// Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /*------------------------------------------- Includes -------------------------------------------*/ #include "rknn_api.h" #include #include #include #include #include #include #include /*------------------------------------------- Functions -------------------------------------------*/ static int rknn_GetTopN(float* pfProb, float* pfMaxProb, uint32_t* pMaxClass, uint32_t outputCount, uint32_t topNum) { uint32_t i, j; uint32_t top_count = outputCount > topNum ? topNum : outputCount; for (i = 0; i < topNum; ++i) { pfMaxProb[i] = -FLT_MAX; pMaxClass[i] = -1; } for (j = 0; j < top_count; j++) { for (i = 0; i < outputCount; i++) { if ((i == *(pMaxClass + 0)) || (i == *(pMaxClass + 1)) || (i == *(pMaxClass + 2)) || (i == *(pMaxClass + 3)) || (i == *(pMaxClass + 4))) { continue; } if (pfProb[i] > *(pfMaxProb + j)) { *(pfMaxProb + j) = pfProb[i]; *(pMaxClass + j) = i; } } } return 1; } static void dump_tensor_attr(rknn_tensor_attr* attr) { printf(" index=%d, name=%s, n_dims=%d, dims=[%d, %d, %d, %d], n_elems=%d, size=%d, fmt=%s, type=%s, qnt_type=%s, " "zp=%d, scale=%f\n", attr->index, attr->name, attr->n_dims, attr->dims[0], attr->dims[1], attr->dims[2], attr->dims[3], attr->n_elems, attr->size, get_format_string(attr->fmt), get_type_string(attr->type), get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale); } static std::vector split(const std::string& str, const std::string& pattern) { std::vector res; if (str == "") return res; std::string strs = str + pattern; size_t pos = strs.find(pattern); while (pos != strs.npos) { std::string temp = strs.substr(0, pos); res.push_back(temp); strs = strs.substr(pos + 1, strs.size()); pos = strs.find(pattern); } return res; } /*------------------------------------------- Main Functions -------------------------------------------*/ int main(int argc, char* argv[]) { char* model_path = argv[1]; char* input_paths = argv[2]; std::vector input_paths_split = split(input_paths, "#"); rknn_context ctx = 0; // Load RKNN Model int ret = rknn_init(&ctx, model_path, 0, 0, NULL); if (ret < 0) { printf("rknn_init fail! ret=%d\n", ret); return -1; } // Get sdk and driver version rknn_sdk_version sdk_ver; ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &sdk_ver, sizeof(sdk_ver)); if (ret != RKNN_SUCC) { printf("rknn_query fail! ret=%d\n", ret); return -1; } printf("rknn_api/rknnrt version: %s, driver version: %s\n", sdk_ver.api_version, sdk_ver.drv_version); // Get Model Input Output Info rknn_input_output_num io_num; ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num)); if (ret != RKNN_SUCC) { printf("rknn_query fail! ret=%d\n", ret); return -1; } printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output); printf("input tensors:\n"); rknn_tensor_attr input_attrs[io_num.n_input]; memset(input_attrs, 0, io_num.n_input * sizeof(rknn_tensor_attr)); for (uint32_t i = 0; i < io_num.n_input; i++) { input_attrs[i].index = i; // query info ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr)); if (ret < 0) { printf("rknn_init error! ret=%d\n", ret); return -1; } dump_tensor_attr(&input_attrs[i]); } printf("output tensors:\n"); rknn_tensor_attr output_attrs[io_num.n_output]; memset(output_attrs, 0, io_num.n_output * sizeof(rknn_tensor_attr)); for (uint32_t i = 0; i < io_num.n_output; i++) { output_attrs[i].index = i; // query info ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr)); if (ret != RKNN_SUCC) { printf("rknn_query fail! ret=%d\n", ret); return -1; } dump_tensor_attr(&output_attrs[i]); } // Get custom string rknn_custom_string custom_string; ret = rknn_query(ctx, RKNN_QUERY_CUSTOM_STRING, &custom_string, sizeof(custom_string)); if (ret != RKNN_SUCC) { printf("rknn_query fail! ret=%d\n", ret); return -1; } printf("custom string: %s\n", custom_string.string); unsigned char* input_data[io_num.n_input]; int input_type[io_num.n_input]; int input_layout[io_num.n_input]; int input_size[io_num.n_input]; for (int i = 0; i < io_num.n_input; i++) { input_data[i] = NULL; input_type[i] = RKNN_TENSOR_UINT8; input_layout[i] = RKNN_TENSOR_NHWC; input_size[i] = input_attrs[i].n_elems * sizeof(uint8_t); } // Load input if (io_num.n_input != input_paths_split.size()) { return -1; } for (int i = 0; i < io_num.n_input; i++) { input_data[i] = new unsigned char[input_attrs[i].size]; printf("%s\n", input_paths_split[i].c_str()); FILE* fp = fopen(input_paths_split[i].c_str(), "rb"); if (fp == NULL) { perror("open failed!"); return -1; } fread(input_data[i], input_attrs[i].size, 1, fp); fclose(fp); if (!input_data[i]) { return -1; } } rknn_input inputs[io_num.n_input]; memset(inputs, 0, io_num.n_input * sizeof(rknn_input)); for (int i = 0; i < io_num.n_input; i++) { inputs[i].index = i; inputs[i].pass_through = 0; inputs[i].type = (rknn_tensor_type)input_type[i]; inputs[i].fmt = (rknn_tensor_format)input_layout[i]; inputs[i].buf = input_data[i]; inputs[i].size = input_size[i]; } // Set input ret = rknn_inputs_set(ctx, io_num.n_input, inputs); if (ret < 0) { printf("rknn_input_set fail! ret=%d\n", ret); return -1; } // Get output rknn_output outputs[io_num.n_output]; memset(outputs, 0, io_num.n_output * sizeof(rknn_output)); for (uint32_t i = 0; i < io_num.n_output; ++i) { outputs[i].want_float = 1; outputs[i].index = i; outputs[i].is_prealloc = 0; } ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL); if (ret < 0) { printf("rknn_outputs_get fail! ret=%d\n", ret); return ret; } // Get top 5 uint32_t topNum = 5; for (uint32_t i = 0; i < io_num.n_output; i++) { uint32_t MaxClass[topNum]; float fMaxProb[topNum]; float* buffer = (float*)outputs[i].buf; uint32_t sz = outputs[i].size / sizeof(float); int top_count = sz > topNum ? topNum : sz; rknn_GetTopN(buffer, fMaxProb, MaxClass, sz, topNum); printf("---- Top%d ----\n", top_count); for (int j = 0; j < top_count; j++) { printf("%8.6f - %d\n", fMaxProb[j], MaxClass[j]); } } // release outputs ret = rknn_outputs_release(ctx, io_num.n_output, outputs); // destroy rknn_destroy(ctx); for (int i = 0; i < io_num.n_input; i++) { free(input_data[i]); } return 0; }