/** @file PCH cycle deocding configuration and query library. Copyright (c) 2019 Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef enum { SlaveLpcEspiCS0, SlaveEspiCS1, SlaveId_Max } SLAVE_ID_INDEX; /** Set PCH TCO base address. This cycle decoding is required also on DMI side Programming steps: 1. set Smbus PCI offset 54h [8] to enable TCO base address. 2. program Smbus PCI offset 50h [15:5] to TCO base address. 3. set Smbus PCI offset 54h [8] to enable TCO base address. 4. program "TCO Base Address" in DMI @param[in] Address Address for TCO base address. @retval EFI_SUCCESS Successfully completed. @retval EFI_INVALID_PARAMETER Invalid base address passed. @retval EFI_UNSUPPORTED DMIC.SRL is set. **/ EFI_STATUS PchTcoBaseSet ( IN UINT16 Address ) { UINT64 SmbusBase; EFI_STATUS Status; if ((Address & ~B_SMBUS_CFG_TCOBASE_BAR) != 0) { DEBUG ((DEBUG_ERROR, "PchTcoBaseSet Error. Invalid Address: %x.\n", Address)); ASSERT (FALSE); return EFI_INVALID_PARAMETER; } Status = PchDmiSetTcoBase (Address); if (EFI_ERROR (Status)) { ASSERT_EFI_ERROR (Status); return Status; } SmbusBase = PCI_SEGMENT_LIB_ADDRESS ( DEFAULT_PCI_SEGMENT_NUMBER_PCH, DEFAULT_PCI_BUS_NUMBER_PCH, PCI_DEVICE_NUMBER_PCH_SMBUS, PCI_FUNCTION_NUMBER_PCH_SMBUS, 0 ); if (PciSegmentRead16 (SmbusBase) == 0xFFFF) { ASSERT (FALSE); return EFI_UNSUPPORTED; } // // Verify TCO base is not locked. // if ((PciSegmentRead8 (SmbusBase + R_SMBUS_CFG_TCOCTL) & B_SMBUS_CFG_TCOCTL_TCO_BASE_LOCK) != 0) { ASSERT (FALSE); return EFI_DEVICE_ERROR; } // // Disable TCO in SMBUS Device first before changing base address. // Byte access to not touch the TCO_BASE_LOCK bit // PciSegmentAnd8 ( SmbusBase + R_SMBUS_CFG_TCOCTL + 1, (UINT8) ~(B_SMBUS_CFG_TCOCTL_TCO_BASE_EN >> 8) ); // // Program TCO in SMBUS Device // PciSegmentAndThenOr16 ( SmbusBase + R_SMBUS_CFG_TCOBASE, (UINT16) (~B_SMBUS_CFG_TCOBASE_BAR), Address ); // // Enable TCO in SMBUS Device and lock TCO BASE // PciSegmentOr16 ( SmbusBase + R_SMBUS_CFG_TCOCTL, B_SMBUS_CFG_TCOCTL_TCO_BASE_EN | B_SMBUS_CFG_TCOCTL_TCO_BASE_LOCK ); return Status; } /** Get PCH TCO base address. @param[out] Address Address of TCO base address. @retval EFI_SUCCESS Successfully completed. @retval EFI_INVALID_PARAMETER Invalid pointer passed. **/ EFI_STATUS PchTcoBaseGet ( OUT UINT16 *Address ) { if (Address == NULL) { DEBUG ((DEBUG_ERROR, "PchTcoBaseGet Error. Invalid pointer.\n")); ASSERT (FALSE); return EFI_INVALID_PARAMETER; } // // Read "TCO Base Address" from DMI // Don't read TCO base address from SMBUS PCI register since SMBUS might be disabled. // *Address = PchDmiGetTcoBase (); return EFI_SUCCESS; } /** Returns PCH LPC device PCI base address. @retval PCH LPC PCI base address. **/ STATIC UINT64 LpcPciBase ( VOID ) { return PCI_SEGMENT_LIB_ADDRESS ( DEFAULT_PCI_SEGMENT_NUMBER_PCH, DEFAULT_PCI_BUS_NUMBER_PCH, PCI_DEVICE_NUMBER_PCH_LPC, PCI_FUNCTION_NUMBER_PCH_LPC, 0 ); } /** Function checks if passed Generic LPC IO Address and Length meets requirements. @param[in] Address Address for generic IO range decoding. @param[in] Length Length of generic IO range. @retval TRUE Passed IO range meets requirements @retval FALSE Passed IO range does not meets requirements. **/ STATIC BOOLEAN IsLpcIoRangeValid ( IN UINT32 Address, IN UINT32 Length ) { UINT32 Index; UINT32 NumRanges; STATIC struct EXCEPT_RANGE { UINT8 Start; UINT8 Length; } ExceptRanges[] = { {0x00, 0x20}, {0x44, 0x08}, {0x54, 0x0C}, {0x68, 0x08}, {0x80, 0x10}, {0xC0, 0x40} }; NumRanges = ARRAY_SIZE (ExceptRanges); // // For generic IO range, the base address must align to 4 and less than 0xFFFF, // the length must be power of 2 and less than or equal to 256, and the address must be length aligned. // IO range below 0x100 will be rejected in this function except below ranges: // 0x00-0x1F, // 0x44-0x4B, // 0x54-0x5F, // 0x68-0x6F, // 0x80-0x8F, // 0xC0-0xFF // if (((Length & (Length - 1)) != 0) || ((Address & (UINT16) ~B_LPC_CFG_GENX_DEC_IOBAR) != 0) || (Length > 256)) { return FALSE; } if (Address < 0x100) { for (Index = 0; Index < NumRanges; Index++) { if ((Address >= ExceptRanges[Index].Start) && ((Address + Length) <= ((UINTN) ExceptRanges[Index].Start + (UINTN) ExceptRanges[Index].Length))) { break; } } if (Index >= NumRanges) { return FALSE; } } return TRUE; } /** Function checks if passed Generic LPC IO Range is already in Gen IO Range list @param[in] Address Address for generic IO range decoding. @param[in] Length Length of generic IO range. @param[in] GenIoRangeList Pointer to Generic IO Ranges List @retval TRUE Passed IO range alredy covered @retval FALSE Passed IO range NOT covered **/ STATIC BOOLEAN IsRangeInList ( IN UINT32 Address, IN UINT32 Length, IN PCH_LPC_GEN_IO_RANGE_LIST *GenIoRangeList ) { UINT32 CurrentBaseAddr; UINT32 CurrentLength; UINT32 Index; for (Index = 0; Index < PCH_LPC_GEN_IO_RANGE_MAX; Index++) { CurrentBaseAddr = GenIoRangeList->Range[Index].BaseAddr; CurrentLength = GenIoRangeList->Range[Index].Length; if (GenIoRangeList->Range[Index].Enable == 0) { continue; } if ((Address >= CurrentBaseAddr) && ((Address + Length) <= (CurrentBaseAddr + CurrentLength))) { return TRUE; } } return FALSE; } /** Function checks if passed Generic LPC IO Range overlaps with existing range @param[in] Address Address for generic IO range base address. @param[in] Length Length of generic IO range. @param[in] GenIoRangeList Pointer to Generic IO Ranges List @retval TRUE Passed LPC IO range overlaps with existing range @retval FALSE Passed LPC IO range NOT overlaps **/ STATIC BOOLEAN FindOverlappingGenIoRange ( IN UINT32 Address, IN UINT32 Length, IN PCH_LPC_GEN_IO_RANGE_LIST *GenIoRangeList ) { UINT32 Index; UINT32 CurrentBaseAddr; UINT32 CurrentLength; for (Index = 0; Index < PCH_LPC_GEN_IO_RANGE_MAX; Index++) { CurrentBaseAddr = GenIoRangeList->Range[Index].BaseAddr; CurrentLength = GenIoRangeList->Range[Index].Length; if (GenIoRangeList->Range[Index].Enable == 0) { continue; } if ((Address >= CurrentBaseAddr) && (Address <= (CurrentBaseAddr + CurrentLength))) { return TRUE; } else if (((Address + Length) >= CurrentBaseAddr) && ((Address + Length) <= (CurrentBaseAddr + CurrentLength))) { return TRUE; } } return FALSE; } /** Function look for empty Generic IO range register. If found return range index. @param[in] GenIoRangeList Pointer to Generic IO Ranges List @param[in] ListLength Length of passed list @param[out] RangeIndex Generic IO Range Index @retval TRUE Empty range found @retval FALSE NOT found empty range **/ STATIC BOOLEAN FindEmptyGenIoRange ( IN PCH_LPC_GEN_IO_RANGE_LIST *GenIoRangeList, IN UINT32 ListLength, OUT UINT32 *RangeIndex ) { UINT32 Index; for (Index = 0; Index < ListLength; Index++) { if (GenIoRangeList->Range[Index].Enable == 0) { *RangeIndex = Index; return TRUE; } } return FALSE; } /** Get PCH LPC/eSPI and eSPI CS1# generic IO range list. This function returns a list of base address, length, and enable for all LPC/eSPI or eSPI CS1# generic IO range registers. @param[in] RangeIndex Slave ID (refer to SLAVE_ID_INDEX) @param[out] GenIoRangeList LPC/eSPI or eSPI CS1# generic IO range registers. @retval EFI_SUCCESS Successfully completed. @retval EFI_INVALID_PARAMETER Invalid base address passed. **/ EFI_STATUS LpcEspiGenIoRangeGetHelper ( IN SLAVE_ID_INDEX SlaveId, OUT PCH_LPC_GEN_IO_RANGE_LIST *GenIoRangeList ) { UINT32 Index; UINT64 LpcBase; UINT32 Data32; UINT32 GenIoReg; if ((GenIoRangeList == NULL) || (SlaveId >= SlaveId_Max)) { ASSERT (FALSE); return EFI_INVALID_PARAMETER; } LpcBase = LpcPciBase (); if (SlaveId == SlaveEspiCS1) { GenIoReg = R_ESPI_CFG_CS1GIR1; } else { GenIoReg = R_LPC_CFG_GEN1_DEC; } for (Index = 0; Index < PCH_LPC_GEN_IO_RANGE_MAX; Index++) { if ((SlaveId == SlaveEspiCS1) && (Index > 0)) { // For eSPI CS1# we have only one range. Reset remaining entries to zero. GenIoRangeList->Range[Index].BaseAddr = 0; GenIoRangeList->Range[Index].Enable = 0; GenIoRangeList->Range[Index].Length = 0; continue; } Data32 = PciSegmentRead32 (LpcBase + GenIoReg + Index * 4); GenIoRangeList->Range[Index].BaseAddr = Data32 & B_LPC_CFG_GENX_DEC_IOBAR; GenIoRangeList->Range[Index].Length = ((Data32 & B_LPC_CFG_GENX_DEC_IODRA) >> 16) + 4; GenIoRangeList->Range[Index].Enable = Data32 & B_LPC_CFG_GENX_DEC_EN; } return EFI_SUCCESS; } /** Function checks if passed Generic LPC IO Range colliding with range alredy defined for other eSPI chiselect (CS) @param[in] Address Address for generic IO range base address. @param[in] Length Length of generic IO range. @param[in] SlaveId Slave ID (refer to SLAVE_ID_INDEX) @retval TRUE Passed IO range conflicting @retval FALSE There is no conflict **/ STATIC BOOLEAN IsRangeColliding ( IN UINT32 Address, IN UINT32 Length, IN SLAVE_ID_INDEX SlaveId ) { EFI_STATUS Status; PCH_LPC_GEN_IO_RANGE_LIST GenIoRangeList; if (SlaveId == SlaveEspiCS1) { Status = LpcEspiGenIoRangeGetHelper (SlaveLpcEspiCS0, &GenIoRangeList); if (!EFI_ERROR (Status)) { if (FindOverlappingGenIoRange (Address, Length, &GenIoRangeList) || IsRangeInList (Address, Length, &GenIoRangeList)) { return TRUE; } } } else { Status = LpcEspiGenIoRangeGetHelper (SlaveEspiCS1, &GenIoRangeList); if (!EFI_ERROR (Status)) { if (FindOverlappingGenIoRange (Address, Length, &GenIoRangeList) || IsRangeInList (Address, Length, &GenIoRangeList)) { return TRUE; } } } return FALSE; } /** Set PCH LPC/eSPI and eSPI CS1# generic IO range decoding. Steps of programming generic IO range: 1. Program LPC/eSPI PCI Offset 84h ~ 93h (LPC, eSPI CS0#) or A4h (eSPI CS1#) of Mask, Address, and Enable. 2. Program LPC/eSPI Generic IO Range in DMI @param[in] Address Address for generic IO range decoding. @param[in] Length Length of generic IO range. @param[in] SlaveId Slave ID (refer to SLAVE_ID_INDEX) @retval EFI_SUCCESS Successfully completed. @retval EFI_INVALID_PARAMETER Invalid base address or length passed. @retval EFI_OUT_OF_RESOURCES No more generic range available. @retval EFI_UNSUPPORTED DMI configuration is locked, GenIO range conflicting with other eSPI CS **/ STATIC EFI_STATUS LpcEspiGenIoRangeSetHelper ( IN UINT32 Address, IN UINT32 Length, IN SLAVE_ID_INDEX SlaveId ) { EFI_STATUS Status; PCH_LPC_GEN_IO_RANGE_LIST GenIoRangeList; UINT32 RangeIndex; UINT32 Data32; UINT32 GenIoReg; UINT32 ListLength; // // Check if pasesed Address and Length meets all requirements // if(!IsLpcIoRangeValid (Address, Length) || (SlaveId >= SlaveId_Max)) { ASSERT (FALSE); return EFI_INVALID_PARAMETER; } // // Read current Generic IO configuration // Status = LpcEspiGenIoRangeGetHelper (SlaveId, &GenIoRangeList); if (EFI_ERROR (Status)) { return Status; } // // Check if passed Generic IO range is already covered in current configuration // if (IsRangeInList (Address, Length, &GenIoRangeList)) { return EFI_SUCCESS; } // // Check if passed Generic IO range conflicting with other eSPI CS decoding // if (IsRangeColliding (Address, Length, SlaveId)) { return EFI_UNSUPPORTED; } if (SlaveId == SlaveEspiCS1) { GenIoReg = R_ESPI_CFG_CS1GIR1; ListLength = ESPI_CS1_GEN_IO_RANGE_MAX; } else { GenIoReg = R_LPC_CFG_GEN1_DEC; ListLength = PCH_LPC_GEN_IO_RANGE_MAX; } RangeIndex = ListLength; // // Check if there is an empty Generic IO range register // if (FindEmptyGenIoRange (&GenIoRangeList, ListLength, &RangeIndex) == FALSE) { return EFI_OUT_OF_RESOURCES; } // // Program decoding in DMI and LPC/eSPI registers // if (SlaveId == SlaveEspiCS1) { ASSERT (RangeIndex == 0); Status = PchDmiSetEspiCs1GenIoRange (Address, Length); } else { Status = PchDmiSetLpcGenIoRange (Address, Length, RangeIndex); } if (EFI_ERROR (Status)) { return Status; } // // Program LPC/eSPI generic IO range register accordingly. // Data32 = (UINT32) (((Length - 1) << 16) & B_LPC_CFG_GENX_DEC_IODRA); Data32 |= (UINT32) Address; Data32 |= B_LPC_CFG_GENX_DEC_EN; // // Program LPC/eSPI PCI Offset 84h ~ 93h (LPC, eSPI CS0#) or A4h (eSPI CS1#) of Mask, Address, and Enable. // PciSegmentWrite32 ( LpcPciBase () + GenIoReg + RangeIndex * 4, Data32 ); return Status; } /** Set PCH LPC/eSPI generic IO range. For generic IO range, the base address must align to 4 and less than 0xFFFF, and the length must be power of 2 and less than or equal to 256. Moreover, the address must be length aligned. This function basically checks the address and length, which should not overlap with all other generic ranges. If no more generic range register available, it returns out of resource error. This cycle decoding is also required on DMI side Some IO ranges below 0x100 have fixed target. The target might be ITSS,RTC,LPC,PMC or terminated inside P2SB but all predefined and can't be changed. IO range below 0x100 will be rejected in this function except below ranges: 0x00-0x1F, 0x44-0x4B, 0x54-0x5F, 0x68-0x6F, 0x80-0x8F, 0xC0-0xFF Steps of programming generic IO range: 1. Program LPC/eSPI PCI Offset 84h ~ 93h of Mask, Address, and Enable. 2. Program LPC/eSPI Generic IO Range in DMI @param[in] Address Address for generic IO range base address. @param[in] Length Length of generic IO range. @retval EFI_SUCCESS Successfully completed. @retval EFI_INVALID_PARAMETER Invalid base address or length passed. @retval EFI_OUT_OF_RESOURCES No more generic range available. @retval EFI_UNSUPPORTED DMIC.SRL is set. **/ EFI_STATUS PchLpcGenIoRangeSet ( IN UINT16 Address, IN UINTN Length ) { return LpcEspiGenIoRangeSetHelper ((UINT32)Address, (UINT32)Length, SlaveLpcEspiCS0); } /** Set PCH eSPI CS1# generic IO range decoding. Steps of programming generic IO range: 1. Program eSPI PCI Offset A4h (eSPI CS1#) of Mask, Address, and Enable. 2. Program eSPI Generic IO Range in DMI @param[in] Address Address for generic IO range decoding. @param[in] Length Length of generic IO range. @retval EFI_SUCCESS Successfully completed. @retval EFI_INVALID_PARAMETER Invalid base address or length passed. @retval EFI_OUT_OF_RESOURCES No more generic range available. @retval EFI_UNSUPPORTED eSPI secondary slave not supported **/ EFI_STATUS PchEspiCs1GenIoRangeSet ( IN UINT16 Address, IN UINTN Length ) { if (!IsEspiSecondSlaveSupported ()) { return EFI_UNSUPPORTED; } return LpcEspiGenIoRangeSetHelper ((UINT32)Address, (UINT32)Length, SlaveEspiCS1); } /** Get PCH LPC/eSPI generic IO range list. This function returns a list of base address, length, and enable for all LPC/eSPI generic IO range registers. @param[out] LpcGenIoRangeList Return all LPC/eSPI generic IO range register status. @retval EFI_SUCCESS Successfully completed. @retval EFI_INVALID_PARAMETER Invalid base address passed. **/ EFI_STATUS PchLpcGenIoRangeGet ( OUT PCH_LPC_GEN_IO_RANGE_LIST *LpcGenIoRangeList ) { return LpcEspiGenIoRangeGetHelper (SlaveLpcEspiCS0, LpcGenIoRangeList); } /** Get PCH eSPI CS1# generic IO range list. This function returns a list of base address, length, and enable for all eSPI CS1# generic IO range registers. @param[out] GenIoRangeList eSPI generic IO range registers. @retval EFI_SUCCESS Successfully completed. @retval EFI_INVALID_PARAMETER Invalid base address passed. @retval EFI_UNSUPPORTED eSPI secondary slave not supported **/ EFI_STATUS PchEspiCs1GenIoRangeGet ( OUT PCH_LPC_GEN_IO_RANGE_LIST *GenIoRangeList ) { if (!IsEspiSecondSlaveSupported ()) { return EFI_UNSUPPORTED; } return LpcEspiGenIoRangeGetHelper (SlaveEspiCS1, GenIoRangeList); } /** Set PCH LPC/eSPI and eSPI CS1# memory range decoding. This cycle decoding is required to be set on DMI side Programming steps: 1. Program LPC/eSPI PCI Offset 98h (LPC, eSPI CS0#) or A8h (eSPI CS1#) [0] to [0] to disable memory decoding first before changing base address. 2. Program LPC/eSPI PCI Offset 98h (LPC, eSPI CS0#) or A8h (eSPI CS1#) [31:16, 0] to [Address, 1]. 3. Program LPC/eSPI Memory Range in DMI @param[in] Address Address for memory for decoding. @param[in] RangeIndex Slave ID (refer to SLAVE_ID_INDEX) @retval EFI_SUCCESS Successfully completed. @retval EFI_INVALID_PARAMETER Invalid base address or length passed. **/ EFI_STATUS LpcEspiMemRangeSetHelper ( IN UINT32 Address, IN SLAVE_ID_INDEX SlaveId ) { UINT64 LpcBase; EFI_STATUS Status; UINT32 GenMemReg; UINT32 MemRangeAddr; if (((Address & (~B_LPC_CFG_LGMR_MA)) != 0) || (SlaveId >= SlaveId_Max)) { DEBUG ((DEBUG_ERROR, "PchLpcEspiMemRangeSet Error. Invalid Address: %x or invalid SlaveId\n", Address)); ASSERT (FALSE); return EFI_INVALID_PARAMETER; } LpcBase = LpcPciBase (); MemRangeAddr = ~Address; if (SlaveId == SlaveEspiCS1) { GenMemReg = R_ESPI_CFG_CS1GMR1; // Memory Range already decoded for LPC/eSPI? Status = PchLpcMemRangeGet (&MemRangeAddr); if (MemRangeAddr != Address) { Status = PchDmiSetEspiCs1MemRange (Address); if (EFI_ERROR (Status)) { ASSERT_EFI_ERROR (Status); return Status; } } } else { GenMemReg = R_LPC_CFG_LGMR; // Memory Range already decoded for eSPI CS1? Status = PchEspiCs1MemRangeGet (&MemRangeAddr); if (MemRangeAddr != Address) { Status = PchDmiSetLpcMemRange (Address); if (EFI_ERROR (Status)) { ASSERT_EFI_ERROR (Status); return Status; } } } // // Program LPC/eSPI PCI Offset 98h (LPC, eSPI CS0#) or A8h (eSPI CS1#) [0] to [0] to disable memory decoding first before changing base address. // PciSegmentAnd32 ( LpcBase + GenMemReg, (UINT32) ~B_LPC_CFG_LGMR_LMRD_EN ); // // Program LPC/eSPI PCI Offset 98h (LPC, eSPI CS0#) or A8h (eSPI CS1#) [31:16, 0] to [Address, 1]. // PciSegmentWrite32 ( LpcBase + GenMemReg, (Address | B_LPC_CFG_LGMR_LMRD_EN) ); return Status; } /** Set PCH LPC/eSPI memory range decoding. This cycle decoding is required to be set on DMI side Programming steps: 1. Program LPC PCI Offset 98h [0] to [0] to disable memory decoding first before changing base address. 2. Program LPC PCI Offset 98h [31:16, 0] to [Address, 1]. 3. Program LPC Memory Range in DMI @param[in] Address Address for memory base address. @retval EFI_SUCCESS Successfully completed. @retval EFI_INVALID_PARAMETER Invalid base address or length passed. @retval EFI_OUT_OF_RESOURCES No more generic range available. @retval EFI_UNSUPPORTED DMIC.SRL is set. **/ EFI_STATUS PchLpcMemRangeSet ( IN UINT32 Address ) { return LpcEspiMemRangeSetHelper (Address, SlaveLpcEspiCS0); } /** Set PCH eSPI CS1# memory range decoding. This cycle decoding is required to be set on DMI side Programming steps: 1. Program eSPI PCI Offset A8h (eSPI CS1#) [0] to [0] to disable memory decoding first before changing base address. 2. Program eSPI PCI Offset A8h (eSPI CS1#) [31:16, 0] to [Address, 1]. 3. Program eSPI Memory Range in DMI @param[in] Address Address for memory for decoding. @retval EFI_SUCCESS Successfully completed. @retval EFI_INVALID_PARAMETER Invalid base address or length passed. @retval EFI_UNSUPPORTED eSPI secondary slave not supported **/ EFI_STATUS PchEspiCs1MemRangeSet ( IN UINT32 Address ) { if (!IsEspiSecondSlaveSupported ()) { return EFI_UNSUPPORTED; } return LpcEspiMemRangeSetHelper (Address, SlaveEspiCS1); } /** @deprecated. Keep this for backward compatibility. It's replaced by PchEspiCs1MemRangeSet. **/ EFI_STATUS PchEspiMemRange2Set ( IN UINT32 Address ) { return PchEspiCs1MemRangeSet (Address); } /** Get PCH LPC/eSPI and eSPI CS1# memory range decoding address. @param[in] SlaveId Slave ID (refer to SLAVE_ID_INDEX) @param[out] Address Address of LPC/eSPI or eSPI CS1# memory decoding base address. @retval EFI_SUCCESS Successfully completed. @retval EFI_INVALID_PARAMETER Invalid base address passed. @retval EFI_UNSUPPORTED eSPI secondary slave not supported **/ EFI_STATUS LpcEspiMemRangeGetHelper ( IN SLAVE_ID_INDEX SlaveId, OUT UINT32 *Address ) { UINT32 GenMemReg; if ((Address == NULL) || (SlaveId >= SlaveId_Max)) { DEBUG ((DEBUG_ERROR, "PchLpcEspiMemRangeGet Error. Invalid pointer or SlaveId.\n")); ASSERT (FALSE); return EFI_INVALID_PARAMETER; } if (SlaveId == SlaveEspiCS1) { GenMemReg = R_ESPI_CFG_CS1GMR1; } else { GenMemReg = R_LPC_CFG_LGMR; } *Address = PciSegmentRead32 (LpcPciBase () + GenMemReg) & B_LPC_CFG_LGMR_MA; return EFI_SUCCESS; } /** Get PCH LPC/eSPI memory range decoding address. @param[out] Address Address of LPC/eSPI memory decoding base address. @retval EFI_SUCCESS Successfully completed. @retval EFI_INVALID_PARAMETER Invalid base address passed. **/ EFI_STATUS PchLpcMemRangeGet ( OUT UINT32 *Address ) { return LpcEspiMemRangeGetHelper (SlaveLpcEspiCS0, Address); } /** Get PCH eSPI CS1# memory range decoding address. @param[out] Address Address of eSPI CS1# memory decoding base address. @retval EFI_SUCCESS Successfully completed. @retval EFI_INVALID_PARAMETER Invalid base address passed. @retval EFI_UNSUPPORTED eSPI secondary slave not supported **/ EFI_STATUS PchEspiCs1MemRangeGet ( OUT UINT32 *Address ) { if (!IsEspiSecondSlaveSupported ()) { return EFI_UNSUPPORTED; } return LpcEspiMemRangeGetHelper (SlaveEspiCS1, Address); } /** Set PCH BIOS range deocding. This will check General Control and Status bit 10 (GCS.BBS) to identify SPI or LPC/eSPI and program BDE register accordingly. Please check EDS for detail of BiosDecodeEnable bit definition. bit 15: F8-FF Enable bit 14: F0-F8 Enable bit 13: E8-EF Enable bit 12: E0-E8 Enable bit 11: D8-DF Enable bit 10: D0-D7 Enable bit 9: C8-CF Enable bit 8: C0-C7 Enable bit 7: Legacy F Segment Enable bit 6: Legacy E Segment Enable bit 5: Reserved bit 4: Reserved bit 3: 70-7F Enable bit 2: 60-6F Enable bit 1: 50-5F Enable bit 0: 40-4F Enable This cycle decoding is also required in DMI Programming steps: 1. if GCS.BBS is 0 (SPI), program SPI offset D8h to BiosDecodeEnable. if GCS.BBS is 1 (LPC/eSPi), program LPC offset D8h to BiosDecodeEnable. 2. program LPC BIOS Decode Enable in DMI @param[in] BiosDecodeEnable Bios decode enable setting. @retval EFI_SUCCESS Successfully completed. @retval EFI_UNSUPPORTED DMIC.SRL is set. **/ EFI_STATUS PchBiosDecodeEnableSet ( IN UINT16 BiosDecodeEnable ) { UINT64 BaseAddr; EFI_STATUS Status; Status = PchDmiSetBiosDecodeEnable (BiosDecodeEnable); if (EFI_ERROR (Status)) { ASSERT_EFI_ERROR (Status); return Status; } // // Check Boot BIOS Strap in DMI // if (PchDmiIsBootBiosStrapSetForSpi ()) { BaseAddr = PCI_SEGMENT_LIB_ADDRESS ( DEFAULT_PCI_SEGMENT_NUMBER_PCH, DEFAULT_PCI_BUS_NUMBER_PCH, PCI_DEVICE_NUMBER_PCH_SPI, PCI_FUNCTION_NUMBER_PCH_SPI, 0 ); // // Read SPI CFG cycle before write SPI CFG cycle PciSegmentRead16 (BaseAddr + R_SPI_CFG_BDE); // // If SPI, Program SPI offset D8h to BiosDecodeEnable. // PciSegmentWrite16 (BaseAddr + R_SPI_CFG_BDE, BiosDecodeEnable); } else { BaseAddr = LpcPciBase (); // // If LPC/eSPi, program LPC offset D8h to BiosDecodeEnable. // PciSegmentWrite16 (BaseAddr + R_LPC_CFG_BDE, BiosDecodeEnable); } return Status; } /** Set PCH LPC/eSPI IO decode ranges. Program LPC/eSPI I/O Decode Ranges in DMI to the same value programmed in LPC/eSPI PCI offset 80h. Please check EDS for detail of LPC/eSPI IO decode ranges bit definition. Bit 12: FDD range Bit 9:8: LPT range Bit 6:4: ComB range Bit 2:0: ComA range @param[in] LpcIoDecodeRanges LPC/eSPI IO decode ranges bit settings. @retval EFI_SUCCESS Successfully completed. @retval EFI_UNSUPPORTED DMIC.SRL is set. **/ EFI_STATUS PchLpcIoDecodeRangesSet ( IN UINT16 LpcIoDecodeRanges ) { UINT64 LpcBaseAddr; EFI_STATUS Status; // // Note: Inside this function, don't use debug print since it's could used before debug print ready. // LpcBaseAddr = LpcPciBase (); // // check if setting is identical // if (LpcIoDecodeRanges == PciSegmentRead16 (LpcBaseAddr + R_LPC_CFG_IOD)) { return EFI_SUCCESS; } Status = PchDmiSetLpcIoDecodeRanges (LpcIoDecodeRanges); if (EFI_ERROR (Status)) { ASSERT_EFI_ERROR (Status); return Status; } // // program LPC/eSPI PCI offset 80h. // PciSegmentWrite16 (LpcBaseAddr + R_LPC_CFG_IOD, LpcIoDecodeRanges); return Status; } /** Set PCH LPC/eSPI and eSPI CS1# IO enable decoding. Setup I/O Enables in DMI to the same value program in LPC/eSPI PCI offset 82h (LPC, eSPI CS0#) or A0h (eSPI CS1#). Note: Bit[15:10] of the source decode register is Read-Only. The IO range indicated by the Enables field in LPC/eSPI PCI offset 82h[13:10] or A0h[13:10] is always forwarded by DMI to subtractive agent for handling. Please check EDS for detail of Lpc/eSPI IO decode ranges bit definition. @param[in] IoEnableDecoding LPC/eSPI IO enable decoding bit settings. @param[in] SlaveId Slave ID (refer to SLAVE_ID_INDEX) @retval EFI_SUCCESS Successfully completed. @retval EFI_UNSUPPORTED DMI configuration is locked **/ EFI_STATUS LpcEspiIoEnableDecodingSetHelper ( IN UINT16 IoEnableDecoding, IN SLAVE_ID_INDEX SlaveId ) { UINT64 LpcBaseAddr; EFI_STATUS Status; UINT16 Cs1IoEnableDecodingOrg; UINT16 Cs0IoEnableDecodingOrg; UINT16 IoEnableDecodingMerged; LpcBaseAddr = LpcPciBase (); Cs0IoEnableDecodingOrg = PciSegmentRead16 (LpcBaseAddr + R_LPC_CFG_IOE); if (IsEspiSecondSlaveSupported ()) { Cs1IoEnableDecodingOrg = PciSegmentRead16 (LpcBaseAddr + R_ESPI_CFG_CS1IORE); } else { Cs1IoEnableDecodingOrg = 0; } if (SlaveId == SlaveEspiCS1) { if (IoEnableDecoding == Cs1IoEnableDecodingOrg) { return EFI_SUCCESS; } else { IoEnableDecodingMerged = (Cs0IoEnableDecodingOrg | IoEnableDecoding); } } else { if ((IoEnableDecoding | Cs1IoEnableDecodingOrg) == Cs0IoEnableDecodingOrg) { return EFI_SUCCESS; } else { IoEnableDecodingMerged = (Cs1IoEnableDecodingOrg | IoEnableDecoding); } } Status = PchDmiSetLpcIoEnable (IoEnableDecodingMerged); if (EFI_ERROR (Status)) { ASSERT_EFI_ERROR (Status); return Status; } // // program PCI offset 82h for LPC/eSPI. // PciSegmentWrite16 (LpcBaseAddr + R_LPC_CFG_IOE, IoEnableDecodingMerged); if (SlaveId == SlaveEspiCS1) { // // For eSPI CS1# device program eSPI PCI offset A0h. // PciSegmentWrite16 (LpcBaseAddr + R_ESPI_CFG_CS1IORE, IoEnableDecoding); } return Status; } /** Set PCH LPC and eSPI CS0# IO enable decoding. Setup I/O Enables in DMI to the same value program in LPC/eSPI PCI offset 82h. Note: Bit[15:10] of the source decode register is Read-Only. The IO range indicated by the Enables field in LPC/eSPI PCI offset 82h[13:10] is always forwarded by DMI to subtractive agent for handling. Please check EDS for detail of LPC/eSPI IO decode ranges bit definition. @param[in] LpcIoEnableDecoding LPC IO enable decoding bit settings. @retval EFI_SUCCESS Successfully completed. @retval EFI_UNSUPPORTED DMIC.SRL is set. **/ EFI_STATUS PchLpcIoEnableDecodingSet ( IN UINT16 LpcIoEnableDecoding ) { return LpcEspiIoEnableDecodingSetHelper (LpcIoEnableDecoding, SlaveLpcEspiCS0); } /** Set PCH eSPI CS1# IO enable decoding. Setup I/O Enables in DMI to the same value program in eSPI PCI offset A0h (eSPI CS1#). Note: Bit[15:10] of the source decode register is Read-Only. The IO range indicated by the Enables field in eSPI PCI offset A0h[13:10] is always forwarded by DMI to subtractive agent for handling. Please check EDS for detail of eSPI IO decode ranges bit definition. @param[in] IoEnableDecoding eSPI IO enable decoding bit settings. @retval EFI_SUCCESS Successfully completed. @retval EFI_UNSUPPORTED DMI configuration is locked **/ EFI_STATUS PchEspiCs1IoEnableDecodingSet ( IN UINT16 IoEnableDecoding ) { if (!IsEspiSecondSlaveSupported ()) { return EFI_UNSUPPORTED; } return LpcEspiIoEnableDecodingSetHelper (IoEnableDecoding, SlaveEspiCS1); } /** Set PCH IO port 80h cycle decoding to PCIE root port. System BIOS is likely to do this very soon after reset before PCI bus enumeration. This cycle decoding is allowed to set when DMI is unlocked @param[in] RpNumber PCIE root port physical number. @retval EFI_SUCCESS Successfully completed. **/ EFI_STATUS PchIoPort80DecodeSet ( IN UINTN RpNumber ) { EFI_STATUS Status; Status = PchDmiSetIoPort80Decode (RpNumber); ASSERT_EFI_ERROR (Status); return Status; } /** Get IO APIC registers base address. @param[out] IoApicBase Buffer of IO APIC register address @retval EFI_SUCCESS Successfully completed. **/ EFI_STATUS PchIoApicBaseGet ( OUT UINT32 *IoApicBase ) { *IoApicBase = PcdGet32 (PcdIoApicBaseAddress); return EFI_SUCCESS; } /** Get HPET base address. @param[out] HpetBase Buffer of HPET base address @retval EFI_SUCCESS Successfully completed. @retval EFI_INVALID_PARAMETER Invalid offset passed. **/ EFI_STATUS PchHpetBaseGet ( OUT UINT32 *HpetBase ) { if (HpetBase == NULL) { DEBUG ((DEBUG_ERROR, "PchHpetBaseGet Error. Invalid pointer.\n")); ASSERT (FALSE); return EFI_INVALID_PARAMETER; } *HpetBase = PcdGet32 (PcdSiHpetBaseAddress); return EFI_SUCCESS; }