394_hdr *hdr) { union eth1394_hdr *bufhdr; int ftype = hdr->common.lf; int hdrsz = hdr_type_len[ftype]; unsigned int adj_max_payload = max_payload - hdrsz; switch(ftype) { case ETH1394_HDR_LF_UF: bufhdr = (union eth1394_hdr *)rtskb_push(skb, hdrsz); bufhdr->words.word1 = htons(hdr->words.word1); bufhdr->words.word2 = hdr->words.word2; break; case ETH1394_HDR_LF_FF: bufhdr = (union eth1394_hdr *)rtskb_push(skb, hdrsz); bufhdr->words.word1 = htons(hdr->words.word1); bufhdr->words.word2 = hdr->words.word2; bufhdr->words.word3 = htons(hdr->words.word3); bufhdr->words.word4 = 0; /* Set frag type here for future interior fragments */ hdr->common.lf = ETH1394_HDR_LF_IF; hdr->sf.fg_off = 0; break; default: hdr->sf.fg_off += adj_max_payload; bufhdr = (union eth1394_hdr *)rtskb_pull(skb, adj_max_payload); if (max_payload >= skb->len) hdr->common.lf = ETH1394_HDR_LF_LF; bufhdr->words.word1 = htons(hdr->words.word1); bufhdr->words.word2 = htons(hdr->words.word2); bufhdr->words.word3 = htons(hdr->words.word3); bufhdr->words.word4 = 0; } return min(max_payload, skb->len); } //just allocate a hpsb_packet header, without payload. static inline struct hpsb_packet *eth1394_alloc_common_packet(struct hpsb_host *host, unsigned int priority) { struct hpsb_packet *p; p = hpsb_alloc_packet(0,&host->pool, priority); if (p) { p->host = host; p->data = NULL; p->generation = get_hpsb_generation(host); p->type = hpsb_async; } return p; } //prepare an asynchronous write packet static inline int eth1394_prep_write_packet(struct hpsb_packet *p, struct hpsb_host *host, nodeid_t node, u64 addr, void * data, int tx_len) { p->node_id = node; p->tcode = TCODE_WRITEB; p->header[1] = (host->node_id << 16) | (addr >> 32); p->header[2] = addr & 0xffffffff; p->header_size = 16; p->expect_response = 1; if (hpsb_get_tlabel(p)) { ETH1394_PRINT_G(KERN_ERR, "No more tlabels left while sending " "to node " NODE_BUS_FMT "\n", NODE_BUS_ARGS(host, node)); return -1; } p->header[0] = (p->node_id << 16) | (p->tlabel << 10) | (1 << 8) | (TCODE_WRITEB << 4); p->header[3] = tx_len << 16; p->data_size = tx_len + (tx_len % 4 ? 4 - (tx_len % 4) : 0); p->data = (quadlet_t*)data; return 0; } //prepare gasp packet from skb. static inline void eth1394_prep_gasp_packet(struct hpsb_packet *p, struct eth1394_priv *priv, struct rtskb *skb, int length) { p->header_size = 4; p->tcode = TCODE_STREAM_DATA; p->header[0] = (length << 16) | (3 << 14) | ((priv->broadcast_channel) << 8) | (TCODE_STREAM_DATA << 4); p->data_size = length; p->data = ((quadlet_t*)skb->data) - 2; //we need 64bits for extra spec_id and gasp version. p->data[0] = cpu_to_be32((priv->host->node_id << 16) | ETHER1394_GASP_SPECIFIER_ID_HI); p->data[1] = cpu_to_be32((ETHER1394_GASP_SPECIFIER_ID_LO << 24) | ETHER1394_GASP_VERSION); /* Setting the node id to ALL_NODES (not LOCAL_BUS | ALL_NODES) * prevents hpsb_send_packet() from setting the speed to an arbitrary * value based on packet->node_id if packet->node_id is not set. */ p->node_id = ALL_NODES; p->speed_code = priv->sspd[ALL_NODES]; } static inline void eth1394_free_packet(struct hpsb_packet *packet) { if (packet->tcode != TCODE_STREAM_DATA) hpsb_free_tlabel(packet); hpsb_free_packet(packet); } static void eth1394_complete_cb(struct hpsb_packet *packet, void *__ptask); /** * this function does the real calling of hpsb_send_packet *But before that, it also constructs the FireWire packet according to * ptask */ static int eth1394_send_packet(struct packet_task *ptask, unsigned int tx_len, nanosecs_abs_t *xmit_stamp) { struct eth1394_priv *priv = ptask->priv; struct hpsb_packet *packet = NULL; int ret; packet = eth1394_alloc_common_packet(priv->host, ptask->priority); if (!packet) { ret = -ENOMEM; return ret; } if(xmit_stamp) packet->xmit_stamp = xmit_stamp; if (ptask->tx_type == ETH1394_GASP) { int length = tx_len + (2 * sizeof(quadlet_t)); //for the extra gasp overhead eth1394_prep_gasp_packet(packet, priv, ptask->skb, length); } else if (eth1394_prep_write_packet(packet, priv->host, ptask->dest_node, ptask->addr, ptask->skb->data, tx_len)) { hpsb_free_packet(packet); return -1; } ptask->packet = packet; hpsb_set_packet_complete_task(ptask->packet, eth1394_complete_cb, ptask); ret = hpsb_send_packet(packet); if (ret != 0) { eth1394_free_packet(packet); } return ret; } /* Task function to be run when a datagram transmission is completed */ static inline void eth1394_dg_complete(struct packet_task *ptask, int fail) { struct rtskb *skb = ptask->skb; struct rtnet_device *dev = skb->rtdev; struct eth1394_priv *priv = (struct eth1394_priv *)dev->priv; rtdm_lockctx_t context; /* Statistics */ rtdm_lock_get_irqsave(&priv->lock, context); if (fail) { priv->stats.tx_dropped++; priv->stats.tx_errors++; } else { priv->stats.tx_bytes += skb->len; priv->stats.tx_packets++; } rtdm_lock_put_irqrestore(&priv->lock, context); //dev_kfree_skb_any(skb); kfree_rtskb(skb); //~ kmem_cache_free(packet_task_cache, ptask); //this means this ptask structure has been freed ptask->packet=NULL; } /* Callback for when a packet has been sent and the status of that packet is * known */ static void eth1394_complete_cb(struct hpsb_packet *packet, void *__ptask) { struct packet_task *ptask = (struct packet_task *)__ptask; int fail = 0; if (packet->tcode != TCODE_STREAM_DATA) fail = hpsb_packet_success(packet); //we have no rights to free packet, since it belongs to RT-FireWire kernel. //~ eth1394_free_packet(packet); ptask->outstanding_pkts--; if (ptask->outstanding_pkts > 0 && !fail) { int tx_len; /* Add the encapsulation header to the fragment */ tx_len = eth1394_encapsulate(ptask->skb, ptask->max_payload, &ptask->hdr); if (eth1394_send_packet(ptask, tx_len, NULL)) eth1394_dg_complete(ptask, 1); } else { eth1394_dg_complete(ptask, fail); } } /** *Transmit a packet (called by kernel) * this is the dev->hard_start_transmit */ static int eth1394_tx (struct rtskb *skb, struct rtnet_device *dev) { struct ethhdr *eth; struct eth1394_priv *priv = (struct eth1394_priv *)dev->priv; int proto; rtdm_lockctx_t context; nodeid_t dest_node; eth1394_tx_type tx_type; int ret = 0; unsigned int tx_len; unsigned int max_payload; u16 dg_size; u16 dgl; //we try to find the available ptask struct, if failed, we can not send packet struct packet_task *ptask = NULL; int i; for(i=0;i<20;i++){ if(priv->ptask_list[i].packet == NULL){ ptask = &priv->ptask_list[i]; break; } } if(ptask == NULL) return -EBUSY; rtdm_lock_get_irqsave(&priv->lock, context); if (priv->bc_state == ETHER1394_BC_CLOSED) { ETH1394_PRINT(KERN_ERR, dev->name, "Cannot send packet, no broadcast channel available.\n"); ret = -EAGAIN; rtdm_lock_put_irqrestore(&priv->lock, context); goto fail; } if ((ret = eth1394_init_bc(dev))) { rtdm_lock_put_irqrestore(&priv->lock, context); goto fail; } rtdm_lock_put_irqrestore(&priv->lock, context); //if ((skb = skb_share_check (skb, kmflags)) == NULL) { // ret = -ENOMEM; // goto fail; //} /* Get rid of the fake eth1394 header, but save a pointer */ eth = (struct ethhdr*)skb->data; rtskb_pull(skb, ETH_HLEN); //dont get rid of the fake eth1394 header, since we need it on the receiving side //eth = (struct ethhdr*)skb->data; //~ //find the node id via our fake MAC address //~ ne = hpsb_guid_get_entry(be64_to_cpu(*(u64*)eth->h_dest)); //~ if (!ne) //~ dest_node = LOCAL_BUS | ALL_NODES; //~ else //~ dest_node = ne->nodeid; //now it is much easier dest_node = *(u16*)eth->h_dest; if(dest_node != 0xffff) DEBUGP("%s: dest_node is %x\n", __FUNCTION__, dest_node); proto = eth->h_proto; /* If this is an ARP packet, convert it */ if (proto == __constant_htons (ETH_P_ARP)) eth1394_arp_to_1394arp (skb, dev); max_payload = priv->maxpayload[NODEID_TO_NODE(dest_node)]; DEBUGP("%s: max_payload is %d\n", __FUNCTION__, max_payload); /* This check should be unnecessary, but we'll keep it for safety for * a while longer. */ if (max_payload < 512) { DEBUGP("max_payload too small: %d (setting to 512)\n", max_payload); max_payload = 512; } /* Set the transmission type for the packet. ARP packets and IP * broadcast packets are sent via GASP. */ if (memcmp(eth->h_dest, dev->broadcast, sizeof(nodeid_t)) == 0 || proto == __constant_htons(ETH_P_ARP) || (proto == __constant_htons(ETH_P_IP) && IN_MULTICAST(__constant_ntohl(skb->nh.iph->daddr)))) { tx_type = ETH1394_GASP; max_payload -= ETHER1394_GASP_OVERHEAD; //we have extra overhead for gasp packet } else { tx_type = ETH1394_WRREQ; } dg_size = skb->len; rtdm_lock_get_irqsave(&priv->lock, context); dgl = priv->dgl[NODEID_TO_NODE(dest_node)]; if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF]) priv->dgl[NODEID_TO_NODE(dest_node)]++; rtdm_lock_put_irqrestore(&priv->lock, context); ptask->hdr.words.word1 = 0; ptask->hdr.words.word2 = 0; ptask->hdr.words.word3 = 0; ptask->hdr.words.word4 = 0; ptask->skb = skb; ptask->priv = priv; ptask->tx_type = tx_type; if (tx_type != ETH1394_GASP) { u64 addr; /* This test is just temporary until ConfigROM support has * been added to eth1394. Until then, we need an ARP packet * after a bus reset from the current destination node so that * we can get FIFO information. */ //~ if (priv->fifo[NODEID_TO_NODE(dest_node)] == 0ULL) { //~ ret = -EAGAIN; //~ goto fail; //~ } //~ rtos_spin_lock_irqsave(&priv->lock, flags); //~ addr = priv->fifo[NODEID_TO_NODE(dest_node)]; addr = ETHER1394_REGION_ADDR; //~ rtos_spin_unlock_irqrestore(&priv->lock, flags); ptask->addr = addr; ptask->dest_node = dest_node; } ptask->tx_type = tx_type; ptask->max_payload = max_payload; ptask->outstanding_pkts = eth1394_encapsulate_prep(max_payload, proto, &ptask->hdr, dg_size, dgl); /* Add the encapsulation header to the fragment */ tx_len = eth1394_encapsulate(skb, max_payload, &ptask->hdr); //dev->trans_start = jiffies; //~ if(skb->xmit_stamp) //~ *skb->xmit_stamp = cpu_to_be64(rtos_get_time() + *skb->xmit_stamp); if (eth1394_send_packet(ptask, tx_len, skb->xmit_stamp)) goto fail; rtnetif_wake_queue(dev); return 0; fail: if (ptask!=NULL){ //~ kmem_cache_free(packet_task_cache, ptask); ptask->packet=NULL; ptask=NULL; } if (skb != NULL) dev_kfree_rtskb(skb); rtdm_lock_get_irqsave(&priv->lock, context); priv->stats.tx_dropped++; priv->stats.tx_errors++; rtdm_lock_put_irqrestore(&priv->lock, context); if (rtnetif_queue_stopped(dev)) rtnetif_wake_queue(dev); return 0; /* returning non-zero causes serious problems */ } static int eth1394_init(void) { hpsb_register_highlevel(ð1394_highlevel); return 0; } static void eth1394_exit(void) { hpsb_unregister_highlevel(ð1394_highlevel); } module_init(eth1394_init); module_exit(eth1394_exit); MODULE_LICENSE("GPL");