// SPDX-License-Identifier: GPL-2.0 /* * Exception handling code * * Copyright (C) 2019 ARM Ltd. */ #include #include #include #include #include #include #include #include #include #include #include /* * This is intended to match the logic in irqentry_enter(), handling the kernel * mode transitions only. */ static void noinstr __enter_from_kernel_mode(struct pt_regs *regs) { regs->exit_rcu = false; if (!IS_ENABLED(CONFIG_TINY_RCU) && is_idle_task(current)) { lockdep_hardirqs_off(CALLER_ADDR0); rcu_irq_enter(); trace_hardirqs_off_finish(); regs->exit_rcu = true; return; } lockdep_hardirqs_off(CALLER_ADDR0); rcu_irq_enter_check_tick(); trace_hardirqs_off_finish(); mte_check_tfsr_entry(); } static void noinstr enter_from_kernel_mode(struct pt_regs *regs) { #ifdef CONFIG_IRQ_PIPELINE /* * CAUTION: we may switch in-band as a result of handling a * trap, so if we are running out-of-band, we must make sure * not to perform the RCU exit since we did not enter it in * the first place. */ regs->oob_on_entry = running_oob(); if (regs->oob_on_entry) { regs->exit_rcu = false; return; } /* * We trapped from kernel space running in-band, we need to * record the virtual interrupt state into the current * register frame (regs->stalled_on_entry) in order to * reinstate it from exit_to_kernel_mode(). Next we stall the * in-band stage in order to mirror the current hardware state * (i.e. hardirqs are off). */ regs->stalled_on_entry = test_and_stall_inband_nocheck(); #endif __enter_from_kernel_mode(regs); #ifdef CONFIG_IRQ_PIPELINE /* * Our caller is going to inherit the hardware interrupt state * from the trapped context once we have returned: if running * in-band, align the stall bit on the upcoming state. */ if (running_inband() && interrupts_enabled(regs)) unstall_inband_nocheck(); #endif } /* * This is intended to match the logic in irqentry_exit(), handling the kernel * mode transitions only, and with preemption handled elsewhere. */ static void noinstr __exit_to_kernel_mode(struct pt_regs *regs) { lockdep_assert_irqs_disabled(); mte_check_tfsr_exit(); if (interrupts_enabled(regs)) { if (regs->exit_rcu) { trace_hardirqs_on_prepare(); lockdep_hardirqs_on_prepare(CALLER_ADDR0); rcu_irq_exit(); lockdep_hardirqs_on(CALLER_ADDR0); return; } trace_hardirqs_on(); } else { if (regs->exit_rcu) rcu_irq_exit(); } } /* * This is intended to match the logic in irqentry_exit(), handling the kernel * mode transitions only, and with preemption handled elsewhere. */ static void noinstr exit_to_kernel_mode(struct pt_regs *regs) { if (running_oob()) return; __exit_to_kernel_mode(regs); #ifdef CONFIG_IRQ_PIPELINE /* * Reinstate the virtual interrupt state which was in effect * on entry to the trap. */ if (!regs->oob_on_entry) { if (regs->stalled_on_entry) stall_inband_nocheck(); else unstall_inband_nocheck(); } #endif return; } void noinstr arm64_enter_nmi(struct pt_regs *regs) { /* irq_pipeline: running this code oob is ok. */ regs->lockdep_hardirqs = lockdep_hardirqs_enabled(); __nmi_enter(); lockdep_hardirqs_off(CALLER_ADDR0); lockdep_hardirq_enter(); rcu_nmi_enter(); trace_hardirqs_off_finish(); ftrace_nmi_enter(); } void noinstr arm64_exit_nmi(struct pt_regs *regs) { bool restore = regs->lockdep_hardirqs; ftrace_nmi_exit(); if (restore) { trace_hardirqs_on_prepare(); lockdep_hardirqs_on_prepare(CALLER_ADDR0); } rcu_nmi_exit(); lockdep_hardirq_exit(); if (restore) lockdep_hardirqs_on(CALLER_ADDR0); __nmi_exit(); } asmlinkage void noinstr enter_el1_irq_or_nmi(struct pt_regs *regs) { /* * IRQ pipeline: the interrupt entry is special in that we may * run the lockdep and RCU prologue/epilogue only if the IRQ * is going to be dispatched to its handler on behalf of the * current context, i.e. only if running in-band and * unstalled. If so, we also have to reconcile the hardware * and virtual interrupt states temporarily in order to run * such prologue. */ if (IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && !interrupts_enabled(regs)) { arm64_enter_nmi(regs); } else { #ifdef CONFIG_IRQ_PIPELINE if (running_inband()) { regs->stalled_on_entry = test_inband_stall(); if (!regs->stalled_on_entry) { stall_inband_nocheck(); __enter_from_kernel_mode(regs); unstall_inband_nocheck(); } } #else __enter_from_kernel_mode(regs); #endif } } asmlinkage void noinstr exit_el1_irq_or_nmi(struct pt_regs *regs) { if (IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && !interrupts_enabled(regs)) { arm64_exit_nmi(regs); } else { #ifdef CONFIG_IRQ_PIPELINE /* * See enter_el1_irq_or_nmi() for details. UGLY: we * also have to tell the tracer that irqs are off, * since sync_current_irq_stage() did the opposite on * exit. Hopefully, at some point arm64 will convert * to the generic entry code which exhibits a less * convoluted logic. */ if (running_inband() && !regs->stalled_on_entry) { stall_inband_nocheck(); trace_hardirqs_off(); __exit_to_kernel_mode(regs); unstall_inband_nocheck(); } #else __exit_to_kernel_mode(regs); #endif } } static void noinstr el1_abort(struct pt_regs *regs, unsigned long esr) { unsigned long far = read_sysreg(far_el1); enter_from_kernel_mode(regs); local_daif_inherit(regs); do_mem_abort(far, esr, regs); local_daif_mask(); exit_to_kernel_mode(regs); } static void noinstr el1_pc(struct pt_regs *regs, unsigned long esr) { unsigned long far = read_sysreg(far_el1); enter_from_kernel_mode(regs); local_daif_inherit(regs); do_sp_pc_abort(far, esr, regs); local_daif_mask(); exit_to_kernel_mode(regs); } static void noinstr el1_undef(struct pt_regs *regs) { enter_from_kernel_mode(regs); local_daif_inherit(regs); do_undefinstr(regs); local_daif_mask(); exit_to_kernel_mode(regs); } static void noinstr el1_inv(struct pt_regs *regs, unsigned long esr) { enter_from_kernel_mode(regs); local_daif_inherit(regs); bad_mode(regs, 0, esr); local_daif_mask(); exit_to_kernel_mode(regs); } static void noinstr arm64_enter_el1_dbg(struct pt_regs *regs) { regs->lockdep_hardirqs = lockdep_hardirqs_enabled(); lockdep_hardirqs_off(CALLER_ADDR0); rcu_nmi_enter(); trace_hardirqs_off_finish(); } static void noinstr arm64_exit_el1_dbg(struct pt_regs *regs) { bool restore = regs->lockdep_hardirqs; if (restore) { trace_hardirqs_on_prepare(); lockdep_hardirqs_on_prepare(CALLER_ADDR0); } rcu_nmi_exit(); if (restore) lockdep_hardirqs_on(CALLER_ADDR0); } static void noinstr el1_dbg(struct pt_regs *regs, unsigned long esr) { unsigned long far = read_sysreg(far_el1); arm64_enter_el1_dbg(regs); do_debug_exception(far, esr, regs); arm64_exit_el1_dbg(regs); } static void noinstr el1_fpac(struct pt_regs *regs, unsigned long esr) { enter_from_kernel_mode(regs); local_daif_inherit(regs); do_ptrauth_fault(regs, esr); local_daif_mask(); exit_to_kernel_mode(regs); } asmlinkage void noinstr el1_sync_handler(struct pt_regs *regs) { unsigned long esr = read_sysreg(esr_el1); switch (ESR_ELx_EC(esr)) { case ESR_ELx_EC_DABT_CUR: case ESR_ELx_EC_IABT_CUR: el1_abort(regs, esr); break; /* * We don't handle ESR_ELx_EC_SP_ALIGN, since we will have hit a * recursive exception when trying to push the initial pt_regs. */ case ESR_ELx_EC_PC_ALIGN: el1_pc(regs, esr); break; case ESR_ELx_EC_SYS64: case ESR_ELx_EC_UNKNOWN: el1_undef(regs); break; case ESR_ELx_EC_BREAKPT_CUR: case ESR_ELx_EC_SOFTSTP_CUR: case ESR_ELx_EC_WATCHPT_CUR: case ESR_ELx_EC_BRK64: el1_dbg(regs, esr); break; case ESR_ELx_EC_FPAC: el1_fpac(regs, esr); break; default: el1_inv(regs, esr); } } asmlinkage void noinstr enter_from_user_mode(void) { if (running_inband()) { lockdep_hardirqs_off(CALLER_ADDR0); WARN_ON_ONCE(irq_pipeline_debug() && test_inband_stall()); CT_WARN_ON(ct_state() != CONTEXT_USER); stall_inband_nocheck(); user_exit_irqoff(); unstall_inband_nocheck(); trace_hardirqs_off_finish(); } } asmlinkage void noinstr exit_to_user_mode(void) { if (running_inband()) { trace_hardirqs_on_prepare(); lockdep_hardirqs_on_prepare(CALLER_ADDR0); user_enter_irqoff(); lockdep_hardirqs_on(CALLER_ADDR0); unstall_inband_nocheck(); } } asmlinkage void noinstr enter_el0_irq(void) { if (running_inband() && !test_inband_stall()) enter_from_user_mode(); } static void noinstr el0_da(struct pt_regs *regs, unsigned long esr) { unsigned long far = read_sysreg(far_el1); enter_from_user_mode(); local_daif_restore(DAIF_PROCCTX); do_mem_abort(far, esr, regs); } static void noinstr el0_ia(struct pt_regs *regs, unsigned long esr) { unsigned long far = read_sysreg(far_el1); /* * We've taken an instruction abort from userspace and not yet * re-enabled IRQs. If the address is a kernel address, apply * BP hardening prior to enabling IRQs and pre-emption. */ if (!is_ttbr0_addr(far)) arm64_apply_bp_hardening(); enter_from_user_mode(); local_daif_restore(DAIF_PROCCTX); do_mem_abort(far, esr, regs); } static void noinstr el0_fpsimd_acc(struct pt_regs *regs, unsigned long esr) { enter_from_user_mode(); local_daif_restore(DAIF_PROCCTX); do_fpsimd_acc(esr, regs); } static void noinstr el0_sve_acc(struct pt_regs *regs, unsigned long esr) { enter_from_user_mode(); local_daif_restore(DAIF_PROCCTX); do_sve_acc(esr, regs); } static void noinstr el0_fpsimd_exc(struct pt_regs *regs, unsigned long esr) { enter_from_user_mode(); local_daif_restore(DAIF_PROCCTX); do_fpsimd_exc(esr, regs); } static void noinstr el0_sys(struct pt_regs *regs, unsigned long esr) { enter_from_user_mode(); local_daif_restore(DAIF_PROCCTX); do_sysinstr(esr, regs); } static void noinstr el0_pc(struct pt_regs *regs, unsigned long esr) { unsigned long far = read_sysreg(far_el1); if (!is_ttbr0_addr(instruction_pointer(regs))) arm64_apply_bp_hardening(); enter_from_user_mode(); local_daif_restore(DAIF_PROCCTX); do_sp_pc_abort(far, esr, regs); } static void noinstr el0_sp(struct pt_regs *regs, unsigned long esr) { enter_from_user_mode(); local_daif_restore(DAIF_PROCCTX); do_sp_pc_abort(regs->sp, esr, regs); } static void noinstr el0_undef(struct pt_regs *regs) { enter_from_user_mode(); local_daif_restore(DAIF_PROCCTX); do_undefinstr(regs); } static void noinstr el0_bti(struct pt_regs *regs) { enter_from_user_mode(); local_daif_restore(DAIF_PROCCTX); do_bti(regs); } static void noinstr el0_inv(struct pt_regs *regs, unsigned long esr) { enter_from_user_mode(); local_daif_restore(DAIF_PROCCTX); bad_el0_sync(regs, 0, esr); } static void noinstr el0_dbg(struct pt_regs *regs, unsigned long esr) { /* Only watchpoints write FAR_EL1, otherwise its UNKNOWN */ unsigned long far = read_sysreg(far_el1); enter_from_user_mode(); do_debug_exception(far, esr, regs); local_daif_restore(DAIF_PROCCTX_NOIRQ); } static void noinstr el0_svc(struct pt_regs *regs) { enter_from_user_mode(); do_el0_svc(regs); } static void noinstr el0_fpac(struct pt_regs *regs, unsigned long esr) { enter_from_user_mode(); local_daif_restore(DAIF_PROCCTX); do_ptrauth_fault(regs, esr); } asmlinkage void noinstr el0_sync_handler(struct pt_regs *regs) { unsigned long esr = read_sysreg(esr_el1); switch (ESR_ELx_EC(esr)) { case ESR_ELx_EC_SVC64: el0_svc(regs); break; case ESR_ELx_EC_DABT_LOW: el0_da(regs, esr); break; case ESR_ELx_EC_IABT_LOW: el0_ia(regs, esr); break; case ESR_ELx_EC_FP_ASIMD: el0_fpsimd_acc(regs, esr); break; case ESR_ELx_EC_SVE: el0_sve_acc(regs, esr); break; case ESR_ELx_EC_FP_EXC64: el0_fpsimd_exc(regs, esr); break; case ESR_ELx_EC_SYS64: case ESR_ELx_EC_WFx: el0_sys(regs, esr); break; case ESR_ELx_EC_SP_ALIGN: el0_sp(regs, esr); break; case ESR_ELx_EC_PC_ALIGN: el0_pc(regs, esr); break; case ESR_ELx_EC_UNKNOWN: el0_undef(regs); break; case ESR_ELx_EC_BTI: el0_bti(regs); break; case ESR_ELx_EC_BREAKPT_LOW: case ESR_ELx_EC_SOFTSTP_LOW: case ESR_ELx_EC_WATCHPT_LOW: case ESR_ELx_EC_BRK64: el0_dbg(regs, esr); break; case ESR_ELx_EC_FPAC: el0_fpac(regs, esr); break; default: el0_inv(regs, esr); } } #ifdef CONFIG_COMPAT static void noinstr el0_cp15(struct pt_regs *regs, unsigned long esr) { enter_from_user_mode(); local_daif_restore(DAIF_PROCCTX); do_cp15instr(esr, regs); } static void noinstr el0_svc_compat(struct pt_regs *regs) { enter_from_user_mode(); do_el0_svc_compat(regs); } asmlinkage void noinstr el0_sync_compat_handler(struct pt_regs *regs) { unsigned long esr = read_sysreg(esr_el1); switch (ESR_ELx_EC(esr)) { case ESR_ELx_EC_SVC32: el0_svc_compat(regs); break; case ESR_ELx_EC_DABT_LOW: el0_da(regs, esr); break; case ESR_ELx_EC_IABT_LOW: el0_ia(regs, esr); break; case ESR_ELx_EC_FP_ASIMD: el0_fpsimd_acc(regs, esr); break; case ESR_ELx_EC_FP_EXC32: el0_fpsimd_exc(regs, esr); break; case ESR_ELx_EC_PC_ALIGN: el0_pc(regs, esr); break; case ESR_ELx_EC_UNKNOWN: case ESR_ELx_EC_CP14_MR: case ESR_ELx_EC_CP14_LS: case ESR_ELx_EC_CP14_64: el0_undef(regs); break; case ESR_ELx_EC_CP15_32: case ESR_ELx_EC_CP15_64: el0_cp15(regs, esr); break; case ESR_ELx_EC_BREAKPT_LOW: case ESR_ELx_EC_SOFTSTP_LOW: case ESR_ELx_EC_WATCHPT_LOW: case ESR_ELx_EC_BKPT32: el0_dbg(regs, esr); break; default: el0_inv(regs, esr); } } #endif /* CONFIG_COMPAT */