/* SPDX-License-Identifier: GPL-2.0 */ /* * Broadcom Dongle Host Driver (DHD), Linux-specific network interface * Basically selected code segments from usb-cdc.c and usb-rndis.c * * Copyright (C) 1999-2017, Broadcom Corporation * * Unless you and Broadcom execute a separate written software license * agreement governing use of this software, this software is licensed to you * under the terms of the GNU General Public License version 2 (the "GPL"), * available at http://www.broadcom.com/licenses/GPLv2.php, with the * following added to such license: * * As a special exception, the copyright holders of this software give you * permission to link this software with independent modules, and to copy and * distribute the resulting executable under terms of your choice, provided that * you also meet, for each linked independent module, the terms and conditions of * the license of that module. An independent module is a module which is not * derived from this software. The special exception does not apply to any * modifications of the software. * * Notwithstanding the above, under no circumstances may you combine this * software in any way with any other Broadcom software provided under a license * other than the GPL, without Broadcom's express prior written consent. * * * <> * * $Id: dhd_linux.c 710862 2017-07-14 07:43:59Z $ */ #include #include #include #ifdef SHOW_LOGTRACE #include #include #endif /* SHOW_LOGTRACE */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef ENABLE_ADAPTIVE_SCHED #include #endif /* ENABLE_ADAPTIVE_SCHED */ #include #include #include #include #include #include #include #include #include #include <802.3.h> #include #include #include #include #ifdef DHD_WET #include #endif /* DHD_WET */ #ifdef PCIE_FULL_DONGLE #include #endif #include #include #include #ifdef WL_ESCAN #include #endif #include #include #ifdef CONFIG_HAS_WAKELOCK #include #endif #ifdef WL_CFG80211 #include #endif #ifdef PNO_SUPPORT #include #endif #ifdef RTT_SUPPORT #include #endif #ifdef DHD_TIMESYNC #include #endif /* DHD_TIMESYNC */ #ifdef CSI_SUPPORT #include #endif /* CSI_SUPPORT */ #ifdef CONFIG_COMPAT #include #endif #if defined(CONFIG_SOC_EXYNOS8895) #include #endif /* CONFIG_SOC_EXYNOS8895 */ #ifdef DHD_WMF #include #endif /* DHD_WMF */ #ifdef DHD_L2_FILTER #include #include #include #endif /* DHD_L2_FILTER */ #ifdef DHD_PSTA #include #endif /* DHD_PSTA */ #ifdef DHDTCPACK_SUPPRESS #include #endif /* DHDTCPACK_SUPPRESS */ #include #ifdef DHD_PKT_LOGGING #include #endif /* DHD_PKT_LOGGING */ #if defined(STAT_REPORT) #include #endif /* STAT_REPORT */ #ifdef DHD_DEBUG_PAGEALLOC typedef void (*page_corrupt_cb_t)(void *handle, void *addr_corrupt, size_t len); void dhd_page_corrupt_cb(void *handle, void *addr_corrupt, size_t len); extern void register_page_corrupt_cb(page_corrupt_cb_t cb, void* handle); #endif /* DHD_DEBUG_PAGEALLOC */ static void dhd_tcp_dump(char *ifname, uint8 *pktdata, bool tx); #if defined(DHD_LB) #if !defined(PCIE_FULL_DONGLE) #error "DHD Loadbalancing only supported on PCIE_FULL_DONGLE" #endif /* !PCIE_FULL_DONGLE */ #endif /* DHD_LB */ #if defined(DHD_LB_RXP) || defined(DHD_LB_RXC) || defined(DHD_LB_TXC) || \ defined(DHD_LB_STATS) #if !defined(DHD_LB) #error "DHD loadbalance derivatives are supported only if DHD_LB is defined" #endif /* !DHD_LB */ #endif /* DHD_LB_RXP || DHD_LB_RXC || DHD_LB_TXC || DHD_LB_STATS */ #if defined(DHD_LB) /* Dynamic CPU selection for load balancing */ #include #include #include #include #include #if !defined(DHD_LB_PRIMARY_CPUS) #define DHD_LB_PRIMARY_CPUS 0x0 /* Big CPU coreids mask */ #endif #if !defined(DHD_LB_SECONDARY_CPUS) #define DHD_LB_SECONDARY_CPUS 0xFE /* Little CPU coreids mask */ #endif #define HIST_BIN_SIZE 9 static void dhd_rx_napi_dispatcher_fn(struct work_struct * work); #if defined(DHD_LB_TXP) static void dhd_lb_tx_handler(unsigned long data); static void dhd_tx_dispatcher_work(struct work_struct * work); static void dhd_tx_dispatcher_fn(dhd_pub_t *dhdp); static void dhd_lb_tx_dispatch(dhd_pub_t *dhdp); /* Pkttag not compatible with PROP_TXSTATUS or WLFC */ typedef struct dhd_tx_lb_pkttag_fr { struct net_device *net; int ifidx; } dhd_tx_lb_pkttag_fr_t; #define DHD_LB_TX_PKTTAG_SET_NETDEV(tag, netdevp) ((tag)->net = netdevp) #define DHD_LB_TX_PKTTAG_NETDEV(tag) ((tag)->net) #define DHD_LB_TX_PKTTAG_SET_IFIDX(tag, ifidx) ((tag)->ifidx = ifidx) #define DHD_LB_TX_PKTTAG_IFIDX(tag) ((tag)->ifidx) #endif /* DHD_LB_TXP */ #endif /* DHD_LB */ #ifdef HOFFLOAD_MODULES #include #endif #ifdef WLMEDIA_HTSF #include #include #define HTSF_MINLEN 200 /* min. packet length to timestamp */ #define HTSF_BUS_DELAY 150 /* assume a fix propagation in us */ #define TSMAX 1000 /* max no. of timing record kept */ #define NUMBIN 34 static uint32 tsidx = 0; static uint32 htsf_seqnum = 0; uint32 tsfsync; struct timeval tsync; static uint32 tsport = 5010; typedef struct histo_ { uint32 bin[NUMBIN]; } histo_t; #if !ISPOWEROF2(DHD_SDALIGN) #error DHD_SDALIGN is not a power of 2! #endif static histo_t vi_d1, vi_d2, vi_d3, vi_d4; #endif /* WLMEDIA_HTSF */ #ifdef WL_MONITOR #include #include #endif #define htod32(i) (i) #define htod16(i) (i) #define dtoh32(i) (i) #define dtoh16(i) (i) #define htodchanspec(i) (i) #define dtohchanspec(i) (i) #ifdef STBLINUX #ifdef quote_str #undef quote_str #endif /* quote_str */ #ifdef to_str #undef to_str #endif /* quote_str */ #define to_str(s) #s #define quote_str(s) to_str(s) static char *driver_target = "driver_target: "quote_str(BRCM_DRIVER_TARGET); #endif /* STBLINUX */ #if defined(SOFTAP) extern bool ap_cfg_running; extern bool ap_fw_loaded; #endif extern void dhd_dump_eapol_4way_message(dhd_pub_t *dhd, int ifidx, char *dump_data, bool direction); #ifdef FIX_CPU_MIN_CLOCK #include #endif /* FIX_CPU_MIN_CLOCK */ #ifdef SET_RANDOM_MAC_SOFTAP #ifndef CONFIG_DHD_SET_RANDOM_MAC_VAL #define CONFIG_DHD_SET_RANDOM_MAC_VAL 0x001A11 #endif static u32 vendor_oui = CONFIG_DHD_SET_RANDOM_MAC_VAL; #endif /* SET_RANDOM_MAC_SOFTAP */ #ifdef ENABLE_ADAPTIVE_SCHED #define DEFAULT_CPUFREQ_THRESH 1000000 /* threshold frequency : 1000000 = 1GHz */ #ifndef CUSTOM_CPUFREQ_THRESH #define CUSTOM_CPUFREQ_THRESH DEFAULT_CPUFREQ_THRESH #endif /* CUSTOM_CPUFREQ_THRESH */ #endif /* ENABLE_ADAPTIVE_SCHED */ /* enable HOSTIP cache update from the host side when an eth0:N is up */ #define AOE_IP_ALIAS_SUPPORT 1 #ifdef BCM_FD_AGGR #include #include #endif #ifdef PROP_TXSTATUS #include #include #endif #include /* Maximum STA per radio */ #define DHD_MAX_STA 32 const uint8 wme_fifo2ac[] = { 0, 1, 2, 3, 1, 1 }; const uint8 prio2fifo[8] = { 1, 0, 0, 1, 2, 2, 3, 3 }; #define WME_PRIO2AC(prio) wme_fifo2ac[prio2fifo[(prio)]] #ifdef ARP_OFFLOAD_SUPPORT void aoe_update_host_ipv4_table(dhd_pub_t *dhd_pub, u32 ipa, bool add, int idx); static int dhd_inetaddr_notifier_call(struct notifier_block *this, unsigned long event, void *ptr); static struct notifier_block dhd_inetaddr_notifier = { .notifier_call = dhd_inetaddr_notifier_call }; /* to make sure we won't register the same notifier twice, otherwise a loop is likely to be * created in kernel notifier link list (with 'next' pointing to itself) */ static bool dhd_inetaddr_notifier_registered = FALSE; #endif /* ARP_OFFLOAD_SUPPORT */ #if defined(CONFIG_IPV6) && defined(IPV6_NDO_SUPPORT) int dhd_inet6addr_notifier_call(struct notifier_block *this, unsigned long event, void *ptr); static struct notifier_block dhd_inet6addr_notifier = { .notifier_call = dhd_inet6addr_notifier_call }; /* to make sure we won't register the same notifier twice, otherwise a loop is likely to be * created in kernel notifier link list (with 'next' pointing to itself) */ static bool dhd_inet6addr_notifier_registered = FALSE; #endif /* CONFIG_IPV6 && IPV6_NDO_SUPPORT */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) && defined(CONFIG_PM_SLEEP) #include volatile bool dhd_mmc_suspend = FALSE; DECLARE_WAIT_QUEUE_HEAD(dhd_dpc_wait); #endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) && defined(CONFIG_PM_SLEEP) */ #if defined(OOB_INTR_ONLY) || defined(FORCE_WOWLAN) extern void dhd_enable_oob_intr(struct dhd_bus *bus, bool enable); #endif #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) static void dhd_hang_process(void *dhd_info, void *event_data, u8 event); #endif #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0)) MODULE_LICENSE("GPL and additional rights"); #endif /* LinuxVer */ #if defined(MULTIPLE_SUPPLICANT) #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) DEFINE_MUTEX(_dhd_mutex_lock_); #endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) */ #endif static int dhd_suspend_resume_helper(struct dhd_info *dhd, int val, int force); #ifdef CONFIG_BCM_DETECT_CONSECUTIVE_HANG #define MAX_CONSECUTIVE_HANG_COUNTS 5 #endif /* CONFIG_BCM_DETECT_CONSECUTIVE_HANG */ #include #ifdef DHD_ULP #include #endif /* DHD_ULP */ #ifdef BCM_FD_AGGR #define DBUS_RX_BUFFER_SIZE_DHD(net) (BCM_RPC_TP_DNGL_AGG_MAX_BYTE) #else #ifndef PROP_TXSTATUS #define DBUS_RX_BUFFER_SIZE_DHD(net) (net->mtu + net->hard_header_len + dhd->pub.hdrlen) #else #define DBUS_RX_BUFFER_SIZE_DHD(net) (net->mtu + net->hard_header_len + dhd->pub.hdrlen + 128) #endif #endif /* BCM_FD_AGGR */ #ifdef PROP_TXSTATUS extern bool dhd_wlfc_skip_fc(void * dhdp, uint8 idx); extern void dhd_wlfc_plat_init(void *dhd); extern void dhd_wlfc_plat_deinit(void *dhd); #endif /* PROP_TXSTATUS */ #ifdef USE_DYNAMIC_F2_BLKSIZE extern uint sd_f2_blocksize; extern int dhdsdio_func_blocksize(dhd_pub_t *dhd, int function_num, int block_size); #endif /* USE_DYNAMIC_F2_BLKSIZE */ #if LINUX_VERSION_CODE == KERNEL_VERSION(2, 6, 15) const char * print_tainted() { return ""; } #endif /* LINUX_VERSION_CODE == KERNEL_VERSION(2, 6, 15) */ /* Linux wireless extension support */ #if defined(WL_WIRELESS_EXT) #include extern wl_iw_extra_params_t g_wl_iw_params; #endif /* defined(WL_WIRELESS_EXT) */ #ifdef CONFIG_PARTIALSUSPEND_SLP #include #define CONFIG_HAS_EARLYSUSPEND #define DHD_USE_EARLYSUSPEND #define register_early_suspend register_pre_suspend #define unregister_early_suspend unregister_pre_suspend #define early_suspend pre_suspend #define EARLY_SUSPEND_LEVEL_BLANK_SCREEN 50 #else #if defined(CONFIG_HAS_EARLYSUSPEND) && defined(DHD_USE_EARLYSUSPEND) #include #endif /* defined(CONFIG_HAS_EARLYSUSPEND) && defined(DHD_USE_EARLYSUSPEND) */ #endif /* CONFIG_PARTIALSUSPEND_SLP */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0)) #include #endif /* OEM_ANDROID && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0)) */ #if defined(BCMPCIE) extern int dhd_get_suspend_bcn_li_dtim(dhd_pub_t *dhd, int *dtim_period, int *bcn_interval); #else extern int dhd_get_suspend_bcn_li_dtim(dhd_pub_t *dhd); #endif /* OEM_ANDROID && BCMPCIE */ #ifdef PKT_FILTER_SUPPORT extern void dhd_pktfilter_offload_set(dhd_pub_t * dhd, char *arg); extern void dhd_pktfilter_offload_enable(dhd_pub_t * dhd, char *arg, int enable, int master_mode); extern void dhd_pktfilter_offload_delete(dhd_pub_t *dhd, int id); #endif #if defined(PKT_FILTER_SUPPORT) && defined(APF) static int __dhd_apf_add_filter(struct net_device *ndev, uint32 filter_id, u8* program, uint32 program_len); static int __dhd_apf_config_filter(struct net_device *ndev, uint32 filter_id, uint32 mode, uint32 enable); static int __dhd_apf_delete_filter(struct net_device *ndev, uint32 filter_id); #endif /* PKT_FILTER_SUPPORT && APF */ static INLINE int argos_register_notifier_init(struct net_device *net) { return 0;} static INLINE int argos_register_notifier_deinit(void) { return 0;} #if defined(BT_OVER_SDIO) extern void wl_android_set_wifi_on_flag(bool enable); #endif /* BT_OVER_SDIO */ #if defined(TRAFFIC_MGMT_DWM) void traffic_mgmt_pkt_set_prio(dhd_pub_t *dhdp, void * pktbuf); #endif #ifdef DHD_FW_COREDUMP static void dhd_mem_dump(void *dhd_info, void *event_info, u8 event); #endif /* DHD_FW_COREDUMP */ #ifdef DHD_LOG_DUMP #define DLD_BUFFER_NUM 2 /* [0]: General, [1]: Special */ struct dhd_log_dump_buf g_dld_buf[DLD_BUFFER_NUM]; static const int dld_buf_size[] = { (1024 * 1024), /* DHD_LOG_DUMP_BUFFER_SIZE */ (8 * 1024) /* DHD_LOG_DUMP_BUFFER_EX_SIZE */ }; static void dhd_log_dump_init(dhd_pub_t *dhd); static void dhd_log_dump_deinit(dhd_pub_t *dhd); static void dhd_log_dump(void *handle, void *event_info, u8 event); void dhd_schedule_log_dump(dhd_pub_t *dhdp); static int do_dhd_log_dump(dhd_pub_t *dhdp); #endif /* DHD_LOG_DUMP */ #ifdef DHD_DEBUG_UART #include #define DHD_DEBUG_UART_EXEC_PATH "/system/bin/wldu" static void dhd_debug_uart_exec_rd(void *handle, void *event_info, u8 event); static void dhd_debug_uart_exec(dhd_pub_t *dhdp, char *cmd); #endif /* DHD_DEBUG_UART */ static int dhd_reboot_callback(struct notifier_block *this, unsigned long code, void *unused); static struct notifier_block dhd_reboot_notifier = { .notifier_call = dhd_reboot_callback, .priority = 1, }; #ifdef BCMPCIE static int is_reboot = 0; #endif /* BCMPCIE */ #if defined(BT_OVER_SDIO) #include "dhd_bt_interface.h" dhd_pub_t *g_dhd_pub = NULL; #endif /* defined (BT_OVER_SDIO) */ atomic_t exit_in_progress = ATOMIC_INIT(0); typedef struct dhd_if_event { struct list_head list; wl_event_data_if_t event; char name[IFNAMSIZ+1]; uint8 mac[ETHER_ADDR_LEN]; } dhd_if_event_t; /* Interface control information */ typedef struct dhd_if { struct dhd_info *info; /* back pointer to dhd_info */ /* OS/stack specifics */ struct net_device *net; int idx; /* iface idx in dongle */ uint subunit; /* subunit */ uint8 mac_addr[ETHER_ADDR_LEN]; /* assigned MAC address */ bool set_macaddress; bool set_multicast; uint8 bssidx; /* bsscfg index for the interface */ bool attached; /* Delayed attachment when unset */ bool txflowcontrol; /* Per interface flow control indicator */ char name[IFNAMSIZ+1]; /* linux interface name */ char dngl_name[IFNAMSIZ+1]; /* corresponding dongle interface name */ struct net_device_stats stats; #ifdef DHD_WMF dhd_wmf_t wmf; /* per bsscfg wmf setting */ bool wmf_psta_disable; /* enable/disable MC pkt to each mac * of MC group behind PSTA */ #endif /* DHD_WMF */ #ifdef PCIE_FULL_DONGLE struct list_head sta_list; /* sll of associated stations */ #if !defined(BCM_GMAC3) spinlock_t sta_list_lock; /* lock for manipulating sll */ #endif /* ! BCM_GMAC3 */ #endif /* PCIE_FULL_DONGLE */ uint32 ap_isolate; /* ap-isolation settings */ #ifdef DHD_L2_FILTER bool parp_enable; bool parp_discard; bool parp_allnode; arp_table_t *phnd_arp_table; /* for Per BSS modification */ bool dhcp_unicast; bool block_ping; bool grat_arp; #endif /* DHD_L2_FILTER */ #ifdef DHD_MCAST_REGEN bool mcast_regen_bss_enable; #endif bool rx_pkt_chainable; /* set all rx packet to chainable config by default */ cumm_ctr_t cumm_ctr; /* cummulative queue length of child flowrings */ } dhd_if_t; #ifdef WLMEDIA_HTSF typedef struct { uint32 low; uint32 high; } tsf_t; typedef struct { uint32 last_cycle; uint32 last_sec; uint32 last_tsf; uint32 coef; /* scaling factor */ uint32 coefdec1; /* first decimal */ uint32 coefdec2; /* second decimal */ } htsf_t; typedef struct { uint32 t1; uint32 t2; uint32 t3; uint32 t4; } tstamp_t; static tstamp_t ts[TSMAX]; static tstamp_t maxdelayts; static uint32 maxdelay = 0, tspktcnt = 0, maxdelaypktno = 0; #endif /* WLMEDIA_HTSF */ struct ipv6_work_info_t { uint8 if_idx; char ipv6_addr[IPV6_ADDR_LEN]; unsigned long event; }; static void dhd_process_daemon_msg(struct sk_buff *skb); static void dhd_destroy_to_notifier_skt(void); static int dhd_create_to_notifier_skt(void); static struct sock *nl_to_event_sk = NULL; int sender_pid = 0; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0)) struct netlink_kernel_cfg g_cfg = { .groups = 1, .input = dhd_process_daemon_msg, }; #endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0)) */ typedef struct dhd_dump { uint8 *buf; int bufsize; } dhd_dump_t; /* When Perimeter locks are deployed, any blocking calls must be preceeded * with a PERIM UNLOCK and followed by a PERIM LOCK. * Examples of blocking calls are: schedule_timeout(), down_interruptible(), * wait_event_timeout(). */ /* Local private structure (extension of pub) */ typedef struct dhd_info { #if defined(WL_WIRELESS_EXT) wl_iw_t iw; /* wireless extensions state (must be first) */ #endif /* defined(WL_WIRELESS_EXT) */ dhd_pub_t pub; dhd_if_t *iflist[DHD_MAX_IFS]; /* for supporting multiple interfaces */ wifi_adapter_info_t *adapter; /* adapter information, interrupt, fw path etc. */ char fw_path[PATH_MAX]; /* path to firmware image */ char nv_path[PATH_MAX]; /* path to nvram vars file */ char clm_path[PATH_MAX]; /* path to clm vars file */ char conf_path[PATH_MAX]; /* path to config vars file */ #ifdef DHD_UCODE_DOWNLOAD char uc_path[PATH_MAX]; /* path to ucode image */ #endif /* DHD_UCODE_DOWNLOAD */ /* serialize dhd iovars */ struct mutex dhd_iovar_mutex; struct semaphore proto_sem; #ifdef PROP_TXSTATUS spinlock_t wlfc_spinlock; #ifdef BCMDBUS ulong wlfc_lock_flags; ulong wlfc_pub_lock_flags; #endif /* BCMDBUS */ #endif /* PROP_TXSTATUS */ #ifdef WLMEDIA_HTSF htsf_t htsf; #endif wait_queue_head_t ioctl_resp_wait; wait_queue_head_t d3ack_wait; wait_queue_head_t dhd_bus_busy_state_wait; uint32 default_wd_interval; timer_list_compat_t timer; bool wd_timer_valid; #ifdef DHD_PCIE_RUNTIMEPM timer_list_compat_t rpm_timer; bool rpm_timer_valid; tsk_ctl_t thr_rpm_ctl; #endif /* DHD_PCIE_RUNTIMEPM */ struct tasklet_struct tasklet; spinlock_t sdlock; spinlock_t txqlock; spinlock_t rxqlock; spinlock_t dhd_lock; #ifdef BCMDBUS ulong txqlock_flags; #else struct semaphore sdsem; tsk_ctl_t thr_dpc_ctl; tsk_ctl_t thr_wdt_ctl; #endif /* BCMDBUS */ tsk_ctl_t thr_rxf_ctl; spinlock_t rxf_lock; bool rxthread_enabled; /* Wakelocks */ #if defined(CONFIG_HAS_WAKELOCK) && (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) struct wake_lock wl_wifi; /* Wifi wakelock */ struct wake_lock wl_rxwake; /* Wifi rx wakelock */ struct wake_lock wl_ctrlwake; /* Wifi ctrl wakelock */ struct wake_lock wl_wdwake; /* Wifi wd wakelock */ struct wake_lock wl_evtwake; /* Wifi event wakelock */ struct wake_lock wl_pmwake; /* Wifi pm handler wakelock */ struct wake_lock wl_txflwake; /* Wifi tx flow wakelock */ #ifdef BCMPCIE_OOB_HOST_WAKE struct wake_lock wl_intrwake; /* Host wakeup wakelock */ #endif /* BCMPCIE_OOB_HOST_WAKE */ #ifdef DHD_USE_SCAN_WAKELOCK struct wake_lock wl_scanwake; /* Wifi scan wakelock */ #endif /* DHD_USE_SCAN_WAKELOCK */ #endif /* CONFIG_HAS_WAKELOCK && LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27) */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) /* net_device interface lock, prevent race conditions among net_dev interface * calls and wifi_on or wifi_off */ struct mutex dhd_net_if_mutex; struct mutex dhd_suspend_mutex; #if defined(PKT_FILTER_SUPPORT) && defined(APF) struct mutex dhd_apf_mutex; #endif /* PKT_FILTER_SUPPORT && APF */ #endif spinlock_t wakelock_spinlock; spinlock_t wakelock_evt_spinlock; uint32 wakelock_counter; int wakelock_wd_counter; int wakelock_rx_timeout_enable; int wakelock_ctrl_timeout_enable; bool waive_wakelock; uint32 wakelock_before_waive; /* Thread to issue ioctl for multicast */ wait_queue_head_t ctrl_wait; atomic_t pend_8021x_cnt; dhd_attach_states_t dhd_state; #ifdef SHOW_LOGTRACE dhd_event_log_t event_data; #endif /* SHOW_LOGTRACE */ #if defined(CONFIG_HAS_EARLYSUSPEND) && defined(DHD_USE_EARLYSUSPEND) struct early_suspend early_suspend; #endif /* CONFIG_HAS_EARLYSUSPEND && DHD_USE_EARLYSUSPEND */ #ifdef ARP_OFFLOAD_SUPPORT u32 pend_ipaddr; #endif /* ARP_OFFLOAD_SUPPORT */ #ifdef BCM_FD_AGGR void *rpc_th; void *rpc_osh; timer_list_compat_t rpcth_timer; bool rpcth_timer_active; uint8 fdaggr; #endif #ifdef DHDTCPACK_SUPPRESS spinlock_t tcpack_lock; #endif /* DHDTCPACK_SUPPRESS */ #ifdef FIX_CPU_MIN_CLOCK bool cpufreq_fix_status; struct mutex cpufreq_fix; struct pm_qos_request dhd_cpu_qos; #ifdef FIX_BUS_MIN_CLOCK struct pm_qos_request dhd_bus_qos; #endif /* FIX_BUS_MIN_CLOCK */ #endif /* FIX_CPU_MIN_CLOCK */ void *dhd_deferred_wq; #ifdef DEBUG_CPU_FREQ struct notifier_block freq_trans; int __percpu *new_freq; #endif unsigned int unit; struct notifier_block pm_notifier; #ifdef DHD_PSTA uint32 psta_mode; /* PSTA or PSR */ #endif /* DHD_PSTA */ #ifdef DHD_WET uint32 wet_mode; #endif /* DHD_WET */ #ifdef DHD_DEBUG dhd_dump_t *dump; timer_list_compat_t join_timer; u32 join_timeout_val; bool join_timer_active; uint scan_time_count; timer_list_compat_t scan_timer; bool scan_timer_active; #endif #if defined(DHD_LB) /* CPU Load Balance dynamic CPU selection */ /* Variable that tracks the currect CPUs available for candidacy */ cpumask_var_t cpumask_curr_avail; /* Primary and secondary CPU mask */ cpumask_var_t cpumask_primary, cpumask_secondary; /* configuration */ cpumask_var_t cpumask_primary_new, cpumask_secondary_new; /* temp */ struct notifier_block cpu_notifier; /* Tasklet to handle Tx Completion packet freeing */ struct tasklet_struct tx_compl_tasklet; atomic_t tx_compl_cpu; /* Tasklet to handle RxBuf Post during Rx completion */ struct tasklet_struct rx_compl_tasklet; atomic_t rx_compl_cpu; /* Napi struct for handling rx packet sendup. Packets are removed from * H2D RxCompl ring and placed into rx_pend_queue. rx_pend_queue is then * appended to rx_napi_queue (w/ lock) and the rx_napi_struct is scheduled * to run to rx_napi_cpu. */ struct sk_buff_head rx_pend_queue ____cacheline_aligned; struct sk_buff_head rx_napi_queue ____cacheline_aligned; struct napi_struct rx_napi_struct ____cacheline_aligned; atomic_t rx_napi_cpu; /* cpu on which the napi is dispatched */ struct net_device *rx_napi_netdev; /* netdev of primary interface */ struct work_struct rx_napi_dispatcher_work; struct work_struct tx_compl_dispatcher_work; struct work_struct tx_dispatcher_work; /* Number of times DPC Tasklet ran */ uint32 dhd_dpc_cnt; /* Number of times NAPI processing got scheduled */ uint32 napi_sched_cnt; /* Number of times NAPI processing ran on each available core */ uint32 *napi_percpu_run_cnt; /* Number of times RX Completions got scheduled */ uint32 rxc_sched_cnt; /* Number of times RX Completion ran on each available core */ uint32 *rxc_percpu_run_cnt; /* Number of times TX Completions got scheduled */ uint32 txc_sched_cnt; /* Number of times TX Completions ran on each available core */ uint32 *txc_percpu_run_cnt; /* CPU status */ /* Number of times each CPU came online */ uint32 *cpu_online_cnt; /* Number of times each CPU went offline */ uint32 *cpu_offline_cnt; /* Number of times TX processing run on each core */ uint32 *txp_percpu_run_cnt; /* Number of times TX start run on each core */ uint32 *tx_start_percpu_run_cnt; /* Tx load balancing */ /* TODO: Need to see if batch processing is really required in case of TX * processing. In case of RX the Dongle can send a bunch of rx completions, * hence we took a 3 queue approach * enque - adds the skbs to rx_pend_queue * dispatch - uses a lock and adds the list of skbs from pend queue to * napi queue * napi processing - copies the pend_queue into a local queue and works * on it. * But for TX its going to be 1 skb at a time, so we are just thinking * of using only one queue and use the lock supported skb queue functions * to add and process it. If its in-efficient we'll re-visit the queue * design. */ /* When the NET_TX tries to send a TX packet put it into tx_pend_queue */ /* struct sk_buff_head tx_pend_queue ____cacheline_aligned; */ /* * From the Tasklet that actually sends out data * copy the list tx_pend_queue into tx_active_queue. There by we need * to spinlock to only perform the copy the rest of the code ie to * construct the tx_pend_queue and the code to process tx_active_queue * can be lockless. The concept is borrowed as is from RX processing */ /* struct sk_buff_head tx_active_queue ____cacheline_aligned; */ /* Control TXP in runtime, enable by default */ atomic_t lb_txp_active; /* * When the NET_TX tries to send a TX packet put it into tx_pend_queue * For now, the processing tasklet will also direcly operate on this * queue */ struct sk_buff_head tx_pend_queue ____cacheline_aligned; /* cpu on which the DHD Tx is happenning */ atomic_t tx_cpu; /* CPU on which the Network stack is calling the DHD's xmit function */ atomic_t net_tx_cpu; /* Tasklet context from which the DHD's TX processing happens */ struct tasklet_struct tx_tasklet; /* * Consumer Histogram - NAPI RX Packet processing * ----------------------------------------------- * On Each CPU, when the NAPI RX Packet processing call back was invoked * how many packets were processed is captured in this data structure. * Now its difficult to capture the "exact" number of packets processed. * So considering the packet counter to be a 32 bit one, we have a * bucket with 8 bins (2^1, 2^2 ... 2^8). The "number" of packets * processed is rounded off to the next power of 2 and put in the * approriate "bin" the value in the bin gets incremented. * For example, assume that in CPU 1 if NAPI Rx runs 3 times * and the packet count processed is as follows (assume the bin counters are 0) * iteration 1 - 10 (the bin counter 2^4 increments to 1) * iteration 2 - 30 (the bin counter 2^5 increments to 1) * iteration 3 - 15 (the bin counter 2^4 increments by 1 to become 2) */ uint32 *napi_rx_hist[HIST_BIN_SIZE]; uint32 *txc_hist[HIST_BIN_SIZE]; uint32 *rxc_hist[HIST_BIN_SIZE]; #endif /* DHD_LB */ #ifdef SHOW_LOGTRACE struct work_struct event_log_dispatcher_work; #endif /* SHOW_LOGTRACE */ #if defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) #endif /* defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) */ struct kobject dhd_kobj; #ifdef SHOW_LOGTRACE struct sk_buff_head evt_trace_queue ____cacheline_aligned; #endif timer_list_compat_t timesync_timer; #if defined(BT_OVER_SDIO) char btfw_path[PATH_MAX]; #endif /* defined (BT_OVER_SDIO) */ #ifdef WL_MONITOR struct net_device *monitor_dev; /* monitor pseudo device */ struct sk_buff *monitor_skb; uint monitor_len; uint monitor_type; /* monitor pseudo device */ monitor_info_t *monitor_info; #endif /* WL_MONITOR */ uint32 shub_enable; #if defined(BT_OVER_SDIO) struct mutex bus_user_lock; /* lock for sdio bus apis shared between WLAN & BT */ int bus_user_count; /* User counts of sdio bus shared between WLAN & BT */ #endif /* BT_OVER_SDIO */ #ifdef DHD_DEBUG_UART bool duart_execute; #endif #ifdef PCIE_INB_DW wait_queue_head_t ds_exit_wait; #endif /* PCIE_INB_DW */ } dhd_info_t; #ifdef WL_MONITOR #define MONPKT_EXTRA_LEN 48 #endif #define DHDIF_FWDER(dhdif) FALSE #if defined(BT_OVER_SDIO) /* Flag to indicate if driver is initialized */ uint dhd_driver_init_done = TRUE; #else /* Flag to indicate if driver is initialized */ uint dhd_driver_init_done = FALSE; #endif /* Flag to indicate if we should download firmware on driver load */ uint dhd_download_fw_on_driverload = TRUE; /* Definitions to provide path to the firmware and nvram * example nvram_path[MOD_PARAM_PATHLEN]="/projects/wlan/nvram.txt" */ char firmware_path[MOD_PARAM_PATHLEN]; char nvram_path[MOD_PARAM_PATHLEN]; char clm_path[MOD_PARAM_PATHLEN]; char config_path[MOD_PARAM_PATHLEN]; #ifdef DHD_UCODE_DOWNLOAD char ucode_path[MOD_PARAM_PATHLEN]; #endif /* DHD_UCODE_DOWNLOAD */ module_param_string(clm_path, clm_path, MOD_PARAM_PATHLEN, 0660); /* backup buffer for firmware and nvram path */ char fw_bak_path[MOD_PARAM_PATHLEN]; char nv_bak_path[MOD_PARAM_PATHLEN]; /* information string to keep firmware, chio, cheip version info visiable from log */ char info_string[MOD_PARAM_INFOLEN]; module_param_string(info_string, info_string, MOD_PARAM_INFOLEN, 0444); int op_mode = 0; int disable_proptx = 0; module_param(op_mode, int, 0644); extern int wl_control_wl_start(struct net_device *dev); #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) && (defined(BCMLXSDMMC) || defined(BCMDBUS)) struct semaphore dhd_registration_sem; #endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) */ /* deferred handlers */ static void dhd_ifadd_event_handler(void *handle, void *event_info, u8 event); static void dhd_ifdel_event_handler(void *handle, void *event_info, u8 event); static void dhd_set_mac_addr_handler(void *handle, void *event_info, u8 event); static void dhd_set_mcast_list_handler(void *handle, void *event_info, u8 event); #ifdef DHD_UPDATE_INTF_MAC static void dhd_ifupdate_event_handler(void *handle, void *event_info, u8 event); #endif /* DHD_UPDATE_INTF_MAC */ #if defined(CONFIG_IPV6) && defined(IPV6_NDO_SUPPORT) static void dhd_inet6_work_handler(void *dhd_info, void *event_data, u8 event); #endif /* CONFIG_IPV6 && IPV6_NDO_SUPPORT */ #ifdef WL_CFG80211 extern void dhd_netdev_free(struct net_device *ndev); #endif /* WL_CFG80211 */ #if (defined(DHD_WET) || defined(DHD_MCAST_REGEN) || defined(DHD_L2_FILTER)) /* update rx_pkt_chainable state of dhd interface */ static void dhd_update_rx_pkt_chainable_state(dhd_pub_t* dhdp, uint32 idx); #endif /* DHD_WET || DHD_MCAST_REGEN || DHD_L2_FILTER */ #ifdef HOFFLOAD_MODULES char dhd_hmem_module_string[MOD_PARAM_SRLEN]; module_param_string(dhd_hmem_module_string, dhd_hmem_module_string, MOD_PARAM_SRLEN, 0660); #endif /* Error bits */ module_param(dhd_msg_level, int, 0); #if defined(WL_WIRELESS_EXT) module_param(iw_msg_level, int, 0); #endif #ifdef WL_CFG80211 module_param(wl_dbg_level, int, 0); #endif module_param(android_msg_level, int, 0); module_param(config_msg_level, int, 0); #ifdef ARP_OFFLOAD_SUPPORT /* ARP offload enable */ uint dhd_arp_enable = TRUE; module_param(dhd_arp_enable, uint, 0); /* ARP offload agent mode : Enable ARP Host Auto-Reply and ARP Peer Auto-Reply */ #ifdef ENABLE_ARP_SNOOP_MODE uint dhd_arp_mode = ARP_OL_AGENT | ARP_OL_PEER_AUTO_REPLY | ARP_OL_SNOOP | ARP_OL_HOST_AUTO_REPLY; #else uint dhd_arp_mode = ARP_OL_AGENT | ARP_OL_PEER_AUTO_REPLY; #endif /* ENABLE_ARP_SNOOP_MODE */ module_param(dhd_arp_mode, uint, 0); #endif /* ARP_OFFLOAD_SUPPORT */ /* Disable Prop tx */ module_param(disable_proptx, int, 0644); /* load firmware and/or nvram values from the filesystem */ module_param_string(firmware_path, firmware_path, MOD_PARAM_PATHLEN, 0660); module_param_string(nvram_path, nvram_path, MOD_PARAM_PATHLEN, 0660); module_param_string(config_path, config_path, MOD_PARAM_PATHLEN, 0); #ifdef DHD_UCODE_DOWNLOAD module_param_string(ucode_path, ucode_path, MOD_PARAM_PATHLEN, 0660); #endif /* DHD_UCODE_DOWNLOAD */ /* Watchdog interval */ /* extend watchdog expiration to 2 seconds when DPC is running */ #define WATCHDOG_EXTEND_INTERVAL (2000) uint dhd_watchdog_ms = CUSTOM_DHD_WATCHDOG_MS; module_param(dhd_watchdog_ms, uint, 0); #ifdef DHD_PCIE_RUNTIMEPM uint dhd_runtimepm_ms = CUSTOM_DHD_RUNTIME_MS; #endif /* DHD_PCIE_RUNTIMEPMT */ #if defined(DHD_DEBUG) /* Console poll interval */ uint dhd_console_ms = 0; module_param(dhd_console_ms, uint, 0644); #else uint dhd_console_ms = 0; #endif /* DHD_DEBUG */ uint dhd_slpauto = TRUE; module_param(dhd_slpauto, uint, 0); #ifdef PKT_FILTER_SUPPORT /* Global Pkt filter enable control */ uint dhd_pkt_filter_enable = TRUE; module_param(dhd_pkt_filter_enable, uint, 0); #endif /* Pkt filter init setup */ uint dhd_pkt_filter_init = 0; module_param(dhd_pkt_filter_init, uint, 0); /* Pkt filter mode control */ #ifdef GAN_LITE_NAT_KEEPALIVE_FILTER uint dhd_master_mode = FALSE; #else uint dhd_master_mode = FALSE; #endif /* GAN_LITE_NAT_KEEPALIVE_FILTER */ module_param(dhd_master_mode, uint, 0); int dhd_watchdog_prio = 0; module_param(dhd_watchdog_prio, int, 0); /* DPC thread priority */ int dhd_dpc_prio = CUSTOM_DPC_PRIO_SETTING; module_param(dhd_dpc_prio, int, 0); /* RX frame thread priority */ int dhd_rxf_prio = CUSTOM_RXF_PRIO_SETTING; module_param(dhd_rxf_prio, int, 0); #if !defined(BCMDBUS) extern int dhd_dongle_ramsize; module_param(dhd_dongle_ramsize, int, 0); #endif /* !BCMDBUS */ #ifdef WL_CFG80211 int passive_channel_skip = 0; module_param(passive_channel_skip, int, (S_IRUSR|S_IWUSR)); #endif /* WL_CFG80211 */ /* Keep track of number of instances */ static int dhd_found = 0; static int instance_base = 0; /* Starting instance number */ module_param(instance_base, int, 0644); #if defined(DHD_LB_RXP) && defined(PCIE_FULL_DONGLE) static int dhd_napi_weight = 32; module_param(dhd_napi_weight, int, 0644); #endif /* DHD_LB_RXP && PCIE_FULL_DONGLE */ #ifdef PCIE_FULL_DONGLE extern int h2d_max_txpost; module_param(h2d_max_txpost, int, 0644); #endif /* PCIE_FULL_DONGLE */ #ifdef DHD_ARP_DUMP #include static const char arp_types[][10] = { "NA", "REQUEST", "RESPONSE" }; static void dhd_arp_dump(char *ifname, uint8 *pktdata, bool tx); #endif /* DHD_ARP_DUMP */ #ifdef DHD_DHCP_DUMP struct bootp_fmt { struct iphdr ip_header; struct udphdr udp_header; uint8 op; uint8 htype; uint8 hlen; uint8 hops; uint32 transaction_id; uint16 secs; uint16 flags; uint32 client_ip; uint32 assigned_ip; uint32 server_ip; uint32 relay_ip; uint8 hw_address[16]; uint8 server_name[64]; uint8 file_name[128]; uint8 options[312]; }; static const uint8 bootp_magic_cookie[4] = { 99, 130, 83, 99 }; static const char dhcp_ops[][10] = { "NA", "REQUEST", "REPLY" }; static const char dhcp_types[][10] = { "NA", "DISCOVER", "OFFER", "REQUEST", "DECLINE", "ACK", "NAK", "RELEASE", "INFORM" }; static void dhd_dhcp_dump(char *ifname, uint8 *pktdata, bool tx); #endif /* DHD_DHCP_DUMP */ #ifdef DHD_ICMP_DUMP #include static void dhd_icmp_dump(char *ifname, uint8 *pktdata, bool tx); #endif /* DHD_ICMP_DUMP */ /* Functions to manage sysfs interface for dhd */ static int dhd_sysfs_init(dhd_info_t *dhd); static void dhd_sysfs_exit(dhd_info_t *dhd); #ifdef SHOW_LOGTRACE #if defined(CUSTOMER_HW4_DEBUG) static char *logstrs_path = PLATFORM_PATH"logstrs.bin"; static char *st_str_file_path = PLATFORM_PATH"rtecdc.bin"; static char *map_file_path = PLATFORM_PATH"rtecdc.map"; static char *rom_st_str_file_path = PLATFORM_PATH"roml.bin"; static char *rom_map_file_path = PLATFORM_PATH"roml.map"; #elif defined(CUSTOMER_HW2) static char *logstrs_path = "/data/misc/wifi/logstrs.bin"; static char *st_str_file_path = "/data/misc/wifi/rtecdc.bin"; static char *map_file_path = "/data/misc/wifi/rtecdc.map"; static char *rom_st_str_file_path = "/data/misc/wifi/roml.bin"; static char *rom_map_file_path = "/data/misc/wifi/roml.map"; #else static char *logstrs_path = "/installmedia/logstrs.bin"; static char *st_str_file_path = "/installmedia/rtecdc.bin"; static char *map_file_path = "/installmedia/rtecdc.map"; static char *rom_st_str_file_path = "/installmedia/roml.bin"; static char *rom_map_file_path = "/installmedia/roml.map"; #endif /* CUSTOMER_HW4_DEBUG || CUSTOMER_HW2 */ static char *ram_file_str = "rtecdc"; static char *rom_file_str = "roml"; module_param(logstrs_path, charp, S_IRUGO); module_param(st_str_file_path, charp, S_IRUGO); module_param(map_file_path, charp, S_IRUGO); module_param(rom_st_str_file_path, charp, S_IRUGO); module_param(rom_map_file_path, charp, S_IRUGO); static int dhd_init_logstrs_array(osl_t *osh, dhd_event_log_t *temp); static int dhd_read_map(osl_t *osh, char *fname, uint32 *ramstart, uint32 *rodata_start, uint32 *rodata_end); static int dhd_init_static_strs_array(osl_t *osh, dhd_event_log_t *temp, char *str_file, char *map_file); #endif /* SHOW_LOGTRACE */ #if defined(DHD_LB) static void dhd_lb_set_default_cpus(dhd_info_t *dhd) { /* Default CPU allocation for the jobs */ atomic_set(&dhd->rx_napi_cpu, 1); atomic_set(&dhd->rx_compl_cpu, 2); atomic_set(&dhd->tx_compl_cpu, 2); atomic_set(&dhd->tx_cpu, 2); atomic_set(&dhd->net_tx_cpu, 0); } static void dhd_cpumasks_deinit(dhd_info_t *dhd) { free_cpumask_var(dhd->cpumask_curr_avail); free_cpumask_var(dhd->cpumask_primary); free_cpumask_var(dhd->cpumask_primary_new); free_cpumask_var(dhd->cpumask_secondary); free_cpumask_var(dhd->cpumask_secondary_new); } static int dhd_cpumasks_init(dhd_info_t *dhd) { int id; uint32 cpus, num_cpus = num_possible_cpus(); int ret = 0; DHD_ERROR(("%s CPU masks primary(big)=0x%x secondary(little)=0x%x\n", __FUNCTION__, DHD_LB_PRIMARY_CPUS, DHD_LB_SECONDARY_CPUS)); if (!alloc_cpumask_var(&dhd->cpumask_curr_avail, GFP_KERNEL) || !alloc_cpumask_var(&dhd->cpumask_primary, GFP_KERNEL) || !alloc_cpumask_var(&dhd->cpumask_primary_new, GFP_KERNEL) || !alloc_cpumask_var(&dhd->cpumask_secondary, GFP_KERNEL) || !alloc_cpumask_var(&dhd->cpumask_secondary_new, GFP_KERNEL)) { DHD_ERROR(("%s Failed to init cpumasks\n", __FUNCTION__)); ret = -ENOMEM; goto fail; } cpumask_copy(dhd->cpumask_curr_avail, cpu_online_mask); cpumask_clear(dhd->cpumask_primary); cpumask_clear(dhd->cpumask_secondary); if (num_cpus > 32) { DHD_ERROR(("%s max cpus must be 32, %d too big\n", __FUNCTION__, num_cpus)); ASSERT(0); } cpus = DHD_LB_PRIMARY_CPUS; for (id = 0; id < num_cpus; id++) { if (isset(&cpus, id)) cpumask_set_cpu(id, dhd->cpumask_primary); } cpus = DHD_LB_SECONDARY_CPUS; for (id = 0; id < num_cpus; id++) { if (isset(&cpus, id)) cpumask_set_cpu(id, dhd->cpumask_secondary); } return ret; fail: dhd_cpumasks_deinit(dhd); return ret; } /* * The CPU Candidacy Algorithm * ~~~~~~~~~~~~~~~~~~~~~~~~~~~ * The available CPUs for selection are divided into two groups * Primary Set - A CPU mask that carries the First Choice CPUs * Secondary Set - A CPU mask that carries the Second Choice CPUs. * * There are two types of Job, that needs to be assigned to * the CPUs, from one of the above mentioned CPU group. The Jobs are * 1) Rx Packet Processing - napi_cpu * 2) Completion Processiong (Tx, RX) - compl_cpu * * To begin with both napi_cpu and compl_cpu are on CPU0. Whenever a CPU goes * on-line/off-line the CPU candidacy algorithm is triggerd. The candidacy * algo tries to pickup the first available non boot CPU (CPU0) for napi_cpu. * If there are more processors free, it assigns one to compl_cpu. * It also tries to ensure that both napi_cpu and compl_cpu are not on the same * CPU, as much as possible. * * By design, both Tx and Rx completion jobs are run on the same CPU core, as it * would allow Tx completion skb's to be released into a local free pool from * which the rx buffer posts could have been serviced. it is important to note * that a Tx packet may not have a large enough buffer for rx posting. */ void dhd_select_cpu_candidacy(dhd_info_t *dhd) { uint32 primary_available_cpus; /* count of primary available cpus */ uint32 secondary_available_cpus; /* count of secondary available cpus */ uint32 napi_cpu = 0; /* cpu selected for napi rx processing */ uint32 compl_cpu = 0; /* cpu selected for completion jobs */ uint32 tx_cpu = 0; /* cpu selected for tx processing job */ cpumask_clear(dhd->cpumask_primary_new); cpumask_clear(dhd->cpumask_secondary_new); /* * Now select from the primary mask. Even if a Job is * already running on a CPU in secondary group, we still move * to primary CPU. So no conditional checks. */ cpumask_and(dhd->cpumask_primary_new, dhd->cpumask_primary, dhd->cpumask_curr_avail); cpumask_and(dhd->cpumask_secondary_new, dhd->cpumask_secondary, dhd->cpumask_curr_avail); primary_available_cpus = cpumask_weight(dhd->cpumask_primary_new); if (primary_available_cpus > 0) { napi_cpu = cpumask_first(dhd->cpumask_primary_new); /* If no further CPU is available, * cpumask_next returns >= nr_cpu_ids */ tx_cpu = cpumask_next(napi_cpu, dhd->cpumask_primary_new); if (tx_cpu >= nr_cpu_ids) tx_cpu = 0; /* In case there are no more CPUs, do completions & Tx in same CPU */ compl_cpu = cpumask_next(tx_cpu, dhd->cpumask_primary_new); if (compl_cpu >= nr_cpu_ids) compl_cpu = tx_cpu; } DHD_INFO(("%s After primary CPU check napi_cpu %d compl_cpu %d tx_cpu %d\n", __FUNCTION__, napi_cpu, compl_cpu, tx_cpu)); /* -- Now check for the CPUs from the secondary mask -- */ secondary_available_cpus = cpumask_weight(dhd->cpumask_secondary_new); DHD_INFO(("%s Available secondary cpus %d nr_cpu_ids %d\n", __FUNCTION__, secondary_available_cpus, nr_cpu_ids)); if (secondary_available_cpus > 0) { /* At this point if napi_cpu is unassigned it means no CPU * is online from Primary Group */ if (napi_cpu == 0) { napi_cpu = cpumask_first(dhd->cpumask_secondary_new); tx_cpu = cpumask_next(napi_cpu, dhd->cpumask_secondary_new); compl_cpu = cpumask_next(tx_cpu, dhd->cpumask_secondary_new); } else if (tx_cpu == 0) { tx_cpu = cpumask_first(dhd->cpumask_secondary_new); compl_cpu = cpumask_next(tx_cpu, dhd->cpumask_secondary_new); } else if (compl_cpu == 0) { compl_cpu = cpumask_first(dhd->cpumask_secondary_new); } /* If no CPU was available for tx processing, choose CPU 0 */ if (tx_cpu >= nr_cpu_ids) tx_cpu = 0; /* If no CPU was available for completion, choose CPU 0 */ if (compl_cpu >= nr_cpu_ids) compl_cpu = 0; } if ((primary_available_cpus == 0) && (secondary_available_cpus == 0)) { /* No CPUs available from primary or secondary mask */ napi_cpu = 1; compl_cpu = 0; tx_cpu = 2; } DHD_INFO(("%s After secondary CPU check napi_cpu %d compl_cpu %d tx_cpu %d\n", __FUNCTION__, napi_cpu, compl_cpu, tx_cpu)); ASSERT(napi_cpu < nr_cpu_ids); ASSERT(compl_cpu < nr_cpu_ids); ASSERT(tx_cpu < nr_cpu_ids); atomic_set(&dhd->rx_napi_cpu, napi_cpu); atomic_set(&dhd->tx_compl_cpu, compl_cpu); atomic_set(&dhd->rx_compl_cpu, compl_cpu); atomic_set(&dhd->tx_cpu, tx_cpu); return; } /* * Function to handle CPU Hotplug notifications. * One of the task it does is to trigger the CPU Candidacy algorithm * for load balancing. */ int dhd_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned long int cpu = (unsigned long int)hcpu; #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" #endif dhd_info_t *dhd = container_of(nfb, dhd_info_t, cpu_notifier); #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic pop #endif if (!dhd || !(dhd->dhd_state & DHD_ATTACH_STATE_LB_ATTACH_DONE)) { DHD_INFO(("%s(): LB data is not initialized yet.\n", __FUNCTION__)); return NOTIFY_BAD; } switch (action) { case CPU_ONLINE: case CPU_ONLINE_FROZEN: DHD_LB_STATS_INCR(dhd->cpu_online_cnt[cpu]); cpumask_set_cpu(cpu, dhd->cpumask_curr_avail); dhd_select_cpu_candidacy(dhd); break; case CPU_DOWN_PREPARE: case CPU_DOWN_PREPARE_FROZEN: DHD_LB_STATS_INCR(dhd->cpu_offline_cnt[cpu]); cpumask_clear_cpu(cpu, dhd->cpumask_curr_avail); dhd_select_cpu_candidacy(dhd); break; default: break; } return NOTIFY_OK; } #if defined(DHD_LB_STATS) void dhd_lb_stats_init(dhd_pub_t *dhdp) { dhd_info_t *dhd; int i, j, num_cpus = num_possible_cpus(); int alloc_size = sizeof(uint32) * num_cpus; if (dhdp == NULL) { DHD_ERROR(("%s(): Invalid argument dhd pubb pointer is NULL \n", __FUNCTION__)); return; } dhd = dhdp->info; if (dhd == NULL) { DHD_ERROR(("%s(): DHD pointer is NULL \n", __FUNCTION__)); return; } DHD_LB_STATS_CLR(dhd->dhd_dpc_cnt); DHD_LB_STATS_CLR(dhd->napi_sched_cnt); dhd->napi_percpu_run_cnt = (uint32 *)MALLOC(dhdp->osh, alloc_size); if (!dhd->napi_percpu_run_cnt) { DHD_ERROR(("%s(): napi_percpu_run_cnt malloc failed \n", __FUNCTION__)); return; } for (i = 0; i < num_cpus; i++) DHD_LB_STATS_CLR(dhd->napi_percpu_run_cnt[i]); DHD_LB_STATS_CLR(dhd->rxc_sched_cnt); dhd->rxc_percpu_run_cnt = (uint32 *)MALLOC(dhdp->osh, alloc_size); if (!dhd->rxc_percpu_run_cnt) { DHD_ERROR(("%s(): rxc_percpu_run_cnt malloc failed \n", __FUNCTION__)); return; } for (i = 0; i < num_cpus; i++) DHD_LB_STATS_CLR(dhd->rxc_percpu_run_cnt[i]); DHD_LB_STATS_CLR(dhd->txc_sched_cnt); dhd->txc_percpu_run_cnt = (uint32 *)MALLOC(dhdp->osh, alloc_size); if (!dhd->txc_percpu_run_cnt) { DHD_ERROR(("%s(): txc_percpu_run_cnt malloc failed \n", __FUNCTION__)); return; } for (i = 0; i < num_cpus; i++) DHD_LB_STATS_CLR(dhd->txc_percpu_run_cnt[i]); dhd->cpu_online_cnt = (uint32 *)MALLOC(dhdp->osh, alloc_size); if (!dhd->cpu_online_cnt) { DHD_ERROR(("%s(): cpu_online_cnt malloc failed \n", __FUNCTION__)); return; } for (i = 0; i < num_cpus; i++) DHD_LB_STATS_CLR(dhd->cpu_online_cnt[i]); dhd->cpu_offline_cnt = (uint32 *)MALLOC(dhdp->osh, alloc_size); if (!dhd->cpu_offline_cnt) { DHD_ERROR(("%s(): cpu_offline_cnt malloc failed \n", __FUNCTION__)); return; } for (i = 0; i < num_cpus; i++) DHD_LB_STATS_CLR(dhd->cpu_offline_cnt[i]); dhd->txp_percpu_run_cnt = (uint32 *)MALLOC(dhdp->osh, alloc_size); if (!dhd->txp_percpu_run_cnt) { DHD_ERROR(("%s(): txp_percpu_run_cnt malloc failed \n", __FUNCTION__)); return; } for (i = 0; i < num_cpus; i++) DHD_LB_STATS_CLR(dhd->txp_percpu_run_cnt[i]); dhd->tx_start_percpu_run_cnt = (uint32 *)MALLOC(dhdp->osh, alloc_size); if (!dhd->tx_start_percpu_run_cnt) { DHD_ERROR(("%s(): tx_start_percpu_run_cnt malloc failed \n", __FUNCTION__)); return; } for (i = 0; i < num_cpus; i++) DHD_LB_STATS_CLR(dhd->tx_start_percpu_run_cnt[i]); for (j = 0; j < HIST_BIN_SIZE; j++) { dhd->napi_rx_hist[j] = (uint32 *)MALLOC(dhdp->osh, alloc_size); if (!dhd->napi_rx_hist[j]) { DHD_ERROR(("%s(): dhd->napi_rx_hist[%d] malloc failed \n", __FUNCTION__, j)); return; } for (i = 0; i < num_cpus; i++) { DHD_LB_STATS_CLR(dhd->napi_rx_hist[j][i]); } } #ifdef DHD_LB_TXC for (j = 0; j < HIST_BIN_SIZE; j++) { dhd->txc_hist[j] = (uint32 *)MALLOC(dhdp->osh, alloc_size); if (!dhd->txc_hist[j]) { DHD_ERROR(("%s(): dhd->txc_hist[%d] malloc failed \n", __FUNCTION__, j)); return; } for (i = 0; i < num_cpus; i++) { DHD_LB_STATS_CLR(dhd->txc_hist[j][i]); } } #endif /* DHD_LB_TXC */ #ifdef DHD_LB_RXC for (j = 0; j < HIST_BIN_SIZE; j++) { dhd->rxc_hist[j] = (uint32 *)MALLOC(dhdp->osh, alloc_size); if (!dhd->rxc_hist[j]) { DHD_ERROR(("%s(): dhd->rxc_hist[%d] malloc failed \n", __FUNCTION__, j)); return; } for (i = 0; i < num_cpus; i++) { DHD_LB_STATS_CLR(dhd->rxc_hist[j][i]); } } #endif /* DHD_LB_RXC */ return; } void dhd_lb_stats_deinit(dhd_pub_t *dhdp) { dhd_info_t *dhd; int j, num_cpus = num_possible_cpus(); int alloc_size = sizeof(uint32) * num_cpus; if (dhdp == NULL) { DHD_ERROR(("%s(): Invalid argument dhd pubb pointer is NULL \n", __FUNCTION__)); return; } dhd = dhdp->info; if (dhd == NULL) { DHD_ERROR(("%s(): DHD pointer is NULL \n", __FUNCTION__)); return; } if (dhd->napi_percpu_run_cnt) { MFREE(dhdp->osh, dhd->napi_percpu_run_cnt, alloc_size); dhd->napi_percpu_run_cnt = NULL; } if (dhd->rxc_percpu_run_cnt) { MFREE(dhdp->osh, dhd->rxc_percpu_run_cnt, alloc_size); dhd->rxc_percpu_run_cnt = NULL; } if (dhd->txc_percpu_run_cnt) { MFREE(dhdp->osh, dhd->txc_percpu_run_cnt, alloc_size); dhd->txc_percpu_run_cnt = NULL; } if (dhd->cpu_online_cnt) { MFREE(dhdp->osh, dhd->cpu_online_cnt, alloc_size); dhd->cpu_online_cnt = NULL; } if (dhd->cpu_offline_cnt) { MFREE(dhdp->osh, dhd->cpu_offline_cnt, alloc_size); dhd->cpu_offline_cnt = NULL; } if (dhd->txp_percpu_run_cnt) { MFREE(dhdp->osh, dhd->txp_percpu_run_cnt, alloc_size); dhd->txp_percpu_run_cnt = NULL; } if (dhd->tx_start_percpu_run_cnt) { MFREE(dhdp->osh, dhd->tx_start_percpu_run_cnt, alloc_size); dhd->tx_start_percpu_run_cnt = NULL; } for (j = 0; j < HIST_BIN_SIZE; j++) { if (dhd->napi_rx_hist[j]) { MFREE(dhdp->osh, dhd->napi_rx_hist[j], alloc_size); dhd->napi_rx_hist[j] = NULL; } #ifdef DHD_LB_TXC if (dhd->txc_hist[j]) { MFREE(dhdp->osh, dhd->txc_hist[j], alloc_size); dhd->txc_hist[j] = NULL; } #endif /* DHD_LB_TXC */ #ifdef DHD_LB_RXC if (dhd->rxc_hist[j]) { MFREE(dhdp->osh, dhd->rxc_hist[j], alloc_size); dhd->rxc_hist[j] = NULL; } #endif /* DHD_LB_RXC */ } return; } static void dhd_lb_stats_dump_histo( struct bcmstrbuf *strbuf, uint32 **hist) { int i, j; uint32 *per_cpu_total; uint32 total = 0; uint32 num_cpus = num_possible_cpus(); per_cpu_total = (uint32 *)kmalloc(sizeof(uint32) * num_cpus, GFP_ATOMIC); if (!per_cpu_total) { DHD_ERROR(("%s(): dhd->per_cpu_total malloc failed \n", __FUNCTION__)); return; } bzero(per_cpu_total, sizeof(uint32) * num_cpus); bcm_bprintf(strbuf, "CPU: \t\t"); for (i = 0; i < num_cpus; i++) bcm_bprintf(strbuf, "%d\t", i); bcm_bprintf(strbuf, "\nBin\n"); for (i = 0; i < HIST_BIN_SIZE; i++) { bcm_bprintf(strbuf, "%d:\t\t", 1<info; if (dhd == NULL) { DHD_ERROR(("%s(): DHD pointer is NULL \n", __FUNCTION__)); return; } bcm_bprintf(strbuf, "\ncpu_online_cnt:\n"); dhd_lb_stats_dump_cpu_array(strbuf, dhd->cpu_online_cnt); bcm_bprintf(strbuf, "\ncpu_offline_cnt:\n"); dhd_lb_stats_dump_cpu_array(strbuf, dhd->cpu_offline_cnt); bcm_bprintf(strbuf, "\nsched_cnt: dhd_dpc %u napi %u rxc %u txc %u\n", dhd->dhd_dpc_cnt, dhd->napi_sched_cnt, dhd->rxc_sched_cnt, dhd->txc_sched_cnt); #ifdef DHD_LB_RXP bcm_bprintf(strbuf, "\nnapi_percpu_run_cnt:\n"); dhd_lb_stats_dump_cpu_array(strbuf, dhd->napi_percpu_run_cnt); bcm_bprintf(strbuf, "\nNAPI Packets Received Histogram:\n"); dhd_lb_stats_dump_histo(strbuf, dhd->napi_rx_hist); #endif /* DHD_LB_RXP */ #ifdef DHD_LB_RXC bcm_bprintf(strbuf, "\nrxc_percpu_run_cnt:\n"); dhd_lb_stats_dump_cpu_array(strbuf, dhd->rxc_percpu_run_cnt); bcm_bprintf(strbuf, "\nRX Completions (Buffer Post) Histogram:\n"); dhd_lb_stats_dump_histo(strbuf, dhd->rxc_hist); #endif /* DHD_LB_RXC */ #ifdef DHD_LB_TXC bcm_bprintf(strbuf, "\ntxc_percpu_run_cnt:\n"); dhd_lb_stats_dump_cpu_array(strbuf, dhd->txc_percpu_run_cnt); bcm_bprintf(strbuf, "\nTX Completions (Buffer Free) Histogram:\n"); dhd_lb_stats_dump_histo(strbuf, dhd->txc_hist); #endif /* DHD_LB_TXC */ #ifdef DHD_LB_TXP bcm_bprintf(strbuf, "\ntxp_percpu_run_cnt:\n"); dhd_lb_stats_dump_cpu_array(strbuf, dhd->txp_percpu_run_cnt); bcm_bprintf(strbuf, "\ntx_start_percpu_run_cnt:\n"); dhd_lb_stats_dump_cpu_array(strbuf, dhd->tx_start_percpu_run_cnt); #endif /* DHD_LB_TXP */ bcm_bprintf(strbuf, "\nCPU masks primary(big)=0x%x secondary(little)=0x%x\n", DHD_LB_PRIMARY_CPUS, DHD_LB_SECONDARY_CPUS); bcm_bprintf(strbuf, "napi_cpu %x tx_cpu %x\n", atomic_read(&dhd->rx_napi_cpu), atomic_read(&dhd->tx_cpu)); } /* Given a number 'n' returns 'm' that is next larger power of 2 after n */ static inline uint32 next_larger_power2(uint32 num) { num--; num |= (num >> 1); num |= (num >> 2); num |= (num >> 4); num |= (num >> 8); num |= (num >> 16); return (num + 1); } static void dhd_lb_stats_update_histo(uint32 **bin, uint32 count, uint32 cpu) { uint32 bin_power; uint32 *p; bin_power = next_larger_power2(count); switch (bin_power) { case 1: p = bin[0] + cpu; break; case 2: p = bin[1] + cpu; break; case 4: p = bin[2] + cpu; break; case 8: p = bin[3] + cpu; break; case 16: p = bin[4] + cpu; break; case 32: p = bin[5] + cpu; break; case 64: p = bin[6] + cpu; break; case 128: p = bin[7] + cpu; break; default : p = bin[8] + cpu; break; } *p = *p + 1; return; } extern void dhd_lb_stats_update_napi_histo(dhd_pub_t *dhdp, uint32 count) { int cpu; dhd_info_t *dhd = dhdp->info; cpu = get_cpu(); put_cpu(); dhd_lb_stats_update_histo(dhd->napi_rx_hist, count, cpu); return; } extern void dhd_lb_stats_update_txc_histo(dhd_pub_t *dhdp, uint32 count) { int cpu; dhd_info_t *dhd = dhdp->info; cpu = get_cpu(); put_cpu(); dhd_lb_stats_update_histo(dhd->txc_hist, count, cpu); return; } extern void dhd_lb_stats_update_rxc_histo(dhd_pub_t *dhdp, uint32 count) { int cpu; dhd_info_t *dhd = dhdp->info; cpu = get_cpu(); put_cpu(); dhd_lb_stats_update_histo(dhd->rxc_hist, count, cpu); return; } extern void dhd_lb_stats_txc_percpu_cnt_incr(dhd_pub_t *dhdp) { dhd_info_t *dhd = dhdp->info; DHD_LB_STATS_PERCPU_ARR_INCR(dhd->txc_percpu_run_cnt); } extern void dhd_lb_stats_rxc_percpu_cnt_incr(dhd_pub_t *dhdp) { dhd_info_t *dhd = dhdp->info; DHD_LB_STATS_PERCPU_ARR_INCR(dhd->rxc_percpu_run_cnt); } #endif /* DHD_LB_STATS */ #endif /* DHD_LB */ #if defined(DISABLE_FRAMEBURST_VSDB) && defined(USE_WFA_CERT_CONF) int g_frameburst = 1; #endif /* DISABLE_FRAMEBURST_VSDB && USE_WFA_CERT_CONF */ static int dhd_get_pend_8021x_cnt(dhd_info_t *dhd); /* DHD Perimiter lock only used in router with bypass forwarding. */ #define DHD_PERIM_RADIO_INIT() do { /* noop */ } while (0) #define DHD_PERIM_LOCK_TRY(unit, flag) do { /* noop */ } while (0) #define DHD_PERIM_UNLOCK_TRY(unit, flag) do { /* noop */ } while (0) #ifdef PCIE_FULL_DONGLE #if defined(BCM_GMAC3) #define DHD_IF_STA_LIST_LOCK_INIT(ifp) do { /* noop */ } while (0) #define DHD_IF_STA_LIST_LOCK(ifp, flags) ({ BCM_REFERENCE(flags); }) #define DHD_IF_STA_LIST_UNLOCK(ifp, flags) ({ BCM_REFERENCE(flags); }) #if defined(DHD_IGMP_UCQUERY) || defined(DHD_UCAST_UPNP) #define DHD_IF_WMF_UCFORWARD_LOCK(dhd, ifp, slist) ({ BCM_REFERENCE(slist); &(ifp)->sta_list; }) #define DHD_IF_WMF_UCFORWARD_UNLOCK(dhd, slist) ({ BCM_REFERENCE(slist); }) #endif /* DHD_IGMP_UCQUERY || DHD_UCAST_UPNP */ #else /* ! BCM_GMAC3 */ #define DHD_IF_STA_LIST_LOCK_INIT(ifp) spin_lock_init(&(ifp)->sta_list_lock) #define DHD_IF_STA_LIST_LOCK(ifp, flags) \ spin_lock_irqsave(&(ifp)->sta_list_lock, (flags)) #define DHD_IF_STA_LIST_UNLOCK(ifp, flags) \ spin_unlock_irqrestore(&(ifp)->sta_list_lock, (flags)) #if defined(DHD_IGMP_UCQUERY) || defined(DHD_UCAST_UPNP) static struct list_head * dhd_sta_list_snapshot(dhd_info_t *dhd, dhd_if_t *ifp, struct list_head *snapshot_list); static void dhd_sta_list_snapshot_free(dhd_info_t *dhd, struct list_head *snapshot_list); #define DHD_IF_WMF_UCFORWARD_LOCK(dhd, ifp, slist) ({ dhd_sta_list_snapshot(dhd, ifp, slist); }) #define DHD_IF_WMF_UCFORWARD_UNLOCK(dhd, slist) ({ dhd_sta_list_snapshot_free(dhd, slist); }) #endif /* DHD_IGMP_UCQUERY || DHD_UCAST_UPNP */ #endif /* ! BCM_GMAC3 */ #endif /* PCIE_FULL_DONGLE */ /* Control fw roaming */ uint dhd_roam_disable = 0; #ifdef BCMDBGFS extern void dhd_dbgfs_init(dhd_pub_t *dhdp); extern void dhd_dbgfs_remove(void); #endif /* Control radio state */ uint dhd_radio_up = 1; /* Network inteface name */ char iface_name[IFNAMSIZ] = {'\0'}; module_param_string(iface_name, iface_name, IFNAMSIZ, 0); /* The following are specific to the SDIO dongle */ /* IOCTL response timeout */ int dhd_ioctl_timeout_msec = IOCTL_RESP_TIMEOUT; /* DS Exit response timeout */ int ds_exit_timeout_msec = DS_EXIT_TIMEOUT; /* Idle timeout for backplane clock */ int dhd_idletime = DHD_IDLETIME_TICKS; module_param(dhd_idletime, int, 0); /* Use polling */ uint dhd_poll = FALSE; module_param(dhd_poll, uint, 0); /* Use interrupts */ uint dhd_intr = TRUE; module_param(dhd_intr, uint, 0); /* SDIO Drive Strength (in milliamps) */ uint dhd_sdiod_drive_strength = 6; module_param(dhd_sdiod_drive_strength, uint, 0); #ifdef BCMSDIO /* Tx/Rx bounds */ extern uint dhd_txbound; extern uint dhd_rxbound; module_param(dhd_txbound, uint, 0); module_param(dhd_rxbound, uint, 0); /* Deferred transmits */ extern uint dhd_deferred_tx; module_param(dhd_deferred_tx, uint, 0); #endif /* BCMSDIO */ #ifdef SDTEST /* Echo packet generator (pkts/s) */ uint dhd_pktgen = 0; module_param(dhd_pktgen, uint, 0); /* Echo packet len (0 => sawtooth, max 2040) */ uint dhd_pktgen_len = 0; module_param(dhd_pktgen_len, uint, 0); #endif /* SDTEST */ #ifndef BCMDBUS /* Allow delayed firmware download for debug purpose */ int allow_delay_fwdl = FALSE; module_param(allow_delay_fwdl, int, 0); #endif /* !BCMDBUS */ extern char dhd_version[]; extern char fw_version[]; extern char clm_version[]; int dhd_net_bus_devreset(struct net_device *dev, uint8 flag); static void dhd_net_if_lock_local(dhd_info_t *dhd); static void dhd_net_if_unlock_local(dhd_info_t *dhd); static void dhd_suspend_lock(dhd_pub_t *dhdp); static void dhd_suspend_unlock(dhd_pub_t *dhdp); #ifdef WLMEDIA_HTSF void htsf_update(dhd_info_t *dhd, void *data); tsf_t prev_tsf, cur_tsf; uint32 dhd_get_htsf(dhd_info_t *dhd, int ifidx); static int dhd_ioctl_htsf_get(dhd_info_t *dhd, int ifidx); static void dhd_dump_latency(void); static void dhd_htsf_addtxts(dhd_pub_t *dhdp, void *pktbuf); static void dhd_htsf_addrxts(dhd_pub_t *dhdp, void *pktbuf); static void dhd_dump_htsfhisto(histo_t *his, char *s); #endif /* WLMEDIA_HTSF */ /* Monitor interface */ int dhd_monitor_init(void *dhd_pub); int dhd_monitor_uninit(void); #if defined(WL_WIRELESS_EXT) struct iw_statistics *dhd_get_wireless_stats(struct net_device *dev); #endif /* defined(WL_WIRELESS_EXT) */ #ifndef BCMDBUS static void dhd_dpc(ulong data); #endif /* !BCMDBUS */ /* forward decl */ extern int dhd_wait_pend8021x(struct net_device *dev); void dhd_os_wd_timer_extend(void *bus, bool extend); #ifdef TOE #ifndef BDC #error TOE requires BDC #endif /* !BDC */ static int dhd_toe_get(dhd_info_t *dhd, int idx, uint32 *toe_ol); static int dhd_toe_set(dhd_info_t *dhd, int idx, uint32 toe_ol); #endif /* TOE */ static int dhd_wl_host_event(dhd_info_t *dhd, int ifidx, void *pktdata, uint16 pktlen, wl_event_msg_t *event_ptr, void **data_ptr); #if defined(CONFIG_PM_SLEEP) static int dhd_pm_callback(struct notifier_block *nfb, unsigned long action, void *ignored) { int ret = NOTIFY_DONE; bool suspend = FALSE; #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" #endif dhd_info_t *dhdinfo = (dhd_info_t*)container_of(nfb, struct dhd_info, pm_notifier); #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic pop #endif BCM_REFERENCE(dhdinfo); BCM_REFERENCE(suspend); switch (action) { case PM_HIBERNATION_PREPARE: case PM_SUSPEND_PREPARE: suspend = TRUE; break; case PM_POST_HIBERNATION: case PM_POST_SUSPEND: suspend = FALSE; break; } printf("%s: action=%ld, suspend=%d, suspend_mode=%d\n", __FUNCTION__, action, suspend, dhdinfo->pub.conf->suspend_mode); if (suspend) { DHD_OS_WAKE_LOCK_WAIVE(&dhdinfo->pub); if (dhdinfo->pub.conf->suspend_mode == PM_NOTIFIER) dhd_suspend_resume_helper(dhdinfo, suspend, 0); #if defined(SUPPORT_P2P_GO_PS) && defined(PROP_TXSTATUS) dhd_wlfc_suspend(&dhdinfo->pub); #endif /* defined(SUPPORT_P2P_GO_PS) && defined(PROP_TXSTATUS) */ if (dhdinfo->pub.conf->suspend_mode == PM_NOTIFIER) dhd_conf_set_suspend_resume(&dhdinfo->pub, suspend); DHD_OS_WAKE_LOCK_RESTORE(&dhdinfo->pub); } else { if (dhdinfo->pub.conf->suspend_mode == PM_NOTIFIER) dhd_conf_set_suspend_resume(&dhdinfo->pub, suspend); #if defined(SUPPORT_P2P_GO_PS) && defined(PROP_TXSTATUS) dhd_wlfc_resume(&dhdinfo->pub); #endif /* defined(SUPPORT_P2P_GO_PS) && defined(PROP_TXSTATUS) */ if (dhdinfo->pub.conf->suspend_mode == PM_NOTIFIER) dhd_suspend_resume_helper(dhdinfo, suspend, 0); } #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) && (LINUX_VERSION_CODE <= \ KERNEL_VERSION(2, 6, 39)) dhd_mmc_suspend = suspend; smp_mb(); #endif return ret; } /* to make sure we won't register the same notifier twice, otherwise a loop is likely to be * created in kernel notifier link list (with 'next' pointing to itself) */ static bool dhd_pm_notifier_registered = FALSE; extern int register_pm_notifier(struct notifier_block *nb); extern int unregister_pm_notifier(struct notifier_block *nb); #endif /* CONFIG_PM_SLEEP */ /* Request scheduling of the bus rx frame */ static void dhd_sched_rxf(dhd_pub_t *dhdp, void *skb); static void dhd_os_rxflock(dhd_pub_t *pub); static void dhd_os_rxfunlock(dhd_pub_t *pub); /** priv_link is the link between netdev and the dhdif and dhd_info structs. */ typedef struct dhd_dev_priv { dhd_info_t * dhd; /* cached pointer to dhd_info in netdevice priv */ dhd_if_t * ifp; /* cached pointer to dhd_if in netdevice priv */ int ifidx; /* interface index */ void * lkup; } dhd_dev_priv_t; #define DHD_DEV_PRIV_SIZE (sizeof(dhd_dev_priv_t)) #define DHD_DEV_PRIV(dev) ((dhd_dev_priv_t *)DEV_PRIV(dev)) #define DHD_DEV_INFO(dev) (((dhd_dev_priv_t *)DEV_PRIV(dev))->dhd) #define DHD_DEV_IFP(dev) (((dhd_dev_priv_t *)DEV_PRIV(dev))->ifp) #define DHD_DEV_IFIDX(dev) (((dhd_dev_priv_t *)DEV_PRIV(dev))->ifidx) #define DHD_DEV_LKUP(dev) (((dhd_dev_priv_t *)DEV_PRIV(dev))->lkup) #if defined(DHD_OF_SUPPORT) extern int dhd_wlan_init(void); #endif /* defined(DHD_OF_SUPPORT) */ /** Clear the dhd net_device's private structure. */ static inline void dhd_dev_priv_clear(struct net_device * dev) { dhd_dev_priv_t * dev_priv; ASSERT(dev != (struct net_device *)NULL); dev_priv = DHD_DEV_PRIV(dev); dev_priv->dhd = (dhd_info_t *)NULL; dev_priv->ifp = (dhd_if_t *)NULL; dev_priv->ifidx = DHD_BAD_IF; dev_priv->lkup = (void *)NULL; } /** Setup the dhd net_device's private structure. */ static inline void dhd_dev_priv_save(struct net_device * dev, dhd_info_t * dhd, dhd_if_t * ifp, int ifidx) { dhd_dev_priv_t * dev_priv; ASSERT(dev != (struct net_device *)NULL); dev_priv = DHD_DEV_PRIV(dev); dev_priv->dhd = dhd; dev_priv->ifp = ifp; dev_priv->ifidx = ifidx; } #ifdef PCIE_FULL_DONGLE /** Dummy objects are defined with state representing bad|down. * Performance gains from reducing branch conditionals, instruction parallelism, * dual issue, reducing load shadows, avail of larger pipelines. * Use DHD_XXX_NULL instead of (dhd_xxx_t *)NULL, whenever an object pointer * is accessed via the dhd_sta_t. */ /* Dummy dhd_info object */ dhd_info_t dhd_info_null = { #if defined(BCM_GMAC3) .fwdh = FWDER_NULL, #endif .pub = { .info = &dhd_info_null, #ifdef DHDTCPACK_SUPPRESS .tcpack_sup_mode = TCPACK_SUP_REPLACE, #endif /* DHDTCPACK_SUPPRESS */ #if defined(TRAFFIC_MGMT_DWM) .dhd_tm_dwm_tbl = { .dhd_dwm_enabled = TRUE }, #endif .up = FALSE, .busstate = DHD_BUS_DOWN } }; #define DHD_INFO_NULL (&dhd_info_null) #define DHD_PUB_NULL (&dhd_info_null.pub) /* Dummy netdevice object */ struct net_device dhd_net_dev_null = { .reg_state = NETREG_UNREGISTERED }; #define DHD_NET_DEV_NULL (&dhd_net_dev_null) /* Dummy dhd_if object */ dhd_if_t dhd_if_null = { #if defined(BCM_GMAC3) .fwdh = FWDER_NULL, #endif #ifdef WMF .wmf = { .wmf_enable = TRUE }, #endif .info = DHD_INFO_NULL, .net = DHD_NET_DEV_NULL, .idx = DHD_BAD_IF }; #define DHD_IF_NULL (&dhd_if_null) #define DHD_STA_NULL ((dhd_sta_t *)NULL) /** Interface STA list management. */ /** Fetch the dhd_if object, given the interface index in the dhd. */ static inline dhd_if_t *dhd_get_ifp(dhd_pub_t *dhdp, uint32 ifidx); /** Alloc/Free a dhd_sta object from the dhd instances' sta_pool. */ static void dhd_sta_free(dhd_pub_t *pub, dhd_sta_t *sta); static dhd_sta_t * dhd_sta_alloc(dhd_pub_t * dhdp); /* Delete a dhd_sta or flush all dhd_sta in an interface's sta_list. */ static void dhd_if_del_sta_list(dhd_if_t * ifp); static void dhd_if_flush_sta(dhd_if_t * ifp); /* Construct/Destruct a sta pool. */ static int dhd_sta_pool_init(dhd_pub_t *dhdp, int max_sta); static void dhd_sta_pool_fini(dhd_pub_t *dhdp, int max_sta); /* Clear the pool of dhd_sta_t objects for built-in type driver */ static void dhd_sta_pool_clear(dhd_pub_t *dhdp, int max_sta); /* Return interface pointer */ static inline dhd_if_t *dhd_get_ifp(dhd_pub_t *dhdp, uint32 ifidx) { ASSERT(ifidx < DHD_MAX_IFS); if (ifidx >= DHD_MAX_IFS) return NULL; return dhdp->info->iflist[ifidx]; } /** Reset a dhd_sta object and free into the dhd pool. */ static void dhd_sta_free(dhd_pub_t * dhdp, dhd_sta_t * sta) { int prio; ASSERT((sta != DHD_STA_NULL) && (sta->idx != ID16_INVALID)); ASSERT((dhdp->staid_allocator != NULL) && (dhdp->sta_pool != NULL)); /* * Flush and free all packets in all flowring's queues belonging to sta. * Packets in flow ring will be flushed later. */ for (prio = 0; prio < (int)NUMPRIO; prio++) { uint16 flowid = sta->flowid[prio]; if (flowid != FLOWID_INVALID) { unsigned long flags; flow_queue_t * queue = dhd_flow_queue(dhdp, flowid); flow_ring_node_t * flow_ring_node; #ifdef DHDTCPACK_SUPPRESS /* Clean tcp_ack_info_tbl in order to prevent access to flushed pkt, * when there is a newly coming packet from network stack. */ dhd_tcpack_info_tbl_clean(dhdp); #endif /* DHDTCPACK_SUPPRESS */ flow_ring_node = dhd_flow_ring_node(dhdp, flowid); DHD_FLOWRING_LOCK(flow_ring_node->lock, flags); flow_ring_node->status = FLOW_RING_STATUS_STA_FREEING; if (!DHD_FLOW_QUEUE_EMPTY(queue)) { void * pkt; while ((pkt = dhd_flow_queue_dequeue(dhdp, queue)) != NULL) { PKTFREE(dhdp->osh, pkt, TRUE); } } DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags); ASSERT(DHD_FLOW_QUEUE_EMPTY(queue)); } sta->flowid[prio] = FLOWID_INVALID; } id16_map_free(dhdp->staid_allocator, sta->idx); DHD_CUMM_CTR_INIT(&sta->cumm_ctr); sta->ifp = DHD_IF_NULL; /* dummy dhd_if object */ sta->ifidx = DHD_BAD_IF; bzero(sta->ea.octet, ETHER_ADDR_LEN); INIT_LIST_HEAD(&sta->list); sta->idx = ID16_INVALID; /* implying free */ } /** Allocate a dhd_sta object from the dhd pool. */ static dhd_sta_t * dhd_sta_alloc(dhd_pub_t * dhdp) { uint16 idx; dhd_sta_t * sta; dhd_sta_pool_t * sta_pool; ASSERT((dhdp->staid_allocator != NULL) && (dhdp->sta_pool != NULL)); idx = id16_map_alloc(dhdp->staid_allocator); if (idx == ID16_INVALID) { DHD_ERROR(("%s: cannot get free staid\n", __FUNCTION__)); return DHD_STA_NULL; } sta_pool = (dhd_sta_pool_t *)(dhdp->sta_pool); sta = &sta_pool[idx]; ASSERT((sta->idx == ID16_INVALID) && (sta->ifp == DHD_IF_NULL) && (sta->ifidx == DHD_BAD_IF)); DHD_CUMM_CTR_INIT(&sta->cumm_ctr); sta->idx = idx; /* implying allocated */ return sta; } /** Delete all STAs in an interface's STA list. */ static void dhd_if_del_sta_list(dhd_if_t *ifp) { dhd_sta_t *sta, *next; unsigned long flags; DHD_IF_STA_LIST_LOCK(ifp, flags); #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" #endif list_for_each_entry_safe(sta, next, &ifp->sta_list, list) { #if defined(BCM_GMAC3) if (ifp->fwdh) { /* Remove sta from WOFA forwarder. */ fwder_deassoc(ifp->fwdh, (uint16 *)(sta->ea.octet), (uintptr_t)sta); } #endif /* BCM_GMAC3 */ list_del(&sta->list); dhd_sta_free(&ifp->info->pub, sta); } #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic pop #endif DHD_IF_STA_LIST_UNLOCK(ifp, flags); return; } /** Router/GMAC3: Flush all station entries in the forwarder's WOFA database. */ static void dhd_if_flush_sta(dhd_if_t * ifp) { #if defined(BCM_GMAC3) if (ifp && (ifp->fwdh != FWDER_NULL)) { dhd_sta_t *sta, *next; unsigned long flags; DHD_IF_STA_LIST_LOCK(ifp, flags); list_for_each_entry_safe(sta, next, &ifp->sta_list, list) { /* Remove any sta entry from WOFA forwarder. */ fwder_flush(ifp->fwdh, (uintptr_t)sta); } DHD_IF_STA_LIST_UNLOCK(ifp, flags); } #endif /* BCM_GMAC3 */ } /** Construct a pool of dhd_sta_t objects to be used by interfaces. */ static int dhd_sta_pool_init(dhd_pub_t *dhdp, int max_sta) { int idx, prio, sta_pool_memsz; dhd_sta_t * sta; dhd_sta_pool_t * sta_pool; void * staid_allocator; ASSERT(dhdp != (dhd_pub_t *)NULL); ASSERT((dhdp->staid_allocator == NULL) && (dhdp->sta_pool == NULL)); /* dhd_sta objects per radio are managed in a table. id#0 reserved. */ staid_allocator = id16_map_init(dhdp->osh, max_sta, 1); if (staid_allocator == NULL) { DHD_ERROR(("%s: sta id allocator init failure\n", __FUNCTION__)); return BCME_ERROR; } /* Pre allocate a pool of dhd_sta objects (one extra). */ sta_pool_memsz = ((max_sta + 1) * sizeof(dhd_sta_t)); /* skip idx 0 */ sta_pool = (dhd_sta_pool_t *)MALLOC(dhdp->osh, sta_pool_memsz); if (sta_pool == NULL) { DHD_ERROR(("%s: sta table alloc failure\n", __FUNCTION__)); id16_map_fini(dhdp->osh, staid_allocator); return BCME_ERROR; } dhdp->sta_pool = sta_pool; dhdp->staid_allocator = staid_allocator; /* Initialize all sta(s) for the pre-allocated free pool. */ bzero((uchar *)sta_pool, sta_pool_memsz); for (idx = max_sta; idx >= 1; idx--) { /* skip sta_pool[0] */ sta = &sta_pool[idx]; sta->idx = id16_map_alloc(staid_allocator); ASSERT(sta->idx <= max_sta); } /* Now place them into the pre-allocated free pool. */ for (idx = 1; idx <= max_sta; idx++) { sta = &sta_pool[idx]; for (prio = 0; prio < (int)NUMPRIO; prio++) { sta->flowid[prio] = FLOWID_INVALID; /* Flow rings do not exist */ } dhd_sta_free(dhdp, sta); } return BCME_OK; } /** Destruct the pool of dhd_sta_t objects. * Caller must ensure that no STA objects are currently associated with an if. */ static void dhd_sta_pool_fini(dhd_pub_t *dhdp, int max_sta) { dhd_sta_pool_t * sta_pool = (dhd_sta_pool_t *)dhdp->sta_pool; if (sta_pool) { int idx; int sta_pool_memsz = ((max_sta + 1) * sizeof(dhd_sta_t)); for (idx = 1; idx <= max_sta; idx++) { ASSERT(sta_pool[idx].ifp == DHD_IF_NULL); ASSERT(sta_pool[idx].idx == ID16_INVALID); } MFREE(dhdp->osh, dhdp->sta_pool, sta_pool_memsz); dhdp->sta_pool = NULL; } id16_map_fini(dhdp->osh, dhdp->staid_allocator); dhdp->staid_allocator = NULL; } /* Clear the pool of dhd_sta_t objects for built-in type driver */ static void dhd_sta_pool_clear(dhd_pub_t *dhdp, int max_sta) { int idx, prio, sta_pool_memsz; dhd_sta_t * sta; dhd_sta_pool_t * sta_pool; void *staid_allocator; if (!dhdp) { DHD_ERROR(("%s: dhdp is NULL\n", __FUNCTION__)); return; } sta_pool = (dhd_sta_pool_t *)dhdp->sta_pool; staid_allocator = dhdp->staid_allocator; if (!sta_pool) { DHD_ERROR(("%s: sta_pool is NULL\n", __FUNCTION__)); return; } if (!staid_allocator) { DHD_ERROR(("%s: staid_allocator is NULL\n", __FUNCTION__)); return; } /* clear free pool */ sta_pool_memsz = ((max_sta + 1) * sizeof(dhd_sta_t)); bzero((uchar *)sta_pool, sta_pool_memsz); /* dhd_sta objects per radio are managed in a table. id#0 reserved. */ id16_map_clear(staid_allocator, max_sta, 1); /* Initialize all sta(s) for the pre-allocated free pool. */ for (idx = max_sta; idx >= 1; idx--) { /* skip sta_pool[0] */ sta = &sta_pool[idx]; sta->idx = id16_map_alloc(staid_allocator); ASSERT(sta->idx <= max_sta); } /* Now place them into the pre-allocated free pool. */ for (idx = 1; idx <= max_sta; idx++) { sta = &sta_pool[idx]; for (prio = 0; prio < (int)NUMPRIO; prio++) { sta->flowid[prio] = FLOWID_INVALID; /* Flow rings do not exist */ } dhd_sta_free(dhdp, sta); } } /** Find STA with MAC address ea in an interface's STA list. */ dhd_sta_t * dhd_find_sta(void *pub, int ifidx, void *ea) { dhd_sta_t *sta; dhd_if_t *ifp; unsigned long flags; ASSERT(ea != NULL); ifp = dhd_get_ifp((dhd_pub_t *)pub, ifidx); if (ifp == NULL) return DHD_STA_NULL; DHD_IF_STA_LIST_LOCK(ifp, flags); #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" #endif list_for_each_entry(sta, &ifp->sta_list, list) { if (!memcmp(sta->ea.octet, ea, ETHER_ADDR_LEN)) { DHD_INFO(("%s: found STA " MACDBG "\n", __FUNCTION__, MAC2STRDBG((char *)ea))); DHD_IF_STA_LIST_UNLOCK(ifp, flags); return sta; } } #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic pop #endif DHD_IF_STA_LIST_UNLOCK(ifp, flags); return DHD_STA_NULL; } /** Add STA into the interface's STA list. */ dhd_sta_t * dhd_add_sta(void *pub, int ifidx, void *ea) { dhd_sta_t *sta; dhd_if_t *ifp; unsigned long flags; ASSERT(ea != NULL); ifp = dhd_get_ifp((dhd_pub_t *)pub, ifidx); if (ifp == NULL) return DHD_STA_NULL; sta = dhd_sta_alloc((dhd_pub_t *)pub); if (sta == DHD_STA_NULL) { DHD_ERROR(("%s: Alloc failed\n", __FUNCTION__)); return DHD_STA_NULL; } memcpy(sta->ea.octet, ea, ETHER_ADDR_LEN); /* link the sta and the dhd interface */ sta->ifp = ifp; sta->ifidx = ifidx; #ifdef DHD_WMF sta->psta_prim = NULL; #endif INIT_LIST_HEAD(&sta->list); DHD_IF_STA_LIST_LOCK(ifp, flags); list_add_tail(&sta->list, &ifp->sta_list); #if defined(BCM_GMAC3) if (ifp->fwdh) { ASSERT(ISALIGNED(ea, 2)); /* Add sta to WOFA forwarder. */ fwder_reassoc(ifp->fwdh, (uint16 *)ea, (uintptr_t)sta); } #endif /* BCM_GMAC3 */ DHD_IF_STA_LIST_UNLOCK(ifp, flags); return sta; } /** Delete all STAs from the interface's STA list. */ void dhd_del_all_sta(void *pub, int ifidx) { dhd_sta_t *sta, *next; dhd_if_t *ifp; unsigned long flags; ifp = dhd_get_ifp((dhd_pub_t *)pub, ifidx); if (ifp == NULL) return; DHD_IF_STA_LIST_LOCK(ifp, flags); #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" #endif list_for_each_entry_safe(sta, next, &ifp->sta_list, list) { #if defined(BCM_GMAC3) if (ifp->fwdh) { /* Found a sta, remove from WOFA forwarder. */ ASSERT(ISALIGNED(sta->ea.octet, 2)); fwder_deassoc(ifp->fwdh, (uint16 *)sta->ea.octet, (uintptr_t)sta); } #endif /* BCM_GMAC3 */ list_del(&sta->list); dhd_sta_free(&ifp->info->pub, sta); #ifdef DHD_L2_FILTER if (ifp->parp_enable) { /* clear Proxy ARP cache of specific Ethernet Address */ bcm_l2_filter_arp_table_update(((dhd_pub_t*)pub)->osh, ifp->phnd_arp_table, FALSE, sta->ea.octet, FALSE, ((dhd_pub_t*)pub)->tickcnt); } #endif /* DHD_L2_FILTER */ } #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic pop #endif DHD_IF_STA_LIST_UNLOCK(ifp, flags); return; } /** Delete STA from the interface's STA list. */ void dhd_del_sta(void *pub, int ifidx, void *ea) { dhd_sta_t *sta, *next; dhd_if_t *ifp; unsigned long flags; char macstr[ETHER_ADDR_STR_LEN]; ASSERT(ea != NULL); ifp = dhd_get_ifp((dhd_pub_t *)pub, ifidx); if (ifp == NULL) return; DHD_IF_STA_LIST_LOCK(ifp, flags); #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" #endif list_for_each_entry_safe(sta, next, &ifp->sta_list, list) { if (!memcmp(sta->ea.octet, ea, ETHER_ADDR_LEN)) { #if defined(BCM_GMAC3) if (ifp->fwdh) { /* Found a sta, remove from WOFA forwarder. */ ASSERT(ISALIGNED(ea, 2)); fwder_deassoc(ifp->fwdh, (uint16 *)ea, (uintptr_t)sta); } #endif /* BCM_GMAC3 */ DHD_MAC_TO_STR(((char *)ea), macstr); DHD_ERROR(("%s: Deleting STA %s\n", __FUNCTION__, macstr)); list_del(&sta->list); dhd_sta_free(&ifp->info->pub, sta); } } #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic pop #endif DHD_IF_STA_LIST_UNLOCK(ifp, flags); #ifdef DHD_L2_FILTER if (ifp->parp_enable) { /* clear Proxy ARP cache of specific Ethernet Address */ bcm_l2_filter_arp_table_update(((dhd_pub_t*)pub)->osh, ifp->phnd_arp_table, FALSE, ea, FALSE, ((dhd_pub_t*)pub)->tickcnt); } #endif /* DHD_L2_FILTER */ return; } /** Add STA if it doesn't exist. Not reentrant. */ dhd_sta_t* dhd_findadd_sta(void *pub, int ifidx, void *ea) { dhd_sta_t *sta; sta = dhd_find_sta(pub, ifidx, ea); if (!sta) { /* Add entry */ sta = dhd_add_sta(pub, ifidx, ea); } return sta; } #if defined(DHD_IGMP_UCQUERY) || defined(DHD_UCAST_UPNP) #if !defined(BCM_GMAC3) static struct list_head * dhd_sta_list_snapshot(dhd_info_t *dhd, dhd_if_t *ifp, struct list_head *snapshot_list) { unsigned long flags; dhd_sta_t *sta, *snapshot; INIT_LIST_HEAD(snapshot_list); DHD_IF_STA_LIST_LOCK(ifp, flags); list_for_each_entry(sta, &ifp->sta_list, list) { /* allocate one and add to snapshot */ snapshot = (dhd_sta_t *)MALLOC(dhd->pub.osh, sizeof(dhd_sta_t)); if (snapshot == NULL) { DHD_ERROR(("%s: Cannot allocate memory\n", __FUNCTION__)); continue; } memcpy(snapshot->ea.octet, sta->ea.octet, ETHER_ADDR_LEN); INIT_LIST_HEAD(&snapshot->list); list_add_tail(&snapshot->list, snapshot_list); } DHD_IF_STA_LIST_UNLOCK(ifp, flags); return snapshot_list; } static void dhd_sta_list_snapshot_free(dhd_info_t *dhd, struct list_head *snapshot_list) { dhd_sta_t *sta, *next; list_for_each_entry_safe(sta, next, snapshot_list, list) { list_del(&sta->list); MFREE(dhd->pub.osh, sta, sizeof(dhd_sta_t)); } } #endif /* !BCM_GMAC3 */ #endif /* DHD_IGMP_UCQUERY || DHD_UCAST_UPNP */ #else static inline void dhd_if_flush_sta(dhd_if_t * ifp) { } static inline void dhd_if_del_sta_list(dhd_if_t *ifp) {} static inline int dhd_sta_pool_init(dhd_pub_t *dhdp, int max_sta) { return BCME_OK; } static inline void dhd_sta_pool_fini(dhd_pub_t *dhdp, int max_sta) {} static inline void dhd_sta_pool_clear(dhd_pub_t *dhdp, int max_sta) {} dhd_sta_t *dhd_findadd_sta(void *pub, int ifidx, void *ea) { return NULL; } dhd_sta_t *dhd_find_sta(void *pub, int ifidx, void *ea) { return NULL; } void dhd_del_sta(void *pub, int ifidx, void *ea) {} #endif /* PCIE_FULL_DONGLE */ #if defined(DHD_LB) #if defined(DHD_LB_TXC) || defined(DHD_LB_RXC) || defined(DHD_LB_TXP) /** * dhd_tasklet_schedule - Function that runs in IPI context of the destination * CPU and schedules a tasklet. * @tasklet: opaque pointer to the tasklet */ INLINE void dhd_tasklet_schedule(void *tasklet) { tasklet_schedule((struct tasklet_struct *)tasklet); } /** * dhd_tasklet_schedule_on - Executes the passed takslet in a given CPU * @tasklet: tasklet to be scheduled * @on_cpu: cpu core id * * If the requested cpu is online, then an IPI is sent to this cpu via the * smp_call_function_single with no wait and the tasklet_schedule function * will be invoked to schedule the specified tasklet on the requested CPU. */ INLINE void dhd_tasklet_schedule_on(struct tasklet_struct *tasklet, int on_cpu) { const int wait = 0; smp_call_function_single(on_cpu, dhd_tasklet_schedule, (void *)tasklet, wait); } /** * dhd_work_schedule_on - Executes the passed work in a given CPU * @work: work to be scheduled * @on_cpu: cpu core id * * If the requested cpu is online, then an IPI is sent to this cpu via the * schedule_work_on and the work function * will be invoked to schedule the specified work on the requested CPU. */ INLINE void dhd_work_schedule_on(struct work_struct *work, int on_cpu) { schedule_work_on(on_cpu, work); } #endif /* DHD_LB_TXC || DHD_LB_RXC || DHD_LB_TXP */ #if defined(DHD_LB_TXC) /** * dhd_lb_tx_compl_dispatch - load balance by dispatching the tx_compl_tasklet * on another cpu. The tx_compl_tasklet will take care of DMA unmapping and * freeing the packets placed in the tx_compl workq */ void dhd_lb_tx_compl_dispatch(dhd_pub_t *dhdp) { dhd_info_t *dhd = dhdp->info; int curr_cpu, on_cpu; if (dhd->rx_napi_netdev == NULL) { DHD_ERROR(("%s: dhd->rx_napi_netdev is NULL\n", __FUNCTION__)); return; } DHD_LB_STATS_INCR(dhd->txc_sched_cnt); /* * If the destination CPU is NOT online or is same as current CPU * no need to schedule the work */ curr_cpu = get_cpu(); put_cpu(); on_cpu = atomic_read(&dhd->tx_compl_cpu); if ((on_cpu == curr_cpu) || (!cpu_online(on_cpu))) { dhd_tasklet_schedule(&dhd->tx_compl_tasklet); } else { schedule_work(&dhd->tx_compl_dispatcher_work); } } static void dhd_tx_compl_dispatcher_fn(struct work_struct * work) { struct dhd_info *dhd = container_of(work, struct dhd_info, tx_compl_dispatcher_work); int cpu; get_online_cpus(); cpu = atomic_read(&dhd->tx_compl_cpu); if (!cpu_online(cpu)) dhd_tasklet_schedule(&dhd->tx_compl_tasklet); else dhd_tasklet_schedule_on(&dhd->tx_compl_tasklet, cpu); put_online_cpus(); } #endif /* DHD_LB_TXC */ #if defined(DHD_LB_RXC) /** * dhd_lb_rx_compl_dispatch - load balance by dispatching the rx_compl_tasklet * on another cpu. The rx_compl_tasklet will take care of reposting rx buffers * in the H2D RxBuffer Post common ring, by using the recycled pktids that were * placed in the rx_compl workq. * * @dhdp: pointer to dhd_pub object */ void dhd_lb_rx_compl_dispatch(dhd_pub_t *dhdp) { dhd_info_t *dhd = dhdp->info; int curr_cpu, on_cpu; if (dhd->rx_napi_netdev == NULL) { DHD_ERROR(("%s: dhd->rx_napi_netdev is NULL\n", __FUNCTION__)); return; } DHD_LB_STATS_INCR(dhd->rxc_sched_cnt); /* * If the destination CPU is NOT online or is same as current CPU * no need to schedule the work */ curr_cpu = get_cpu(); put_cpu(); on_cpu = atomic_read(&dhd->rx_compl_cpu); if ((on_cpu == curr_cpu) || (!cpu_online(on_cpu))) { dhd_tasklet_schedule(&dhd->rx_compl_tasklet); } else { dhd_rx_compl_dispatcher_fn(dhdp); } } static void dhd_rx_compl_dispatcher_fn(dhd_pub_t *dhdp) { struct dhd_info *dhd = dhdp->info; int cpu; preempt_disable(); cpu = atomic_read(&dhd->rx_compl_cpu); if (!cpu_online(cpu)) dhd_tasklet_schedule(&dhd->rx_compl_tasklet); else { dhd_tasklet_schedule_on(&dhd->rx_compl_tasklet, cpu); } preempt_enable(); } #endif /* DHD_LB_RXC */ #if defined(DHD_LB_TXP) static void dhd_tx_dispatcher_work(struct work_struct * work) { #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" #endif struct dhd_info *dhd = container_of(work, struct dhd_info, tx_dispatcher_work); #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic pop #endif dhd_tasklet_schedule(&dhd->tx_tasklet); } static void dhd_tx_dispatcher_fn(dhd_pub_t *dhdp) { int cpu; int net_tx_cpu; dhd_info_t *dhd = dhdp->info; preempt_disable(); cpu = atomic_read(&dhd->tx_cpu); net_tx_cpu = atomic_read(&dhd->net_tx_cpu); /* * Now if the NET_TX has pushed the packet in the same * CPU that is chosen for Tx processing, seperate it out * i.e run the TX processing tasklet in compl_cpu */ if (net_tx_cpu == cpu) cpu = atomic_read(&dhd->tx_compl_cpu); if (!cpu_online(cpu)) { /* * Ooohh... but the Chosen CPU is not online, * Do the job in the current CPU itself. */ dhd_tasklet_schedule(&dhd->tx_tasklet); } else { /* * Schedule tx_dispatcher_work to on the cpu which * in turn will schedule tx_tasklet. */ dhd_work_schedule_on(&dhd->tx_dispatcher_work, cpu); } preempt_enable(); } /** * dhd_lb_tx_dispatch - load balance by dispatching the tx_tasklet * on another cpu. The tx_tasklet will take care of actually putting * the skbs into appropriate flow ring and ringing H2D interrupt * * @dhdp: pointer to dhd_pub object */ static void dhd_lb_tx_dispatch(dhd_pub_t *dhdp) { dhd_info_t *dhd = dhdp->info; int curr_cpu; curr_cpu = get_cpu(); put_cpu(); /* Record the CPU in which the TX request from Network stack came */ atomic_set(&dhd->net_tx_cpu, curr_cpu); /* Schedule the work to dispatch ... */ dhd_tx_dispatcher_fn(dhdp); } #endif /* DHD_LB_TXP */ #if defined(DHD_LB_RXP) /** * dhd_napi_poll - Load balance napi poll function to process received * packets and send up the network stack using netif_receive_skb() * * @napi: napi object in which context this poll function is invoked * @budget: number of packets to be processed. * * Fetch the dhd_info given the rx_napi_struct. Move all packets from the * rx_napi_queue into a local rx_process_queue (lock and queue move and unlock). * Dequeue each packet from head of rx_process_queue, fetch the ifid from the * packet tag and sendup. */ static int dhd_napi_poll(struct napi_struct *napi, int budget) { int ifid; const int pkt_count = 1; const int chan = 0; struct sk_buff * skb; unsigned long flags; struct dhd_info *dhd; int processed = 0; struct sk_buff_head rx_process_queue; #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" #endif dhd = container_of(napi, struct dhd_info, rx_napi_struct); #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic pop #endif DHD_INFO(("%s napi_queue<%d> budget<%d>\n", __FUNCTION__, skb_queue_len(&dhd->rx_napi_queue), budget)); __skb_queue_head_init(&rx_process_queue); /* extract the entire rx_napi_queue into local rx_process_queue */ spin_lock_irqsave(&dhd->rx_napi_queue.lock, flags); skb_queue_splice_tail_init(&dhd->rx_napi_queue, &rx_process_queue); spin_unlock_irqrestore(&dhd->rx_napi_queue.lock, flags); while ((skb = __skb_dequeue(&rx_process_queue)) != NULL) { OSL_PREFETCH(skb->data); ifid = DHD_PKTTAG_IFID((dhd_pkttag_fr_t *)PKTTAG(skb)); DHD_INFO(("%s dhd_rx_frame pkt<%p> ifid<%d>\n", __FUNCTION__, skb, ifid)); dhd_rx_frame(&dhd->pub, ifid, skb, pkt_count, chan); processed++; } DHD_LB_STATS_UPDATE_NAPI_HISTO(&dhd->pub, processed); DHD_INFO(("%s processed %d\n", __FUNCTION__, processed)); napi_complete(napi); return budget - 1; } /** * dhd_napi_schedule - Place the napi struct into the current cpus softnet napi * poll list. This function may be invoked via the smp_call_function_single * from a remote CPU. * * This function will essentially invoke __raise_softirq_irqoff(NET_RX_SOFTIRQ) * after the napi_struct is added to the softnet data's poll_list * * @info: pointer to a dhd_info struct */ static void dhd_napi_schedule(void *info) { dhd_info_t *dhd = (dhd_info_t *)info; DHD_INFO(("%s rx_napi_struct<%p> on cpu<%d>\n", __FUNCTION__, &dhd->rx_napi_struct, atomic_read(&dhd->rx_napi_cpu))); /* add napi_struct to softnet data poll list and raise NET_RX_SOFTIRQ */ if (napi_schedule_prep(&dhd->rx_napi_struct)) { __napi_schedule(&dhd->rx_napi_struct); DHD_LB_STATS_PERCPU_ARR_INCR(dhd->napi_percpu_run_cnt); } /* * If the rx_napi_struct was already running, then we let it complete * processing all its packets. The rx_napi_struct may only run on one * core at a time, to avoid out-of-order handling. */ } /** * dhd_napi_schedule_on - API to schedule on a desired CPU core a NET_RX_SOFTIRQ * action after placing the dhd's rx_process napi object in the the remote CPU's * softnet data's poll_list. * * @dhd: dhd_info which has the rx_process napi object * @on_cpu: desired remote CPU id */ static INLINE int dhd_napi_schedule_on(dhd_info_t *dhd, int on_cpu) { int wait = 0; /* asynchronous IPI */ DHD_INFO(("%s dhd<%p> napi<%p> on_cpu<%d>\n", __FUNCTION__, dhd, &dhd->rx_napi_struct, on_cpu)); if (smp_call_function_single(on_cpu, dhd_napi_schedule, dhd, wait)) { DHD_ERROR(("%s smp_call_function_single on_cpu<%d> failed\n", __FUNCTION__, on_cpu)); } DHD_LB_STATS_INCR(dhd->napi_sched_cnt); return 0; } /* * Call get_online_cpus/put_online_cpus around dhd_napi_schedule_on * Why should we do this? * The candidacy algorithm is run from the call back function * registered to CPU hotplug notifier. This call back happens from Worker * context. The dhd_napi_schedule_on is also from worker context. * Note that both of this can run on two different CPUs at the same time. * So we can possibly have a window where a given CPUn is being brought * down from CPUm while we try to run a function on CPUn. * To prevent this its better have the whole code to execute an SMP * function under get_online_cpus. * This function call ensures that hotplug mechanism does not kick-in * until we are done dealing with online CPUs * If the hotplug worker is already running, no worries because the * candidacy algo would then reflect the same in dhd->rx_napi_cpu. * * The below mentioned code structure is proposed in * https://www.kernel.org/doc/Documentation/cpu-hotplug.txt * for the question * Q: I need to ensure that a particular cpu is not removed when there is some * work specific to this cpu is in progress * * According to the documentation calling get_online_cpus is NOT required, if * we are running from tasklet context. Since dhd_rx_napi_dispatcher_fn can * run from Work Queue context we have to call these functions */ static void dhd_rx_napi_dispatcher_fn(struct work_struct * work) { #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" #endif struct dhd_info *dhd = container_of(work, struct dhd_info, rx_napi_dispatcher_work); #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic pop #endif int cpu; get_online_cpus(); cpu = atomic_read(&dhd->rx_napi_cpu); if (!cpu_online(cpu)) dhd_napi_schedule(dhd); else dhd_napi_schedule_on(dhd, cpu); put_online_cpus(); } /** * dhd_lb_rx_napi_dispatch - load balance by dispatching the rx_napi_struct * to run on another CPU. The rx_napi_struct's poll function will retrieve all * the packets enqueued into the rx_napi_queue and sendup. * The producer's rx packet queue is appended to the rx_napi_queue before * dispatching the rx_napi_struct. */ void dhd_lb_rx_napi_dispatch(dhd_pub_t *dhdp) { unsigned long flags; dhd_info_t *dhd = dhdp->info; int curr_cpu; int on_cpu; if (dhd->rx_napi_netdev == NULL) { DHD_ERROR(("%s: dhd->rx_napi_netdev is NULL\n", __FUNCTION__)); return; } DHD_INFO(("%s append napi_queue<%d> pend_queue<%d>\n", __FUNCTION__, skb_queue_len(&dhd->rx_napi_queue), skb_queue_len(&dhd->rx_pend_queue))); /* append the producer's queue of packets to the napi's rx process queue */ spin_lock_irqsave(&dhd->rx_napi_queue.lock, flags); skb_queue_splice_tail_init(&dhd->rx_pend_queue, &dhd->rx_napi_queue); spin_unlock_irqrestore(&dhd->rx_napi_queue.lock, flags); /* * If the destination CPU is NOT online or is same as current CPU * no need to schedule the work */ curr_cpu = get_cpu(); put_cpu(); on_cpu = atomic_read(&dhd->rx_napi_cpu); if ((on_cpu == curr_cpu) || (!cpu_online(on_cpu))) { dhd_napi_schedule(dhd); } else { schedule_work(&dhd->rx_napi_dispatcher_work); } } /** * dhd_lb_rx_pkt_enqueue - Enqueue the packet into the producer's queue */ void dhd_lb_rx_pkt_enqueue(dhd_pub_t *dhdp, void *pkt, int ifidx) { dhd_info_t *dhd = dhdp->info; DHD_INFO(("%s enqueue pkt<%p> ifidx<%d> pend_queue<%d>\n", __FUNCTION__, pkt, ifidx, skb_queue_len(&dhd->rx_pend_queue))); DHD_PKTTAG_SET_IFID((dhd_pkttag_fr_t *)PKTTAG(pkt), ifidx); __skb_queue_tail(&dhd->rx_pend_queue, pkt); } #endif /* DHD_LB_RXP */ #endif /* DHD_LB */ /** Returns dhd iflist index corresponding the the bssidx provided by apps */ int dhd_bssidx2idx(dhd_pub_t *dhdp, uint32 bssidx) { dhd_if_t *ifp; dhd_info_t *dhd = dhdp->info; int i; ASSERT(bssidx < DHD_MAX_IFS); ASSERT(dhdp); for (i = 0; i < DHD_MAX_IFS; i++) { ifp = dhd->iflist[i]; if (ifp && (ifp->bssidx == bssidx)) { DHD_TRACE(("Index manipulated for %s from %d to %d\n", ifp->name, bssidx, i)); break; } } return i; } static inline int dhd_rxf_enqueue(dhd_pub_t *dhdp, void* skb) { uint32 store_idx; uint32 sent_idx; if (!skb) { DHD_ERROR(("dhd_rxf_enqueue: NULL skb!!!\n")); return BCME_ERROR; } dhd_os_rxflock(dhdp); store_idx = dhdp->store_idx; sent_idx = dhdp->sent_idx; if (dhdp->skbbuf[store_idx] != NULL) { /* Make sure the previous packets are processed */ dhd_os_rxfunlock(dhdp); #ifdef RXF_DEQUEUE_ON_BUSY DHD_TRACE(("dhd_rxf_enqueue: pktbuf not consumed %p, store idx %d sent idx %d\n", skb, store_idx, sent_idx)); return BCME_BUSY; #else /* RXF_DEQUEUE_ON_BUSY */ DHD_ERROR(("dhd_rxf_enqueue: pktbuf not consumed %p, store idx %d sent idx %d\n", skb, store_idx, sent_idx)); /* removed msleep here, should use wait_event_timeout if we * want to give rx frame thread a chance to run */ #if defined(WAIT_DEQUEUE) OSL_SLEEP(1); #endif return BCME_ERROR; #endif /* RXF_DEQUEUE_ON_BUSY */ } DHD_TRACE(("dhd_rxf_enqueue: Store SKB %p. idx %d -> %d\n", skb, store_idx, (store_idx + 1) & (MAXSKBPEND - 1))); dhdp->skbbuf[store_idx] = skb; dhdp->store_idx = (store_idx + 1) & (MAXSKBPEND - 1); dhd_os_rxfunlock(dhdp); return BCME_OK; } static inline void* dhd_rxf_dequeue(dhd_pub_t *dhdp) { uint32 store_idx; uint32 sent_idx; void *skb; dhd_os_rxflock(dhdp); store_idx = dhdp->store_idx; sent_idx = dhdp->sent_idx; skb = dhdp->skbbuf[sent_idx]; if (skb == NULL) { dhd_os_rxfunlock(dhdp); DHD_ERROR(("dhd_rxf_dequeue: Dequeued packet is NULL, store idx %d sent idx %d\n", store_idx, sent_idx)); return NULL; } dhdp->skbbuf[sent_idx] = NULL; dhdp->sent_idx = (sent_idx + 1) & (MAXSKBPEND - 1); DHD_TRACE(("dhd_rxf_dequeue: netif_rx_ni(%p), sent idx %d\n", skb, sent_idx)); dhd_os_rxfunlock(dhdp); return skb; } int dhd_process_cid_mac(dhd_pub_t *dhdp, bool prepost) { if (prepost) { /* pre process */ dhd_read_cis(dhdp); dhd_check_module_cid(dhdp); dhd_check_module_mac(dhdp); dhd_set_macaddr_from_file(dhdp); } else { /* post process */ dhd_write_macaddr(&dhdp->mac); dhd_clear_cis(dhdp); } return 0; } // terence 20160615: fix building error if ARP_OFFLOAD_SUPPORT removed #if defined(PKT_FILTER_SUPPORT) #if defined(ARP_OFFLOAD_SUPPORT) && !defined(GAN_LITE_NAT_KEEPALIVE_FILTER) static bool _turn_on_arp_filter(dhd_pub_t *dhd, int op_mode_param) { bool _apply = FALSE; /* In case of IBSS mode, apply arp pkt filter */ if (op_mode_param & DHD_FLAG_IBSS_MODE) { _apply = TRUE; goto exit; } /* In case of P2P GO or GC, apply pkt filter to pass arp pkt to host */ if (op_mode_param & (DHD_FLAG_P2P_GC_MODE | DHD_FLAG_P2P_GO_MODE)) { _apply = TRUE; goto exit; } exit: return _apply; } #endif /* !GAN_LITE_NAT_KEEPALIVE_FILTER */ void dhd_set_packet_filter(dhd_pub_t *dhd) { int i; DHD_TRACE(("%s: enter\n", __FUNCTION__)); if (dhd_pkt_filter_enable) { for (i = 0; i < dhd->pktfilter_count; i++) { dhd_pktfilter_offload_set(dhd, dhd->pktfilter[i]); } } } void dhd_enable_packet_filter(int value, dhd_pub_t *dhd) { int i; DHD_PRINT("%s: enter, value = %d\n", __FUNCTION__, value); if ((dhd->op_mode & DHD_FLAG_HOSTAP_MODE) && value && !dhd_conf_get_insuspend(dhd, AP_FILTER_IN_SUSPEND)) { DHD_ERROR(("%s: DHD_FLAG_HOSTAP_MODE\n", __FUNCTION__)); return; } /* 1 - Enable packet filter, only allow unicast packet to send up */ /* 0 - Disable packet filter */ if (dhd_pkt_filter_enable && (!value || (dhd_support_sta_mode(dhd) && !dhd->dhcp_in_progress) || dhd_conf_get_insuspend(dhd, AP_FILTER_IN_SUSPEND))) { for (i = 0; i < dhd->pktfilter_count; i++) { // terence 20160615: fix building error if ARP_OFFLOAD_SUPPORT removed #if defined(ARP_OFFLOAD_SUPPORT) && !defined(GAN_LITE_NAT_KEEPALIVE_FILTER) if (value && (i == DHD_ARP_FILTER_NUM) && !_turn_on_arp_filter(dhd, dhd->op_mode)) { DHD_TRACE(("Do not turn on ARP white list pkt filter:" "val %d, cnt %d, op_mode 0x%x\n", value, i, dhd->op_mode)); continue; } #endif /* !GAN_LITE_NAT_KEEPALIVE_FILTER */ dhd_pktfilter_offload_enable(dhd, dhd->pktfilter[i], value, dhd_master_mode); } } } int dhd_packet_filter_add_remove(dhd_pub_t *dhdp, int add_remove, int num) { char *filterp = NULL; int filter_id = 0; switch (num) { case DHD_BROADCAST_FILTER_NUM: filterp = "101 0 0 0 0xFFFFFFFFFFFF 0xFFFFFFFFFFFF"; filter_id = 101; break; case DHD_MULTICAST4_FILTER_NUM: filter_id = 102; if (FW_SUPPORTED((dhdp), pf6)) { if (dhdp->pktfilter[num] != NULL) { dhd_pktfilter_offload_delete(dhdp, filter_id); dhdp->pktfilter[num] = NULL; } if (!add_remove) { filterp = DISCARD_IPV4_MCAST; add_remove = 1; break; } } filterp = "102 0 0 0 0xFFFFFF 0x01005E"; break; case DHD_MULTICAST6_FILTER_NUM: filter_id = 103; if (FW_SUPPORTED((dhdp), pf6)) { if (dhdp->pktfilter[num] != NULL) { dhd_pktfilter_offload_delete(dhdp, filter_id); dhdp->pktfilter[num] = NULL; } if (!add_remove) { filterp = DISCARD_IPV6_MCAST; add_remove = 1; break; } } filterp = "103 0 0 0 0xFFFF 0x3333"; break; case DHD_MDNS_FILTER_NUM: filterp = "104 0 0 0 0xFFFFFFFFFFFF 0x01005E0000FB"; filter_id = 104; break; case DHD_ARP_FILTER_NUM: filterp = "105 0 0 12 0xFFFF 0x0806"; filter_id = 105; break; case DHD_BROADCAST_ARP_FILTER_NUM: filterp = "106 0 0 0 0xFFFFFFFFFFFF0000000000000806" " 0xFFFFFFFFFFFF0000000000000806"; filter_id = 106; break; default: return -EINVAL; } /* Add filter */ if (add_remove) { dhdp->pktfilter[num] = filterp; dhd_pktfilter_offload_set(dhdp, dhdp->pktfilter[num]); } else { /* Delete filter */ if (dhdp->pktfilter[num]) { dhd_pktfilter_offload_delete(dhdp, filter_id); dhdp->pktfilter[num] = NULL; } } return 0; } #endif /* PKT_FILTER_SUPPORT */ static int dhd_set_suspend(int value, dhd_pub_t *dhd) { #ifndef SUPPORT_PM2_ONLY int power_mode = PM_MAX; #endif /* SUPPORT_PM2_ONLY */ #ifdef SUPPORT_SENSORHUB shub_control_t shub_ctl; #endif /* SUPPORT_SENSORHUB */ /* wl_pkt_filter_enable_t enable_parm; */ int bcn_li_dtim = 0; /* Default bcn_li_dtim in resume mode is 0 */ int ret = 0; #ifdef DHD_USE_EARLYSUSPEND #ifdef CUSTOM_BCN_TIMEOUT_IN_SUSPEND int bcn_timeout = 0; #endif /* CUSTOM_BCN_TIMEOUT_IN_SUSPEND */ #ifdef CUSTOM_ROAM_TIME_THRESH_IN_SUSPEND int roam_time_thresh = 0; /* (ms) */ #endif /* CUSTOM_ROAM_TIME_THRESH_IN_SUSPEND */ #ifndef ENABLE_FW_ROAM_SUSPEND uint roamvar = 1; #endif /* ENABLE_FW_ROAM_SUSPEND */ #ifdef ENABLE_BCN_LI_BCN_WAKEUP int bcn_li_bcn; #endif /* ENABLE_BCN_LI_BCN_WAKEUP */ uint nd_ra_filter = 0; #endif /* DHD_USE_EARLYSUSPEND */ #ifdef PASS_ALL_MCAST_PKTS struct dhd_info *dhdinfo; uint32 allmulti; uint i; #endif /* PASS_ALL_MCAST_PKTS */ #ifdef ENABLE_IPMCAST_FILTER int ipmcast_l2filter; #endif /* ENABLE_IPMCAST_FILTER */ #ifdef DYNAMIC_SWOOB_DURATION #ifndef CUSTOM_INTR_WIDTH #define CUSTOM_INTR_WIDTH 100 int intr_width = 0; #endif /* CUSTOM_INTR_WIDTH */ #endif /* DYNAMIC_SWOOB_DURATION */ #if defined(BCMPCIE) int lpas = 0; int dtim_period = 0; int bcn_interval = 0; int bcn_to_dly = 0; #ifndef CUSTOM_ROAM_TIME_THRESH_IN_SUSPEND int bcn_timeout = CUSTOM_BCN_TIMEOUT_SETTING; #else bcn_timeout = CUSTOM_BCN_TIMEOUT_SETTING; #endif /* CUSTOM_ROAM_TIME_THRESH_IN_SUSPEND */ #endif /* OEM_ANDROID && BCMPCIE */ if (!dhd) return -ENODEV; #ifdef PASS_ALL_MCAST_PKTS dhdinfo = dhd->info; #endif /* PASS_ALL_MCAST_PKTS */ DHD_TRACE(("%s: enter, value = %d in_suspend=%d\n", __FUNCTION__, value, dhd->in_suspend)); dhd_suspend_lock(dhd); #ifdef CUSTOM_SET_CPUCORE DHD_TRACE(("%s set cpucore(suspend%d)\n", __FUNCTION__, value)); /* set specific cpucore */ dhd_set_cpucore(dhd, TRUE); #endif /* CUSTOM_SET_CPUCORE */ if (dhd->up) { if (value && dhd->in_suspend) { #ifdef PKT_FILTER_SUPPORT dhd->early_suspended = 1; #endif /* Kernel suspended */ DHD_ERROR(("%s: force extra suspend setting\n", __FUNCTION__)); #ifndef SUPPORT_PM2_ONLY dhd_wl_ioctl_cmd(dhd, WLC_SET_PM, (char *)&power_mode, sizeof(power_mode), TRUE, 0); #endif /* SUPPORT_PM2_ONLY */ #ifdef PKT_FILTER_SUPPORT /* Enable packet filter, * only allow unicast packet to send up */ dhd_enable_packet_filter(1, dhd); #ifdef APF dhd_dev_apf_enable_filter(dhd_linux_get_primary_netdev(dhd)); #endif /* APF */ #endif /* PKT_FILTER_SUPPORT */ #ifdef SUPPORT_SENSORHUB shub_ctl.enable = 1; shub_ctl.cmd = 0x000; shub_ctl.op_mode = 1; shub_ctl.interval = 0; if (dhd->info->shub_enable == 1) { ret = dhd_iovar(dhd, 0, "shub_msreq", (char *)&shub_ctl, sizeof(shub_ctl), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s SensorHub MS start: failed %d\n", __FUNCTION__, ret)); } } #endif /* SUPPORT_SENSORHUB */ #ifdef PASS_ALL_MCAST_PKTS allmulti = 0; for (i = 0; i < DHD_MAX_IFS; i++) { if (dhdinfo->iflist[i] && dhdinfo->iflist[i]->net) dhd_iovar(dhd, i, "allmulti", (char *)&allmulti, sizeof(allmulti), NULL, 0, TRUE); } #endif /* PASS_ALL_MCAST_PKTS */ /* If DTIM skip is set up as default, force it to wake * each third DTIM for better power savings. Note that * one side effect is a chance to miss BC/MC packet. */ #ifdef WLTDLS /* Do not set bcn_li_ditm on WFD mode */ if (dhd->tdls_mode) { bcn_li_dtim = 0; } else #endif /* WLTDLS */ #if defined(BCMPCIE) bcn_li_dtim = dhd_get_suspend_bcn_li_dtim(dhd, &dtim_period, &bcn_interval); dhd_iovar(dhd, 0, "bcn_li_dtim", (char *)&bcn_li_dtim, sizeof(bcn_li_dtim), NULL, 0, TRUE); if ((bcn_li_dtim * dtim_period * bcn_interval) >= MIN_DTIM_FOR_ROAM_THRES_EXTEND) { /* * Increase max roaming threshold from 2 secs to 8 secs * the real roam threshold is MIN(max_roam_threshold, * bcn_timeout/2) */ lpas = 1; dhd_iovar(dhd, 0, "lpas", (char *)&lpas, sizeof(lpas), NULL, 0, TRUE); bcn_to_dly = 1; /* * if bcn_to_dly is 1, the real roam threshold is * MIN(max_roam_threshold, bcn_timeout -1); * notify link down event after roaming procedure complete * if we hit bcn_timeout while we are in roaming progress. */ dhd_iovar(dhd, 0, "bcn_to_dly", (char *)&bcn_to_dly, sizeof(bcn_to_dly), NULL, 0, TRUE); /* Increase beacon timeout to 6 secs or use bigger one */ bcn_timeout = max(bcn_timeout, BCN_TIMEOUT_IN_SUSPEND); dhd_iovar(dhd, 0, "bcn_timeout", (char *)&bcn_timeout, sizeof(bcn_timeout), NULL, 0, TRUE); } #else bcn_li_dtim = dhd_get_suspend_bcn_li_dtim(dhd); if (dhd_iovar(dhd, 0, "bcn_li_dtim", (char *)&bcn_li_dtim, sizeof(bcn_li_dtim), NULL, 0, TRUE) < 0) DHD_ERROR(("%s: set dtim failed\n", __FUNCTION__)); #endif /* OEM_ANDROID && BCMPCIE */ #ifdef DHD_USE_EARLYSUSPEND #ifdef CUSTOM_BCN_TIMEOUT_IN_SUSPEND bcn_timeout = CUSTOM_BCN_TIMEOUT_IN_SUSPEND; dhd_iovar(dhd, 0, "bcn_timeout", (char *)&bcn_timeout, sizeof(bcn_timeout), NULL, 0, TRUE); #endif /* CUSTOM_BCN_TIMEOUT_IN_SUSPEND */ #ifdef CUSTOM_ROAM_TIME_THRESH_IN_SUSPEND roam_time_thresh = CUSTOM_ROAM_TIME_THRESH_IN_SUSPEND; dhd_iovar(dhd, 0, "roam_time_thresh", (char *)&roam_time_thresh, sizeof(roam_time_thresh), NULL, 0, TRUE); #endif /* CUSTOM_ROAM_TIME_THRESH_IN_SUSPEND */ #ifndef ENABLE_FW_ROAM_SUSPEND /* Disable firmware roaming during suspend */ dhd_iovar(dhd, 0, "roam_off", (char *)&roamvar, sizeof(roamvar), NULL, 0, TRUE); #endif /* ENABLE_FW_ROAM_SUSPEND */ #ifdef ENABLE_BCN_LI_BCN_WAKEUP bcn_li_bcn = 0; dhd_iovar(dhd, 0, "bcn_li_bcn", (char *)&bcn_li_bcn, sizeof(bcn_li_bcn), NULL, 0, TRUE); #endif /* ENABLE_BCN_LI_BCN_WAKEUP */ #ifdef NDO_CONFIG_SUPPORT if (dhd->ndo_enable) { if (!dhd->ndo_host_ip_overflow) { /* enable ND offload on suspend */ ret = dhd_ndo_enable(dhd, 1); if (ret < 0) { DHD_ERROR(("%s: failed to enable NDO\n", __FUNCTION__)); } } else { DHD_INFO(("%s: NDO disabled on suspend due to" "HW capacity\n", __FUNCTION__)); } } #endif /* NDO_CONFIG_SUPPORT */ #ifndef APF if (FW_SUPPORTED(dhd, ndoe)) #else if (FW_SUPPORTED(dhd, ndoe) && !FW_SUPPORTED(dhd, apf)) #endif /* APF */ { /* enable IPv6 RA filter in firmware during suspend */ nd_ra_filter = 1; ret = dhd_iovar(dhd, 0, "nd_ra_filter_enable", (char *)&nd_ra_filter, sizeof(nd_ra_filter), NULL, 0, TRUE); if (ret < 0) DHD_ERROR(("failed to set nd_ra_filter (%d)\n", ret)); } dhd_os_suppress_logging(dhd, TRUE); #ifdef ENABLE_IPMCAST_FILTER ipmcast_l2filter = 1; ret = dhd_iovar(dhd, 0, "ipmcast_l2filter", (char *)&ipmcast_l2filter, sizeof(ipmcast_l2filter), NULL, 0, TRUE); #endif /* ENABLE_IPMCAST_FILTER */ #ifdef DYNAMIC_SWOOB_DURATION intr_width = CUSTOM_INTR_WIDTH; ret = dhd_iovar(dhd, 0, "bus:intr_width", (char *)&intr_width, sizeof(intr_width), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("failed to set intr_width (%d)\n", ret)); } #endif /* DYNAMIC_SWOOB_DURATION */ #endif /* DHD_USE_EARLYSUSPEND */ } else { #ifdef PKT_FILTER_SUPPORT dhd->early_suspended = 0; #endif /* Kernel resumed */ DHD_PRINT("%s: Remove extra suspend setting \n", __FUNCTION__); #ifdef SUPPORT_SENSORHUB shub_ctl.enable = 1; shub_ctl.cmd = 0x000; shub_ctl.op_mode = 0; shub_ctl.interval = 0; if (dhd->info->shub_enable == 1) { ret = dhd_iovar(dhd, 0, "shub_msreq", (char *)&shub_ctl, sizeof(shub_ctl), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s SensorHub MS stop: failed %d\n", __FUNCTION__, ret)); } } #endif /* SUPPORT_SENSORHUB */ #ifdef DYNAMIC_SWOOB_DURATION intr_width = 0; ret = dhd_iovar(dhd, 0, "bus:intr_width", (char *)&intr_width, sizeof(intr_width), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("failed to set intr_width (%d)\n", ret)); } #endif /* DYNAMIC_SWOOB_DURATION */ #ifndef SUPPORT_PM2_ONLY power_mode = PM_FAST; dhd_wl_ioctl_cmd(dhd, WLC_SET_PM, (char *)&power_mode, sizeof(power_mode), TRUE, 0); #endif /* SUPPORT_PM2_ONLY */ #ifdef PKT_FILTER_SUPPORT /* disable pkt filter */ dhd_enable_packet_filter(0, dhd); #ifdef APF dhd_dev_apf_disable_filter(dhd_linux_get_primary_netdev(dhd)); #endif /* APF */ #endif /* PKT_FILTER_SUPPORT */ #ifdef PASS_ALL_MCAST_PKTS allmulti = 1; for (i = 0; i < DHD_MAX_IFS; i++) { if (dhdinfo->iflist[i] && dhdinfo->iflist[i]->net) dhd_iovar(dhd, i, "allmulti", (char *)&allmulti, sizeof(allmulti), NULL, 0, TRUE); } #endif /* PASS_ALL_MCAST_PKTS */ #if defined(BCMPCIE) /* restore pre-suspend setting */ ret = dhd_iovar(dhd, 0, "bcn_li_dtim", (char *)&bcn_li_dtim, sizeof(bcn_li_dtim), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s:bcn_li_ditm fail:%d\n", __FUNCTION__, ret)); } dhd_iovar(dhd, 0, "lpas", (char *)&lpas, sizeof(lpas), NULL, 0, TRUE); dhd_iovar(dhd, 0, "bcn_to_dly", (char *)&bcn_to_dly, sizeof(bcn_to_dly), NULL, 0, TRUE); dhd_iovar(dhd, 0, "bcn_timeout", (char *)&bcn_timeout, sizeof(bcn_timeout), NULL, 0, TRUE); #else /* restore pre-suspend setting for dtim_skip */ ret = dhd_iovar(dhd, 0, "bcn_li_dtim", (char *)&bcn_li_dtim, sizeof(bcn_li_dtim), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s:bcn_li_ditm fail:%d\n", __FUNCTION__, ret)); } #endif /* OEM_ANDROID && BCMPCIE */ #ifdef DHD_USE_EARLYSUSPEND #ifdef CUSTOM_BCN_TIMEOUT_IN_SUSPEND bcn_timeout = CUSTOM_BCN_TIMEOUT; dhd_iovar(dhd, 0, "bcn_timeout", (char *)&bcn_timeout, sizeof(bcn_timeout), NULL, 0, TRUE); #endif /* CUSTOM_BCN_TIMEOUT_IN_SUSPEND */ #ifdef CUSTOM_ROAM_TIME_THRESH_IN_SUSPEND roam_time_thresh = 2000; dhd_iovar(dhd, 0, "roam_time_thresh", (char *)&roam_time_thresh, sizeof(roam_time_thresh), NULL, 0, TRUE); #endif /* CUSTOM_ROAM_TIME_THRESH_IN_SUSPEND */ #ifndef ENABLE_FW_ROAM_SUSPEND roamvar = dhd_roam_disable; dhd_iovar(dhd, 0, "roam_off", (char *)&roamvar, sizeof(roamvar), NULL, 0, TRUE); #endif /* ENABLE_FW_ROAM_SUSPEND */ #ifdef ENABLE_BCN_LI_BCN_WAKEUP bcn_li_bcn = 1; dhd_iovar(dhd, 0, "bcn_li_bcn", (char *)&bcn_li_bcn, sizeof(bcn_li_bcn), NULL, 0, TRUE); #endif /* ENABLE_BCN_LI_BCN_WAKEUP */ #ifdef NDO_CONFIG_SUPPORT if (dhd->ndo_enable) { /* Disable ND offload on resume */ ret = dhd_ndo_enable(dhd, 0); if (ret < 0) { DHD_ERROR(("%s: failed to disable NDO\n", __FUNCTION__)); } } #endif /* NDO_CONFIG_SUPPORT */ #ifndef APF if (FW_SUPPORTED(dhd, ndoe)) #else if (FW_SUPPORTED(dhd, ndoe) && !FW_SUPPORTED(dhd, apf)) #endif /* APF */ { /* disable IPv6 RA filter in firmware during suspend */ nd_ra_filter = 0; ret = dhd_iovar(dhd, 0, "nd_ra_filter_enable", (char *)&nd_ra_filter, sizeof(nd_ra_filter), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("failed to set nd_ra_filter (%d)\n", ret)); } } dhd_os_suppress_logging(dhd, FALSE); #ifdef ENABLE_IPMCAST_FILTER ipmcast_l2filter = 0; ret = dhd_iovar(dhd, 0, "ipmcast_l2filter", (char *)&ipmcast_l2filter, sizeof(ipmcast_l2filter), NULL, 0, TRUE); #endif /* ENABLE_IPMCAST_FILTER */ #endif /* DHD_USE_EARLYSUSPEND */ } } dhd_suspend_unlock(dhd); return 0; } static int dhd_suspend_resume_helper(struct dhd_info *dhd, int val, int force) { dhd_pub_t *dhdp = &dhd->pub; int ret = 0; DHD_OS_WAKE_LOCK(dhdp); DHD_PERIM_LOCK(dhdp); /* Set flag when early suspend was called */ dhdp->in_suspend = val; if ((force || !dhdp->suspend_disable_flag) && (dhd_support_sta_mode(dhdp) || dhd_conf_get_insuspend(dhdp, ALL_IN_SUSPEND))) { ret = dhd_set_suspend(val, dhdp); } DHD_PERIM_UNLOCK(dhdp); DHD_OS_WAKE_UNLOCK(dhdp); return ret; } #if defined(CONFIG_HAS_EARLYSUSPEND) && defined(DHD_USE_EARLYSUSPEND) static void dhd_early_suspend(struct early_suspend *h) { struct dhd_info *dhd = container_of(h, struct dhd_info, early_suspend); DHD_TRACE_HW4(("%s: enter\n", __FUNCTION__)); if (dhd && dhd->pub.conf->suspend_mode == EARLY_SUSPEND) { dhd_suspend_resume_helper(dhd, 1, 0); dhd_conf_set_suspend_resume(&dhd->pub, 1); } } static void dhd_late_resume(struct early_suspend *h) { struct dhd_info *dhd = container_of(h, struct dhd_info, early_suspend); DHD_TRACE_HW4(("%s: enter\n", __FUNCTION__)); if (dhd && dhd->pub.conf->suspend_mode == EARLY_SUSPEND) { dhd_conf_set_suspend_resume(&dhd->pub, 0); dhd_suspend_resume_helper(dhd, 0, 0); } } #endif /* CONFIG_HAS_EARLYSUSPEND && DHD_USE_EARLYSUSPEND */ /* * Generalized timeout mechanism. Uses spin sleep with exponential back-off until * the sleep time reaches one jiffy, then switches over to task delay. Usage: * * dhd_timeout_start(&tmo, usec); * while (!dhd_timeout_expired(&tmo)) * if (poll_something()) * break; * if (dhd_timeout_expired(&tmo)) * fatal(); */ void dhd_timeout_start(dhd_timeout_t *tmo, uint usec) { tmo->limit = usec; tmo->increment = 0; tmo->elapsed = 0; tmo->tick = jiffies_to_usecs(1); } int dhd_timeout_expired(dhd_timeout_t *tmo) { /* Does nothing the first call */ if (tmo->increment == 0) { tmo->increment = 1; return 0; } if (tmo->elapsed >= tmo->limit) return 1; /* Add the delay that's about to take place */ tmo->elapsed += tmo->increment; if ((!CAN_SLEEP()) || tmo->increment < tmo->tick) { OSL_DELAY(tmo->increment); tmo->increment *= 2; if (tmo->increment > tmo->tick) tmo->increment = tmo->tick; } else { wait_queue_head_t delay_wait; DECLARE_WAITQUEUE(wait, current); init_waitqueue_head(&delay_wait); add_wait_queue(&delay_wait, &wait); set_current_state(TASK_INTERRUPTIBLE); (void)schedule_timeout(1); remove_wait_queue(&delay_wait, &wait); set_current_state(TASK_RUNNING); } return 0; } int dhd_net2idx(dhd_info_t *dhd, struct net_device *net) { int i = 0; if (!dhd) { DHD_ERROR(("%s : DHD_BAD_IF return\n", __FUNCTION__)); return DHD_BAD_IF; } while (i < DHD_MAX_IFS) { if (dhd->iflist[i] && dhd->iflist[i]->net && (dhd->iflist[i]->net == net)) return i; i++; } return DHD_BAD_IF; } struct net_device * dhd_idx2net(void *pub, int ifidx) { struct dhd_pub *dhd_pub = (struct dhd_pub *)pub; struct dhd_info *dhd_info; if (!dhd_pub || ifidx < 0 || ifidx >= DHD_MAX_IFS) return NULL; dhd_info = dhd_pub->info; if (dhd_info && dhd_info->iflist[ifidx]) return dhd_info->iflist[ifidx]->net; return NULL; } int dhd_ifname2idx(dhd_info_t *dhd, char *name) { int i = DHD_MAX_IFS; ASSERT(dhd); if (name == NULL || *name == '\0') return 0; while (--i > 0) if (dhd->iflist[i] && !strncmp(dhd->iflist[i]->dngl_name, name, IFNAMSIZ)) break; DHD_TRACE(("%s: return idx %d for \"%s\"\n", __FUNCTION__, i, name)); return i; /* default - the primary interface */ } char * dhd_ifname(dhd_pub_t *dhdp, int ifidx) { dhd_info_t *dhd = (dhd_info_t *)dhdp->info; ASSERT(dhd); if (ifidx < 0 || ifidx >= DHD_MAX_IFS) { DHD_ERROR(("%s: ifidx %d out of range\n", __FUNCTION__, ifidx)); return ""; } if (dhd->iflist[ifidx] == NULL) { DHD_ERROR(("%s: null i/f %d\n", __FUNCTION__, ifidx)); return ""; } if (dhd->iflist[ifidx]->net) return dhd->iflist[ifidx]->net->name; return ""; } uint8 * dhd_bssidx2bssid(dhd_pub_t *dhdp, int idx) { int i; dhd_info_t *dhd = (dhd_info_t *)dhdp; ASSERT(dhd); for (i = 0; i < DHD_MAX_IFS; i++) if (dhd->iflist[i] && dhd->iflist[i]->bssidx == idx) return dhd->iflist[i]->mac_addr; return NULL; } static void _dhd_set_multicast_list(dhd_info_t *dhd, int ifidx) { struct net_device *dev; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35) struct netdev_hw_addr *ha; #else struct dev_mc_list *mclist; #endif uint32 allmulti, cnt; wl_ioctl_t ioc; char *buf, *bufp; uint buflen; int ret; if (!dhd->iflist[ifidx]) { DHD_ERROR(("%s : dhd->iflist[%d] was NULL\n", __FUNCTION__, ifidx)); return; } dev = dhd->iflist[ifidx]->net; if (!dev) return; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27) netif_addr_lock_bh(dev); #endif /* LINUX >= 2.6.27 */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35) cnt = netdev_mc_count(dev); #else cnt = dev->mc_count; #endif /* LINUX >= 2.6.35 */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27) netif_addr_unlock_bh(dev); #endif /* LINUX >= 2.6.27 */ /* Determine initial value of allmulti flag */ allmulti = (dev->flags & IFF_ALLMULTI) ? TRUE : FALSE; #ifdef PASS_ALL_MCAST_PKTS #ifdef PKT_FILTER_SUPPORT if (!dhd->pub.early_suspended) #endif /* PKT_FILTER_SUPPORT */ allmulti = TRUE; #endif /* PASS_ALL_MCAST_PKTS */ /* Send down the multicast list first. */ buflen = sizeof("mcast_list") + sizeof(cnt) + (cnt * ETHER_ADDR_LEN); if (!(bufp = buf = MALLOC(dhd->pub.osh, buflen))) { DHD_ERROR(("%s: out of memory for mcast_list, cnt %d\n", dhd_ifname(&dhd->pub, ifidx), cnt)); return; } strncpy(bufp, "mcast_list", buflen - 1); bufp[buflen - 1] = '\0'; bufp += strlen("mcast_list") + 1; cnt = htol32(cnt); memcpy(bufp, &cnt, sizeof(cnt)); bufp += sizeof(cnt); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27) netif_addr_lock_bh(dev); #endif /* LINUX >= 2.6.27 */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35) #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" #endif netdev_for_each_mc_addr(ha, dev) { if (!cnt) break; memcpy(bufp, ha->addr, ETHER_ADDR_LEN); bufp += ETHER_ADDR_LEN; cnt--; } #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic pop #endif #else /* LINUX < 2.6.35 */ for (mclist = dev->mc_list; (mclist && (cnt > 0)); cnt--, mclist = mclist->next) { memcpy(bufp, (void *)mclist->dmi_addr, ETHER_ADDR_LEN); bufp += ETHER_ADDR_LEN; } #endif /* LINUX >= 2.6.35 */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27) netif_addr_unlock_bh(dev); #endif /* LINUX >= 2.6.27 */ memset(&ioc, 0, sizeof(ioc)); ioc.cmd = WLC_SET_VAR; ioc.buf = buf; ioc.len = buflen; ioc.set = TRUE; ret = dhd_wl_ioctl(&dhd->pub, ifidx, &ioc, ioc.buf, ioc.len); if (ret < 0) { DHD_ERROR(("%s: set mcast_list failed, cnt %d\n", dhd_ifname(&dhd->pub, ifidx), cnt)); allmulti = cnt ? TRUE : allmulti; } MFREE(dhd->pub.osh, buf, buflen); /* Now send the allmulti setting. This is based on the setting in the * net_device flags, but might be modified above to be turned on if we * were trying to set some addresses and dongle rejected it... */ allmulti = htol32(allmulti); ret = dhd_iovar(&dhd->pub, ifidx, "allmulti", (char *)&allmulti, sizeof(allmulti), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: set allmulti %d failed\n", dhd_ifname(&dhd->pub, ifidx), ltoh32(allmulti))); } /* Finally, pick up the PROMISC flag as well, like the NIC driver does */ allmulti = (dev->flags & IFF_PROMISC) ? TRUE : FALSE; allmulti = htol32(allmulti); memset(&ioc, 0, sizeof(ioc)); ioc.cmd = WLC_SET_PROMISC; ioc.buf = &allmulti; ioc.len = sizeof(allmulti); ioc.set = TRUE; ret = dhd_wl_ioctl(&dhd->pub, ifidx, &ioc, ioc.buf, ioc.len); if (ret < 0) { DHD_ERROR(("%s: set promisc %d failed\n", dhd_ifname(&dhd->pub, ifidx), ltoh32(allmulti))); } } int _dhd_set_mac_address(dhd_info_t *dhd, int ifidx, uint8 *addr) { int ret; ret = dhd_iovar(&dhd->pub, ifidx, "cur_etheraddr", (char *)addr, ETHER_ADDR_LEN, NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: set cur_etheraddr failed\n", dhd_ifname(&dhd->pub, ifidx))); } else { memcpy(dhd->iflist[ifidx]->net->dev_addr, addr, ETHER_ADDR_LEN); if (ifidx == 0) memcpy(dhd->pub.mac.octet, addr, ETHER_ADDR_LEN); } return ret; } #ifdef DHD_WMF void dhd_update_psta_interface_for_sta(dhd_pub_t* dhdp, char* ifname, void* ea, void* event_data) { struct wl_psta_primary_intf_event *psta_prim_event = (struct wl_psta_primary_intf_event*)event_data; dhd_sta_t *psta_interface = NULL; dhd_sta_t *sta = NULL; uint8 ifindex; ASSERT(ifname); ASSERT(psta_prim_event); ASSERT(ea); ifindex = (uint8)dhd_ifname2idx(dhdp->info, ifname); sta = dhd_find_sta(dhdp, ifindex, ea); if (sta != NULL) { psta_interface = dhd_find_sta(dhdp, ifindex, (void *)(psta_prim_event->prim_ea.octet)); if (psta_interface != NULL) { sta->psta_prim = psta_interface; } } } /* Get wmf_psta_disable configuration configuration */ int dhd_get_wmf_psta_disable(dhd_pub_t *dhdp, uint32 idx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; return ifp->wmf_psta_disable; } /* Set wmf_psta_disable configuration configuration */ int dhd_set_wmf_psta_disable(dhd_pub_t *dhdp, uint32 idx, int val) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; ifp->wmf_psta_disable = val; return 0; } #endif /* DHD_WMF */ #ifdef DHD_PSTA /* Get psta/psr configuration configuration */ int dhd_get_psta_mode(dhd_pub_t *dhdp) { dhd_info_t *dhd = dhdp->info; return (int)dhd->psta_mode; } /* Set psta/psr configuration configuration */ int dhd_set_psta_mode(dhd_pub_t *dhdp, uint32 val) { dhd_info_t *dhd = dhdp->info; dhd->psta_mode = val; return 0; } #endif /* DHD_PSTA */ #if (defined(DHD_WET) || defined(DHD_MCAST_REGEN) || defined(DHD_L2_FILTER)) static void dhd_update_rx_pkt_chainable_state(dhd_pub_t* dhdp, uint32 idx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; if ( #ifdef DHD_L2_FILTER (ifp->block_ping) || #endif #ifdef DHD_WET (dhd->wet_mode) || #endif #ifdef DHD_MCAST_REGEN (ifp->mcast_regen_bss_enable) || #endif FALSE) { ifp->rx_pkt_chainable = FALSE; } } #endif /* DHD_WET || DHD_MCAST_REGEN || DHD_L2_FILTER */ #ifdef DHD_WET /* Get wet configuration configuration */ int dhd_get_wet_mode(dhd_pub_t *dhdp) { dhd_info_t *dhd = dhdp->info; return (int)dhd->wet_mode; } /* Set wet configuration configuration */ int dhd_set_wet_mode(dhd_pub_t *dhdp, uint32 val) { dhd_info_t *dhd = dhdp->info; dhd->wet_mode = val; dhd_update_rx_pkt_chainable_state(dhdp, 0); return 0; } #endif /* DHD_WET */ #if defined(WL_CFG80211) && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0)) int32 dhd_role_to_nl80211_iftype(int32 role) { switch (role) { case WLC_E_IF_ROLE_STA: return NL80211_IFTYPE_STATION; case WLC_E_IF_ROLE_AP: return NL80211_IFTYPE_AP; case WLC_E_IF_ROLE_WDS: return NL80211_IFTYPE_WDS; case WLC_E_IF_ROLE_P2P_GO: return NL80211_IFTYPE_P2P_GO; case WLC_E_IF_ROLE_P2P_CLIENT: return NL80211_IFTYPE_P2P_CLIENT; case WLC_E_IF_ROLE_IBSS: case WLC_E_IF_ROLE_NAN: return NL80211_IFTYPE_ADHOC; default: return NL80211_IFTYPE_UNSPECIFIED; } } #endif /* WL_CFG80211 && LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0) */ static void dhd_ifadd_event_handler(void *handle, void *event_info, u8 event) { dhd_info_t *dhd = handle; dhd_if_event_t *if_event = event_info; struct net_device *ndev; int ifidx, bssidx; int ret; #if defined(WL_CFG80211) && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0)) struct wl_if_event_info info; #endif /* WL_CFG80211 && LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0) */ if (event != DHD_WQ_WORK_IF_ADD) { DHD_ERROR(("%s: unexpected event \n", __FUNCTION__)); return; } if (!dhd) { DHD_ERROR(("%s: dhd info not available \n", __FUNCTION__)); return; } if (!if_event) { DHD_ERROR(("%s: event data is null \n", __FUNCTION__)); return; } dhd_net_if_lock_local(dhd); DHD_OS_WAKE_LOCK(&dhd->pub); DHD_PERIM_LOCK(&dhd->pub); ifidx = if_event->event.ifidx; bssidx = if_event->event.bssidx; DHD_TRACE(("%s: registering if with ifidx %d\n", __FUNCTION__, ifidx)); #if defined(WL_CFG80211) && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0)) if (if_event->event.ifidx > 0) { bzero(&info, sizeof(info)); info.ifidx = if_event->event.ifidx; info.bssidx = if_event->event.bssidx; info.role = if_event->event.role; strncpy(info.name, if_event->name, IFNAMSIZ); if (wl_cfg80211_post_ifcreate(dhd->pub.info->iflist[0]->net, &info, if_event->mac, NULL, true) != NULL) { /* Do the post interface create ops */ DHD_ERROR(("Post ifcreate ops done. Returning \n")); goto done; } } #endif /* WL_CFG80211 && LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0) */ /* This path is for non-android case */ /* The interface name in host and in event msg are same */ /* if name in event msg is used to create dongle if list on host */ ndev = dhd_allocate_if(&dhd->pub, ifidx, if_event->name, if_event->mac, bssidx, TRUE, if_event->name); if (!ndev) { DHD_ERROR(("%s: net device alloc failed \n", __FUNCTION__)); goto done; } DHD_PERIM_UNLOCK(&dhd->pub); ret = dhd_register_if(&dhd->pub, ifidx, TRUE); DHD_PERIM_LOCK(&dhd->pub); if (ret != BCME_OK) { DHD_ERROR(("%s: dhd_register_if failed\n", __FUNCTION__)); dhd_remove_if(&dhd->pub, ifidx, TRUE); goto done; } #ifndef PCIE_FULL_DONGLE /* Turn on AP isolation in the firmware for interfaces operating in AP mode */ if (FW_SUPPORTED((&dhd->pub), ap) && (if_event->event.role != WLC_E_IF_ROLE_STA)) { uint32 var_int = 1; ret = dhd_iovar(&dhd->pub, ifidx, "ap_isolate", (char *)&var_int, sizeof(var_int), NULL, 0, TRUE); if (ret != BCME_OK) { DHD_ERROR(("%s: Failed to set ap_isolate to dongle\n", __FUNCTION__)); dhd_remove_if(&dhd->pub, ifidx, TRUE); } } #endif /* PCIE_FULL_DONGLE */ done: MFREE(dhd->pub.osh, if_event, sizeof(dhd_if_event_t)); DHD_PERIM_UNLOCK(&dhd->pub); DHD_OS_WAKE_UNLOCK(&dhd->pub); dhd_net_if_unlock_local(dhd); } static void dhd_ifdel_event_handler(void *handle, void *event_info, u8 event) { dhd_info_t *dhd = handle; int ifidx; dhd_if_event_t *if_event = event_info; if (event != DHD_WQ_WORK_IF_DEL) { DHD_ERROR(("%s: unexpected event \n", __FUNCTION__)); return; } if (!dhd) { DHD_ERROR(("%s: dhd info not available \n", __FUNCTION__)); return; } if (!if_event) { DHD_ERROR(("%s: event data is null \n", __FUNCTION__)); return; } dhd_net_if_lock_local(dhd); DHD_OS_WAKE_LOCK(&dhd->pub); DHD_PERIM_LOCK(&dhd->pub); ifidx = if_event->event.ifidx; DHD_TRACE(("Removing interface with idx %d\n", ifidx)); DHD_PERIM_UNLOCK(&dhd->pub); #if defined(WL_CFG80211) && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0)) if (if_event->event.ifidx > 0) { /* Do the post interface del ops */ if (wl_cfg80211_post_ifdel(dhd->pub.info->iflist[ifidx]->net, true) == 0) { DHD_TRACE(("Post ifdel ops done. Returning \n")); DHD_PERIM_LOCK(&dhd->pub); goto done; } } #endif /* WL_CFG80211 && LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0) */ dhd_remove_if(&dhd->pub, ifidx, TRUE); DHD_PERIM_LOCK(&dhd->pub); #if defined(WL_CFG80211) && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0)) done: #endif /* WL_CFG80211 && LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0) */ MFREE(dhd->pub.osh, if_event, sizeof(dhd_if_event_t)); DHD_PERIM_UNLOCK(&dhd->pub); DHD_OS_WAKE_UNLOCK(&dhd->pub); dhd_net_if_unlock_local(dhd); } #ifdef DHD_UPDATE_INTF_MAC static void dhd_ifupdate_event_handler(void *handle, void *event_info, u8 event) { dhd_info_t *dhd = handle; int ifidx; dhd_if_event_t *if_event = event_info; if (event != DHD_WQ_WORK_IF_UPDATE) { DHD_ERROR(("%s: unexpected event \n", __FUNCTION__)); return; } if (!dhd) { DHD_ERROR(("%s: dhd info not available \n", __FUNCTION__)); return; } if (!if_event) { DHD_ERROR(("%s: event data is null \n", __FUNCTION__)); return; } dhd_net_if_lock_local(dhd); DHD_OS_WAKE_LOCK(&dhd->pub); ifidx = if_event->event.ifidx; DHD_TRACE(("%s: Update interface with idx %d\n", __FUNCTION__, ifidx)); dhd_op_if_update(&dhd->pub, ifidx); MFREE(dhd->pub.osh, if_event, sizeof(dhd_if_event_t)); DHD_OS_WAKE_UNLOCK(&dhd->pub); dhd_net_if_unlock_local(dhd); } int dhd_op_if_update(dhd_pub_t *dhdpub, int ifidx) { dhd_info_t * dhdinfo = NULL; dhd_if_t * ifp = NULL; int ret = 0; char buf[128]; if ((NULL==dhdpub)||(NULL==dhdpub->info)) { DHD_ERROR(("%s: *** DHD handler is NULL!\n", __FUNCTION__)); return -1; } else { dhdinfo = (dhd_info_t *)dhdpub->info; ifp = dhdinfo->iflist[ifidx]; if (NULL==ifp) { DHD_ERROR(("%s: *** ifp handler is NULL!\n", __FUNCTION__)); return -2; } } DHD_TRACE(("%s: idx %d\n", __FUNCTION__, ifidx)); // Get MAC address strcpy(buf, "cur_etheraddr"); ret = dhd_wl_ioctl_cmd(&dhdinfo->pub, WLC_GET_VAR, buf, sizeof(buf), FALSE, ifp->idx); if (0>ret) { DHD_ERROR(("Failed to upudate the MAC address for itf=%s, ret=%d\n", ifp->name, ret)); // avoid collision dhdinfo->iflist[ifp->idx]->mac_addr[5] += 1; // force locally administrate address ETHER_SET_LOCALADDR(&dhdinfo->iflist[ifp->idx]->mac_addr); } else { DHD_EVENT(("Got mac for itf %s, idx %d, MAC=%02X:%02X:%02X:%02X:%02X:%02X\n", ifp->name, ifp->idx, (unsigned char)buf[0], (unsigned char)buf[1], (unsigned char)buf[2], (unsigned char)buf[3], (unsigned char)buf[4], (unsigned char)buf[5])); memcpy(dhdinfo->iflist[ifp->idx]->mac_addr, buf, ETHER_ADDR_LEN); if (dhdinfo->iflist[ifp->idx]->net) { memcpy(dhdinfo->iflist[ifp->idx]->net->dev_addr, buf, ETHER_ADDR_LEN); } } return ret; } #endif /* DHD_UPDATE_INTF_MAC */ static void dhd_set_mac_addr_handler(void *handle, void *event_info, u8 event) { dhd_info_t *dhd = handle; dhd_if_t *ifp = event_info; if (event != DHD_WQ_WORK_SET_MAC) { DHD_ERROR(("%s: unexpected event \n", __FUNCTION__)); } if (!dhd) { DHD_ERROR(("%s: dhd info not available \n", __FUNCTION__)); return; } dhd_net_if_lock_local(dhd); DHD_OS_WAKE_LOCK(&dhd->pub); DHD_PERIM_LOCK(&dhd->pub); // terence 20160907: fix for not able to set mac when wlan0 is down if (ifp == NULL || !ifp->set_macaddress) { goto done; } if (ifp == NULL || !dhd->pub.up) { DHD_ERROR(("%s: interface info not available/down \n", __FUNCTION__)); goto done; } DHD_ERROR(("%s: MACID is overwritten\n", __FUNCTION__)); ifp->set_macaddress = FALSE; if (_dhd_set_mac_address(dhd, ifp->idx, ifp->mac_addr) == 0) DHD_INFO(("%s: MACID is overwritten\n", __FUNCTION__)); else DHD_ERROR(("%s: _dhd_set_mac_address() failed\n", __FUNCTION__)); done: DHD_PERIM_UNLOCK(&dhd->pub); DHD_OS_WAKE_UNLOCK(&dhd->pub); dhd_net_if_unlock_local(dhd); } static void dhd_set_mcast_list_handler(void *handle, void *event_info, u8 event) { dhd_info_t *dhd = handle; int ifidx = (int)((long int)event_info); dhd_if_t *ifp = NULL; if (event != DHD_WQ_WORK_SET_MCAST_LIST) { DHD_ERROR(("%s: unexpected event \n", __FUNCTION__)); return; } if (!dhd) { DHD_ERROR(("%s: dhd info not available \n", __FUNCTION__)); return; } dhd_net_if_lock_local(dhd); DHD_OS_WAKE_LOCK(&dhd->pub); DHD_PERIM_LOCK(&dhd->pub); ifp = dhd->iflist[ifidx]; if (ifp == NULL || !dhd->pub.up) { DHD_ERROR(("%s: interface info not available/down \n", __FUNCTION__)); goto done; } if (ifp == NULL || !dhd->pub.up) { DHD_ERROR(("%s: interface info not available/down \n", __FUNCTION__)); goto done; } ifidx = ifp->idx; _dhd_set_multicast_list(dhd, ifidx); DHD_INFO(("%s: set multicast list for if %d\n", __FUNCTION__, ifidx)); done: DHD_PERIM_UNLOCK(&dhd->pub); DHD_OS_WAKE_UNLOCK(&dhd->pub); dhd_net_if_unlock_local(dhd); } static int dhd_set_mac_address(struct net_device *dev, void *addr) { int ret = 0; dhd_info_t *dhd = DHD_DEV_INFO(dev); struct sockaddr *sa = (struct sockaddr *)addr; int ifidx; dhd_if_t *dhdif; ifidx = dhd_net2idx(dhd, dev); if (ifidx == DHD_BAD_IF) return -1; dhdif = dhd->iflist[ifidx]; dhd_net_if_lock_local(dhd); memcpy(dhdif->mac_addr, sa->sa_data, ETHER_ADDR_LEN); dhdif->set_macaddress = TRUE; dhd_net_if_unlock_local(dhd); dhd_deferred_schedule_work(dhd->dhd_deferred_wq, (void *)dhdif, DHD_WQ_WORK_SET_MAC, dhd_set_mac_addr_handler, DHD_WQ_WORK_PRIORITY_LOW); return ret; } static void dhd_set_multicast_list(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); int ifidx; ifidx = dhd_net2idx(dhd, dev); if (ifidx == DHD_BAD_IF) return; dhd->iflist[ifidx]->set_multicast = TRUE; dhd_deferred_schedule_work(dhd->dhd_deferred_wq, (void *)((long int)ifidx), DHD_WQ_WORK_SET_MCAST_LIST, dhd_set_mcast_list_handler, DHD_WQ_WORK_PRIORITY_LOW); // terence 20160907: fix for not able to set mac when wlan0 is down dhd_deferred_schedule_work(dhd->dhd_deferred_wq, (void *)dhd->iflist[ifidx], DHD_WQ_WORK_SET_MAC, dhd_set_mac_addr_handler, DHD_WQ_WORK_PRIORITY_LOW); } #ifdef DHD_UCODE_DOWNLOAD /* Get ucode path */ char * dhd_get_ucode_path(dhd_pub_t *dhdp) { dhd_info_t *dhd = dhdp->info; return dhd->uc_path; } #endif /* DHD_UCODE_DOWNLOAD */ #ifdef PROP_TXSTATUS int dhd_os_wlfc_block(dhd_pub_t *pub) { dhd_info_t *di = (dhd_info_t *)(pub->info); ASSERT(di != NULL); /* terence 20161229: don't do spin lock if proptx not enabled */ if (disable_proptx) return 1; #ifdef BCMDBUS spin_lock_irqsave(&di->wlfc_spinlock, di->wlfc_lock_flags); #else spin_lock_bh(&di->wlfc_spinlock); #endif /* BCMDBUS */ return 1; } int dhd_os_wlfc_unblock(dhd_pub_t *pub) { dhd_info_t *di = (dhd_info_t *)(pub->info); ASSERT(di != NULL); /* terence 20161229: don't do spin lock if proptx not enabled */ if (disable_proptx) return 1; #ifdef BCMDBUS spin_unlock_irqrestore(&di->wlfc_spinlock, di->wlfc_lock_flags); #else spin_unlock_bh(&di->wlfc_spinlock); #endif /* BCMDBUS */ return 1; } #endif /* PROP_TXSTATUS */ #if defined(DHD_RX_DUMP) || defined(DHD_TX_DUMP) typedef struct { uint16 type; const char *str; } PKTTYPE_INFO; static const PKTTYPE_INFO packet_type_info[] = { { ETHER_TYPE_IP, "IP" }, { ETHER_TYPE_ARP, "ARP" }, { ETHER_TYPE_BRCM, "BRCM" }, { ETHER_TYPE_802_1X, "802.1X" }, { ETHER_TYPE_WAI, "WAPI" }, { 0, ""} }; static const char *_get_packet_type_str(uint16 type) { int i; int n = sizeof(packet_type_info)/sizeof(packet_type_info[1]) - 1; for (i = 0; i < n; i++) { if (packet_type_info[i].type == type) return packet_type_info[i].str; } return packet_type_info[n].str; } void dhd_trx_dump(struct net_device *ndev, uint8 *dump_data, uint datalen, bool tx) { uint16 protocol; char *ifname; protocol = (dump_data[12] << 8) | dump_data[13]; ifname = ndev ? ndev->name : "N/A"; if (protocol != ETHER_TYPE_BRCM) { printk("[dhd-%s] %s DUMP - %s\n", ifname, tx?"Tx":"Rx", _get_packet_type_str(protocol)); #if defined(DHD_TX_FULL_DUMP) || defined(DHD_RX_FULL_DUMP) prhex("Data", dump_data, datalen); #endif /* DHD_TX_FULL_DUMP || DHD_RX_FULL_DUMP */ } } #endif /* DHD_TX_DUMP || DHD_RX_DUMP */ /* This routine do not support Packet chain feature, Currently tested for * proxy arp feature */ int dhd_sendup(dhd_pub_t *dhdp, int ifidx, void *p) { struct sk_buff *skb; void *skbhead = NULL; void *skbprev = NULL; dhd_if_t *ifp; ASSERT(!PKTISCHAINED(p)); skb = PKTTONATIVE(dhdp->osh, p); ifp = dhdp->info->iflist[ifidx]; skb->dev = ifp->net; #if defined(BCM_GMAC3) /* Forwarder capable interfaces use WOFA based forwarding */ if (ifp->fwdh) { struct ether_header *eh = (struct ether_header *)PKTDATA(dhdp->osh, p); uint16 * da = (uint16 *)(eh->ether_dhost); uintptr_t wofa_data; ASSERT(ISALIGNED(da, 2)); wofa_data = fwder_lookup(ifp->fwdh->mate, da, ifp->idx); if (wofa_data == WOFA_DATA_INVALID) { /* Unknown MAC address */ if (fwder_transmit(ifp->fwdh, skb, 1, skb->dev) == FWDER_SUCCESS) { return BCME_OK; } } PKTFRMNATIVE(dhdp->osh, p); PKTFREE(dhdp->osh, p, FALSE); return BCME_OK; } #endif /* BCM_GMAC3 */ skb->protocol = eth_type_trans(skb, skb->dev); if (in_interrupt()) { bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__); netif_rx(skb); } else { if (dhdp->info->rxthread_enabled) { if (!skbhead) { skbhead = skb; } else { PKTSETNEXT(dhdp->osh, skbprev, skb); } skbprev = skb; } else { /* If the receive is not processed inside an ISR, * the softirqd must be woken explicitly to service * the NET_RX_SOFTIRQ. In 2.6 kernels, this is handled * by netif_rx_ni(), but in earlier kernels, we need * to do it manually. */ bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) netif_rx_ni(skb); #else ulong flags; netif_rx(skb); local_irq_save(flags); RAISE_RX_SOFTIRQ(); local_irq_restore(flags); #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) */ } } if (dhdp->info->rxthread_enabled && skbhead) dhd_sched_rxf(dhdp, skbhead); return BCME_OK; } int BCMFASTPATH __dhd_sendpkt(dhd_pub_t *dhdp, int ifidx, void *pktbuf) { int ret = BCME_OK; dhd_info_t *dhd = (dhd_info_t *)(dhdp->info); struct ether_header *eh = NULL; #if defined(DHD_L2_FILTER) dhd_if_t *ifp = dhd_get_ifp(dhdp, ifidx); #endif /* Reject if down */ if (!dhdp->up || (dhdp->busstate == DHD_BUS_DOWN)) { /* free the packet here since the caller won't */ PKTCFREE(dhdp->osh, pktbuf, TRUE); return -ENODEV; } #ifdef PCIE_FULL_DONGLE if (dhdp->busstate == DHD_BUS_SUSPEND) { DHD_ERROR(("%s : pcie is still in suspend state!!\n", __FUNCTION__)); PKTCFREE(dhdp->osh, pktbuf, TRUE); #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)) return -ENODEV; #else return NETDEV_TX_BUSY; #endif /* LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20) */ } #endif /* PCIE_FULL_DONGLE */ #ifdef DHD_L2_FILTER /* if dhcp_unicast is enabled, we need to convert the */ /* broadcast DHCP ACK/REPLY packets to Unicast. */ if (ifp->dhcp_unicast) { uint8* mac_addr; uint8* ehptr = NULL; int ret; ret = bcm_l2_filter_get_mac_addr_dhcp_pkt(dhdp->osh, pktbuf, ifidx, &mac_addr); if (ret == BCME_OK) { /* if given mac address having valid entry in sta list * copy the given mac address, and return with BCME_OK */ if (dhd_find_sta(dhdp, ifidx, mac_addr)) { ehptr = PKTDATA(dhdp->osh, pktbuf); bcopy(mac_addr, ehptr + ETHER_DEST_OFFSET, ETHER_ADDR_LEN); } } } if (ifp->grat_arp && DHD_IF_ROLE_AP(dhdp, ifidx)) { if (bcm_l2_filter_gratuitous_arp(dhdp->osh, pktbuf) == BCME_OK) { PKTCFREE(dhdp->osh, pktbuf, TRUE); return BCME_ERROR; } } if (ifp->parp_enable && DHD_IF_ROLE_AP(dhdp, ifidx)) { ret = dhd_l2_filter_pkt_handle(dhdp, ifidx, pktbuf, TRUE); /* Drop the packets if l2 filter has processed it already * otherwise continue with the normal path */ if (ret == BCME_OK) { PKTCFREE(dhdp->osh, pktbuf, TRUE); return BCME_ERROR; } } #endif /* DHD_L2_FILTER */ /* Update multicast statistic */ if (PKTLEN(dhdp->osh, pktbuf) >= ETHER_HDR_LEN) { uint8 *pktdata = (uint8 *)PKTDATA(dhdp->osh, pktbuf); eh = (struct ether_header *)pktdata; if (ETHER_ISMULTI(eh->ether_dhost)) dhdp->tx_multicast++; if (ntoh16(eh->ether_type) == ETHER_TYPE_802_1X) { #ifdef DHD_LOSSLESS_ROAMING uint8 prio = (uint8)PKTPRIO(pktbuf); /* back up 802.1x's priority */ dhdp->prio_8021x = prio; #endif /* DHD_LOSSLESS_ROAMING */ DBG_EVENT_LOG(dhdp, WIFI_EVENT_DRIVER_EAPOL_FRAME_TRANSMIT_REQUESTED); atomic_inc(&dhd->pend_8021x_cnt); dhd_dump_eapol_4way_message(dhdp, ifidx, pktdata, TRUE); } if (ntoh16(eh->ether_type) == ETHER_TYPE_IP) { #ifdef DHD_DHCP_DUMP dhd_dhcp_dump(dhd_ifname(dhdp, ifidx), pktdata, TRUE); #endif /* DHD_DHCP_DUMP */ #ifdef DHD_ICMP_DUMP dhd_icmp_dump(dhd_ifname(dhdp, ifidx), pktdata, TRUE); #endif /* DHD_ICMP_DUMP */ dhd_tcp_dump(dhd_ifname(dhdp, ifidx), pktdata, TRUE); } #ifdef DHD_ARP_DUMP if (ntoh16(eh->ether_type) == ETHER_TYPE_ARP) { dhd_arp_dump(dhd_ifname(dhdp, ifidx), pktdata, TRUE); } #endif /* DHD_ARP_DUMP */ } else { PKTCFREE(dhdp->osh, pktbuf, TRUE); return BCME_ERROR; } { /* Look into the packet and update the packet priority */ #ifndef PKTPRIO_OVERRIDE if (PKTPRIO(pktbuf) == 0) #endif /* !PKTPRIO_OVERRIDE */ { #if defined(QOS_MAP_SET) pktsetprio_qms(pktbuf, wl_get_up_table(dhdp, ifidx), FALSE); #else pktsetprio(pktbuf, FALSE); #endif /* QOS_MAP_SET */ } } #if defined(TRAFFIC_MGMT_DWM) traffic_mgmt_pkt_set_prio(dhdp, pktbuf); #ifdef BCM_GMAC3 DHD_PKT_SET_DATAOFF(pktbuf, 0); #endif /* BCM_GMAC3 */ #endif #ifdef PCIE_FULL_DONGLE /* * Lkup the per interface hash table, for a matching flowring. If one is not * available, allocate a unique flowid and add a flowring entry. * The found or newly created flowid is placed into the pktbuf's tag. */ ret = dhd_flowid_update(dhdp, ifidx, dhdp->flow_prio_map[(PKTPRIO(pktbuf))], pktbuf); if (ret != BCME_OK) { PKTCFREE(dhd->pub.osh, pktbuf, TRUE); return ret; } #endif #if defined(DHD_TX_DUMP) dhd_trx_dump(dhd_idx2net(dhdp, ifidx), PKTDATA(dhdp->osh, pktbuf), PKTLEN(dhdp->osh, pktbuf), TRUE); #endif /* terence 20150901: Micky add to ajust the 802.1X priority */ /* Set the 802.1X packet with the highest priority 7 */ if (dhdp->conf->pktprio8021x >= 0) pktset8021xprio(pktbuf, dhdp->conf->pktprio8021x); #ifdef PROP_TXSTATUS if (dhd_wlfc_is_supported(dhdp)) { /* store the interface ID */ DHD_PKTTAG_SETIF(PKTTAG(pktbuf), ifidx); /* store destination MAC in the tag as well */ DHD_PKTTAG_SETDSTN(PKTTAG(pktbuf), eh->ether_dhost); /* decide which FIFO this packet belongs to */ if (ETHER_ISMULTI(eh->ether_dhost)) /* one additional queue index (highest AC + 1) is used for bc/mc queue */ DHD_PKTTAG_SETFIFO(PKTTAG(pktbuf), AC_COUNT); else DHD_PKTTAG_SETFIFO(PKTTAG(pktbuf), WME_PRIO2AC(PKTPRIO(pktbuf))); } else #endif /* PROP_TXSTATUS */ { /* If the protocol uses a data header, apply it */ dhd_prot_hdrpush(dhdp, ifidx, pktbuf); } /* Use bus module to send data frame */ #ifdef WLMEDIA_HTSF dhd_htsf_addtxts(dhdp, pktbuf); #endif #ifdef PROP_TXSTATUS { if (dhd_wlfc_commit_packets(dhdp, (f_commitpkt_t)dhd_bus_txdata, dhdp->bus, pktbuf, TRUE) == WLFC_UNSUPPORTED) { /* non-proptxstatus way */ #ifdef BCMPCIE ret = dhd_bus_txdata(dhdp->bus, pktbuf, (uint8)ifidx); #else ret = dhd_bus_txdata(dhdp->bus, pktbuf); #endif /* BCMPCIE */ } } #else #ifdef BCMPCIE ret = dhd_bus_txdata(dhdp->bus, pktbuf, (uint8)ifidx); #else ret = dhd_bus_txdata(dhdp->bus, pktbuf); #endif /* BCMPCIE */ #endif /* PROP_TXSTATUS */ #ifdef BCMDBUS if (ret) PKTCFREE(dhdp->osh, pktbuf, TRUE); #endif /* BCMDBUS */ return ret; } int BCMFASTPATH dhd_sendpkt(dhd_pub_t *dhdp, int ifidx, void *pktbuf) { int ret = 0; unsigned long flags; DHD_GENERAL_LOCK(dhdp, flags); if (DHD_BUS_CHECK_DOWN_OR_DOWN_IN_PROGRESS(dhdp)) { DHD_ERROR(("%s: returning as busstate=%d\n", __FUNCTION__, dhdp->busstate)); DHD_GENERAL_UNLOCK(dhdp, flags); PKTCFREE(dhdp->osh, pktbuf, TRUE); return -ENODEV; } DHD_BUS_BUSY_SET_IN_SEND_PKT(dhdp); DHD_GENERAL_UNLOCK(dhdp, flags); #ifdef DHD_PCIE_RUNTIMEPM if (dhdpcie_runtime_bus_wake(dhdp, FALSE, __builtin_return_address(0))) { DHD_ERROR(("%s : pcie is still in suspend state!!\n", __FUNCTION__)); PKTCFREE(dhdp->osh, pktbuf, TRUE); ret = -EBUSY; goto exit; } #endif /* DHD_PCIE_RUNTIMEPM */ DHD_GENERAL_LOCK(dhdp, flags); if (DHD_BUS_CHECK_SUSPEND_OR_SUSPEND_IN_PROGRESS(dhdp)) { DHD_ERROR(("%s: bus is in suspend(%d) or suspending(0x%x) state!!\n", __FUNCTION__, dhdp->busstate, dhdp->dhd_bus_busy_state)); DHD_BUS_BUSY_CLEAR_IN_SEND_PKT(dhdp); dhd_os_busbusy_wake(dhdp); DHD_GENERAL_UNLOCK(dhdp, flags); PKTCFREE(dhdp->osh, pktbuf, TRUE); return -ENODEV; } DHD_GENERAL_UNLOCK(dhdp, flags); ret = __dhd_sendpkt(dhdp, ifidx, pktbuf); #ifdef DHD_PCIE_RUNTIMEPM exit: #endif DHD_GENERAL_LOCK(dhdp, flags); DHD_BUS_BUSY_CLEAR_IN_SEND_PKT(dhdp); dhd_os_busbusy_wake(dhdp); DHD_GENERAL_UNLOCK(dhdp, flags); return ret; } #if defined(DHD_LB_TXP) int BCMFASTPATH dhd_lb_sendpkt(dhd_info_t *dhd, struct net_device *net, int ifidx, void *skb) { DHD_LB_STATS_PERCPU_ARR_INCR(dhd->tx_start_percpu_run_cnt); /* If the feature is disabled run-time do TX from here */ if (atomic_read(&dhd->lb_txp_active) == 0) { DHD_LB_STATS_PERCPU_ARR_INCR(dhd->txp_percpu_run_cnt); return __dhd_sendpkt(&dhd->pub, ifidx, skb); } /* Store the address of net device and interface index in the Packet tag */ DHD_LB_TX_PKTTAG_SET_NETDEV((dhd_tx_lb_pkttag_fr_t *)PKTTAG(skb), net); DHD_LB_TX_PKTTAG_SET_IFIDX((dhd_tx_lb_pkttag_fr_t *)PKTTAG(skb), ifidx); /* Enqueue the skb into tx_pend_queue */ skb_queue_tail(&dhd->tx_pend_queue, skb); DHD_TRACE(("%s(): Added skb %p for netdev %p \r\n", __FUNCTION__, skb, net)); /* Dispatch the Tx job to be processed by the tx_tasklet */ dhd_lb_tx_dispatch(&dhd->pub); return NETDEV_TX_OK; } #endif /* DHD_LB_TXP */ int BCMFASTPATH dhd_start_xmit(struct sk_buff *skb, struct net_device *net) { int ret; uint datalen; void *pktbuf; dhd_info_t *dhd = DHD_DEV_INFO(net); dhd_if_t *ifp = NULL; int ifidx; unsigned long flags; #ifdef WLMEDIA_HTSF uint8 htsfdlystat_sz = dhd->pub.htsfdlystat_sz; #else uint8 htsfdlystat_sz = 0; #endif #ifdef DHD_WMF struct ether_header *eh; uint8 *iph; #endif /* DHD_WMF */ DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (dhd_query_bus_erros(&dhd->pub)) { return -ENODEV; } DHD_GENERAL_LOCK(&dhd->pub, flags); DHD_BUS_BUSY_SET_IN_TX(&dhd->pub); DHD_GENERAL_UNLOCK(&dhd->pub, flags); #ifdef DHD_PCIE_RUNTIMEPM if (dhdpcie_runtime_bus_wake(&dhd->pub, FALSE, dhd_start_xmit)) { /* In order to avoid pkt loss. Return NETDEV_TX_BUSY until run-time resumed. */ /* stop the network queue temporarily until resume done */ DHD_GENERAL_LOCK(&dhd->pub, flags); if (!dhdpcie_is_resume_done(&dhd->pub)) { dhd_bus_stop_queue(dhd->pub.bus); } DHD_BUS_BUSY_CLEAR_IN_TX(&dhd->pub); dhd_os_busbusy_wake(&dhd->pub); DHD_GENERAL_UNLOCK(&dhd->pub, flags); #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)) return -ENODEV; #else return NETDEV_TX_BUSY; #endif } #endif /* DHD_PCIE_RUNTIMEPM */ DHD_GENERAL_LOCK(&dhd->pub, flags); #ifdef BCMPCIE if (DHD_BUS_CHECK_SUSPEND_OR_SUSPEND_IN_PROGRESS(&dhd->pub)) { DHD_ERROR(("%s: bus is in suspend(%d) or suspending(0x%x) state!!\n", __FUNCTION__, dhd->pub.busstate, dhd->pub.dhd_bus_busy_state)); DHD_BUS_BUSY_CLEAR_IN_TX(&dhd->pub); #ifdef PCIE_FULL_DONGLE /* Stop tx queues if suspend is in progress */ if (DHD_BUS_CHECK_ANY_SUSPEND_IN_PROGRESS(&dhd->pub)) { dhd_bus_stop_queue(dhd->pub.bus); } #endif /* PCIE_FULL_DONGLE */ dhd_os_busbusy_wake(&dhd->pub); DHD_GENERAL_UNLOCK(&dhd->pub, flags); #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)) return -ENODEV; #else return NETDEV_TX_BUSY; #endif } #else if (DHD_BUS_CHECK_SUSPEND_OR_SUSPEND_IN_PROGRESS(&dhd->pub)) { DHD_ERROR(("%s: bus is in suspend(%d) or suspending(0x%x) state!!\n", __FUNCTION__, dhd->pub.busstate, dhd->pub.dhd_bus_busy_state)); } #endif DHD_OS_WAKE_LOCK(&dhd->pub); DHD_PERIM_LOCK_TRY(DHD_FWDER_UNIT(dhd), lock_taken); #if defined(DHD_HANG_SEND_UP_TEST) if (dhd->pub.req_hang_type == HANG_REASON_BUS_DOWN) { dhd->pub.busstate = DHD_BUS_DOWN; } #endif /* DHD_HANG_SEND_UP_TEST */ /* Reject if down */ if (dhd->pub.hang_was_sent || DHD_BUS_CHECK_DOWN_OR_DOWN_IN_PROGRESS(&dhd->pub)) { DHD_ERROR(("%s: xmit rejected pub.up=%d busstate=%d \n", __FUNCTION__, dhd->pub.up, dhd->pub.busstate)); netif_stop_queue(net); /* Send Event when bus down detected during data session */ if (dhd->pub.up && !dhd->pub.hang_was_sent && !DHD_BUS_CHECK_REMOVE(&dhd->pub)) { DHD_ERROR(("%s: Event HANG sent up\n", __FUNCTION__)); dhd->pub.hang_reason = HANG_REASON_BUS_DOWN; net_os_send_hang_message(net); } DHD_BUS_BUSY_CLEAR_IN_TX(&dhd->pub); dhd_os_busbusy_wake(&dhd->pub); DHD_GENERAL_UNLOCK(&dhd->pub, flags); DHD_PERIM_UNLOCK_TRY(DHD_FWDER_UNIT(dhd), lock_taken); DHD_OS_WAKE_UNLOCK(&dhd->pub); #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)) return -ENODEV; #else return NETDEV_TX_BUSY; #endif } ifp = DHD_DEV_IFP(net); ifidx = DHD_DEV_IFIDX(net); if (ifidx == DHD_BAD_IF) { DHD_ERROR(("%s: bad ifidx %d\n", __FUNCTION__, ifidx)); netif_stop_queue(net); DHD_BUS_BUSY_CLEAR_IN_TX(&dhd->pub); dhd_os_busbusy_wake(&dhd->pub); DHD_GENERAL_UNLOCK(&dhd->pub, flags); DHD_PERIM_UNLOCK_TRY(DHD_FWDER_UNIT(dhd), lock_taken); DHD_OS_WAKE_UNLOCK(&dhd->pub); #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)) return -ENODEV; #else return NETDEV_TX_BUSY; #endif } DHD_GENERAL_UNLOCK(&dhd->pub, flags); ASSERT(ifidx == dhd_net2idx(dhd, net)); ASSERT((ifp != NULL) && ((ifidx < DHD_MAX_IFS) && (ifp == dhd->iflist[ifidx]))); bcm_object_trace_opr(skb, BCM_OBJDBG_ADD_PKT, __FUNCTION__, __LINE__); /* re-align socket buffer if "skb->data" is odd address */ if (((unsigned long)(skb->data)) & 0x1) { unsigned char *data = skb->data; uint32 length = skb->len; PKTPUSH(dhd->pub.osh, skb, 1); memmove(skb->data, data, length); PKTSETLEN(dhd->pub.osh, skb, length); } datalen = PKTLEN(dhd->pub.osh, skb); #ifdef HOST_TPUT_TEST dhd_os_sdlock_txq(&dhd->pub); dhd->pub.net_len += datalen; dhd_os_sdunlock_txq(&dhd->pub); if ((dhd->pub.conf->data_drop_mode == XMIT_DROP) && (PKTLEN(dhd->pub.osh, skb) > 500)) { dev_kfree_skb(skb); return NETDEV_TX_OK; } #endif /* Make sure there's enough room for any header */ if (skb_headroom(skb) < dhd->pub.hdrlen + htsfdlystat_sz) { struct sk_buff *skb2; DHD_INFO(("%s: insufficient headroom\n", dhd_ifname(&dhd->pub, ifidx))); dhd->pub.tx_realloc++; bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__); skb2 = skb_realloc_headroom(skb, dhd->pub.hdrlen + htsfdlystat_sz); dev_kfree_skb(skb); if ((skb = skb2) == NULL) { DHD_ERROR(("%s: skb_realloc_headroom failed\n", dhd_ifname(&dhd->pub, ifidx))); ret = -ENOMEM; goto done; } bcm_object_trace_opr(skb, BCM_OBJDBG_ADD_PKT, __FUNCTION__, __LINE__); } /* move from dhdsdio_sendfromq(), try to orphan skb early */ if (dhd->pub.conf->orphan_move == 2) PKTORPHAN(skb, dhd->pub.conf->tsq); else if (dhd->pub.conf->orphan_move == 3) skb_orphan(skb); /* Convert to packet */ if (!(pktbuf = PKTFRMNATIVE(dhd->pub.osh, skb))) { DHD_ERROR(("%s: PKTFRMNATIVE failed\n", dhd_ifname(&dhd->pub, ifidx))); bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__); dev_kfree_skb_any(skb); ret = -ENOMEM; goto done; } #if defined(WLMEDIA_HTSF) if (htsfdlystat_sz && PKTLEN(dhd->pub.osh, pktbuf) >= ETHER_ADDR_LEN) { uint8 *pktdata = (uint8 *)PKTDATA(dhd->pub.osh, pktbuf); struct ether_header *eh = (struct ether_header *)pktdata; if (!ETHER_ISMULTI(eh->ether_dhost) && (ntoh16(eh->ether_type) == ETHER_TYPE_IP)) { eh->ether_type = hton16(ETHER_TYPE_BRCM_PKTDLYSTATS); } } #endif #ifdef DHD_WET /* wet related packet proto manipulation should be done in DHD since dongle doesn't have complete payload */ if (WET_ENABLED(&dhd->pub) && (dhd_wet_send_proc(dhd->pub.wet_info, pktbuf, &pktbuf) < 0)) { DHD_INFO(("%s:%s: wet send proc failed\n", __FUNCTION__, dhd_ifname(&dhd->pub, ifidx))); PKTFREE(dhd->pub.osh, pktbuf, FALSE); ret = -EFAULT; goto done; } #endif /* DHD_WET */ #ifdef DHD_WMF eh = (struct ether_header *)PKTDATA(dhd->pub.osh, pktbuf); iph = (uint8 *)eh + ETHER_HDR_LEN; /* WMF processing for multicast packets * Only IPv4 packets are handled */ if (ifp->wmf.wmf_enable && (ntoh16(eh->ether_type) == ETHER_TYPE_IP) && (IP_VER(iph) == IP_VER_4) && (ETHER_ISMULTI(eh->ether_dhost) || ((IPV4_PROT(iph) == IP_PROT_IGMP) && dhd->pub.wmf_ucast_igmp))) { #if defined(DHD_IGMP_UCQUERY) || defined(DHD_UCAST_UPNP) void *sdu_clone; bool ucast_convert = FALSE; #ifdef DHD_UCAST_UPNP uint32 dest_ip; dest_ip = ntoh32(*((uint32 *)(iph + IPV4_DEST_IP_OFFSET))); ucast_convert = dhd->pub.wmf_ucast_upnp && MCAST_ADDR_UPNP_SSDP(dest_ip); #endif /* DHD_UCAST_UPNP */ #ifdef DHD_IGMP_UCQUERY ucast_convert |= dhd->pub.wmf_ucast_igmp_query && (IPV4_PROT(iph) == IP_PROT_IGMP) && (*(iph + IPV4_HLEN(iph)) == IGMPV2_HOST_MEMBERSHIP_QUERY); #endif /* DHD_IGMP_UCQUERY */ if (ucast_convert) { dhd_sta_t *sta; unsigned long flags; struct list_head snapshot_list; struct list_head *wmf_ucforward_list; ret = NETDEV_TX_OK; /* For non BCM_GMAC3 platform we need a snapshot sta_list to * resolve double DHD_IF_STA_LIST_LOCK call deadlock issue. */ wmf_ucforward_list = DHD_IF_WMF_UCFORWARD_LOCK(dhd, ifp, &snapshot_list); /* Convert upnp/igmp query to unicast for each assoc STA */ list_for_each_entry(sta, wmf_ucforward_list, list) { /* Skip sending to proxy interfaces of proxySTA */ if (sta->psta_prim != NULL && !ifp->wmf_psta_disable) { continue; } if ((sdu_clone = PKTDUP(dhd->pub.osh, pktbuf)) == NULL) { ret = WMF_NOP; break; } dhd_wmf_forward(ifp->wmf.wmfh, sdu_clone, 0, sta, 1); } DHD_IF_WMF_UCFORWARD_UNLOCK(dhd, wmf_ucforward_list); DHD_GENERAL_LOCK(&dhd->pub, flags); DHD_BUS_BUSY_CLEAR_IN_TX(&dhd->pub); dhd_os_busbusy_wake(&dhd->pub); DHD_GENERAL_UNLOCK(&dhd->pub, flags); DHD_PERIM_UNLOCK_TRY(DHD_FWDER_UNIT(dhd), lock_taken); DHD_OS_WAKE_UNLOCK(&dhd->pub); if (ret == NETDEV_TX_OK) PKTFREE(dhd->pub.osh, pktbuf, TRUE); return ret; } else #endif /* defined(DHD_IGMP_UCQUERY) || defined(DHD_UCAST_UPNP) */ { /* There will be no STA info if the packet is coming from LAN host * Pass as NULL */ ret = dhd_wmf_packets_handle(&dhd->pub, pktbuf, NULL, ifidx, 0); switch (ret) { case WMF_TAKEN: case WMF_DROP: /* Either taken by WMF or we should drop it. * Exiting send path */ DHD_GENERAL_LOCK(&dhd->pub, flags); DHD_BUS_BUSY_CLEAR_IN_TX(&dhd->pub); dhd_os_busbusy_wake(&dhd->pub); DHD_GENERAL_UNLOCK(&dhd->pub, flags); DHD_PERIM_UNLOCK_TRY(DHD_FWDER_UNIT(dhd), lock_taken); DHD_OS_WAKE_UNLOCK(&dhd->pub); return NETDEV_TX_OK; default: /* Continue the transmit path */ break; } } } #endif /* DHD_WMF */ #ifdef DHD_PSTA /* PSR related packet proto manipulation should be done in DHD * since dongle doesn't have complete payload */ if (PSR_ENABLED(&dhd->pub) && (dhd_psta_proc(&dhd->pub, ifidx, &pktbuf, TRUE) < 0)) { DHD_ERROR(("%s:%s: psta send proc failed\n", __FUNCTION__, dhd_ifname(&dhd->pub, ifidx))); } #endif /* DHD_PSTA */ #ifdef DHDTCPACK_SUPPRESS if (dhd->pub.tcpack_sup_mode == TCPACK_SUP_HOLD) { /* If this packet has been hold or got freed, just return */ if (dhd_tcpack_hold(&dhd->pub, pktbuf, ifidx)) { ret = 0; goto done; } } else { /* If this packet has replaced another packet and got freed, just return */ if (dhd_tcpack_suppress(&dhd->pub, pktbuf)) { ret = 0; goto done; } } #endif /* DHDTCPACK_SUPPRESS */ /* * If Load Balance is enabled queue the packet * else send directly from here. */ #if defined(DHD_LB_TXP) ret = dhd_lb_sendpkt(dhd, net, ifidx, pktbuf); #else ret = __dhd_sendpkt(&dhd->pub, ifidx, pktbuf); #endif done: if (ret) { ifp->stats.tx_dropped++; dhd->pub.tx_dropped++; } else { #ifdef PROP_TXSTATUS /* tx_packets counter can counted only when wlfc is disabled */ if (!dhd_wlfc_is_supported(&dhd->pub)) #endif { dhd->pub.tx_packets++; ifp->stats.tx_packets++; ifp->stats.tx_bytes += datalen; } } DHD_GENERAL_LOCK(&dhd->pub, flags); DHD_BUS_BUSY_CLEAR_IN_TX(&dhd->pub); dhd_os_busbusy_wake(&dhd->pub); DHD_GENERAL_UNLOCK(&dhd->pub, flags); DHD_PERIM_UNLOCK_TRY(DHD_FWDER_UNIT(dhd), lock_taken); DHD_OS_WAKE_UNLOCK(&dhd->pub); /* Return ok: we always eat the packet */ #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)) return 0; #else return NETDEV_TX_OK; #endif } void dhd_txflowcontrol(dhd_pub_t *dhdp, int ifidx, bool state) { struct net_device *net; dhd_info_t *dhd = dhdp->info; int i; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); ASSERT(dhd); #ifdef DHD_LOSSLESS_ROAMING /* block flowcontrol during roaming */ if ((dhdp->dequeue_prec_map == 1 << PRIO_8021D_NC) && state == ON) { return; } #endif if (ifidx == ALL_INTERFACES) { /* Flow control on all active interfaces */ dhdp->txoff = state; for (i = 0; i < DHD_MAX_IFS; i++) { if (dhd->iflist[i]) { net = dhd->iflist[i]->net; if (state == ON) netif_stop_queue(net); else netif_wake_queue(net); } } } else { if (dhd->iflist[ifidx]) { net = dhd->iflist[ifidx]->net; if (state == ON) netif_stop_queue(net); else netif_wake_queue(net); } } } #ifdef DHD_WMF bool dhd_is_rxthread_enabled(dhd_pub_t *dhdp) { dhd_info_t *dhd = dhdp->info; return dhd->rxthread_enabled; } #endif /* DHD_WMF */ #ifdef DHD_MCAST_REGEN /* * Description: This function is called to do the reverse translation * * Input eh - pointer to the ethernet header */ int32 dhd_mcast_reverse_translation(struct ether_header *eh) { uint8 *iph; uint32 dest_ip; iph = (uint8 *)eh + ETHER_HDR_LEN; dest_ip = ntoh32(*((uint32 *)(iph + IPV4_DEST_IP_OFFSET))); /* Only IP packets are handled */ if (eh->ether_type != hton16(ETHER_TYPE_IP)) return BCME_ERROR; /* Non-IPv4 multicast packets are not handled */ if (IP_VER(iph) != IP_VER_4) return BCME_ERROR; /* * The packet has a multicast IP and unicast MAC. That means * we have to do the reverse translation */ if (IPV4_ISMULTI(dest_ip) && !ETHER_ISMULTI(&eh->ether_dhost)) { ETHER_FILL_MCAST_ADDR_FROM_IP(eh->ether_dhost, dest_ip); return BCME_OK; } return BCME_ERROR; } #endif /* MCAST_REGEN */ #ifdef SHOW_LOGTRACE static int dhd_event_logtrace_pkt_process(dhd_pub_t *dhdp, struct sk_buff * skb) { dhd_info_t *dhd = (dhd_info_t *)dhdp->info; int ret = BCME_OK; uint datalen; bcm_event_msg_u_t evu; void *data = NULL; void *pktdata = NULL; bcm_event_t *pvt_data; uint pktlen; DHD_TRACE(("%s:Enter\n", __FUNCTION__)); /* In dhd_rx_frame, header is stripped using skb_pull * of size ETH_HLEN, so adjust pktlen accordingly */ pktlen = skb->len + ETH_HLEN; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22) pktdata = (void *)skb_mac_header(skb); #else pktdata = (void *)skb->mac.raw; #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22) */ ret = wl_host_event_get_data(pktdata, pktlen, &evu); if (ret != BCME_OK) { DHD_ERROR(("%s: wl_host_event_get_data err = %d\n", __FUNCTION__, ret)); goto exit; } datalen = ntoh32(evu.event.datalen); pvt_data = (bcm_event_t *)pktdata; data = &pvt_data[1]; dhd_dbg_trace_evnt_handler(dhdp, data, &dhd->event_data, datalen); exit: return ret; } static void dhd_event_logtrace_process(struct work_struct * work) { /* Ignore compiler warnings due to -Werror=cast-qual */ #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" #endif struct dhd_info *dhd = container_of(work, struct dhd_info, event_log_dispatcher_work); #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic pop #endif dhd_pub_t *dhdp; struct sk_buff *skb; if (!dhd) { DHD_ERROR(("%s: dhd info not available \n", __FUNCTION__)); return; } dhdp = &dhd->pub; if (!dhdp) { DHD_ERROR(("%s: dhd pub is null \n", __FUNCTION__)); return; } DHD_TRACE(("%s:Enter\n", __FUNCTION__)); /* Run while(1) loop till all skbs are dequeued */ while ((skb = skb_dequeue(&dhd->evt_trace_queue)) != NULL) { #ifdef PCIE_FULL_DONGLE int ifid; ifid = DHD_PKTTAG_IFID((dhd_pkttag_fr_t *)PKTTAG(skb)); if (ifid == DHD_EVENT_IF) { dhd_event_logtrace_infobuf_pkt_process(dhdp, skb, &dhd->event_data); /* For sending skb to network layer, convert it to Native PKT * after that assign skb->dev with Primary interface n/w device * as for infobuf events, we are sending special DHD_EVENT_IF */ #ifdef DHD_USE_STATIC_CTRLBUF PKTFREE_STATIC(dhdp->osh, skb, FALSE); #else PKTFREE(dhdp->osh, skb, FALSE); #endif /* DHD_USE_STATIC_CTRLBUF */ continue; } else { dhd_event_logtrace_pkt_process(dhdp, skb); } #else dhd_event_logtrace_pkt_process(dhdp, skb); #endif /* PCIE_FULL_DONGLE */ /* Free skb buffer here if DHD_DONOT_FORWARD_BCMEVENT_AS_NETWORK_PKT * macro is defined the Info Ring event and WLC_E_TRACE event is freed in DHD * else it is always sent up to network layers. */ #ifdef DHD_DONOT_FORWARD_BCMEVENT_AS_NETWORK_PKT #ifdef DHD_USE_STATIC_CTRLBUF PKTFREE_STATIC(dhdp->osh, skb, FALSE); #else PKTFREE(dhdp->osh, skb, FALSE); #endif /* DHD_USE_STATIC_CTRLBUF */ #else /* !DHD_DONOT_FORWARD_BCMEVENT_AS_NETWORK_PKT */ /* Do not call netif_recieve_skb as this workqueue scheduler is not from NAPI * Also as we are not in INTR context, do not call netif_rx, instead call * netif_rx_ni (for kerenl >= 2.6) which does netif_rx, disables irq, raise * NET_IF_RX softirq and enables interrupts back */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) netif_rx_ni(skb); #else { ulong flags; netif_rx(skb); local_irq_save(flags); RAISE_RX_SOFTIRQ(); local_irq_restore(flags); } #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) */ #endif /* DHD_DONOT_FORWARD_BCMEVENT_AS_NETWORK_PKT */ } } void dhd_event_logtrace_enqueue(dhd_pub_t *dhdp, int ifidx, void *pktbuf) { dhd_info_t *dhd = (dhd_info_t *)dhdp->info; #ifdef PCIE_FULL_DONGLE /* Add ifidx in the PKTTAG */ DHD_PKTTAG_SET_IFID((dhd_pkttag_fr_t *)PKTTAG(pktbuf), ifidx); #endif /* PCIE_FULL_DONGLE */ skb_queue_tail(&dhd->evt_trace_queue, pktbuf); schedule_work(&dhd->event_log_dispatcher_work); } void dhd_event_logtrace_flush_queue(dhd_pub_t *dhdp) { dhd_info_t *dhd = (dhd_info_t *)dhdp->info; struct sk_buff *skb; while ((skb = skb_dequeue(&dhd->evt_trace_queue)) != NULL) { #ifdef DHD_USE_STATIC_CTRLBUF PKTFREE_STATIC(dhdp->osh, skb, FALSE); #else PKTFREE(dhdp->osh, skb, FALSE); #endif /* DHD_USE_STATIC_CTRLBUF */ } } #endif /* SHOW_LOGTRACE */ /** Called when a frame is received by the dongle on interface 'ifidx' */ void dhd_rx_frame(dhd_pub_t *dhdp, int ifidx, void *pktbuf, int numpkt, uint8 chan) { dhd_info_t *dhd = (dhd_info_t *)dhdp->info; struct sk_buff *skb; uchar *eth; uint len; void *data, *pnext = NULL; int i; dhd_if_t *ifp; wl_event_msg_t event; int tout_rx = 0; int tout_ctrl = 0; void *skbhead = NULL; void *skbprev = NULL; uint16 protocol; unsigned char *dump_data; #ifdef DHD_MCAST_REGEN uint8 interface_role; if_flow_lkup_t *if_flow_lkup; unsigned long flags; #endif #ifdef DHD_WAKE_STATUS int pkt_wake = 0; wake_counts_t *wcp = NULL; #endif /* DHD_WAKE_STATUS */ DHD_TRACE(("%s: Enter\n", __FUNCTION__)); for (i = 0; pktbuf && i < numpkt; i++, pktbuf = pnext) { struct ether_header *eh; pnext = PKTNEXT(dhdp->osh, pktbuf); PKTSETNEXT(dhdp->osh, pktbuf, NULL); /* info ring "debug" data, which is not a 802.3 frame, is sent/hacked with a * special ifidx of DHD_EVENT_IF. This is just internal to dhd to get the data from * dhd_msgbuf.c:dhd_prot_infobuf_cmplt_process() to here (dhd_rx_frame). */ if (ifidx == DHD_EVENT_IF) { /* Event msg printing is called from dhd_rx_frame which is in Tasklet * context in case of PCIe FD, in case of other bus this will be from * DPC context. If we get bunch of events from Dongle then printing all * of them from Tasklet/DPC context that too in data path is costly. * Also in the new Dongle SW(4359, 4355 onwards) console prints too come as * events with type WLC_E_TRACE. * We'll print this console logs from the WorkQueue context by enqueing SKB * here and Dequeuing will be done in WorkQueue and will be freed only if * DHD_DONOT_FORWARD_BCMEVENT_AS_NETWORK_PKT is defined */ #ifdef SHOW_LOGTRACE dhd_event_logtrace_enqueue(dhdp, ifidx, pktbuf); #else /* !SHOW_LOGTRACE */ /* If SHOW_LOGTRACE not defined and ifidx is DHD_EVENT_IF, * free the PKT here itself */ #ifdef DHD_USE_STATIC_CTRLBUF PKTFREE_STATIC(dhdp->osh, pktbuf, FALSE); #else PKTFREE(dhdp->osh, pktbuf, FALSE); #endif /* DHD_USE_STATIC_CTRLBUF */ #endif /* SHOW_LOGTRACE */ continue; } #ifdef DHD_WAKE_STATUS #ifdef BCMDBUS wcp = NULL; #else pkt_wake = dhd_bus_get_bus_wake(dhdp); wcp = dhd_bus_get_wakecount(dhdp); #endif /* BCMDBUS */ if (wcp == NULL) { /* If wakeinfo count buffer is null do not update wake count values */ pkt_wake = 0; } #endif /* DHD_WAKE_STATUS */ ifp = dhd->iflist[ifidx]; if (ifp == NULL) { DHD_ERROR(("%s: ifp is NULL. drop packet\n", __FUNCTION__)); PKTCFREE(dhdp->osh, pktbuf, FALSE); continue; } eh = (struct ether_header *)PKTDATA(dhdp->osh, pktbuf); /* Dropping only data packets before registering net device to avoid kernel panic */ #ifndef PROP_TXSTATUS_VSDB if ((!ifp->net || ifp->net->reg_state != NETREG_REGISTERED) && (ntoh16(eh->ether_type) != ETHER_TYPE_BRCM)) #else if ((!ifp->net || ifp->net->reg_state != NETREG_REGISTERED || !dhd->pub.up) && (ntoh16(eh->ether_type) != ETHER_TYPE_BRCM)) #endif /* PROP_TXSTATUS_VSDB */ { DHD_PRINT("%s: net device is NOT registered yet. drop packet\n", __FUNCTION__); PKTCFREE(dhdp->osh, pktbuf, FALSE); continue; } #ifdef PROP_TXSTATUS if (dhd_wlfc_is_header_only_pkt(dhdp, pktbuf)) { /* WLFC may send header only packet when there is an urgent message but no packet to piggy-back on */ PKTCFREE(dhdp->osh, pktbuf, FALSE); continue; } #endif #ifdef DHD_L2_FILTER /* If block_ping is enabled drop the ping packet */ if (ifp->block_ping) { if (bcm_l2_filter_block_ping(dhdp->osh, pktbuf) == BCME_OK) { PKTCFREE(dhdp->osh, pktbuf, FALSE); continue; } } if (ifp->grat_arp && DHD_IF_ROLE_STA(dhdp, ifidx)) { if (bcm_l2_filter_gratuitous_arp(dhdp->osh, pktbuf) == BCME_OK) { PKTCFREE(dhdp->osh, pktbuf, FALSE); continue; } } if (ifp->parp_enable && DHD_IF_ROLE_AP(dhdp, ifidx)) { int ret = dhd_l2_filter_pkt_handle(dhdp, ifidx, pktbuf, FALSE); /* Drop the packets if l2 filter has processed it already * otherwise continue with the normal path */ if (ret == BCME_OK) { PKTCFREE(dhdp->osh, pktbuf, TRUE); continue; } } #endif /* DHD_L2_FILTER */ #ifdef DHD_MCAST_REGEN DHD_FLOWID_LOCK(dhdp->flowid_lock, flags); if_flow_lkup = (if_flow_lkup_t *)dhdp->if_flow_lkup; ASSERT(if_flow_lkup); interface_role = if_flow_lkup[ifidx].role; DHD_FLOWID_UNLOCK(dhdp->flowid_lock, flags); if (ifp->mcast_regen_bss_enable && (interface_role != WLC_E_IF_ROLE_WDS) && !DHD_IF_ROLE_AP(dhdp, ifidx) && ETHER_ISUCAST(eh->ether_dhost)) { if (dhd_mcast_reverse_translation(eh) == BCME_OK) { #ifdef DHD_PSTA /* Change bsscfg to primary bsscfg for unicast-multicast packets */ if ((dhd_get_psta_mode(dhdp) == DHD_MODE_PSTA) || (dhd_get_psta_mode(dhdp) == DHD_MODE_PSR)) { if (ifidx != 0) { /* Let the primary in PSTA interface handle this * frame after unicast to Multicast conversion */ ifp = dhd_get_ifp(dhdp, 0); ASSERT(ifp); } } } #endif /* PSTA */ } #endif /* MCAST_REGEN */ #ifdef DHD_WMF /* WMF processing for multicast packets */ if (ifp->wmf.wmf_enable && (ETHER_ISMULTI(eh->ether_dhost))) { dhd_sta_t *sta; int ret; sta = dhd_find_sta(dhdp, ifidx, (void *)eh->ether_shost); ret = dhd_wmf_packets_handle(dhdp, pktbuf, sta, ifidx, 1); switch (ret) { case WMF_TAKEN: /* The packet is taken by WMF. Continue to next iteration */ continue; case WMF_DROP: /* Packet DROP decision by WMF. Toss it */ DHD_ERROR(("%s: WMF decides to drop packet\n", __FUNCTION__)); PKTCFREE(dhdp->osh, pktbuf, FALSE); continue; default: /* Continue the transmit path */ break; } } #endif /* DHD_WMF */ #ifdef DHDTCPACK_SUPPRESS dhd_tcpdata_info_get(dhdp, pktbuf); #endif skb = PKTTONATIVE(dhdp->osh, pktbuf); ASSERT(ifp); skb->dev = ifp->net; #ifdef DHD_WET /* wet related packet proto manipulation should be done in DHD * since dongle doesn't have complete payload */ if (WET_ENABLED(&dhd->pub) && (dhd_wet_recv_proc(dhd->pub.wet_info, pktbuf) < 0)) { DHD_INFO(("%s:%s: wet recv proc failed\n", __FUNCTION__, dhd_ifname(dhdp, ifidx))); } #endif /* DHD_WET */ #ifdef DHD_PSTA if (PSR_ENABLED(dhdp) && (dhd_psta_proc(dhdp, ifidx, &pktbuf, FALSE) < 0)) { DHD_ERROR(("%s:%s: psta recv proc failed\n", __FUNCTION__, dhd_ifname(dhdp, ifidx))); } #endif /* DHD_PSTA */ #ifdef PCIE_FULL_DONGLE if ((DHD_IF_ROLE_AP(dhdp, ifidx) || DHD_IF_ROLE_P2PGO(dhdp, ifidx)) && (!ifp->ap_isolate)) { eh = (struct ether_header *)PKTDATA(dhdp->osh, pktbuf); if (ETHER_ISUCAST(eh->ether_dhost)) { if (dhd_find_sta(dhdp, ifidx, (void *)eh->ether_dhost)) { dhd_sendpkt(dhdp, ifidx, pktbuf); continue; } } else { void *npktbuf = PKTDUP(dhdp->osh, pktbuf); if (npktbuf) dhd_sendpkt(dhdp, ifidx, npktbuf); } } #endif /* PCIE_FULL_DONGLE */ /* Get the protocol, maintain skb around eth_type_trans() * The main reason for this hack is for the limitation of * Linux 2.4 where 'eth_type_trans' uses the 'net->hard_header_len' * to perform skb_pull inside vs ETH_HLEN. Since to avoid * coping of the packet coming from the network stack to add * BDC, Hardware header etc, during network interface registration * we set the 'net->hard_header_len' to ETH_HLEN + extra space required * for BDC, Hardware header etc. and not just the ETH_HLEN */ eth = skb->data; len = skb->len; dump_data = skb->data; protocol = (skb->data[12] << 8) | skb->data[13]; if (protocol == ETHER_TYPE_802_1X) { DBG_EVENT_LOG(dhdp, WIFI_EVENT_DRIVER_EAPOL_FRAME_RECEIVED); dhd_dump_eapol_4way_message(dhdp, ifidx, dump_data, FALSE); } if (protocol != ETHER_TYPE_BRCM && protocol == ETHER_TYPE_IP) { #ifdef DHD_DHCP_DUMP dhd_dhcp_dump(dhd_ifname(dhdp, ifidx), dump_data, FALSE); #endif /* DHD_DHCP_DUMP */ #ifdef DHD_ICMP_DUMP dhd_icmp_dump(dhd_ifname(dhdp, ifidx), dump_data, FALSE); #endif /* DHD_ICMP_DUMP */ dhd_tcp_dump(dhd_ifname(dhdp, ifidx), dump_data, FALSE); } #ifdef DHD_ARP_DUMP if (ntoh16(eh->ether_type) == ETHER_TYPE_ARP) { dhd_arp_dump(dhd_ifname(dhdp, ifidx), dump_data, FALSE); } #endif /* DHD_ARP_DUMP */ #ifdef DHD_RX_DUMP dhd_trx_dump(dhd_idx2net(dhdp, ifidx), dump_data, skb->len, FALSE); #endif /* DHD_RX_DUMP */ #if defined(DHD_WAKE_STATUS) && defined(DHD_WAKEPKT_DUMP) if (pkt_wake) { prhex("[wakepkt_dump]", (char*)dump_data, MIN(len, 32)); } #endif /* DHD_WAKE_STATUS && DHD_WAKEPKT_DUMP */ skb->protocol = eth_type_trans(skb, skb->dev); if (skb->pkt_type == PACKET_MULTICAST) { dhd->pub.rx_multicast++; ifp->stats.multicast++; } skb->data = eth; skb->len = len; #ifdef WLMEDIA_HTSF dhd_htsf_addrxts(dhdp, pktbuf); #endif #ifdef DBG_PKT_MON DHD_DBG_PKT_MON_RX(dhdp, skb); #endif /* DBG_PKT_MON */ #ifdef DHD_PKT_LOGGING DHD_PKTLOG_RX(dhdp, skb); #endif /* DHD_PKT_LOGGING */ /* Strip header, count, deliver upward */ skb_pull(skb, ETH_HLEN); /* Process special event packets and then discard them */ memset(&event, 0, sizeof(event)); if (ntoh16(skb->protocol) == ETHER_TYPE_BRCM) { bcm_event_msg_u_t evu; int ret_event; int event_type; ret_event = wl_host_event_get_data( #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22) skb_mac_header(skb), #else skb->mac.raw, #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22) */ len, &evu); if (ret_event != BCME_OK) { DHD_ERROR(("%s: wl_host_event_get_data err = %d\n", __FUNCTION__, ret_event)); #ifdef DHD_USE_STATIC_CTRLBUF PKTFREE_STATIC(dhdp->osh, pktbuf, FALSE); #else PKTFREE(dhdp->osh, pktbuf, FALSE); #endif continue; } memcpy(&event, &evu.event, sizeof(wl_event_msg_t)); event_type = ntoh32_ua((void *)&event.event_type); #ifdef SHOW_LOGTRACE /* Event msg printing is called from dhd_rx_frame which is in Tasklet * context in case of PCIe FD, in case of other bus this will be from * DPC context. If we get bunch of events from Dongle then printing all * of them from Tasklet/DPC context that too in data path is costly. * Also in the new Dongle SW(4359, 4355 onwards) console prints too come as * events with type WLC_E_TRACE. * We'll print this console logs from the WorkQueue context by enqueing SKB * here and Dequeuing will be done in WorkQueue and will be freed only if * DHD_DONOT_FORWARD_BCMEVENT_AS_NETWORK_PKT is defined */ if (event_type == WLC_E_TRACE) { DHD_EVENT(("%s: WLC_E_TRACE\n", __FUNCTION__)); dhd_event_logtrace_enqueue(dhdp, ifidx, pktbuf); continue; } #endif /* SHOW_LOGTRACE */ ret_event = dhd_wl_host_event(dhd, ifidx, #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22) skb_mac_header(skb), #else skb->mac.raw, #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22) */ len, &event, &data); wl_event_to_host_order(&event); if (!tout_ctrl) tout_ctrl = DHD_PACKET_TIMEOUT_MS; #if defined(PNO_SUPPORT) if (event_type == WLC_E_PFN_NET_FOUND) { /* enforce custom wake lock to garantee that Kernel not suspended */ tout_ctrl = CUSTOM_PNO_EVENT_LOCK_xTIME * DHD_PACKET_TIMEOUT_MS; } #endif /* PNO_SUPPORT */ if (numpkt != 1) { DHD_TRACE(("%s: Got BRCM event packet in a chained packet.\n", __FUNCTION__)); } #ifdef DHD_WAKE_STATUS if (unlikely(pkt_wake)) { #ifdef DHD_WAKE_EVENT_STATUS if (event.event_type < WLC_E_LAST) { wcp->rc_event[event.event_type]++; wcp->rcwake++; pkt_wake = 0; } #endif /* DHD_WAKE_EVENT_STATUS */ } #endif /* DHD_WAKE_STATUS */ /* For delete virtual interface event, wl_host_event returns positive * i/f index, do not proceed. just free the pkt. */ if ((event_type == WLC_E_IF) && (ret_event > 0)) { DHD_ERROR(("%s: interface is deleted. Free event packet\n", __FUNCTION__)); #ifdef DHD_USE_STATIC_CTRLBUF PKTFREE_STATIC(dhdp->osh, pktbuf, FALSE); #else PKTFREE(dhdp->osh, pktbuf, FALSE); #endif continue; } #if defined(DHD_DONOT_FORWARD_BCMEVENT_AS_NETWORK_PKT) && !defined(SENDPROB) #ifdef DHD_USE_STATIC_CTRLBUF PKTFREE_STATIC(dhdp->osh, pktbuf, FALSE); #else PKTFREE(dhdp->osh, pktbuf, FALSE); #endif /* DHD_USE_STATIC_CTRLBUF */ continue; #else #ifdef SENDPROB if (!dhdp->recv_probereq || (event.event_type != WLC_E_PROBREQ_MSG)) { #ifdef DHD_USE_STATIC_CTRLBUF PKTFREE_STATIC(dhdp->osh, pktbuf, FALSE); #else PKTFREE(dhdp->osh, pktbuf, FALSE); #endif /* DHD_USE_STATIC_CTRLBUF */ continue; } #endif /* * For the event packets, there is a possibility * of ifidx getting modifed.Thus update the ifp * once again. */ ASSERT(ifidx < DHD_MAX_IFS && dhd->iflist[ifidx]); ifp = dhd->iflist[ifidx]; #ifndef PROP_TXSTATUS_VSDB if (!(ifp && ifp->net && (ifp->net->reg_state == NETREG_REGISTERED))) #else if (!(ifp && ifp->net && (ifp->net->reg_state == NETREG_REGISTERED) && dhd->pub.up)) #endif /* PROP_TXSTATUS_VSDB */ { DHD_PRINT("%s: net device is NOT registered. drop event packet\n", __FUNCTION__); #ifdef DHD_USE_STATIC_CTRLBUF PKTFREE_STATIC(dhdp->osh, pktbuf, FALSE); #else PKTFREE(dhdp->osh, pktbuf, FALSE); #endif continue; } #endif /* DHD_DONOT_FORWARD_BCMEVENT_AS_NETWORK_PKT */ } else { tout_rx = DHD_PACKET_TIMEOUT_MS; #ifdef PROP_TXSTATUS dhd_wlfc_save_rxpath_ac_time(dhdp, (uint8)PKTPRIO(skb)); #endif /* PROP_TXSTATUS */ #ifdef DHD_WAKE_STATUS if (unlikely(pkt_wake)) { wcp->rxwake++; #ifdef DHD_WAKE_RX_STATUS #define ETHER_ICMP6_HEADER 20 #define ETHER_IPV6_SADDR (ETHER_ICMP6_HEADER + 2) #define ETHER_IPV6_DAADR (ETHER_IPV6_SADDR + IPV6_ADDR_LEN) #define ETHER_ICMPV6_TYPE (ETHER_IPV6_DAADR + IPV6_ADDR_LEN) if (ntoh16(skb->protocol) == ETHER_TYPE_ARP) /* ARP */ wcp->rx_arp++; if (dump_data[0] == 0xFF) { /* Broadcast */ wcp->rx_bcast++; } else if (dump_data[0] & 0x01) { /* Multicast */ wcp->rx_mcast++; if (ntoh16(skb->protocol) == ETHER_TYPE_IPV6) { wcp->rx_multi_ipv6++; if ((skb->len > ETHER_ICMP6_HEADER) && (dump_data[ETHER_ICMP6_HEADER] == IPPROTO_ICMPV6)) { wcp->rx_icmpv6++; if (skb->len > ETHER_ICMPV6_TYPE) { switch (dump_data[ETHER_ICMPV6_TYPE]) { case NDISC_ROUTER_ADVERTISEMENT: wcp->rx_icmpv6_ra++; break; case NDISC_NEIGHBOUR_ADVERTISEMENT: wcp->rx_icmpv6_na++; break; case NDISC_NEIGHBOUR_SOLICITATION: wcp->rx_icmpv6_ns++; break; } } } } else if (dump_data[2] == 0x5E) { wcp->rx_multi_ipv4++; } else { wcp->rx_multi_other++; } } else { /* Unicast */ wcp->rx_ucast++; } #undef ETHER_ICMP6_HEADER #undef ETHER_IPV6_SADDR #undef ETHER_IPV6_DAADR #undef ETHER_ICMPV6_TYPE #endif /* DHD_WAKE_RX_STATUS */ pkt_wake = 0; } #endif /* DHD_WAKE_STATUS */ } #if LINUX_VERSION_CODE < KERNEL_VERSION(4, 11, 0) if (ifp->net) ifp->net->last_rx = jiffies; #endif /* LINUX_VERSION_CODE < KERNEL_VERSION(4, 11, 0) */ if (ntoh16(skb->protocol) != ETHER_TYPE_BRCM) { dhdp->dstats.rx_bytes += skb->len; dhdp->rx_packets++; /* Local count */ ifp->stats.rx_bytes += skb->len; ifp->stats.rx_packets++; } if (in_interrupt()) { bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__); DHD_PERIM_UNLOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); #if defined(DHD_LB_RXP) netif_receive_skb(skb); #else /* !defined(DHD_LB_RXP) */ netif_rx(skb); #endif /* !defined(DHD_LB_RXP) */ DHD_PERIM_LOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); } else { if (dhd->rxthread_enabled) { if (!skbhead) skbhead = skb; else PKTSETNEXT(dhdp->osh, skbprev, skb); skbprev = skb; } else { /* If the receive is not processed inside an ISR, * the softirqd must be woken explicitly to service * the NET_RX_SOFTIRQ. In 2.6 kernels, this is handled * by netif_rx_ni(), but in earlier kernels, we need * to do it manually. */ bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__); #if defined(DHD_LB_RXP) DHD_PERIM_UNLOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); netif_receive_skb(skb); DHD_PERIM_LOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); #else /* !defined(DHD_LB_RXP) */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) DHD_PERIM_UNLOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); netif_rx_ni(skb); DHD_PERIM_LOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); #else ulong flags; DHD_PERIM_UNLOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); netif_rx(skb); DHD_PERIM_LOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); local_irq_save(flags); RAISE_RX_SOFTIRQ(); local_irq_restore(flags); #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) */ #endif /* !defined(DHD_LB_RXP) */ } } } if (dhd->rxthread_enabled && skbhead) dhd_sched_rxf(dhdp, skbhead); DHD_OS_WAKE_LOCK_RX_TIMEOUT_ENABLE(dhdp, tout_rx); DHD_OS_WAKE_LOCK_CTRL_TIMEOUT_ENABLE(dhdp, tout_ctrl); } void dhd_event(struct dhd_info *dhd, char *evpkt, int evlen, int ifidx) { /* Linux version has nothing to do */ return; } void dhd_txcomplete(dhd_pub_t *dhdp, void *txp, bool success) { dhd_info_t *dhd = (dhd_info_t *)(dhdp->info); struct ether_header *eh; uint16 type; dhd_prot_hdrpull(dhdp, NULL, txp, NULL, NULL); eh = (struct ether_header *)PKTDATA(dhdp->osh, txp); type = ntoh16(eh->ether_type); if ((type == ETHER_TYPE_802_1X) && (dhd_get_pend_8021x_cnt(dhd) > 0)) { atomic_dec(&dhd->pend_8021x_cnt); } #ifdef PROP_TXSTATUS if (dhdp->wlfc_state && (dhdp->proptxstatus_mode != WLFC_FCMODE_NONE)) { dhd_if_t *ifp = dhd->iflist[DHD_PKTTAG_IF(PKTTAG(txp))]; uint datalen = PKTLEN(dhd->pub.osh, txp); if (ifp != NULL) { if (success) { dhd->pub.tx_packets++; ifp->stats.tx_packets++; ifp->stats.tx_bytes += datalen; } else { ifp->stats.tx_dropped++; } } } #endif } static struct net_device_stats * dhd_get_stats(struct net_device *net) { dhd_info_t *dhd = DHD_DEV_INFO(net); dhd_if_t *ifp; int ifidx; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (!dhd) { DHD_ERROR(("%s : dhd is NULL\n", __FUNCTION__)); goto error; } ifidx = dhd_net2idx(dhd, net); if (ifidx == DHD_BAD_IF) { DHD_ERROR(("%s: BAD_IF\n", __FUNCTION__)); goto error; } ifp = dhd->iflist[ifidx]; if (!ifp) { ASSERT(ifp); DHD_ERROR(("%s: ifp is NULL\n", __FUNCTION__)); goto error; } if (dhd->pub.up) { /* Use the protocol to get dongle stats */ dhd_prot_dstats(&dhd->pub); } return &ifp->stats; error: memset(&net->stats, 0, sizeof(net->stats)); return &net->stats; } #ifndef BCMDBUS static int dhd_watchdog_thread(void *data) { tsk_ctl_t *tsk = (tsk_ctl_t *)data; dhd_info_t *dhd = (dhd_info_t *)tsk->parent; /* This thread doesn't need any user-level access, * so get rid of all our resources */ if (dhd_watchdog_prio > 0) { struct sched_param param; param.sched_priority = (dhd_watchdog_prio < MAX_RT_PRIO)? dhd_watchdog_prio:(MAX_RT_PRIO-1); setScheduler(current, SCHED_FIFO, ¶m); } while (1) { if (down_interruptible (&tsk->sema) == 0) { unsigned long flags; unsigned long jiffies_at_start = jiffies; unsigned long time_lapse; DHD_OS_WD_WAKE_LOCK(&dhd->pub); SMP_RD_BARRIER_DEPENDS(); if (tsk->terminated) { break; } if (dhd->pub.dongle_reset == FALSE) { DHD_TIMER(("%s:\n", __FUNCTION__)); dhd_bus_watchdog(&dhd->pub); #ifdef DHD_TIMESYNC /* Call the timesync module watchdog */ dhd_timesync_watchdog(&dhd->pub); #endif /* DHD_TIMESYNC */ DHD_GENERAL_LOCK(&dhd->pub, flags); /* Count the tick for reference */ dhd->pub.tickcnt++; #ifdef DHD_L2_FILTER dhd_l2_filter_watchdog(&dhd->pub); #endif /* DHD_L2_FILTER */ time_lapse = jiffies - jiffies_at_start; /* Reschedule the watchdog */ if (dhd->wd_timer_valid) { mod_timer(&dhd->timer, jiffies + msecs_to_jiffies(dhd_watchdog_ms) - min(msecs_to_jiffies(dhd_watchdog_ms), time_lapse)); } DHD_GENERAL_UNLOCK(&dhd->pub, flags); } DHD_OS_WD_WAKE_UNLOCK(&dhd->pub); } else { break; } } complete_and_exit(&tsk->completed, 0); } static void dhd_watchdog(ulong data) { dhd_info_t *dhd = (dhd_info_t *)data; unsigned long flags; if (dhd->pub.dongle_reset) { return; } if (dhd->thr_wdt_ctl.thr_pid >= 0) { up(&dhd->thr_wdt_ctl.sema); return; } DHD_OS_WD_WAKE_LOCK(&dhd->pub); /* Call the bus module watchdog */ dhd_bus_watchdog(&dhd->pub); #ifdef DHD_TIMESYNC /* Call the timesync module watchdog */ dhd_timesync_watchdog(&dhd->pub); #endif /* DHD_TIMESYNC */ DHD_GENERAL_LOCK(&dhd->pub, flags); /* Count the tick for reference */ dhd->pub.tickcnt++; #ifdef DHD_L2_FILTER dhd_l2_filter_watchdog(&dhd->pub); #endif /* DHD_L2_FILTER */ /* Reschedule the watchdog */ if (dhd->wd_timer_valid) mod_timer(&dhd->timer, jiffies + msecs_to_jiffies(dhd_watchdog_ms)); DHD_GENERAL_UNLOCK(&dhd->pub, flags); DHD_OS_WD_WAKE_UNLOCK(&dhd->pub); } #ifdef DHD_PCIE_RUNTIMEPM static int dhd_rpm_state_thread(void *data) { tsk_ctl_t *tsk = (tsk_ctl_t *)data; dhd_info_t *dhd = (dhd_info_t *)tsk->parent; while (1) { if (down_interruptible (&tsk->sema) == 0) { unsigned long flags; unsigned long jiffies_at_start = jiffies; unsigned long time_lapse; SMP_RD_BARRIER_DEPENDS(); if (tsk->terminated) { break; } if (dhd->pub.dongle_reset == FALSE) { DHD_TIMER(("%s:\n", __FUNCTION__)); if (dhd->pub.up) { dhd_runtimepm_state(&dhd->pub); } DHD_GENERAL_LOCK(&dhd->pub, flags); time_lapse = jiffies - jiffies_at_start; /* Reschedule the watchdog */ if (dhd->rpm_timer_valid) { mod_timer(&dhd->rpm_timer, jiffies + msecs_to_jiffies(dhd_runtimepm_ms) - min(msecs_to_jiffies(dhd_runtimepm_ms), time_lapse)); } DHD_GENERAL_UNLOCK(&dhd->pub, flags); } } else { break; } } complete_and_exit(&tsk->completed, 0); } static void dhd_runtimepm(ulong data) { dhd_info_t *dhd = (dhd_info_t *)data; if (dhd->pub.dongle_reset) { return; } if (dhd->thr_rpm_ctl.thr_pid >= 0) { up(&dhd->thr_rpm_ctl.sema); return; } } void dhd_runtime_pm_disable(dhd_pub_t *dhdp) { dhd_os_runtimepm_timer(dhdp, 0); dhdpcie_runtime_bus_wake(dhdp, TRUE, __builtin_return_address(0)); DHD_ERROR(("DHD Runtime PM Disabled \n")); } void dhd_runtime_pm_enable(dhd_pub_t *dhdp) { if (dhd_get_idletime(dhdp)) { dhd_os_runtimepm_timer(dhdp, dhd_runtimepm_ms); DHD_ERROR(("DHD Runtime PM Enabled \n")); } } #endif /* DHD_PCIE_RUNTIMEPM */ #ifdef ENABLE_ADAPTIVE_SCHED static void dhd_sched_policy(int prio) { struct sched_param param; if (cpufreq_quick_get(0) <= CUSTOM_CPUFREQ_THRESH) { param.sched_priority = 0; setScheduler(current, SCHED_NORMAL, ¶m); } else { if (get_scheduler_policy(current) != SCHED_FIFO) { param.sched_priority = (prio < MAX_RT_PRIO)? prio : (MAX_RT_PRIO-1); setScheduler(current, SCHED_FIFO, ¶m); } } } #endif /* ENABLE_ADAPTIVE_SCHED */ #ifdef DEBUG_CPU_FREQ static int dhd_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data) { dhd_info_t *dhd = container_of(nb, struct dhd_info, freq_trans); struct cpufreq_freqs *freq = data; if (dhd) { if (!dhd->new_freq) goto exit; if (val == CPUFREQ_POSTCHANGE) { DHD_ERROR(("cpu freq is changed to %u kHZ on CPU %d\n", freq->new, freq->cpu)); *per_cpu_ptr(dhd->new_freq, freq->cpu) = freq->new; } } exit: return 0; } #endif /* DEBUG_CPU_FREQ */ static int dhd_dpc_thread(void *data) { tsk_ctl_t *tsk = (tsk_ctl_t *)data; dhd_info_t *dhd = (dhd_info_t *)tsk->parent; /* This thread doesn't need any user-level access, * so get rid of all our resources */ if (dhd_dpc_prio > 0) { struct sched_param param; param.sched_priority = (dhd_dpc_prio < MAX_RT_PRIO)?dhd_dpc_prio:(MAX_RT_PRIO-1); setScheduler(current, SCHED_FIFO, ¶m); } #ifdef CUSTOM_DPC_CPUCORE set_cpus_allowed_ptr(current, cpumask_of(CUSTOM_DPC_CPUCORE)); #endif #ifdef CUSTOM_SET_CPUCORE dhd->pub.current_dpc = current; #endif /* CUSTOM_SET_CPUCORE */ /* Run until signal received */ while (1) { if (dhd->pub.conf->dpc_cpucore >= 0) { printf("%s: set dpc_cpucore %d\n", __FUNCTION__, dhd->pub.conf->dpc_cpucore); set_cpus_allowed_ptr(current, cpumask_of(dhd->pub.conf->dpc_cpucore)); dhd->pub.conf->dpc_cpucore = -1; } if (!binary_sema_down(tsk)) { #ifdef ENABLE_ADAPTIVE_SCHED dhd_sched_policy(dhd_dpc_prio); #endif /* ENABLE_ADAPTIVE_SCHED */ SMP_RD_BARRIER_DEPENDS(); if (tsk->terminated) { break; } /* Call bus dpc unless it indicated down (then clean stop) */ if (dhd->pub.busstate != DHD_BUS_DOWN) { #ifdef DEBUG_DPC_THREAD_WATCHDOG int resched_cnt = 0; #endif /* DEBUG_DPC_THREAD_WATCHDOG */ dhd_os_wd_timer_extend(&dhd->pub, TRUE); while (dhd_bus_dpc(dhd->pub.bus)) { /* process all data */ #ifdef DEBUG_DPC_THREAD_WATCHDOG resched_cnt++; if (resched_cnt > MAX_RESCHED_CNT) { DHD_INFO(("%s Calling msleep to" "let other processes run. \n", __FUNCTION__)); dhd->pub.dhd_bug_on = true; resched_cnt = 0; OSL_SLEEP(1); } #endif /* DEBUG_DPC_THREAD_WATCHDOG */ } dhd_os_wd_timer_extend(&dhd->pub, FALSE); DHD_OS_WAKE_UNLOCK(&dhd->pub); } else { if (dhd->pub.up) dhd_bus_stop(dhd->pub.bus, TRUE); DHD_OS_WAKE_UNLOCK(&dhd->pub); } } else { break; } } complete_and_exit(&tsk->completed, 0); } static int dhd_rxf_thread(void *data) { tsk_ctl_t *tsk = (tsk_ctl_t *)data; dhd_info_t *dhd = (dhd_info_t *)tsk->parent; #if defined(WAIT_DEQUEUE) #define RXF_WATCHDOG_TIME 250 /* BARK_TIME(1000) / */ ulong watchdogTime = OSL_SYSUPTIME(); /* msec */ #endif dhd_pub_t *pub = &dhd->pub; /* This thread doesn't need any user-level access, * so get rid of all our resources */ if (dhd_rxf_prio > 0) { struct sched_param param; param.sched_priority = (dhd_rxf_prio < MAX_RT_PRIO)?dhd_rxf_prio:(MAX_RT_PRIO-1); setScheduler(current, SCHED_FIFO, ¶m); } #ifdef CUSTOM_SET_CPUCORE dhd->pub.current_rxf = current; #endif /* CUSTOM_SET_CPUCORE */ /* Run until signal received */ while (1) { if (dhd->pub.conf->rxf_cpucore >= 0) { printf("%s: set rxf_cpucore %d\n", __FUNCTION__, dhd->pub.conf->rxf_cpucore); set_cpus_allowed_ptr(current, cpumask_of(dhd->pub.conf->rxf_cpucore)); dhd->pub.conf->rxf_cpucore = -1; } if (down_interruptible(&tsk->sema) == 0) { void *skb; #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) ulong flags; #endif #ifdef ENABLE_ADAPTIVE_SCHED dhd_sched_policy(dhd_rxf_prio); #endif /* ENABLE_ADAPTIVE_SCHED */ SMP_RD_BARRIER_DEPENDS(); if (tsk->terminated) { break; } skb = dhd_rxf_dequeue(pub); if (skb == NULL) { continue; } while (skb) { void *skbnext = PKTNEXT(pub->osh, skb); PKTSETNEXT(pub->osh, skb, NULL); bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) netif_rx_ni(skb); #else netif_rx(skb); local_irq_save(flags); RAISE_RX_SOFTIRQ(); local_irq_restore(flags); #endif skb = skbnext; } #if defined(WAIT_DEQUEUE) if (OSL_SYSUPTIME() - watchdogTime > RXF_WATCHDOG_TIME) { OSL_SLEEP(1); watchdogTime = OSL_SYSUPTIME(); } #endif DHD_OS_WAKE_UNLOCK(pub); } else { break; } } complete_and_exit(&tsk->completed, 0); } #ifdef BCMPCIE void dhd_dpc_enable(dhd_pub_t *dhdp) { #if defined(DHD_LB_RXP) || defined(DHD_LB_TXP) dhd_info_t *dhd; if (!dhdp || !dhdp->info) return; dhd = dhdp->info; #endif /* DHD_LB_RXP || DHD_LB_TXP */ #ifdef DHD_LB_RXP __skb_queue_head_init(&dhd->rx_pend_queue); #endif /* DHD_LB_RXP */ #ifdef DHD_LB_TXP skb_queue_head_init(&dhd->tx_pend_queue); #endif /* DHD_LB_TXP */ } #endif /* BCMPCIE */ #ifdef BCMPCIE void dhd_dpc_kill(dhd_pub_t *dhdp) { dhd_info_t *dhd; if (!dhdp) { return; } dhd = dhdp->info; if (!dhd) { return; } if (dhd->thr_dpc_ctl.thr_pid < 0) { tasklet_kill(&dhd->tasklet); DHD_ERROR(("%s: tasklet disabled\n", __FUNCTION__)); } #ifdef DHD_LB #ifdef DHD_LB_RXP cancel_work_sync(&dhd->rx_napi_dispatcher_work); __skb_queue_purge(&dhd->rx_pend_queue); #endif /* DHD_LB_RXP */ #ifdef DHD_LB_TXP cancel_work_sync(&dhd->tx_dispatcher_work); skb_queue_purge(&dhd->tx_pend_queue); #endif /* DHD_LB_TXP */ /* Kill the Load Balancing Tasklets */ #if defined(DHD_LB_TXC) tasklet_kill(&dhd->tx_compl_tasklet); #endif /* DHD_LB_TXC */ #if defined(DHD_LB_RXC) tasklet_kill(&dhd->rx_compl_tasklet); #endif /* DHD_LB_RXC */ #if defined(DHD_LB_TXP) tasklet_kill(&dhd->tx_tasklet); #endif /* DHD_LB_TXP */ #endif /* DHD_LB */ } void dhd_dpc_tasklet_kill(dhd_pub_t *dhdp) { dhd_info_t *dhd; if (!dhdp) { return; } dhd = dhdp->info; if (!dhd) { return; } if (dhd->thr_dpc_ctl.thr_pid < 0) { tasklet_kill(&dhd->tasklet); } } #endif /* BCMPCIE */ static void dhd_dpc(ulong data) { dhd_info_t *dhd; dhd = (dhd_info_t *)data; /* this (tasklet) can be scheduled in dhd_sched_dpc[dhd_linux.c] * down below , wake lock is set, * the tasklet is initialized in dhd_attach() */ /* Call bus dpc unless it indicated down (then clean stop) */ if (dhd->pub.busstate != DHD_BUS_DOWN) { #if defined(DHD_LB_STATS) && defined(PCIE_FULL_DONGLE) DHD_LB_STATS_INCR(dhd->dhd_dpc_cnt); #endif /* DHD_LB_STATS && PCIE_FULL_DONGLE */ if (dhd_bus_dpc(dhd->pub.bus)) { tasklet_schedule(&dhd->tasklet); } } else { dhd_bus_stop(dhd->pub.bus, TRUE); } } void dhd_sched_dpc(dhd_pub_t *dhdp) { dhd_info_t *dhd = (dhd_info_t *)dhdp->info; if (dhd->thr_dpc_ctl.thr_pid >= 0) { DHD_OS_WAKE_LOCK(dhdp); /* If the semaphore does not get up, * wake unlock should be done here */ if (!binary_sema_up(&dhd->thr_dpc_ctl)) { DHD_OS_WAKE_UNLOCK(dhdp); } return; } else { tasklet_schedule(&dhd->tasklet); } } #endif /* BCMDBUS */ static void dhd_sched_rxf(dhd_pub_t *dhdp, void *skb) { dhd_info_t *dhd = (dhd_info_t *)dhdp->info; #ifdef RXF_DEQUEUE_ON_BUSY int ret = BCME_OK; int retry = 2; #endif /* RXF_DEQUEUE_ON_BUSY */ DHD_OS_WAKE_LOCK(dhdp); DHD_TRACE(("dhd_sched_rxf: Enter\n")); #ifdef RXF_DEQUEUE_ON_BUSY do { ret = dhd_rxf_enqueue(dhdp, skb); if (ret == BCME_OK || ret == BCME_ERROR) break; else OSL_SLEEP(50); /* waiting for dequeueing */ } while (retry-- > 0); if (retry <= 0 && ret == BCME_BUSY) { void *skbp = skb; while (skbp) { void *skbnext = PKTNEXT(dhdp->osh, skbp); PKTSETNEXT(dhdp->osh, skbp, NULL); bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__); netif_rx_ni(skbp); skbp = skbnext; } DHD_ERROR(("send skb to kernel backlog without rxf_thread\n")); } else { if (dhd->thr_rxf_ctl.thr_pid >= 0) { up(&dhd->thr_rxf_ctl.sema); } } #else /* RXF_DEQUEUE_ON_BUSY */ do { if (dhd_rxf_enqueue(dhdp, skb) == BCME_OK) break; } while (1); if (dhd->thr_rxf_ctl.thr_pid >= 0) { up(&dhd->thr_rxf_ctl.sema); } return; #endif /* RXF_DEQUEUE_ON_BUSY */ } #if defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) #endif /* defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) */ #ifdef TOE /* Retrieve current toe component enables, which are kept as a bitmap in toe_ol iovar */ static int dhd_toe_get(dhd_info_t *dhd, int ifidx, uint32 *toe_ol) { char buf[32]; int ret; ret = dhd_iovar(&dhd->pub, ifidx, "toe_ol", NULL, 0, (char *)&buf, sizeof(buf), FALSE); if (ret < 0) { if (ret == -EIO) { DHD_ERROR(("%s: toe not supported by device\n", dhd_ifname(&dhd->pub, ifidx))); return -EOPNOTSUPP; } DHD_INFO(("%s: could not get toe_ol: ret=%d\n", dhd_ifname(&dhd->pub, ifidx), ret)); return ret; } memcpy(toe_ol, buf, sizeof(uint32)); return 0; } /* Set current toe component enables in toe_ol iovar, and set toe global enable iovar */ static int dhd_toe_set(dhd_info_t *dhd, int ifidx, uint32 toe_ol) { int toe, ret; /* Set toe_ol as requested */ ret = dhd_iovar(&dhd->pub, ifidx, "toe_ol", (char *)&toe_ol, sizeof(toe_ol), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: could not set toe_ol: ret=%d\n", dhd_ifname(&dhd->pub, ifidx), ret)); return ret; } /* Enable toe globally only if any components are enabled. */ toe = (toe_ol != 0); ret = dhd_iovar(&dhd->pub, ifidx, "toe", (char *)&toe, sizeof(toe), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: could not set toe: ret=%d\n", dhd_ifname(&dhd->pub, ifidx), ret)); return ret; } return 0; } #endif /* TOE */ #if defined(WL_CFG80211) && defined(NUM_SCB_MAX_PROBE) void dhd_set_scb_probe(dhd_pub_t *dhd) { wl_scb_probe_t scb_probe; int ret; if (dhd->op_mode & DHD_FLAG_HOSTAP_MODE) { return; } ret = dhd_iovar(dhd, 0, "scb_probe", NULL, 0, (char *)&scb_probe, sizeof(scb_probe), FALSE); if (ret < 0) { DHD_ERROR(("%s: GET max_scb_probe failed\n", __FUNCTION__)); } scb_probe.scb_max_probe = NUM_SCB_MAX_PROBE; ret = dhd_iovar(dhd, 0, "scb_probe", (char *)&scb_probe, sizeof(scb_probe), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: max_scb_probe setting failed\n", __FUNCTION__)); return; } } #endif /* WL_CFG80211 && NUM_SCB_MAX_PROBE */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24) static void dhd_ethtool_get_drvinfo(struct net_device *net, struct ethtool_drvinfo *info) { dhd_info_t *dhd = DHD_DEV_INFO(net); snprintf(info->driver, sizeof(info->driver), "wl"); snprintf(info->version, sizeof(info->version), "%lu", dhd->pub.drv_version); } struct ethtool_ops dhd_ethtool_ops = { .get_drvinfo = dhd_ethtool_get_drvinfo }; #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24) */ #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 4, 2) static int dhd_ethtool(dhd_info_t *dhd, void *uaddr) { struct ethtool_drvinfo info; char drvname[sizeof(info.driver)]; uint32 cmd; #ifdef TOE struct ethtool_value edata; uint32 toe_cmpnt, csum_dir; int ret; #endif DHD_TRACE(("%s: Enter\n", __FUNCTION__)); /* all ethtool calls start with a cmd word */ if (copy_from_user(&cmd, uaddr, sizeof (uint32))) return -EFAULT; switch (cmd) { case ETHTOOL_GDRVINFO: /* Copy out any request driver name */ if (copy_from_user(&info, uaddr, sizeof(info))) return -EFAULT; strncpy(drvname, info.driver, sizeof(info.driver)); drvname[sizeof(info.driver)-1] = '\0'; /* clear struct for return */ memset(&info, 0, sizeof(info)); info.cmd = cmd; /* if dhd requested, identify ourselves */ if (strcmp(drvname, "?dhd") == 0) { snprintf(info.driver, sizeof(info.driver), "dhd"); strncpy(info.version, EPI_VERSION_STR, sizeof(info.version) - 1); info.version[sizeof(info.version) - 1] = '\0'; } /* otherwise, require dongle to be up */ else if (!dhd->pub.up) { DHD_ERROR(("%s: dongle is not up\n", __FUNCTION__)); return -ENODEV; } /* finally, report dongle driver type */ else if (dhd->pub.iswl) snprintf(info.driver, sizeof(info.driver), "wl"); else snprintf(info.driver, sizeof(info.driver), "xx"); snprintf(info.version, sizeof(info.version), "%lu", dhd->pub.drv_version); if (copy_to_user(uaddr, &info, sizeof(info))) return -EFAULT; DHD_CTL(("%s: given %*s, returning %s\n", __FUNCTION__, (int)sizeof(drvname), drvname, info.driver)); break; #ifdef TOE /* Get toe offload components from dongle */ case ETHTOOL_GRXCSUM: case ETHTOOL_GTXCSUM: if ((ret = dhd_toe_get(dhd, 0, &toe_cmpnt)) < 0) return ret; csum_dir = (cmd == ETHTOOL_GTXCSUM) ? TOE_TX_CSUM_OL : TOE_RX_CSUM_OL; edata.cmd = cmd; edata.data = (toe_cmpnt & csum_dir) ? 1 : 0; if (copy_to_user(uaddr, &edata, sizeof(edata))) return -EFAULT; break; /* Set toe offload components in dongle */ case ETHTOOL_SRXCSUM: case ETHTOOL_STXCSUM: if (copy_from_user(&edata, uaddr, sizeof(edata))) return -EFAULT; /* Read the current settings, update and write back */ if ((ret = dhd_toe_get(dhd, 0, &toe_cmpnt)) < 0) return ret; csum_dir = (cmd == ETHTOOL_STXCSUM) ? TOE_TX_CSUM_OL : TOE_RX_CSUM_OL; if (edata.data != 0) toe_cmpnt |= csum_dir; else toe_cmpnt &= ~csum_dir; if ((ret = dhd_toe_set(dhd, 0, toe_cmpnt)) < 0) return ret; /* If setting TX checksum mode, tell Linux the new mode */ if (cmd == ETHTOOL_STXCSUM) { if (edata.data) dhd->iflist[0]->net->features |= NETIF_F_IP_CSUM; else dhd->iflist[0]->net->features &= ~NETIF_F_IP_CSUM; } break; #endif /* TOE */ default: return -EOPNOTSUPP; } return 0; } #endif /* LINUX_VERSION_CODE > KERNEL_VERSION(2, 4, 2) */ static bool dhd_check_hang(struct net_device *net, dhd_pub_t *dhdp, int error) { if (!dhdp) { DHD_ERROR(("%s: dhdp is NULL\n", __FUNCTION__)); return FALSE; } if (!dhdp->up) return FALSE; #if !defined(BCMPCIE) && !defined(BCMDBUS) if (dhdp->info->thr_dpc_ctl.thr_pid < 0) { DHD_ERROR(("%s : skipped due to negative pid - unloading?\n", __FUNCTION__)); return FALSE; } #endif /* !BCMPCIE && !BCMDBUS */ if ((error == -ETIMEDOUT) || (error == -EREMOTEIO) || ((dhdp->busstate == DHD_BUS_DOWN) && (!dhdp->dongle_reset))) { #ifdef BCMPCIE DHD_ERROR(("%s: Event HANG send up due to re=%d te=%d d3acke=%d e=%d s=%d\n", __FUNCTION__, dhdp->rxcnt_timeout, dhdp->txcnt_timeout, dhdp->d3ackcnt_timeout, error, dhdp->busstate)); #else DHD_ERROR(("%s: Event HANG send up due to re=%d te=%d e=%d s=%d\n", __FUNCTION__, dhdp->rxcnt_timeout, dhdp->txcnt_timeout, error, dhdp->busstate)); #endif /* BCMPCIE */ if (dhdp->hang_reason == 0) { if (dhdp->dongle_trap_occured) { dhdp->hang_reason = HANG_REASON_DONGLE_TRAP; #ifdef BCMPCIE } else if (dhdp->d3ackcnt_timeout) { dhdp->hang_reason = HANG_REASON_D3_ACK_TIMEOUT; #endif /* BCMPCIE */ } else { dhdp->hang_reason = HANG_REASON_IOCTL_RESP_TIMEOUT; } } printf("%s\n", info_string); net_os_send_hang_message(net); return TRUE; } return FALSE; } #ifdef WL_MONITOR bool dhd_monitor_enabled(dhd_pub_t *dhd, int ifidx) { return (dhd->info->monitor_type != 0); } void dhd_rx_mon_pkt(dhd_pub_t *dhdp, host_rxbuf_cmpl_t* msg, void *pkt, int ifidx) { dhd_info_t *dhd = (dhd_info_t *)dhdp->info; #ifdef HOST_RADIOTAP_CONV uint16 len = 0, offset = 0; monitor_pkt_info_t pkt_info; memcpy(&pkt_info.marker, &msg->marker, sizeof(msg->marker)); memcpy(&pkt_info.ts, &msg->ts, sizeof(monitor_pkt_ts_t)); if (!dhd->monitor_skb) { if ((dhd->monitor_skb = dev_alloc_skb(MAX_MON_PKT_SIZE)) == NULL) return; } len = bcmwifi_monitor(dhd->monitor_info, &pkt_info, PKTDATA(dhdp->osh, pkt), PKTLEN(dhdp->osh, pkt), PKTDATA(dhdp->osh, dhd->monitor_skb), &offset); if (dhd->monitor_type && dhd->monitor_dev) dhd->monitor_skb->dev = dhd->monitor_dev; else { PKTFREE(dhdp->osh, pkt, FALSE); dev_kfree_skb(dhd->monitor_skb); return; } PKTFREE(dhdp->osh, pkt, FALSE); if (!len) { return; } skb_put(dhd->monitor_skb, len); skb_pull(dhd->monitor_skb, offset); dhd->monitor_skb->protocol = eth_type_trans(dhd->monitor_skb, dhd->monitor_skb->dev); #else uint8 amsdu_flag = (msg->flags & BCMPCIE_PKT_FLAGS_MONITOR_MASK) >> BCMPCIE_PKT_FLAGS_MONITOR_SHIFT; switch (amsdu_flag) { case BCMPCIE_PKT_FLAGS_MONITOR_NO_AMSDU: default: if (!dhd->monitor_skb) { if ((dhd->monitor_skb = PKTTONATIVE(dhdp->osh, pkt)) == NULL) return; } if (dhd->monitor_type && dhd->monitor_dev) dhd->monitor_skb->dev = dhd->monitor_dev; else { PKTFREE(dhdp->osh, pkt, FALSE); dhd->monitor_skb = NULL; return; } dhd->monitor_skb->protocol = eth_type_trans(dhd->monitor_skb, dhd->monitor_skb->dev); dhd->monitor_len = 0; break; case BCMPCIE_PKT_FLAGS_MONITOR_FIRST_PKT: if (!dhd->monitor_skb) { if ((dhd->monitor_skb = dev_alloc_skb(MAX_MON_PKT_SIZE)) == NULL) return; dhd->monitor_len = 0; } if (dhd->monitor_type && dhd->monitor_dev) dhd->monitor_skb->dev = dhd->monitor_dev; else { PKTFREE(dhdp->osh, pkt, FALSE); dev_kfree_skb(dhd->monitor_skb); return; } memcpy(PKTDATA(dhdp->osh, dhd->monitor_skb), PKTDATA(dhdp->osh, pkt), PKTLEN(dhdp->osh, pkt)); dhd->monitor_len = PKTLEN(dhdp->osh, pkt); PKTFREE(dhdp->osh, pkt, FALSE); return; case BCMPCIE_PKT_FLAGS_MONITOR_INTER_PKT: memcpy(PKTDATA(dhdp->osh, dhd->monitor_skb) + dhd->monitor_len, PKTDATA(dhdp->osh, pkt), PKTLEN(dhdp->osh, pkt)); dhd->monitor_len += PKTLEN(dhdp->osh, pkt); PKTFREE(dhdp->osh, pkt, FALSE); return; case BCMPCIE_PKT_FLAGS_MONITOR_LAST_PKT: memcpy(PKTDATA(dhdp->osh, dhd->monitor_skb) + dhd->monitor_len, PKTDATA(dhdp->osh, pkt), PKTLEN(dhdp->osh, pkt)); dhd->monitor_len += PKTLEN(dhdp->osh, pkt); PKTFREE(dhdp->osh, pkt, FALSE); skb_put(dhd->monitor_skb, dhd->monitor_len); dhd->monitor_skb->protocol = eth_type_trans(dhd->monitor_skb, dhd->monitor_skb->dev); dhd->monitor_len = 0; break; } #endif /* HOST_RADIOTAP_CONV */ if (in_interrupt()) { bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__); DHD_PERIM_UNLOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); netif_rx(dhd->monitor_skb); DHD_PERIM_LOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); } else { /* If the receive is not processed inside an ISR, * the softirqd must be woken explicitly to service * the NET_RX_SOFTIRQ. In 2.6 kernels, this is handled * by netif_rx_ni(), but in earlier kernels, we need * to do it manually. */ bcm_object_trace_opr(dhd->monitor_skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) DHD_PERIM_UNLOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); netif_rx_ni(dhd->monitor_skb); DHD_PERIM_LOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); #else ulong flags; DHD_PERIM_UNLOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); netif_rx(dhd->monitor_skb); DHD_PERIM_LOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); local_irq_save(flags); RAISE_RX_SOFTIRQ(); local_irq_restore(flags); #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) */ } dhd->monitor_skb = NULL; } typedef struct dhd_mon_dev_priv { struct net_device_stats stats; } dhd_mon_dev_priv_t; #define DHD_MON_DEV_PRIV_SIZE (sizeof(dhd_mon_dev_priv_t)) #define DHD_MON_DEV_PRIV(dev) ((dhd_mon_dev_priv_t *)DEV_PRIV(dev)) #define DHD_MON_DEV_STATS(dev) (((dhd_mon_dev_priv_t *)DEV_PRIV(dev))->stats) static int dhd_monitor_start(struct sk_buff *skb, struct net_device *dev) { PKTFREE(NULL, skb, FALSE); return 0; } static int dhd_monitor_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { return 0; } static struct net_device_stats* dhd_monitor_get_stats(struct net_device *dev) { return &DHD_MON_DEV_STATS(dev); } static const struct net_device_ops netdev_monitor_ops = { .ndo_start_xmit = dhd_monitor_start, .ndo_get_stats = dhd_monitor_get_stats, .ndo_do_ioctl = dhd_monitor_ioctl }; static void dhd_add_monitor_if(void *handle, void *event_info, u8 event) { dhd_info_t *dhd = handle; struct net_device *dev; char *devname; if (event != DHD_WQ_WORK_IF_ADD) { DHD_ERROR(("%s: unexpected event \n", __FUNCTION__)); return; } if (!dhd) { DHD_ERROR(("%s: dhd info not available \n", __FUNCTION__)); return; } dev = alloc_etherdev(DHD_MON_DEV_PRIV_SIZE); if (!dev) { DHD_ERROR(("%s: alloc wlif failed\n", __FUNCTION__)); return; } devname = "radiotap"; snprintf(dev->name, sizeof(dev->name), "%s%u", devname, dhd->unit); #ifndef ARPHRD_IEEE80211_PRISM /* From Linux 2.4.18 */ #define ARPHRD_IEEE80211_PRISM 802 #endif #ifndef ARPHRD_IEEE80211_RADIOTAP #define ARPHRD_IEEE80211_RADIOTAP 803 /* IEEE 802.11 + radiotap header */ #endif /* ARPHRD_IEEE80211_RADIOTAP */ dev->type = ARPHRD_IEEE80211_RADIOTAP; #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31)) dev->hard_start_xmit = dhd_monitor_start; dev->do_ioctl = dhd_monitor_ioctl; dev->get_stats = dhd_monitor_get_stats; #else dev->netdev_ops = &netdev_monitor_ops; #endif if (register_netdev(dev)) { DHD_ERROR(("%s, register_netdev failed for %s\n", __FUNCTION__, dev->name)); free_netdev(dev); } bcmwifi_monitor_create(&dhd->monitor_info); dhd->monitor_dev = dev; } static void dhd_del_monitor_if(void *handle, void *event_info, u8 event) { dhd_info_t *dhd = handle; if (event != DHD_WQ_WORK_IF_DEL) { DHD_ERROR(("%s: unexpected event \n", __FUNCTION__)); return; } if (!dhd) { DHD_ERROR(("%s: dhd info not available \n", __FUNCTION__)); return; } if (dhd->monitor_dev) { unregister_netdev(dhd->monitor_dev); #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24)) MFREE(dhd->osh, dhd->monitor_dev->priv, DHD_MON_DEV_PRIV_SIZE); MFREE(dhd->osh, dhd->monitor_dev, sizeof(struct net_device)); #else free_netdev(dhd->monitor_dev); #endif /* 2.6.24 */ dhd->monitor_dev = NULL; } if (dhd->monitor_info) { bcmwifi_monitor_delete(dhd->monitor_info); dhd->monitor_info = NULL; } } static void dhd_set_monitor(dhd_pub_t *dhd, int ifidx, int val) { dhd_info_t *info = dhd->info; DHD_TRACE(("%s: val %d\n", __FUNCTION__, val)); if ((val && info->monitor_dev) || (!val && !info->monitor_dev)) { DHD_ERROR(("%s: Mismatched params, return\n", __FUNCTION__)); return; } /* Delete monitor */ if (!val) { info->monitor_type = val; dhd_deferred_schedule_work(info->dhd_deferred_wq, NULL, DHD_WQ_WORK_IF_DEL, dhd_del_monitor_if, DHD_WQ_WORK_PRIORITY_LOW); return; } /* Add monitor */ info->monitor_type = val; dhd_deferred_schedule_work(info->dhd_deferred_wq, NULL, DHD_WQ_WORK_IF_ADD, dhd_add_monitor_if, DHD_WQ_WORK_PRIORITY_LOW); } #endif /* WL_MONITOR */ int dhd_ioctl_process(dhd_pub_t *pub, int ifidx, dhd_ioctl_t *ioc, void *data_buf) { int bcmerror = BCME_OK; int buflen = 0; struct net_device *net; #ifdef REPORT_FATAL_TIMEOUTS if (ioc->cmd == WLC_SET_WPA_AUTH) { int wpa_auth; wpa_auth = *((int *)ioc->buf); DHD_INFO(("wpa_auth:%d\n", wpa_auth)); if (wpa_auth != WPA_AUTH_DISABLED) { /* If AP is with security then enable WLC_E_PSK_SUP event checking */ dhd_set_join_error(pub, WLC_WPA_MASK); } else { /* If AP is with open then disable WLC_E_PSK_SUP event checking */ dhd_clear_join_error(pub, WLC_WPA_MASK); } } if (ioc->cmd == WLC_SET_AUTH) { int auth; auth = *((int *)ioc->buf); DHD_INFO(("Auth:%d\n", auth)); if (auth != WL_AUTH_OPEN_SYSTEM) { /* If AP is with security then enable WLC_E_PSK_SUP event checking */ dhd_set_join_error(pub, WLC_WPA_MASK); } else { /* If AP is with open then disable WLC_E_PSK_SUP event checking */ dhd_clear_join_error(pub, WLC_WPA_MASK); } } #endif /* REPORT_FATAL_TIMEOUTS */ net = dhd_idx2net(pub, ifidx); if (!net) { bcmerror = BCME_BADARG; goto done; } /* check for local dhd ioctl and handle it */ if (ioc->driver == DHD_IOCTL_MAGIC) { /* This is a DHD IOVAR, truncate buflen to DHD_IOCTL_MAXLEN */ if (data_buf) buflen = MIN(ioc->len, DHD_IOCTL_MAXLEN); bcmerror = dhd_ioctl((void *)pub, ioc, data_buf, buflen); if (bcmerror) pub->bcmerror = bcmerror; goto done; } /* This is a WL IOVAR, truncate buflen to WLC_IOCTL_MAXLEN */ if (data_buf) buflen = MIN(ioc->len, WLC_IOCTL_MAXLEN); #ifndef BCMDBUS /* send to dongle (must be up, and wl). */ if (pub->busstate == DHD_BUS_DOWN || pub->busstate == DHD_BUS_LOAD) { if ((!pub->dongle_trap_occured) && allow_delay_fwdl) { int ret; if (atomic_read(&exit_in_progress)) { DHD_ERROR(("%s module exit in progress\n", __func__)); bcmerror = BCME_DONGLE_DOWN; goto done; } ret = dhd_bus_start(pub); if (ret != 0) { DHD_ERROR(("%s: failed with code %d\n", __FUNCTION__, ret)); bcmerror = BCME_DONGLE_DOWN; goto done; } } else { bcmerror = BCME_DONGLE_DOWN; goto done; } } if (!pub->iswl) { bcmerror = BCME_DONGLE_DOWN; goto done; } #endif /* !BCMDBUS */ /* * Flush the TX queue if required for proper message serialization: * Intercept WLC_SET_KEY IOCTL - serialize M4 send and set key IOCTL to * prevent M4 encryption and * intercept WLC_DISASSOC IOCTL - serialize WPS-DONE and WLC_DISASSOC IOCTL to * prevent disassoc frame being sent before WPS-DONE frame. */ if (ioc->cmd == WLC_SET_KEY || (ioc->cmd == WLC_SET_VAR && data_buf != NULL && strncmp("wsec_key", data_buf, 9) == 0) || (ioc->cmd == WLC_SET_VAR && data_buf != NULL && strncmp("bsscfg:wsec_key", data_buf, 15) == 0) || ioc->cmd == WLC_DISASSOC) dhd_wait_pend8021x(net); #ifdef WLMEDIA_HTSF if (data_buf) { /* short cut wl ioctl calls here */ if (strcmp("htsf", data_buf) == 0) { dhd_ioctl_htsf_get(dhd, 0); return BCME_OK; } if (strcmp("htsflate", data_buf) == 0) { if (ioc->set) { memset(ts, 0, sizeof(tstamp_t)*TSMAX); memset(&maxdelayts, 0, sizeof(tstamp_t)); maxdelay = 0; tspktcnt = 0; maxdelaypktno = 0; memset(&vi_d1.bin, 0, sizeof(uint32)*NUMBIN); memset(&vi_d2.bin, 0, sizeof(uint32)*NUMBIN); memset(&vi_d3.bin, 0, sizeof(uint32)*NUMBIN); memset(&vi_d4.bin, 0, sizeof(uint32)*NUMBIN); } else { dhd_dump_latency(); } return BCME_OK; } if (strcmp("htsfclear", data_buf) == 0) { memset(&vi_d1.bin, 0, sizeof(uint32)*NUMBIN); memset(&vi_d2.bin, 0, sizeof(uint32)*NUMBIN); memset(&vi_d3.bin, 0, sizeof(uint32)*NUMBIN); memset(&vi_d4.bin, 0, sizeof(uint32)*NUMBIN); htsf_seqnum = 0; return BCME_OK; } if (strcmp("htsfhis", data_buf) == 0) { dhd_dump_htsfhisto(&vi_d1, "H to D"); dhd_dump_htsfhisto(&vi_d2, "D to D"); dhd_dump_htsfhisto(&vi_d3, "D to H"); dhd_dump_htsfhisto(&vi_d4, "H to H"); return BCME_OK; } if (strcmp("tsport", data_buf) == 0) { if (ioc->set) { memcpy(&tsport, data_buf + 7, 4); } else { DHD_ERROR(("current timestamp port: %d \n", tsport)); } return BCME_OK; } } #endif /* WLMEDIA_HTSF */ if ((ioc->cmd == WLC_SET_VAR || ioc->cmd == WLC_GET_VAR) && data_buf != NULL && strncmp("rpc_", data_buf, 4) == 0) { #ifdef BCM_FD_AGGR bcmerror = dhd_fdaggr_ioctl(pub, ifidx, (wl_ioctl_t *)ioc, data_buf, buflen); #else bcmerror = BCME_UNSUPPORTED; #endif goto done; } bcmerror = dhd_wl_ioctl(pub, ifidx, (wl_ioctl_t *)ioc, data_buf, buflen); #ifdef WL_MONITOR /* Intercept monitor ioctl here, add/del monitor if */ if (bcmerror == BCME_OK && ioc->cmd == WLC_SET_MONITOR) { dhd_set_monitor(pub, ifidx, *(int32*)data_buf); } #endif #ifdef REPORT_FATAL_TIMEOUTS if (ioc->cmd == WLC_SCAN && bcmerror == 0) { dhd_start_scan_timer(pub); } if (ioc->cmd == WLC_SET_SSID && bcmerror == 0) { dhd_start_join_timer(pub); } #endif /* REPORT_FATAL_TIMEOUTS */ done: dhd_check_hang(net, pub, bcmerror); return bcmerror; } static int dhd_ioctl_entry(struct net_device *net, struct ifreq *ifr, int cmd) { dhd_info_t *dhd = DHD_DEV_INFO(net); dhd_ioctl_t ioc; int bcmerror = 0; int ifidx; int ret; void *local_buf = NULL; void __user *ioc_buf_user = NULL; u16 buflen = 0; if (atomic_read(&exit_in_progress)) { DHD_ERROR(("%s module exit in progress\n", __func__)); bcmerror = BCME_DONGLE_DOWN; return OSL_ERROR(bcmerror); } DHD_OS_WAKE_LOCK(&dhd->pub); DHD_PERIM_LOCK(&dhd->pub); /* Interface up check for built-in type */ if (!dhd_download_fw_on_driverload && dhd->pub.up == FALSE) { DHD_ERROR(("%s: Interface is down \n", __FUNCTION__)); DHD_PERIM_UNLOCK(&dhd->pub); DHD_OS_WAKE_UNLOCK(&dhd->pub); return OSL_ERROR(BCME_NOTUP); } ifidx = dhd_net2idx(dhd, net); DHD_TRACE(("%s: ifidx %d, cmd 0x%04x\n", __FUNCTION__, ifidx, cmd)); if (ifidx == DHD_BAD_IF) { DHD_ERROR(("%s: BAD IF\n", __FUNCTION__)); DHD_PERIM_UNLOCK(&dhd->pub); DHD_OS_WAKE_UNLOCK(&dhd->pub); return -1; } #if defined(WL_WIRELESS_EXT) /* linux wireless extensions */ if ((cmd >= SIOCIWFIRST) && (cmd <= SIOCIWLAST)) { /* may recurse, do NOT lock */ ret = wl_iw_ioctl(net, ifr, cmd); DHD_PERIM_UNLOCK(&dhd->pub); DHD_OS_WAKE_UNLOCK(&dhd->pub); return ret; } #endif /* defined(WL_WIRELESS_EXT) */ #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 4, 2) if (cmd == SIOCETHTOOL) { ret = dhd_ethtool(dhd, (void*)ifr->ifr_data); DHD_PERIM_UNLOCK(&dhd->pub); DHD_OS_WAKE_UNLOCK(&dhd->pub); return ret; } #endif /* LINUX_VERSION_CODE > KERNEL_VERSION(2, 4, 2) */ if (cmd == SIOCDEVPRIVATE+1) { ret = wl_android_priv_cmd(net, ifr, cmd); dhd_check_hang(net, &dhd->pub, ret); DHD_PERIM_UNLOCK(&dhd->pub); DHD_OS_WAKE_UNLOCK(&dhd->pub); return ret; } if (cmd != SIOCDEVPRIVATE) { DHD_PERIM_UNLOCK(&dhd->pub); DHD_OS_WAKE_UNLOCK(&dhd->pub); return -EOPNOTSUPP; } memset(&ioc, 0, sizeof(ioc)); #ifdef CONFIG_COMPAT #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 6, 0)) if (in_compat_syscall()) #else if (is_compat_task()) #endif { compat_wl_ioctl_t compat_ioc; if (copy_from_user(&compat_ioc, ifr->ifr_data, sizeof(compat_wl_ioctl_t))) { bcmerror = BCME_BADADDR; goto done; } ioc.cmd = compat_ioc.cmd; if (ioc.cmd & WLC_SPEC_FLAG) { memset(&ioc, 0, sizeof(ioc)); /* Copy the ioc control structure part of ioctl request */ if (copy_from_user(&ioc, ifr->ifr_data, sizeof(wl_ioctl_t))) { bcmerror = BCME_BADADDR; goto done; } ioc.cmd &= ~WLC_SPEC_FLAG; /* Clear the FLAG */ /* To differentiate between wl and dhd read 4 more byes */ if ((copy_from_user(&ioc.driver, (char *)ifr->ifr_data + sizeof(wl_ioctl_t), sizeof(uint)) != 0)) { bcmerror = BCME_BADADDR; goto done; } } else { /* ioc.cmd & WLC_SPEC_FLAG */ ioc.buf = compat_ptr(compat_ioc.buf); ioc.len = compat_ioc.len; ioc.set = compat_ioc.set; ioc.used = compat_ioc.used; ioc.needed = compat_ioc.needed; /* To differentiate between wl and dhd read 4 more byes */ if ((copy_from_user(&ioc.driver, (char *)ifr->ifr_data + sizeof(compat_wl_ioctl_t), sizeof(uint)) != 0)) { bcmerror = BCME_BADADDR; goto done; } } /* ioc.cmd & WLC_SPEC_FLAG */ } else #endif /* CONFIG_COMPAT */ { /* Copy the ioc control structure part of ioctl request */ if (copy_from_user(&ioc, ifr->ifr_data, sizeof(wl_ioctl_t))) { bcmerror = BCME_BADADDR; goto done; } #ifdef CONFIG_COMPAT ioc.cmd &= ~WLC_SPEC_FLAG; /* make sure it was clear when it isn't a compat task*/ #endif /* To differentiate between wl and dhd read 4 more byes */ if ((copy_from_user(&ioc.driver, (char *)ifr->ifr_data + sizeof(wl_ioctl_t), sizeof(uint)) != 0)) { bcmerror = BCME_BADADDR; goto done; } } #ifndef CONFIG_VTS_SUPPORT if (!capable(CAP_NET_ADMIN)) { bcmerror = BCME_EPERM; goto done; } #endif /* Take backup of ioc.buf and restore later */ ioc_buf_user = ioc.buf; if (ioc.len > 0) { buflen = MIN(ioc.len, DHD_IOCTL_MAXLEN); if (!(local_buf = MALLOC(dhd->pub.osh, buflen+1))) { bcmerror = BCME_NOMEM; goto done; } DHD_PERIM_UNLOCK(&dhd->pub); if (copy_from_user(local_buf, ioc.buf, buflen)) { DHD_PERIM_LOCK(&dhd->pub); bcmerror = BCME_BADADDR; goto done; } DHD_PERIM_LOCK(&dhd->pub); *((char *)local_buf + buflen) = '\0'; /* For some platforms accessing userspace memory * of ioc.buf is causing kernel panic, so to avoid that * make ioc.buf pointing to kernel space memory local_buf */ ioc.buf = local_buf; } /* Skip all the non DHD iovars (wl iovars) after f/w hang */ if (ioc.driver != DHD_IOCTL_MAGIC && dhd->pub.hang_was_sent) { DHD_TRACE(("%s: HANG was sent up earlier\n", __FUNCTION__)); DHD_OS_WAKE_LOCK_CTRL_TIMEOUT_ENABLE(&dhd->pub, DHD_EVENT_TIMEOUT_MS); bcmerror = BCME_DONGLE_DOWN; goto done; } bcmerror = dhd_ioctl_process(&dhd->pub, ifidx, &ioc, local_buf); /* Restore back userspace pointer to ioc.buf */ ioc.buf = ioc_buf_user; if (!bcmerror && buflen && local_buf && ioc.buf) { DHD_PERIM_UNLOCK(&dhd->pub); if (copy_to_user(ioc.buf, local_buf, buflen)) bcmerror = -EFAULT; DHD_PERIM_LOCK(&dhd->pub); } done: if (local_buf) MFREE(dhd->pub.osh, local_buf, buflen+1); DHD_PERIM_UNLOCK(&dhd->pub); DHD_OS_WAKE_UNLOCK(&dhd->pub); return OSL_ERROR(bcmerror); } #ifdef FIX_CPU_MIN_CLOCK static int dhd_init_cpufreq_fix(dhd_info_t *dhd) { if (dhd) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) mutex_init(&dhd->cpufreq_fix); #endif dhd->cpufreq_fix_status = FALSE; } return 0; } static void dhd_fix_cpu_freq(dhd_info_t *dhd) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) mutex_lock(&dhd->cpufreq_fix); #endif if (dhd && !dhd->cpufreq_fix_status) { pm_qos_add_request(&dhd->dhd_cpu_qos, PM_QOS_CPU_FREQ_MIN, 300000); #ifdef FIX_BUS_MIN_CLOCK pm_qos_add_request(&dhd->dhd_bus_qos, PM_QOS_BUS_THROUGHPUT, 400000); #endif /* FIX_BUS_MIN_CLOCK */ DHD_ERROR(("pm_qos_add_requests called\n")); dhd->cpufreq_fix_status = TRUE; } #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) mutex_unlock(&dhd->cpufreq_fix); #endif } static void dhd_rollback_cpu_freq(dhd_info_t *dhd) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) mutex_lock(&dhd ->cpufreq_fix); #endif if (dhd && dhd->cpufreq_fix_status != TRUE) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) mutex_unlock(&dhd->cpufreq_fix); #endif return; } pm_qos_remove_request(&dhd->dhd_cpu_qos); #ifdef FIX_BUS_MIN_CLOCK pm_qos_remove_request(&dhd->dhd_bus_qos); #endif /* FIX_BUS_MIN_CLOCK */ DHD_ERROR(("pm_qos_add_requests called\n")); dhd->cpufreq_fix_status = FALSE; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) mutex_unlock(&dhd->cpufreq_fix); #endif } #endif /* FIX_CPU_MIN_CLOCK */ #if defined(BT_OVER_SDIO) void dhdsdio_bus_usr_cnt_inc(dhd_pub_t *dhdp) { dhdp->info->bus_user_count++; } void dhdsdio_bus_usr_cnt_dec(dhd_pub_t *dhdp) { dhdp->info->bus_user_count--; } /* Return values: * Success: Returns 0 * Failure: Returns -1 or errono code */ int dhd_bus_get(wlan_bt_handle_t handle, bus_owner_t owner) { dhd_pub_t *dhdp = (dhd_pub_t *)handle; dhd_info_t *dhd = (dhd_info_t *)dhdp->info; int ret = 0; mutex_lock(&dhd->bus_user_lock); ++dhd->bus_user_count; if (dhd->bus_user_count < 0) { DHD_ERROR(("%s(): bus_user_count is negative, which is invalid\n", __FUNCTION__)); ret = -1; goto exit; } if (dhd->bus_user_count == 1) { dhd->pub.hang_was_sent = 0; /* First user, turn on WL_REG, start the bus */ DHD_ERROR(("%s(): First user Turn On WL_REG & start the bus", __FUNCTION__)); if (!wifi_platform_set_power(dhd->adapter, TRUE, WIFI_TURNON_DELAY)) { /* Enable F1 */ ret = dhd_bus_resume(dhdp, 0); if (ret) { DHD_ERROR(("%s(): Failed to enable F1, err=%d\n", __FUNCTION__, ret)); goto exit; } } dhd_update_fw_nv_path(dhd); /* update firmware and nvram path to sdio bus */ dhd_bus_update_fw_nv_path(dhd->pub.bus, dhd->fw_path, dhd->nv_path); /* download the firmware, Enable F2 */ /* TODO: Should be done only in case of FW switch */ ret = dhd_bus_devreset(dhdp, FALSE); dhd_bus_resume(dhdp, 1); if (!ret) { if (dhd_sync_with_dongle(&dhd->pub) < 0) { DHD_ERROR(("%s(): Sync with dongle failed!!\n", __FUNCTION__)); ret = -EFAULT; } } else { DHD_ERROR(("%s(): Failed to download, err=%d\n", __FUNCTION__, ret)); } } else { DHD_ERROR(("%s(): BUS is already acquired, just increase the count %d \r\n", __FUNCTION__, dhd->bus_user_count)); } exit: mutex_unlock(&dhd->bus_user_lock); return ret; } EXPORT_SYMBOL(dhd_bus_get); /* Return values: * Success: Returns 0 * Failure: Returns -1 or errono code */ int dhd_bus_put(wlan_bt_handle_t handle, bus_owner_t owner) { dhd_pub_t *dhdp = (dhd_pub_t *)handle; dhd_info_t *dhd = (dhd_info_t *)dhdp->info; int ret = 0; BCM_REFERENCE(owner); mutex_lock(&dhd->bus_user_lock); --dhd->bus_user_count; if (dhd->bus_user_count < 0) { DHD_ERROR(("%s(): bus_user_count is negative, which is invalid\n", __FUNCTION__)); dhd->bus_user_count = 0; ret = -1; goto exit; } if (dhd->bus_user_count == 0) { /* Last user, stop the bus and turn Off WL_REG */ DHD_ERROR(("%s(): There are no owners left Trunf Off WL_REG & stop the bus \r\n", __FUNCTION__)); #ifdef PROP_TXSTATUS if (dhd->pub.wlfc_enabled) { dhd_wlfc_deinit(&dhd->pub); } #endif /* PROP_TXSTATUS */ #ifdef PNO_SUPPORT if (dhd->pub.pno_state) { dhd_pno_deinit(&dhd->pub); } #endif /* PNO_SUPPORT */ #ifdef RTT_SUPPORT if (dhd->pub.rtt_state) { dhd_rtt_deinit(&dhd->pub); } #endif /* RTT_SUPPORT */ ret = dhd_bus_devreset(dhdp, TRUE); if (!ret) { dhd_bus_suspend(dhdp); wifi_platform_set_power(dhd->adapter, FALSE, WIFI_TURNOFF_DELAY); } } else { DHD_ERROR(("%s(): Other owners using bus, decrease the count %d \r\n", __FUNCTION__, dhd->bus_user_count)); } exit: mutex_unlock(&dhd->bus_user_lock); return ret; } EXPORT_SYMBOL(dhd_bus_put); int dhd_net_bus_get(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); return dhd_bus_get(&dhd->pub, WLAN_MODULE); } int dhd_net_bus_put(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); return dhd_bus_put(&dhd->pub, WLAN_MODULE); } /* * Function to enable the Bus Clock * Returns BCME_OK on success and BCME_xxx on failure * * This function is not callable from non-sleepable context */ int dhd_bus_clk_enable(wlan_bt_handle_t handle, bus_owner_t owner) { dhd_pub_t *dhdp = (dhd_pub_t *)handle; int ret; dhd_os_sdlock(dhdp); /* * The second argument is TRUE, that means, we expect * the function to "wait" until the clocks are really * available */ ret = __dhdsdio_clk_enable(dhdp->bus, owner, TRUE); dhd_os_sdunlock(dhdp); return ret; } EXPORT_SYMBOL(dhd_bus_clk_enable); /* * Function to disable the Bus Clock * Returns BCME_OK on success and BCME_xxx on failure * * This function is not callable from non-sleepable context */ int dhd_bus_clk_disable(wlan_bt_handle_t handle, bus_owner_t owner) { dhd_pub_t *dhdp = (dhd_pub_t *)handle; int ret; dhd_os_sdlock(dhdp); /* * The second argument is TRUE, that means, we expect * the function to "wait" until the clocks are really * disabled */ ret = __dhdsdio_clk_disable(dhdp->bus, owner, TRUE); dhd_os_sdunlock(dhdp); return ret; } EXPORT_SYMBOL(dhd_bus_clk_disable); /* * Function to reset bt_use_count counter to zero. * * This function is not callable from non-sleepable context */ void dhd_bus_reset_bt_use_count(wlan_bt_handle_t handle) { dhd_pub_t *dhdp = (dhd_pub_t *)handle; /* take the lock and reset bt use count */ dhd_os_sdlock(dhdp); dhdsdio_reset_bt_use_count(dhdp->bus); dhd_os_sdunlock(dhdp); } EXPORT_SYMBOL(dhd_bus_reset_bt_use_count); #endif /* BT_OVER_SDIO */ #define MAX_TRY_CNT 5 /* Number of tries to disable deepsleep */ int dhd_deepsleep(dhd_info_t *dhd, int flag) { char iovbuf[20]; uint powervar = 0; dhd_pub_t *dhdp; int cnt = 0; int ret = 0; dhdp = &dhd->pub; switch (flag) { case 1 : /* Deepsleep on */ DHD_ERROR(("dhd_deepsleep: ON\n")); /* give some time to sysioc_work before deepsleep */ OSL_SLEEP(200); #ifdef PKT_FILTER_SUPPORT /* disable pkt filter */ dhd_enable_packet_filter(0, dhdp); #endif /* PKT_FILTER_SUPPORT */ /* Disable MPC */ powervar = 0; memset(iovbuf, 0, sizeof(iovbuf)); bcm_mkiovar("mpc", (char *)&powervar, 4, iovbuf, sizeof(iovbuf)); dhd_wl_ioctl_cmd(dhdp, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0); /* Enable Deepsleep */ powervar = 1; memset(iovbuf, 0, sizeof(iovbuf)); bcm_mkiovar("deepsleep", (char *)&powervar, 4, iovbuf, sizeof(iovbuf)); dhd_wl_ioctl_cmd(dhdp, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0); break; case 0: /* Deepsleep Off */ DHD_ERROR(("dhd_deepsleep: OFF\n")); /* Disable Deepsleep */ for (cnt = 0; cnt < MAX_TRY_CNT; cnt++) { powervar = 0; memset(iovbuf, 0, sizeof(iovbuf)); bcm_mkiovar("deepsleep", (char *)&powervar, 4, iovbuf, sizeof(iovbuf)); dhd_wl_ioctl_cmd(dhdp, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0); memset(iovbuf, 0, sizeof(iovbuf)); bcm_mkiovar("deepsleep", (char *)&powervar, 4, iovbuf, sizeof(iovbuf)); if ((ret = dhd_wl_ioctl_cmd(dhdp, WLC_GET_VAR, iovbuf, sizeof(iovbuf), FALSE, 0)) < 0) { DHD_ERROR(("the error of dhd deepsleep status" " ret value :%d\n", ret)); } else { if (!(*(int *)iovbuf)) { DHD_ERROR(("deepsleep mode is 0," " count: %d\n", cnt)); break; } } } /* Enable MPC */ powervar = 1; memset(iovbuf, 0, sizeof(iovbuf)); bcm_mkiovar("mpc", (char *)&powervar, 4, iovbuf, sizeof(iovbuf)); dhd_wl_ioctl_cmd(dhdp, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0); break; } return 0; } static int dhd_stop(struct net_device *net) { int ifidx = 0; #ifdef WL_CFG80211 unsigned long flags = 0; #endif /* WL_CFG80211 */ dhd_info_t *dhd = DHD_DEV_INFO(net); DHD_OS_WAKE_LOCK(&dhd->pub); DHD_PERIM_LOCK(&dhd->pub); DHD_PRINT("%s: Enter %p\n", __FUNCTION__, net); dhd->pub.rxcnt_timeout = 0; dhd->pub.txcnt_timeout = 0; #ifdef BCMPCIE dhd->pub.d3ackcnt_timeout = 0; #endif /* BCMPCIE */ if (dhd->pub.up == 0) { goto exit; } #ifdef DHD_LOAD_CHIPALIVE if (dhd->pub.conf->suspended) { return 0; } #endif #if defined(DHD_HANG_SEND_UP_TEST) if (dhd->pub.req_hang_type) { DHD_ERROR(("%s, Clear HANG test request 0x%x\n", __FUNCTION__, dhd->pub.req_hang_type)); dhd->pub.req_hang_type = 0; } #endif /* DHD_HANG_SEND_UP_TEST */ dhd_if_flush_sta(DHD_DEV_IFP(net)); /* Disable Runtime PM before interface down */ DHD_DISABLE_RUNTIME_PM(&dhd->pub); #ifdef FIX_CPU_MIN_CLOCK if (dhd_get_fw_mode(dhd) == DHD_FLAG_HOSTAP_MODE) dhd_rollback_cpu_freq(dhd); #endif /* FIX_CPU_MIN_CLOCK */ ifidx = dhd_net2idx(dhd, net); BCM_REFERENCE(ifidx); /* Set state and stop OS transmissions */ netif_stop_queue(net); #ifdef WL_CFG80211 spin_lock_irqsave(&dhd->pub.up_lock, flags); dhd->pub.up = 0; spin_unlock_irqrestore(&dhd->pub.up_lock, flags); #else dhd->pub.up = 0; #endif /* WL_CFG80211 */ #ifdef WL_CFG80211 if (ifidx == 0) { dhd_if_t *ifp; wl_cfg80211_down(net); ifp = dhd->iflist[0]; ASSERT(ifp && ifp->net); /* * For CFG80211: Clean up all the left over virtual interfaces * when the primary Interface is brought down. [ifconfig wlan0 down] */ if (!dhd_download_fw_on_driverload) { if ((dhd->dhd_state & DHD_ATTACH_STATE_ADD_IF) && (dhd->dhd_state & DHD_ATTACH_STATE_CFG80211)) { int i; #ifdef WL_CFG80211_P2P_DEV_IF wl_cfg80211_del_p2p_wdev(net); #endif /* WL_CFG80211_P2P_DEV_IF */ dhd_net_if_lock_local(dhd); for (i = 1; i < DHD_MAX_IFS; i++) dhd_remove_if(&dhd->pub, i, FALSE); if (ifp && ifp->net) { dhd_if_del_sta_list(ifp); } #ifdef ARP_OFFLOAD_SUPPORT if (dhd_inetaddr_notifier_registered) { dhd_inetaddr_notifier_registered = FALSE; unregister_inetaddr_notifier(&dhd_inetaddr_notifier); } #endif /* ARP_OFFLOAD_SUPPORT */ #if defined(CONFIG_IPV6) && defined(IPV6_NDO_SUPPORT) if (dhd_inet6addr_notifier_registered) { dhd_inet6addr_notifier_registered = FALSE; unregister_inet6addr_notifier(&dhd_inet6addr_notifier); } #endif /* CONFIG_IPV6 && IPV6_NDO_SUPPORT */ dhd_net_if_unlock_local(dhd); } #if 0 // terence 20161024: remove this to prevent dev_close() get stuck in dhd_hang_process cancel_work_sync(dhd->dhd_deferred_wq); #endif #ifdef SHOW_LOGTRACE /* Wait till event_log_dispatcher_work finishes */ cancel_work_sync(&dhd->event_log_dispatcher_work); #endif /* SHOW_LOGTRACE */ #if defined(DHD_LB_RXP) __skb_queue_purge(&dhd->rx_pend_queue); #endif /* DHD_LB_RXP */ #if defined(DHD_LB_TXP) skb_queue_purge(&dhd->tx_pend_queue); #endif /* DHD_LB_TXP */ } argos_register_notifier_deinit(); #ifdef DHDTCPACK_SUPPRESS dhd_tcpack_suppress_set(&dhd->pub, TCPACK_SUP_OFF); #endif /* DHDTCPACK_SUPPRESS */ #if defined(DHD_LB_RXP) if (ifp->net == dhd->rx_napi_netdev) { DHD_INFO(("%s napi<%p> disabled ifp->net<%p,%s>\n", __FUNCTION__, &dhd->rx_napi_struct, net, net->name)); skb_queue_purge(&dhd->rx_napi_queue); napi_disable(&dhd->rx_napi_struct); netif_napi_del(&dhd->rx_napi_struct); dhd->rx_napi_netdev = NULL; } #endif /* DHD_LB_RXP */ } #endif /* WL_CFG80211 */ DHD_SSSR_DUMP_DEINIT(&dhd->pub); #ifdef PROP_TXSTATUS dhd_wlfc_cleanup(&dhd->pub, NULL, 0); #endif #ifdef SHOW_LOGTRACE if (!dhd_download_fw_on_driverload) { /* Release the skbs from queue for WLC_E_TRACE event */ dhd_event_logtrace_flush_queue(&dhd->pub); if (dhd->dhd_state & DHD_ATTACH_LOGTRACE_INIT) { if (dhd->event_data.fmts) { MFREE(dhd->pub.osh, dhd->event_data.fmts, dhd->event_data.fmts_size); dhd->event_data.fmts = NULL; } if (dhd->event_data.raw_fmts) { MFREE(dhd->pub.osh, dhd->event_data.raw_fmts, dhd->event_data.raw_fmts_size); dhd->event_data.raw_fmts = NULL; } if (dhd->event_data.raw_sstr) { MFREE(dhd->pub.osh, dhd->event_data.raw_sstr, dhd->event_data.raw_sstr_size); dhd->event_data.raw_sstr = NULL; } if (dhd->event_data.rom_raw_sstr) { MFREE(dhd->pub.osh, dhd->event_data.rom_raw_sstr, dhd->event_data.rom_raw_sstr_size); dhd->event_data.rom_raw_sstr = NULL; } dhd->dhd_state &= ~DHD_ATTACH_LOGTRACE_INIT; } } #endif /* SHOW_LOGTRACE */ #ifdef APF dhd_dev_apf_delete_filter(net); #endif /* APF */ /* Stop the protocol module */ dhd_prot_stop(&dhd->pub); OLD_MOD_DEC_USE_COUNT; exit: #if defined(WL_WIRELESS_EXT) if (ifidx == 0) { wl_iw_down(net, &dhd->pub); } #endif /* defined(WL_WIRELESS_EXT) */ #ifdef WL_ESCAN if (ifidx == 0) { wl_escan_down(net, &dhd->pub); } #endif /* WL_ESCAN */ if (ifidx == 0 && !dhd_download_fw_on_driverload) { #if defined(BT_OVER_SDIO) dhd_bus_put(&dhd->pub, WLAN_MODULE); wl_android_set_wifi_on_flag(FALSE); #else wl_android_wifi_off(net, TRUE); #if defined(WL_EXT_IAPSTA) || defined(USE_IW) || defined(WL_ESCAN) #ifdef WL_EXT_IAPSTA wl_ext_iapsta_dettach_netdev(net, ifidx); #endif /* WL_EXT_IAPSTA */ #ifdef WL_ESCAN wl_escan_event_dettach(net, &dhd->pub); #endif /* WL_ESCAN */ wl_ext_event_dettach_netdev(net, ifidx); #endif /* WL_EXT_IAPSTA || USE_IW || WL_ESCAN */ } else { if (dhd->pub.conf->deepsleep) dhd_deepsleep(dhd, 1); #endif /* BT_OVER_SDIO */ } dhd->pub.hang_was_sent = 0; /* Clear country spec for for built-in type driver */ if (!dhd_download_fw_on_driverload) { dhd->pub.dhd_cspec.country_abbrev[0] = 0x00; dhd->pub.dhd_cspec.rev = 0; dhd->pub.dhd_cspec.ccode[0] = 0x00; } #ifdef BCMDBGFS dhd_dbgfs_remove(); #endif DHD_PERIM_UNLOCK(&dhd->pub); DHD_OS_WAKE_UNLOCK(&dhd->pub); /* Destroy wakelock */ if (!dhd_download_fw_on_driverload && (dhd->dhd_state & DHD_ATTACH_STATE_WAKELOCKS_INIT)) { DHD_OS_WAKE_LOCK_DESTROY(dhd); dhd->dhd_state &= ~DHD_ATTACH_STATE_WAKELOCKS_INIT; } DHD_PRINT("%s: Exit\n", __FUNCTION__); return 0; } #if defined(WL_CFG80211) && defined(USE_INITIAL_SHORT_DWELL_TIME) extern bool g_first_broadcast_scan; #endif #ifdef WL11U static int dhd_interworking_enable(dhd_pub_t *dhd) { uint32 enable = true; int ret = BCME_OK; ret = dhd_iovar(dhd, 0, "interworking", (char *)&enable, sizeof(enable), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: enableing interworking failed, ret=%d\n", __FUNCTION__, ret)); } return ret; } #endif /* WL11u */ static int dhd_open(struct net_device *net) { dhd_info_t *dhd = DHD_DEV_INFO(net); #ifdef TOE uint32 toe_ol; #endif #ifdef BCM_FD_AGGR char iovbuf[WLC_IOCTL_SMLEN]; dbus_config_t config; uint32 agglimit = 0; uint32 rpc_agg = BCM_RPC_TP_DNGL_AGG_DPC; /* host aggr not enabled yet */ #endif /* BCM_FD_AGGR */ int ifidx; int32 ret = 0; #if defined(OOB_INTR_ONLY) uint32 bus_type = -1; uint32 bus_num = -1; uint32 slot_num = -1; wifi_adapter_info_t *adapter = NULL; #endif #if (defined(WL_EXT_IAPSTA) && defined(ISAM_PREINIT)) || defined(DHD_LOAD_CHIPALIVE) int bytes_written = 0; int retry = 0; #endif if (!dhd_download_fw_on_driverload) { if (!dhd_driver_init_done) { DHD_ERROR(("%s: WLAN driver is not initialized\n", __FUNCTION__)); return -1; } } printf("%s: Enter %p\n", __FUNCTION__, net); DHD_MUTEX_LOCK(); /* Init wakelock */ if (!dhd_download_fw_on_driverload) { if (!(dhd->dhd_state & DHD_ATTACH_STATE_WAKELOCKS_INIT)) { DHD_OS_WAKE_LOCK_INIT(dhd); dhd->dhd_state |= DHD_ATTACH_STATE_WAKELOCKS_INIT; } #ifdef SHOW_LOGTRACE skb_queue_head_init(&dhd->evt_trace_queue); if (!(dhd->dhd_state & DHD_ATTACH_LOGTRACE_INIT)) { ret = dhd_init_logstrs_array(dhd->pub.osh, &dhd->event_data); if (ret == BCME_OK) { dhd_init_static_strs_array(dhd->pub.osh, &dhd->event_data, st_str_file_path, map_file_path); dhd_init_static_strs_array(dhd->pub.osh, &dhd->event_data, rom_st_str_file_path, rom_map_file_path); dhd->dhd_state |= DHD_ATTACH_LOGTRACE_INIT; } } #endif /* SHOW_LOGTRACE */ } #if defined(PREVENT_REOPEN_DURING_HANG) /* WAR : to prevent calling dhd_open abnormally in quick succession after hang event */ if (dhd->pub.hang_was_sent == 1) { DHD_ERROR(("%s: HANG was sent up earlier\n", __FUNCTION__)); /* Force to bring down WLAN interface in case dhd_stop() is not called * from the upper layer when HANG event is triggered. */ if (!dhd_download_fw_on_driverload && dhd->pub.up == 1) { DHD_ERROR(("%s: WLAN interface is not brought down\n", __FUNCTION__)); dhd_stop(net); } else { DHD_MUTEX_UNLOCK(); return -1; } } #endif /* PREVENT_REOPEN_DURING_HANG */ DHD_OS_WAKE_LOCK(&dhd->pub); DHD_PERIM_LOCK(&dhd->pub); dhd->pub.dongle_trap_occured = 0; dhd->pub.hang_was_sent = 0; dhd->pub.hang_reason = 0; dhd->pub.iovar_timeout_occured = 0; #ifdef PCIE_FULL_DONGLE dhd->pub.d3ack_timeout_occured = 0; #endif /* PCIE_FULL_DONGLE */ #ifdef DHD_LOSSLESS_ROAMING dhd->pub.dequeue_prec_map = ALLPRIO; #endif #if 0 /* * Force start if ifconfig_up gets called before START command * We keep WEXT's wl_control_wl_start to provide backward compatibility * This should be removed in the future */ ret = wl_control_wl_start(net); if (ret != 0) { DHD_ERROR(("%s: failed with code %d\n", __FUNCTION__, ret)); ret = -1; goto exit; } #endif ifidx = dhd_net2idx(dhd, net); DHD_TRACE(("%s: ifidx %d\n", __FUNCTION__, ifidx)); if (ifidx < 0) { DHD_ERROR(("%s: Error: called with invalid IF\n", __FUNCTION__)); ret = -1; goto exit; } if (!dhd->iflist[ifidx]) { DHD_ERROR(("%s: Error: called when IF already deleted\n", __FUNCTION__)); ret = -1; goto exit; } if (ifidx == 0) { atomic_set(&dhd->pend_8021x_cnt, 0); if (!dhd_download_fw_on_driverload) { DHD_ERROR(("\n%s\n", dhd_version)); #if defined(WL_EXT_IAPSTA) || defined(USE_IW) || defined(WL_ESCAN) wl_ext_event_attach_netdev(net, ifidx, dhd->iflist[ifidx]->bssidx); #ifdef WL_ESCAN wl_escan_event_attach(net, &dhd->pub); #endif /* WL_ESCAN */ #ifdef WL_EXT_IAPSTA wl_ext_iapsta_attach_netdev(net, ifidx, dhd->iflist[ifidx]->bssidx); #endif /* WL_EXT_IAPSTA */ #endif /* WL_EXT_IAPSTA || USE_IW || WL_ESCAN */ #if defined(USE_INITIAL_SHORT_DWELL_TIME) g_first_broadcast_scan = TRUE; #endif #ifdef DHD_LOAD_CHIPALIVE fail_retry: #endif #if defined(BT_OVER_SDIO) ret = dhd_bus_get(&dhd->pub, WLAN_MODULE); wl_android_set_wifi_on_flag(TRUE); #else ret = wl_android_wifi_on(net); #endif /* BT_OVER_SDIO */ if (ret != 0) { #ifdef DHD_LOAD_CHIPALIVE retry++; if (dhd_chip_alive) { DHD_ERROR(("Turn off dhd_chip_alive, retry=%d\n", retry)); dhd_chip_alive = 0; } if (retry < 3) goto fail_retry; #endif DHD_ERROR(("%s : wl_android_wifi_on failed (%d)\n", __FUNCTION__, ret)); ret = -1; goto exit; } } #ifdef FIX_CPU_MIN_CLOCK if (dhd_get_fw_mode(dhd) == DHD_FLAG_HOSTAP_MODE) { dhd_init_cpufreq_fix(dhd); dhd_fix_cpu_freq(dhd); } #endif /* FIX_CPU_MIN_CLOCK */ #if defined(OOB_INTR_ONLY) if (dhd->pub.conf->dpc_cpucore >= 0) { dhd_bus_get_ids(dhd->pub.bus, &bus_type, &bus_num, &slot_num); adapter = dhd_wifi_platform_get_adapter(bus_type, bus_num, slot_num); if (adapter) { printf("%s: set irq affinity hit %d\n", __FUNCTION__, dhd->pub.conf->dpc_cpucore); irq_set_affinity_hint(adapter->irq_num, cpumask_of(dhd->pub.conf->dpc_cpucore)); } } #endif if (dhd->pub.busstate != DHD_BUS_DATA) { #ifdef BCMDBUS dhd_set_path(&dhd->pub); DHD_MUTEX_UNLOCK(); wait_event_interruptible_timeout(dhd->adapter->status_event, wifi_get_adapter_status(dhd->adapter, WIFI_STATUS_FW_READY), msecs_to_jiffies(DHD_FW_READY_TIMEOUT)); DHD_MUTEX_LOCK(); if ((ret = dbus_up(dhd->pub.bus)) != 0) { DHD_ERROR(("%s: failed to dbus_up with code %d\n", __FUNCTION__, ret)); goto exit; } else { dhd->pub.busstate = DHD_BUS_DATA; } if ((ret = dhd_sync_with_dongle(&dhd->pub)) < 0) { DHD_ERROR(("%s: failed with code %d\n", __FUNCTION__, ret)); goto exit; } #else /* try to bring up bus */ DHD_PERIM_UNLOCK(&dhd->pub); ret = dhd_bus_start(&dhd->pub); DHD_PERIM_LOCK(&dhd->pub); if (ret) { DHD_ERROR(("%s: failed with code %d\n", __FUNCTION__, ret)); ret = -1; goto exit; } #endif /* !BCMDBUS */ } #ifdef WL_EXT_IAPSTA wl_ext_iapsta_attach_name(net, ifidx); #endif if (dhd_download_fw_on_driverload) { if (dhd->pub.conf->deepsleep) dhd_deepsleep(dhd, 0); } #ifdef BCM_FD_AGGR config.config_id = DBUS_CONFIG_ID_AGGR_LIMIT; memset(iovbuf, 0, sizeof(iovbuf)); bcm_mkiovar("rpc_dngl_agglimit", (char *)&agglimit, 4, iovbuf, sizeof(iovbuf)); if (!dhd_wl_ioctl_cmd(&dhd->pub, WLC_GET_VAR, iovbuf, sizeof(iovbuf), FALSE, 0)) { agglimit = *(uint32 *)iovbuf; config.aggr_param.maxrxsf = agglimit >> BCM_RPC_TP_AGG_SF_SHIFT; config.aggr_param.maxrxsize = agglimit & BCM_RPC_TP_AGG_BYTES_MASK; DHD_ERROR(("rpc_dngl_agglimit %x : sf_limit %d bytes_limit %d\n", agglimit, config.aggr_param.maxrxsf, config.aggr_param.maxrxsize)); if (bcm_rpc_tp_set_config(dhd->pub.info->rpc_th, &config)) { DHD_ERROR(("set tx/rx queue size and buffersize failed\n")); } } else { DHD_ERROR(("get rpc_dngl_agglimit failed\n")); rpc_agg &= ~BCM_RPC_TP_DNGL_AGG_DPC; } /* Set aggregation for TX */ bcm_rpc_tp_agg_set(dhd->pub.info->rpc_th, BCM_RPC_TP_HOST_AGG_MASK, rpc_agg & BCM_RPC_TP_HOST_AGG_MASK); /* Set aggregation for RX */ memset(iovbuf, 0, sizeof(iovbuf)); bcm_mkiovar("rpc_agg", (char *)&rpc_agg, sizeof(rpc_agg), iovbuf, sizeof(iovbuf)); if (!dhd_wl_ioctl_cmd(&dhd->pub, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0)) { dhd->pub.info->fdaggr = 0; if (rpc_agg & BCM_RPC_TP_HOST_AGG_MASK) dhd->pub.info->fdaggr |= BCM_FDAGGR_H2D_ENABLED; if (rpc_agg & BCM_RPC_TP_DNGL_AGG_MASK) dhd->pub.info->fdaggr |= BCM_FDAGGR_D2H_ENABLED; } else { DHD_ERROR(("%s(): Setting RX aggregation failed %d\n", __FUNCTION__, ret)); } #endif /* BCM_FD_AGGR */ #ifdef BT_OVER_SDIO if (dhd->pub.is_bt_recovery_required) { DHD_ERROR(("%s: Send Hang Notification 2 to BT\n", __FUNCTION__)); bcmsdh_btsdio_process_dhd_hang_notification(TRUE); } dhd->pub.is_bt_recovery_required = FALSE; #endif /* dhd_sync_with_dongle has been called in dhd_bus_start or wl_android_wifi_on */ memcpy(net->dev_addr, dhd->pub.mac.octet, ETHER_ADDR_LEN); #ifdef TOE /* Get current TOE mode from dongle */ if (dhd_toe_get(dhd, ifidx, &toe_ol) >= 0 && (toe_ol & TOE_TX_CSUM_OL) != 0) { dhd->iflist[ifidx]->net->features |= NETIF_F_IP_CSUM; } else { dhd->iflist[ifidx]->net->features &= ~NETIF_F_IP_CSUM; } #endif /* TOE */ #if defined(DHD_LB_RXP) __skb_queue_head_init(&dhd->rx_pend_queue); if (dhd->rx_napi_netdev == NULL) { dhd->rx_napi_netdev = dhd->iflist[ifidx]->net; memset(&dhd->rx_napi_struct, 0, sizeof(struct napi_struct)); netif_napi_add(dhd->rx_napi_netdev, &dhd->rx_napi_struct, dhd_napi_poll, dhd_napi_weight); DHD_INFO(("%s napi<%p> enabled ifp->net<%p,%s>\n", __FUNCTION__, &dhd->rx_napi_struct, net, net->name)); napi_enable(&dhd->rx_napi_struct); DHD_INFO(("%s load balance init rx_napi_struct\n", __FUNCTION__)); skb_queue_head_init(&dhd->rx_napi_queue); } /* rx_napi_netdev == NULL */ #endif /* DHD_LB_RXP */ #if defined(DHD_LB_TXP) /* Use the variant that uses locks */ skb_queue_head_init(&dhd->tx_pend_queue); #endif /* DHD_LB_TXP */ #if defined(WL_CFG80211) if (unlikely(wl_cfg80211_up(net))) { DHD_ERROR(("%s: failed to bring up cfg80211\n", __FUNCTION__)); ret = -1; goto exit; } if (!dhd_download_fw_on_driverload) { #ifdef ARP_OFFLOAD_SUPPORT dhd->pend_ipaddr = 0; if (!dhd_inetaddr_notifier_registered) { dhd_inetaddr_notifier_registered = TRUE; register_inetaddr_notifier(&dhd_inetaddr_notifier); } #endif /* ARP_OFFLOAD_SUPPORT */ #if defined(CONFIG_IPV6) && defined(IPV6_NDO_SUPPORT) if (!dhd_inet6addr_notifier_registered) { dhd_inet6addr_notifier_registered = TRUE; register_inet6addr_notifier(&dhd_inet6addr_notifier); } #endif /* CONFIG_IPV6 && IPV6_NDO_SUPPORT */ } argos_register_notifier_init(net); #if defined(NUM_SCB_MAX_PROBE) dhd_set_scb_probe(&dhd->pub); #endif /* NUM_SCB_MAX_PROBE */ #endif /* WL_CFG80211 */ #if defined(WL_WIRELESS_EXT) if (unlikely(wl_iw_up(net, &dhd->pub))) { DHD_ERROR(("%s: failed to bring up wext\n", __FUNCTION__)); ret = -1; goto exit; } #endif #ifdef WL_ESCAN if (unlikely(wl_escan_up(net, &dhd->pub))) { DHD_ERROR(("%s: failed to bring up escan\n", __FUNCTION__)); ret = -1; goto exit; } #endif /* WL_ESCAN */ } /* Allow transmit calls */ netif_start_queue(net); dhd->pub.up = 1; if (ifidx == 0) { #ifdef DHD_LOAD_CHIPALIVE if (dhd_chip_alive) { wl_android_ext_priv_cmd(net, "setsuspendmode 0", 0, &bytes_written); } else { #endif #if defined(ISAM_PREINIT) if (!dhd_download_fw_on_driverload) { if (dhd->pub.conf) { wl_android_ext_priv_cmd(net, dhd->pub.conf->isam_init, 0, &bytes_written); wl_android_ext_priv_cmd(net, dhd->pub.conf->isam_config, 0, &bytes_written); wl_android_ext_priv_cmd(net, dhd->pub.conf->isam_enable, 0, &bytes_written); } } #endif #ifdef DHD_LOAD_CHIPALIVE } #endif } OLD_MOD_INC_USE_COUNT; #ifdef BCMDBGFS dhd_dbgfs_init(&dhd->pub); #endif exit: #ifdef ENABLE_INSMOD_NO_FW_LOAD if (dhd_chip_alive) { dhd_download_fw_on_driverload = FALSE; dhd_driver_init_done = TRUE; } #endif if (ret) { dhd_stop(net); } DHD_PERIM_UNLOCK(&dhd->pub); DHD_OS_WAKE_UNLOCK(&dhd->pub); DHD_MUTEX_UNLOCK(); printf("%s: Exit ret=%d\n", __FUNCTION__, ret); return ret; } int dhd_do_driver_init(struct net_device *net) { dhd_info_t *dhd = NULL; if (!net) { DHD_ERROR(("Primary Interface not initialized \n")); return -EINVAL; } DHD_MUTEX_IS_LOCK_RETURN(); /* && defined(OEM_ANDROID) && defined(BCMSDIO) */ dhd = DHD_DEV_INFO(net); /* If driver is already initialized, do nothing */ if (dhd->pub.busstate == DHD_BUS_DATA) { DHD_TRACE(("Driver already Inititalized. Nothing to do")); return 0; } if (dhd_open(net) < 0) { DHD_ERROR(("Driver Init Failed \n")); return -1; } return 0; } int dhd_event_ifadd(dhd_info_t *dhdinfo, wl_event_data_if_t *ifevent, char *name, uint8 *mac) { #ifdef WL_CFG80211 if (wl_cfg80211_notify_ifadd(dhd_linux_get_primary_netdev(&dhdinfo->pub), ifevent->ifidx, name, mac, ifevent->bssidx) == BCME_OK) return BCME_OK; #endif /* handle IF event caused by wl commands, SoftAP, WEXT and * anything else. This has to be done asynchronously otherwise * DPC will be blocked (and iovars will timeout as DPC has no chance * to read the response back) */ if (ifevent->ifidx > 0) { dhd_if_event_t *if_event = MALLOC(dhdinfo->pub.osh, sizeof(dhd_if_event_t)); if (if_event == NULL) { DHD_ERROR(("dhd_event_ifadd: Failed MALLOC, malloced %d bytes", MALLOCED(dhdinfo->pub.osh))); return BCME_NOMEM; } memcpy(&if_event->event, ifevent, sizeof(if_event->event)); memcpy(if_event->mac, mac, ETHER_ADDR_LEN); strncpy(if_event->name, name, IFNAMSIZ); if_event->name[IFNAMSIZ - 1] = '\0'; dhd_deferred_schedule_work(dhdinfo->dhd_deferred_wq, (void *)if_event, DHD_WQ_WORK_IF_ADD, dhd_ifadd_event_handler, DHD_WQ_WORK_PRIORITY_LOW); } return BCME_OK; } int dhd_event_ifdel(dhd_info_t *dhdinfo, wl_event_data_if_t *ifevent, char *name, uint8 *mac) { dhd_if_event_t *if_event; #ifdef WL_CFG80211 if (wl_cfg80211_notify_ifdel(dhd_linux_get_primary_netdev(&dhdinfo->pub), ifevent->ifidx, name, mac, ifevent->bssidx) == BCME_OK) return BCME_OK; #endif /* WL_CFG80211 */ /* handle IF event caused by wl commands, SoftAP, WEXT and * anything else */ if_event = MALLOC(dhdinfo->pub.osh, sizeof(dhd_if_event_t)); if (if_event == NULL) { DHD_ERROR(("dhd_event_ifdel: malloc failed for if_event, malloced %d bytes", MALLOCED(dhdinfo->pub.osh))); return BCME_NOMEM; } memcpy(&if_event->event, ifevent, sizeof(if_event->event)); memcpy(if_event->mac, mac, ETHER_ADDR_LEN); strncpy(if_event->name, name, IFNAMSIZ); if_event->name[IFNAMSIZ - 1] = '\0'; dhd_deferred_schedule_work(dhdinfo->dhd_deferred_wq, (void *)if_event, DHD_WQ_WORK_IF_DEL, dhd_ifdel_event_handler, DHD_WQ_WORK_PRIORITY_LOW); return BCME_OK; } int dhd_event_ifchange(dhd_info_t *dhdinfo, wl_event_data_if_t *ifevent, char *name, uint8 *mac) { #ifdef DHD_UPDATE_INTF_MAC dhd_if_event_t *if_event; #endif /* DHD_UPDATE_INTF_MAC */ #ifdef WL_CFG80211 wl_cfg80211_notify_ifchange(dhd_linux_get_primary_netdev(&dhdinfo->pub), ifevent->ifidx, name, mac, ifevent->bssidx); #endif /* WL_CFG80211 */ #ifdef DHD_UPDATE_INTF_MAC /* handle IF event caused by wl commands, SoftAP, WEXT, MBSS and * anything else */ if_event = MALLOC(dhdinfo->pub.osh, sizeof(dhd_if_event_t)); if (if_event == NULL) { DHD_ERROR(("dhd_event_ifdel: malloc failed for if_event, malloced %d bytes", MALLOCED(dhdinfo->pub.osh))); return BCME_NOMEM; } memcpy(&if_event->event, ifevent, sizeof(if_event->event)); // construct a change event if_event->event.ifidx = dhd_ifname2idx(dhdinfo, name); if_event->event.opcode = WLC_E_IF_CHANGE; memcpy(if_event->mac, mac, ETHER_ADDR_LEN); strncpy(if_event->name, name, IFNAMSIZ); if_event->name[IFNAMSIZ - 1] = '\0'; dhd_deferred_schedule_work(dhdinfo->dhd_deferred_wq, (void *)if_event, DHD_WQ_WORK_IF_UPDATE, dhd_ifupdate_event_handler, DHD_WQ_WORK_PRIORITY_LOW); #endif /* DHD_UPDATE_INTF_MAC */ return BCME_OK; } /* unregister and free the existing net_device interface (if any) in iflist and * allocate a new one. the slot is reused. this function does NOT register the * new interface to linux kernel. dhd_register_if does the job */ struct net_device* dhd_allocate_if(dhd_pub_t *dhdpub, int ifidx, const char *name, uint8 *mac, uint8 bssidx, bool need_rtnl_lock, const char *dngl_name) { dhd_info_t *dhdinfo = (dhd_info_t *)dhdpub->info; dhd_if_t *ifp; ASSERT(dhdinfo && (ifidx < DHD_MAX_IFS)); ifp = dhdinfo->iflist[ifidx]; if (ifp != NULL) { if (ifp->net != NULL) { DHD_ERROR(("%s: free existing IF %s ifidx:%d \n", __FUNCTION__, ifp->net->name, ifidx)); if (ifidx == 0) { /* For primary ifidx (0), there shouldn't be * any netdev present already. */ DHD_ERROR(("Primary ifidx populated already\n")); ASSERT(0); return NULL; } dhd_dev_priv_clear(ifp->net); /* clear net_device private */ /* in unregister_netdev case, the interface gets freed by net->destructor * (which is set to free_netdev) */ if (ifp->net->reg_state == NETREG_UNINITIALIZED) { free_netdev(ifp->net); } else { netif_stop_queue(ifp->net); if (need_rtnl_lock) unregister_netdev(ifp->net); else unregister_netdevice(ifp->net); } ifp->net = NULL; } } else { ifp = MALLOC(dhdinfo->pub.osh, sizeof(dhd_if_t)); if (ifp == NULL) { DHD_ERROR(("%s: OOM - dhd_if_t(%zu)\n", __FUNCTION__, sizeof(dhd_if_t))); return NULL; } } memset(ifp, 0, sizeof(dhd_if_t)); ifp->info = dhdinfo; ifp->idx = ifidx; ifp->bssidx = bssidx; #ifdef DHD_MCAST_REGEN ifp->mcast_regen_bss_enable = FALSE; #endif /* set to TRUE rx_pkt_chainable at alloc time */ ifp->rx_pkt_chainable = TRUE; if (mac != NULL) memcpy(&ifp->mac_addr, mac, ETHER_ADDR_LEN); /* Allocate etherdev, including space for private structure */ ifp->net = alloc_etherdev(DHD_DEV_PRIV_SIZE); if (ifp->net == NULL) { DHD_ERROR(("%s: OOM - alloc_etherdev(%zu)\n", __FUNCTION__, sizeof(dhdinfo))); goto fail; } /* Setup the dhd interface's netdevice private structure. */ dhd_dev_priv_save(ifp->net, dhdinfo, ifp, ifidx); if (name && name[0]) { strncpy(ifp->net->name, name, IFNAMSIZ); ifp->net->name[IFNAMSIZ - 1] = '\0'; } #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 11, 9)) #define IFP_NET_DESTRUCTOR ifp->net->priv_destructor #else #define IFP_NET_DESTRUCTOR ifp->net->destructor #endif // endif #ifdef WL_CFG80211 if (ifidx == 0) { IFP_NET_DESTRUCTOR = free_netdev; } else { IFP_NET_DESTRUCTOR = dhd_netdev_free; } #else IFP_NET_DESTRUCTOR = free_netdev; #endif /* WL_CFG80211 */ strncpy(ifp->name, ifp->net->name, IFNAMSIZ); ifp->name[IFNAMSIZ - 1] = '\0'; dhdinfo->iflist[ifidx] = ifp; /* initialize the dongle provided if name */ if (dngl_name) strncpy(ifp->dngl_name, dngl_name, IFNAMSIZ); else if (name) strncpy(ifp->dngl_name, name, IFNAMSIZ); #ifdef PCIE_FULL_DONGLE /* Initialize STA info list */ INIT_LIST_HEAD(&ifp->sta_list); DHD_IF_STA_LIST_LOCK_INIT(ifp); #endif /* PCIE_FULL_DONGLE */ #ifdef DHD_L2_FILTER ifp->phnd_arp_table = init_l2_filter_arp_table(dhdpub->osh); ifp->parp_allnode = TRUE; #endif /* DHD_L2_FILTER */ DHD_CUMM_CTR_INIT(&ifp->cumm_ctr); return ifp->net; fail: if (ifp != NULL) { if (ifp->net != NULL) { #if defined(DHD_LB_RXP) && defined(PCIE_FULL_DONGLE) if (ifp->net == dhdinfo->rx_napi_netdev) { napi_disable(&dhdinfo->rx_napi_struct); netif_napi_del(&dhdinfo->rx_napi_struct); skb_queue_purge(&dhdinfo->rx_napi_queue); dhdinfo->rx_napi_netdev = NULL; } #endif /* DHD_LB_RXP && PCIE_FULL_DONGLE */ dhd_dev_priv_clear(ifp->net); free_netdev(ifp->net); ifp->net = NULL; } MFREE(dhdinfo->pub.osh, ifp, sizeof(*ifp)); ifp = NULL; } dhdinfo->iflist[ifidx] = NULL; return NULL; } /* unregister and free the the net_device interface associated with the indexed * slot, also free the slot memory and set the slot pointer to NULL */ int dhd_remove_if(dhd_pub_t *dhdpub, int ifidx, bool need_rtnl_lock) { dhd_info_t *dhdinfo = (dhd_info_t *)dhdpub->info; dhd_if_t *ifp; #ifdef PCIE_FULL_DONGLE if_flow_lkup_t *if_flow_lkup = (if_flow_lkup_t *)dhdpub->if_flow_lkup; #endif /* PCIE_FULL_DONGLE */ ifp = dhdinfo->iflist[ifidx]; if (ifp != NULL) { if (ifp->net != NULL) { DHD_ERROR(("deleting interface '%s' idx %d\n", ifp->net->name, ifp->idx)); dhdinfo->iflist[ifidx] = NULL; /* in unregister_netdev case, the interface gets freed by net->destructor * (which is set to free_netdev) */ if (ifp->net->reg_state == NETREG_UNINITIALIZED) { free_netdev(ifp->net); } else { netif_tx_disable(ifp->net); #if defined(SET_RPS_CPUS) custom_rps_map_clear(ifp->net->_rx); #endif /* SET_RPS_CPUS */ if (need_rtnl_lock) unregister_netdev(ifp->net); else unregister_netdevice(ifp->net); #if defined(WL_EXT_IAPSTA) || defined(USE_IW) || defined(WL_ESCAN) #ifdef WL_EXT_IAPSTA wl_ext_iapsta_dettach_netdev(ifp->net, ifidx); #endif /* WL_EXT_IAPSTA */ #ifdef WL_ESCAN wl_escan_event_dettach(ifp->net, dhdpub); #endif /* WL_ESCAN */ wl_ext_event_dettach_netdev(ifp->net, ifidx); #endif /* WL_EXT_IAPSTA || USE_IW || WL_ESCAN */ } ifp->net = NULL; } #ifdef DHD_WMF dhd_wmf_cleanup(dhdpub, ifidx); #endif /* DHD_WMF */ #ifdef DHD_L2_FILTER bcm_l2_filter_arp_table_update(dhdpub->osh, ifp->phnd_arp_table, TRUE, NULL, FALSE, dhdpub->tickcnt); deinit_l2_filter_arp_table(dhdpub->osh, ifp->phnd_arp_table); ifp->phnd_arp_table = NULL; #endif /* DHD_L2_FILTER */ dhd_if_del_sta_list(ifp); #ifdef PCIE_FULL_DONGLE /* Delete flowrings of WDS interface */ if (if_flow_lkup[ifidx].role == WLC_E_IF_ROLE_WDS) { dhd_flow_rings_delete(dhdpub, ifidx); } #endif /* PCIE_FULL_DONGLE */ DHD_CUMM_CTR_INIT(&ifp->cumm_ctr); MFREE(dhdinfo->pub.osh, ifp, sizeof(*ifp)); ifp = NULL; } return BCME_OK; } #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 31)) static struct net_device_ops dhd_ops_pri = { .ndo_open = dhd_open, .ndo_stop = dhd_stop, .ndo_get_stats = dhd_get_stats, .ndo_do_ioctl = dhd_ioctl_entry, .ndo_start_xmit = dhd_start_xmit, .ndo_set_mac_address = dhd_set_mac_address, #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 2, 0)) .ndo_set_rx_mode = dhd_set_multicast_list, #else .ndo_set_multicast_list = dhd_set_multicast_list, #endif }; static struct net_device_ops dhd_ops_virt = { .ndo_get_stats = dhd_get_stats, .ndo_do_ioctl = dhd_ioctl_entry, .ndo_start_xmit = dhd_start_xmit, .ndo_set_mac_address = dhd_set_mac_address, #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 2, 0)) .ndo_set_rx_mode = dhd_set_multicast_list, #else .ndo_set_multicast_list = dhd_set_multicast_list, #endif }; #endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 31)) */ #ifdef DEBUGGER extern void debugger_init(void *bus_handle); #endif #ifdef SHOW_LOGTRACE int dhd_os_read_file(void *file, char *buf, uint32 size) { struct file *filep = (struct file *)file; if (!file || !buf) return -1; return vfs_read(filep, buf, size, &filep->f_pos); } int dhd_os_seek_file(void *file, int64 offset) { struct file *filep = (struct file *)file; if (!file) return -1; /* offset can be -ve */ filep->f_pos = filep->f_pos + offset; return 0; } static int dhd_init_logstrs_array(osl_t *osh, dhd_event_log_t *temp) { struct file *filep = NULL; struct kstat stat; mm_segment_t fs; char *raw_fmts = NULL; int logstrs_size = 0; int error = 0; fs = get_fs(); set_fs(KERNEL_DS); filep = filp_open(logstrs_path, O_RDONLY, 0); if (IS_ERR(filep)) { DHD_ERROR(("%s: Failed to open the file %s \n", __FUNCTION__, logstrs_path)); goto fail; } error = vfs_stat(logstrs_path, &stat); if (error) { DHD_ERROR(("%s: Failed to stat file %s \n", __FUNCTION__, logstrs_path)); goto fail; } logstrs_size = (int) stat.size; if (logstrs_size == 0) { DHD_ERROR(("%s: return as logstrs_size is 0\n", __FUNCTION__)); goto fail1; } raw_fmts = MALLOC(osh, logstrs_size); if (raw_fmts == NULL) { DHD_ERROR(("%s: Failed to allocate memory \n", __FUNCTION__)); goto fail; } if (vfs_read(filep, raw_fmts, logstrs_size, &filep->f_pos) != logstrs_size) { DHD_ERROR(("%s: Failed to read file %s\n", __FUNCTION__, logstrs_path)); goto fail; } if (dhd_parse_logstrs_file(osh, raw_fmts, logstrs_size, temp) == BCME_OK) { filp_close(filep, NULL); set_fs(fs); return BCME_OK; } fail: if (raw_fmts) { MFREE(osh, raw_fmts, logstrs_size); raw_fmts = NULL; } fail1: if (!IS_ERR(filep)) filp_close(filep, NULL); set_fs(fs); temp->fmts = NULL; return BCME_ERROR; } static int dhd_read_map(osl_t *osh, char *fname, uint32 *ramstart, uint32 *rodata_start, uint32 *rodata_end) { struct file *filep = NULL; mm_segment_t fs; int err = BCME_ERROR; if (fname == NULL) { DHD_ERROR(("%s: ERROR fname is NULL \n", __FUNCTION__)); return BCME_ERROR; } fs = get_fs(); set_fs(KERNEL_DS); filep = filp_open(fname, O_RDONLY, 0); if (IS_ERR(filep)) { DHD_ERROR(("%s: Failed to open %s \n", __FUNCTION__, fname)); goto fail; } if ((err = dhd_parse_map_file(osh, filep, ramstart, rodata_start, rodata_end)) < 0) goto fail; fail: if (!IS_ERR(filep)) filp_close(filep, NULL); set_fs(fs); return err; } static int dhd_init_static_strs_array(osl_t *osh, dhd_event_log_t *temp, char *str_file, char *map_file) { struct file *filep = NULL; mm_segment_t fs; char *raw_fmts = NULL; uint32 logstrs_size = 0; int error = 0; uint32 ramstart = 0; uint32 rodata_start = 0; uint32 rodata_end = 0; uint32 logfilebase = 0; error = dhd_read_map(osh, map_file, &ramstart, &rodata_start, &rodata_end); if (error != BCME_OK) { DHD_ERROR(("readmap Error!! \n")); /* don't do event log parsing in actual case */ if (strstr(str_file, ram_file_str) != NULL) { temp->raw_sstr = NULL; } else if (strstr(str_file, rom_file_str) != NULL) { temp->rom_raw_sstr = NULL; } return error; } DHD_ERROR(("ramstart: 0x%x, rodata_start: 0x%x, rodata_end:0x%x\n", ramstart, rodata_start, rodata_end)); fs = get_fs(); set_fs(KERNEL_DS); filep = filp_open(str_file, O_RDONLY, 0); if (IS_ERR(filep)) { DHD_ERROR(("%s: Failed to open the file %s \n", __FUNCTION__, str_file)); goto fail; } /* Full file size is huge. Just read required part */ logstrs_size = rodata_end - rodata_start; if (logstrs_size == 0) { DHD_ERROR(("%s: return as logstrs_size is 0\n", __FUNCTION__)); goto fail1; } raw_fmts = MALLOC(osh, logstrs_size); if (raw_fmts == NULL) { DHD_ERROR(("%s: Failed to allocate raw_fmts memory \n", __FUNCTION__)); goto fail; } logfilebase = rodata_start - ramstart; error = generic_file_llseek(filep, logfilebase, SEEK_SET); if (error < 0) { DHD_ERROR(("%s: %s llseek failed %d \n", __FUNCTION__, str_file, error)); goto fail; } error = vfs_read(filep, raw_fmts, logstrs_size, (&filep->f_pos)); if (error != logstrs_size) { DHD_ERROR(("%s: %s read failed %d \n", __FUNCTION__, str_file, error)); goto fail; } if (strstr(str_file, ram_file_str) != NULL) { temp->raw_sstr = raw_fmts; temp->raw_sstr_size = logstrs_size; temp->ramstart = ramstart; temp->rodata_start = rodata_start; temp->rodata_end = rodata_end; } else if (strstr(str_file, rom_file_str) != NULL) { temp->rom_raw_sstr = raw_fmts; temp->rom_raw_sstr_size = logstrs_size; temp->rom_ramstart = ramstart; temp->rom_rodata_start = rodata_start; temp->rom_rodata_end = rodata_end; } filp_close(filep, NULL); set_fs(fs); return BCME_OK; fail: if (raw_fmts) { MFREE(osh, raw_fmts, logstrs_size); raw_fmts = NULL; } fail1: if (!IS_ERR(filep)) filp_close(filep, NULL); set_fs(fs); if (strstr(str_file, ram_file_str) != NULL) { temp->raw_sstr = NULL; } else if (strstr(str_file, rom_file_str) != NULL) { temp->rom_raw_sstr = NULL; } return error; } #endif /* SHOW_LOGTRACE */ #ifdef BCMDBUS uint dhd_get_rxsz(dhd_pub_t *pub) { struct net_device *net = NULL; dhd_info_t *dhd = NULL; uint rxsz; /* Assign rxsz for dbus_attach */ dhd = pub->info; net = dhd->iflist[0]->net; net->hard_header_len = ETH_HLEN + pub->hdrlen; rxsz = DBUS_RX_BUFFER_SIZE_DHD(net); return rxsz; } void dhd_set_path(dhd_pub_t *pub) { dhd_info_t *dhd = NULL; dhd = pub->info; /* try to download image and nvram to the dongle */ if (dhd_update_fw_nv_path(dhd) && dhd->pub.bus) { DHD_INFO(("%s: fw %s, nv %s, conf %s\n", __FUNCTION__, dhd->fw_path, dhd->nv_path, dhd->conf_path)); dhd_bus_update_fw_nv_path(dhd->pub.bus, dhd->fw_path, dhd->nv_path, dhd->clm_path, dhd->conf_path); } } #endif dhd_pub_t * dhd_attach(osl_t *osh, struct dhd_bus *bus, uint bus_hdrlen #ifdef BCMDBUS , void *data #endif ) { dhd_info_t *dhd = NULL; struct net_device *net = NULL; char if_name[IFNAMSIZ] = {'\0'}; #ifdef SHOW_LOGTRACE int ret; #endif /* SHOW_LOGTRACE */ #if defined(BCMSDIO) || defined(BCMPCIE) uint32 bus_type = -1; uint32 bus_num = -1; uint32 slot_num = -1; wifi_adapter_info_t *adapter = NULL; #elif defined(BCMDBUS) wifi_adapter_info_t *adapter = data; #endif #ifdef GET_CUSTOM_MAC_ENABLE char hw_ether[62]; #endif /* GET_CUSTOM_MAC_ENABLE */ dhd_attach_states_t dhd_state = DHD_ATTACH_STATE_INIT; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); #ifdef STBLINUX DHD_ERROR(("%s\n", driver_target)); #endif /* STBLINUX */ /* will implement get_ids for DBUS later */ #if defined(BCMSDIO) dhd_bus_get_ids(bus, &bus_type, &bus_num, &slot_num); #endif #if defined(BCMSDIO) || defined(BCMPCIE) adapter = dhd_wifi_platform_get_adapter(bus_type, bus_num, slot_num); #endif /* Allocate primary dhd_info */ dhd = wifi_platform_prealloc(adapter, DHD_PREALLOC_DHD_INFO, sizeof(dhd_info_t)); if (dhd == NULL) { dhd = MALLOC(osh, sizeof(dhd_info_t)); if (dhd == NULL) { DHD_ERROR(("%s: OOM - alloc dhd_info\n", __FUNCTION__)); goto dhd_null_flag; } } memset(dhd, 0, sizeof(dhd_info_t)); dhd_state |= DHD_ATTACH_STATE_DHD_ALLOC; dhd->unit = dhd_found + instance_base; /* do not increment dhd_found, yet */ dhd->pub.osh = osh; #ifdef DUMP_IOCTL_IOV_LIST dll_init(&(dhd->pub.dump_iovlist_head)); #endif /* DUMP_IOCTL_IOV_LIST */ dhd->adapter = adapter; dhd->pub.adapter = (void *)adapter; #ifdef DHD_DEBUG dll_init(&(dhd->pub.mw_list_head)); #endif /* DHD_DEBUG */ #ifdef BT_OVER_SDIO dhd->pub.is_bt_recovery_required = FALSE; mutex_init(&dhd->bus_user_lock); #endif /* BT_OVER_SDIO */ #ifdef GET_CUSTOM_MAC_ENABLE wifi_platform_get_mac_addr(dhd->adapter, hw_ether); bcopy(hw_ether, dhd->pub.mac.octet, sizeof(struct ether_addr)); #endif /* GET_CUSTOM_MAC_ENABLE */ #ifdef CUSTOM_FORCE_NODFS_FLAG dhd->pub.dhd_cflags |= WLAN_PLAT_NODFS_FLAG; dhd->pub.force_country_change = TRUE; #endif /* CUSTOM_FORCE_NODFS_FLAG */ #ifdef CUSTOM_COUNTRY_CODE get_customized_country_code(dhd->adapter, dhd->pub.dhd_cspec.country_abbrev, &dhd->pub.dhd_cspec, dhd->pub.dhd_cflags); #endif /* CUSTOM_COUNTRY_CODE */ #ifndef BCMDBUS dhd->thr_dpc_ctl.thr_pid = DHD_PID_KT_TL_INVALID; dhd->thr_wdt_ctl.thr_pid = DHD_PID_KT_INVALID; #ifdef DHD_WET dhd->pub.wet_info = dhd_get_wet_info(&dhd->pub); #endif /* DHD_WET */ /* Initialize thread based operation and lock */ sema_init(&dhd->sdsem, 1); #endif /* !BCMDBUS */ /* Link to info module */ dhd->pub.info = dhd; /* Link to bus module */ dhd->pub.bus = bus; dhd->pub.hdrlen = bus_hdrlen; /* dhd_conf must be attached after linking dhd to dhd->pub.info, * because dhd_detech will check .info is NULL or not. */ if (dhd_conf_attach(&dhd->pub) != 0) { DHD_ERROR(("dhd_conf_attach failed\n")); goto fail; } #ifndef BCMDBUS dhd_conf_reset(&dhd->pub); dhd_conf_set_chiprev(&dhd->pub, dhd_bus_chip(bus), dhd_bus_chiprev(bus)); dhd_conf_preinit(&dhd->pub); #endif /* !BCMDBUS */ /* Some DHD modules (e.g. cfg80211) configures operation mode based on firmware name. * This is indeed a hack but we have to make it work properly before we have a better * solution */ dhd_update_fw_nv_path(dhd); /* Set network interface name if it was provided as module parameter */ if (iface_name[0]) { int len; char ch; strncpy(if_name, iface_name, IFNAMSIZ); if_name[IFNAMSIZ - 1] = 0; len = strlen(if_name); ch = if_name[len - 1]; if ((ch > '9' || ch < '0') && (len < IFNAMSIZ - 2)) strncat(if_name, "%d", 2); } /* Passing NULL to dngl_name to ensure host gets if_name in dngl_name member */ net = dhd_allocate_if(&dhd->pub, 0, if_name, NULL, 0, TRUE, NULL); if (net == NULL) { goto fail; } dhd_state |= DHD_ATTACH_STATE_ADD_IF; #ifdef DHD_L2_FILTER /* initialize the l2_filter_cnt */ dhd->pub.l2_filter_cnt = 0; #endif #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31)) net->open = NULL; #else net->netdev_ops = NULL; #endif mutex_init(&dhd->dhd_iovar_mutex); sema_init(&dhd->proto_sem, 1); #ifdef DHD_ULP if (!(dhd_ulp_init(osh, &dhd->pub))) goto fail; #endif /* DHD_ULP */ #if defined(DHD_HANG_SEND_UP_TEST) dhd->pub.req_hang_type = 0; #endif /* DHD_HANG_SEND_UP_TEST */ #ifdef PROP_TXSTATUS spin_lock_init(&dhd->wlfc_spinlock); dhd->pub.skip_fc = dhd_wlfc_skip_fc; dhd->pub.plat_init = dhd_wlfc_plat_init; dhd->pub.plat_deinit = dhd_wlfc_plat_deinit; #ifdef DHD_WLFC_THREAD init_waitqueue_head(&dhd->pub.wlfc_wqhead); dhd->pub.wlfc_thread = kthread_create(dhd_wlfc_transfer_packets, &dhd->pub, "wlfc-thread"); if (IS_ERR(dhd->pub.wlfc_thread)) { DHD_ERROR(("create wlfc thread failed\n")); goto fail; } else { wake_up_process(dhd->pub.wlfc_thread); } #endif /* DHD_WLFC_THREAD */ #endif /* PROP_TXSTATUS */ /* Initialize other structure content */ init_waitqueue_head(&dhd->ioctl_resp_wait); init_waitqueue_head(&dhd->d3ack_wait); #ifdef PCIE_INB_DW init_waitqueue_head(&dhd->ds_exit_wait); #endif /* PCIE_INB_DW */ init_waitqueue_head(&dhd->ctrl_wait); init_waitqueue_head(&dhd->dhd_bus_busy_state_wait); dhd->pub.dhd_bus_busy_state = 0; /* Initialize the spinlocks */ spin_lock_init(&dhd->sdlock); spin_lock_init(&dhd->txqlock); spin_lock_init(&dhd->rxqlock); spin_lock_init(&dhd->dhd_lock); spin_lock_init(&dhd->rxf_lock); #ifdef WLTDLS spin_lock_init(&dhd->pub.tdls_lock); #endif /* WLTDLS */ #if defined(RXFRAME_THREAD) dhd->rxthread_enabled = TRUE; #endif /* defined(RXFRAME_THREAD) */ #ifdef DHDTCPACK_SUPPRESS spin_lock_init(&dhd->tcpack_lock); #endif /* DHDTCPACK_SUPPRESS */ /* Initialize Wakelock stuff */ spin_lock_init(&dhd->wakelock_spinlock); spin_lock_init(&dhd->wakelock_evt_spinlock); DHD_OS_WAKE_LOCK_INIT(dhd); dhd->wakelock_counter = 0; #ifdef CONFIG_HAS_WAKELOCK // terence 20161023: can not destroy wl_wifi when wlan down, it will happen null pointer in dhd_ioctl_entry wake_lock_init(&dhd->wl_wifi, WAKE_LOCK_SUSPEND, "wlan_wake"); wake_lock_init(&dhd->wl_wdwake, WAKE_LOCK_SUSPEND, "wlan_wd_wake"); #endif /* CONFIG_HAS_WAKELOCK */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) mutex_init(&dhd->dhd_net_if_mutex); mutex_init(&dhd->dhd_suspend_mutex); #if defined(PKT_FILTER_SUPPORT) && defined(APF) mutex_init(&dhd->dhd_apf_mutex); #endif /* PKT_FILTER_SUPPORT && APF */ #endif dhd_state |= DHD_ATTACH_STATE_WAKELOCKS_INIT; /* Attach and link in the protocol */ if (dhd_prot_attach(&dhd->pub) != 0) { DHD_ERROR(("dhd_prot_attach failed\n")); goto fail; } dhd_state |= DHD_ATTACH_STATE_PROT_ATTACH; #ifdef DHD_TIMESYNC /* attach the timesync module */ if (dhd_timesync_attach(&dhd->pub) != 0) { DHD_ERROR(("dhd_timesync_attach failed\n")); goto fail; } dhd_state |= DHD_ATTACH_TIMESYNC_ATTACH_DONE; #endif /* DHD_TIMESYNC */ #ifdef WL_CFG80211 spin_lock_init(&dhd->pub.up_lock); /* Attach and link in the cfg80211 */ if (unlikely(wl_cfg80211_attach(net, &dhd->pub))) { DHD_ERROR(("wl_cfg80211_attach failed\n")); goto fail; } dhd_monitor_init(&dhd->pub); dhd_state |= DHD_ATTACH_STATE_CFG80211; #endif #ifdef DHD_LOG_DUMP dhd_log_dump_init(&dhd->pub); #endif /* DHD_LOG_DUMP */ #if defined(WL_EXT_IAPSTA) || defined(USE_IW) || defined(WL_ESCAN) if (wl_ext_event_attach(net, &dhd->pub) != 0) { DHD_ERROR(("wl_ext_event_attach failed\n")); goto fail; } #ifdef WL_ESCAN /* Attach and link in the escan */ if (wl_escan_attach(net, &dhd->pub) != 0) { DHD_ERROR(("wl_escan_attach failed\n")); goto fail; } #endif /* WL_ESCAN */ #ifdef WL_EXT_IAPSTA if (wl_ext_iapsta_attach(&dhd->pub) != 0) { DHD_ERROR(("wl_ext_iapsta_attach failed\n")); goto fail; } #endif /* WL_EXT_IAPSTA */ #endif /* WL_EXT_IAPSTA || USE_IW || WL_ESCAN */ #if defined(WL_WIRELESS_EXT) /* Attach and link in the iw */ if (wl_iw_attach(net, &dhd->pub) != 0) { DHD_ERROR(("wl_iw_attach failed\n")); goto fail; } dhd_state |= DHD_ATTACH_STATE_WL_ATTACH; #endif /* defined(WL_WIRELESS_EXT) */ #ifdef SHOW_LOGTRACE ret = dhd_init_logstrs_array(osh, &dhd->event_data); if (ret == BCME_OK) { dhd_init_static_strs_array(osh, &dhd->event_data, st_str_file_path, map_file_path); dhd_init_static_strs_array(osh, &dhd->event_data, rom_st_str_file_path, rom_map_file_path); dhd_state |= DHD_ATTACH_LOGTRACE_INIT; } #endif /* SHOW_LOGTRACE */ #ifdef DEBUGABILITY /* attach debug if support */ if (dhd_os_dbg_attach(&dhd->pub)) { DHD_ERROR(("%s debug module attach failed\n", __FUNCTION__)); goto fail; } #ifdef DBG_PKT_MON dhd->pub.dbg->pkt_mon_lock = dhd_os_spin_lock_init(dhd->pub.osh); #ifdef DBG_PKT_MON_INIT_DEFAULT dhd_os_dbg_attach_pkt_monitor(&dhd->pub); #endif /* DBG_PKT_MON_INIT_DEFAULT */ #endif /* DBG_PKT_MON */ #endif /* DEBUGABILITY */ #ifdef DHD_PKT_LOGGING dhd_os_attach_pktlog(&dhd->pub); #endif /* DHD_PKT_LOGGING */ if (dhd_sta_pool_init(&dhd->pub, DHD_MAX_STA) != BCME_OK) { DHD_ERROR(("%s: Initializing %u sta\n", __FUNCTION__, DHD_MAX_STA)); goto fail; } #ifndef BCMDBUS /* Set up the watchdog timer */ init_timer_compat(&dhd->timer, dhd_watchdog, dhd); dhd->default_wd_interval = dhd_watchdog_ms; if (dhd_watchdog_prio >= 0) { /* Initialize watchdog thread */ PROC_START(dhd_watchdog_thread, dhd, &dhd->thr_wdt_ctl, 0, "dhd_watchdog_thread"); if (dhd->thr_wdt_ctl.thr_pid < 0) { goto fail; } } else { dhd->thr_wdt_ctl.thr_pid = -1; } #ifdef DHD_PCIE_RUNTIMEPM /* Setup up the runtime PM Idlecount timer */ init_timer_compat(&dhd->rpm_timer, dhd_runtimepm, dhd); dhd->rpm_timer_valid = FALSE; dhd->thr_rpm_ctl.thr_pid = DHD_PID_KT_INVALID; PROC_START(dhd_rpm_state_thread, dhd, &dhd->thr_rpm_ctl, 0, "dhd_rpm_state_thread"); if (dhd->thr_rpm_ctl.thr_pid < 0) { goto fail; } #endif /* DHD_PCIE_RUNTIMEPM */ #ifdef DEBUGGER debugger_init((void *) bus); #endif /* Set up the bottom half handler */ if (dhd_dpc_prio >= 0) { /* Initialize DPC thread */ PROC_START(dhd_dpc_thread, dhd, &dhd->thr_dpc_ctl, 0, "dhd_dpc"); if (dhd->thr_dpc_ctl.thr_pid < 0) { goto fail; } } else { /* use tasklet for dpc */ tasklet_init(&dhd->tasklet, dhd_dpc, (ulong)dhd); dhd->thr_dpc_ctl.thr_pid = -1; } if (dhd->rxthread_enabled) { bzero(&dhd->pub.skbbuf[0], sizeof(void *) * MAXSKBPEND); /* Initialize RXF thread */ PROC_START(dhd_rxf_thread, dhd, &dhd->thr_rxf_ctl, 0, "dhd_rxf"); if (dhd->thr_rxf_ctl.thr_pid < 0) { goto fail; } } #endif /* !BCMDBUS */ #ifdef SHOW_LOGTRACE skb_queue_head_init(&dhd->evt_trace_queue); #endif /* SHOW_LOGTRACE */ dhd_state |= DHD_ATTACH_STATE_THREADS_CREATED; #if defined(CONFIG_PM_SLEEP) if (!dhd_pm_notifier_registered) { dhd_pm_notifier_registered = TRUE; dhd->pm_notifier.notifier_call = dhd_pm_callback; dhd->pm_notifier.priority = 10; register_pm_notifier(&dhd->pm_notifier); } #endif /* CONFIG_PM_SLEEP */ #if defined(CONFIG_HAS_EARLYSUSPEND) && defined(DHD_USE_EARLYSUSPEND) dhd->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN + 20; dhd->early_suspend.suspend = dhd_early_suspend; dhd->early_suspend.resume = dhd_late_resume; register_early_suspend(&dhd->early_suspend); dhd_state |= DHD_ATTACH_STATE_EARLYSUSPEND_DONE; #endif /* CONFIG_HAS_EARLYSUSPEND && DHD_USE_EARLYSUSPEND */ #ifdef ARP_OFFLOAD_SUPPORT dhd->pend_ipaddr = 0; if (!dhd_inetaddr_notifier_registered) { dhd_inetaddr_notifier_registered = TRUE; register_inetaddr_notifier(&dhd_inetaddr_notifier); } #endif /* ARP_OFFLOAD_SUPPORT */ #if defined(CONFIG_IPV6) && defined(IPV6_NDO_SUPPORT) if (!dhd_inet6addr_notifier_registered) { dhd_inet6addr_notifier_registered = TRUE; register_inet6addr_notifier(&dhd_inet6addr_notifier); } #endif /* CONFIG_IPV6 && IPV6_NDO_SUPPORT */ dhd->dhd_deferred_wq = dhd_deferred_work_init((void *)dhd); #ifdef DEBUG_CPU_FREQ dhd->new_freq = alloc_percpu(int); dhd->freq_trans.notifier_call = dhd_cpufreq_notifier; cpufreq_register_notifier(&dhd->freq_trans, CPUFREQ_TRANSITION_NOTIFIER); #endif #ifdef DHDTCPACK_SUPPRESS dhd_tcpack_suppress_set(&dhd->pub, TCPACK_SUP_DEFAULT); #endif /* DHDTCPACK_SUPPRESS */ #if defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) #endif /* defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) */ #ifdef DHD_DEBUG_PAGEALLOC register_page_corrupt_cb(dhd_page_corrupt_cb, &dhd->pub); #endif /* DHD_DEBUG_PAGEALLOC */ #if defined(DHD_LB) dhd_lb_set_default_cpus(dhd); /* Initialize the CPU Masks */ if (dhd_cpumasks_init(dhd) == 0) { /* Now we have the current CPU maps, run through candidacy */ dhd_select_cpu_candidacy(dhd); /* * If we are able to initialize CPU masks, lets register to the * CPU Hotplug framework to change the CPU for each job dynamically * using candidacy algorithm. */ dhd->cpu_notifier.notifier_call = dhd_cpu_callback; register_hotcpu_notifier(&dhd->cpu_notifier); /* Register a callback */ } else { /* * We are unable to initialize CPU masks, so candidacy algorithm * won't run, but still Load Balancing will be honoured based * on the CPUs allocated for a given job statically during init */ dhd->cpu_notifier.notifier_call = NULL; DHD_ERROR(("%s():dhd_cpumasks_init failed CPUs for JOB would be static\n", __FUNCTION__)); } #ifdef DHD_LB_TXP #ifdef DHD_LB_TXP_DEFAULT_ENAB /* Trun ON the feature by default */ atomic_set(&dhd->lb_txp_active, 1); #else /* Trun OFF the feature by default */ atomic_set(&dhd->lb_txp_active, 0); #endif /* DHD_LB_TXP_DEFAULT_ENAB */ #endif /* DHD_LB_TXP */ DHD_LB_STATS_INIT(&dhd->pub); /* Initialize the Load Balancing Tasklets and Napi object */ #if defined(DHD_LB_TXC) tasklet_init(&dhd->tx_compl_tasklet, dhd_lb_tx_compl_handler, (ulong)(&dhd->pub)); INIT_WORK(&dhd->tx_compl_dispatcher_work, dhd_tx_compl_dispatcher_fn); DHD_INFO(("%s load balance init tx_compl_tasklet\n", __FUNCTION__)); #endif /* DHD_LB_TXC */ #if defined(DHD_LB_RXC) tasklet_init(&dhd->rx_compl_tasklet, dhd_lb_rx_compl_handler, (ulong)(&dhd->pub)); DHD_INFO(("%s load balance init rx_compl_tasklet\n", __FUNCTION__)); #endif /* DHD_LB_RXC */ #if defined(DHD_LB_RXP) __skb_queue_head_init(&dhd->rx_pend_queue); skb_queue_head_init(&dhd->rx_napi_queue); /* Initialize the work that dispatches NAPI job to a given core */ INIT_WORK(&dhd->rx_napi_dispatcher_work, dhd_rx_napi_dispatcher_fn); DHD_INFO(("%s load balance init rx_napi_queue\n", __FUNCTION__)); #endif /* DHD_LB_RXP */ #if defined(DHD_LB_TXP) INIT_WORK(&dhd->tx_dispatcher_work, dhd_tx_dispatcher_work); skb_queue_head_init(&dhd->tx_pend_queue); /* Initialize the work that dispatches TX job to a given core */ tasklet_init(&dhd->tx_tasklet, dhd_lb_tx_handler, (ulong)(dhd)); DHD_INFO(("%s load balance init tx_pend_queue\n", __FUNCTION__)); #endif /* DHD_LB_TXP */ dhd_state |= DHD_ATTACH_STATE_LB_ATTACH_DONE; #endif /* DHD_LB */ #ifdef SHOW_LOGTRACE INIT_WORK(&dhd->event_log_dispatcher_work, dhd_event_logtrace_process); #endif /* SHOW_LOGTRACE */ DHD_SSSR_MEMPOOL_INIT(&dhd->pub); #ifdef REPORT_FATAL_TIMEOUTS init_dhd_timeouts(&dhd->pub); #endif /* REPORT_FATAL_TIMEOUTS */ #ifdef BCMPCIE dhd->pub.extended_trap_data = MALLOCZ(osh, BCMPCIE_EXT_TRAP_DATA_MAXLEN); if (dhd->pub.extended_trap_data == NULL) { DHD_ERROR(("%s: Failed to alloc extended_trap_data\n", __FUNCTION__)); } #endif /* BCMPCIE */ (void)dhd_sysfs_init(dhd); dhd_state |= DHD_ATTACH_STATE_DONE; dhd->dhd_state = dhd_state; dhd_found++; #ifdef CSI_SUPPORT dhd_csi_init(&dhd->pub); #endif /* CSI_SUPPORT */ return &dhd->pub; fail: if (dhd_state >= DHD_ATTACH_STATE_DHD_ALLOC) { DHD_TRACE(("%s: Calling dhd_detach dhd_state 0x%x &dhd->pub %p\n", __FUNCTION__, dhd_state, &dhd->pub)); dhd->dhd_state = dhd_state; dhd_detach(&dhd->pub); dhd_free(&dhd->pub); } dhd_null_flag: return NULL; } int dhd_get_fw_mode(dhd_info_t *dhdinfo) { if (strstr(dhdinfo->fw_path, "_apsta") != NULL) return DHD_FLAG_HOSTAP_MODE; if (strstr(dhdinfo->fw_path, "_p2p") != NULL) return DHD_FLAG_P2P_MODE; if (strstr(dhdinfo->fw_path, "_ibss") != NULL) return DHD_FLAG_IBSS_MODE; if (strstr(dhdinfo->fw_path, "_mfg") != NULL) return DHD_FLAG_MFG_MODE; return DHD_FLAG_STA_MODE; } int dhd_bus_get_fw_mode(dhd_pub_t *dhdp) { return dhd_get_fw_mode(dhdp->info); } extern int rkwifi_set_firmware(char *fw, char *nvram); bool dhd_update_fw_nv_path(dhd_info_t *dhdinfo) { int fw_len; int nv_len; int clm_len; int conf_len; const char *fw = NULL; const char *nv = NULL; const char *clm = NULL; const char *conf = NULL; #ifdef DHD_UCODE_DOWNLOAD int uc_len; const char *uc = NULL; #endif /* DHD_UCODE_DOWNLOAD */ char firmware[100] = {0}; char nvram[100] = {0}; wifi_adapter_info_t *adapter = dhdinfo->adapter; int fw_path_len = sizeof(dhdinfo->fw_path); int nv_path_len = sizeof(dhdinfo->nv_path); /* Update firmware and nvram path. The path may be from adapter info or module parameter * The path from adapter info is used for initialization only (as it won't change). * * The firmware_path/nvram_path module parameter may be changed by the system at run * time. When it changes we need to copy it to dhdinfo->fw_path. Also Android private * command may change dhdinfo->fw_path. As such we need to clear the path info in * module parameter after it is copied. We won't update the path until the module parameter * is changed again (first character is not '\0') */ /* set default firmware and nvram path for built-in type driver */ // if (!dhd_download_fw_on_driverload) { rkwifi_set_firmware(firmware, nvram); #ifdef CONFIG_BCMDHD_FW_PATH fw = CONFIG_BCMDHD_FW_PATH; #else fw = firmware; #endif /* CONFIG_BCMDHD_FW_PATH */ #ifdef CONFIG_BCMDHD_NVRAM_PATH nv = CONFIG_BCMDHD_NVRAM_PATH; #else nv = nvram; #endif /* CONFIG_BCMDHD_NVRAM_PATH */ // } /* check if we need to initialize the path */ if (dhdinfo->fw_path[0] == '\0') { if (adapter && adapter->fw_path && adapter->fw_path[0] != '\0') fw = adapter->fw_path; } if (dhdinfo->nv_path[0] == '\0') { if (adapter && adapter->nv_path && adapter->nv_path[0] != '\0') nv = adapter->nv_path; } if (dhdinfo->clm_path[0] == '\0') { if (adapter && adapter->clm_path && adapter->clm_path[0] != '\0') clm = adapter->clm_path; } if (dhdinfo->conf_path[0] == '\0') { if (adapter && adapter->conf_path && adapter->conf_path[0] != '\0') conf = adapter->conf_path; } /* Use module parameter if it is valid, EVEN IF the path has not been initialized * * TODO: need a solution for multi-chip, can't use the same firmware for all chips */ if (firmware_path[0] != '\0') fw = firmware_path; if (nvram_path[0] != '\0') nv = nvram_path; if (clm_path[0] != '\0') clm = clm_path; if (config_path[0] != '\0') conf = config_path; #ifdef DHD_UCODE_DOWNLOAD if (ucode_path[0] != '\0') uc = ucode_path; #endif /* DHD_UCODE_DOWNLOAD */ if (fw && fw[0] != '\0') { fw_len = strlen(fw); if (fw_len >= fw_path_len) { DHD_ERROR(("fw path len exceeds max len of dhdinfo->fw_path\n")); return FALSE; } strncpy(dhdinfo->fw_path, fw, fw_path_len); if (dhdinfo->fw_path[fw_len-1] == '\n') dhdinfo->fw_path[fw_len-1] = '\0'; } if (nv && nv[0] != '\0') { nv_len = strlen(nv); if (nv_len >= nv_path_len) { DHD_ERROR(("nvram path len exceeds max len of dhdinfo->nv_path\n")); return FALSE; } memset(dhdinfo->nv_path, 0, nv_path_len); strncpy(dhdinfo->nv_path, nv, nv_path_len); #ifdef DHD_USE_SINGLE_NVRAM_FILE /* Remove "_net" or "_mfg" tag from current nvram path */ { char *nvram_tag = "nvram_"; char *ext_tag = ".txt"; char *sp_nvram = strnstr(dhdinfo->nv_path, nvram_tag, nv_path_len); bool valid_buf = sp_nvram && ((uint32)(sp_nvram + strlen(nvram_tag) + strlen(ext_tag) - dhdinfo->nv_path) <= nv_path_len); if (valid_buf) { char *sp = sp_nvram + strlen(nvram_tag) - 1; uint32 padding_size = (uint32)(dhdinfo->nv_path + nv_path_len - sp); memset(sp, 0, padding_size); strncat(dhdinfo->nv_path, ext_tag, strlen(ext_tag)); nv_len = strlen(dhdinfo->nv_path); DHD_INFO(("%s: new nvram path = %s\n", __FUNCTION__, dhdinfo->nv_path)); } else if (sp_nvram) { DHD_ERROR(("%s: buffer space for nvram path is not enough\n", __FUNCTION__)); return FALSE; } else { DHD_ERROR(("%s: Couldn't find the nvram tag. current" " nvram path = %s\n", __FUNCTION__, dhdinfo->nv_path)); } } #endif /* DHD_USE_SINGLE_NVRAM_FILE */ if (dhdinfo->nv_path[nv_len-1] == '\n') dhdinfo->nv_path[nv_len-1] = '\0'; } if (clm && clm[0] != '\0') { clm_len = strlen(clm); if (clm_len >= sizeof(dhdinfo->clm_path)) { DHD_ERROR(("clm path len exceeds max len of dhdinfo->clm_path\n")); return FALSE; } strncpy(dhdinfo->clm_path, clm, sizeof(dhdinfo->clm_path)); if (dhdinfo->clm_path[clm_len-1] == '\n') dhdinfo->clm_path[clm_len-1] = '\0'; } if (conf && conf[0] != '\0') { conf_len = strlen(conf); if (conf_len >= sizeof(dhdinfo->conf_path)) { DHD_ERROR(("config path len exceeds max len of dhdinfo->conf_path\n")); return FALSE; } strncpy(dhdinfo->conf_path, conf, sizeof(dhdinfo->conf_path)); if (dhdinfo->conf_path[conf_len-1] == '\n') dhdinfo->conf_path[conf_len-1] = '\0'; } #ifdef DHD_UCODE_DOWNLOAD if (uc && uc[0] != '\0') { uc_len = strlen(uc); if (uc_len >= sizeof(dhdinfo->uc_path)) { DHD_ERROR(("uc path len exceeds max len of dhdinfo->uc_path\n")); return FALSE; } strncpy(dhdinfo->uc_path, uc, sizeof(dhdinfo->uc_path)); if (dhdinfo->uc_path[uc_len-1] == '\n') dhdinfo->uc_path[uc_len-1] = '\0'; } #endif /* DHD_UCODE_DOWNLOAD */ #if 0 /* clear the path in module parameter */ if (dhd_download_fw_on_driverload) { firmware_path[0] = '\0'; nvram_path[0] = '\0'; clm_path[0] = '\0'; config_path[0] = '\0'; } #endif #ifdef DHD_UCODE_DOWNLOAD ucode_path[0] = '\0'; DHD_ERROR(("ucode path: %s\n", dhdinfo->uc_path)); #endif /* DHD_UCODE_DOWNLOAD */ #ifndef BCMEMBEDIMAGE /* fw_path and nv_path are not mandatory for BCMEMBEDIMAGE */ if (dhdinfo->fw_path[0] == '\0') { DHD_ERROR(("firmware path not found\n")); return FALSE; } if (dhdinfo->nv_path[0] == '\0') { DHD_ERROR(("nvram path not found\n")); return FALSE; } #endif /* BCMEMBEDIMAGE */ return TRUE; } #if defined(BT_OVER_SDIO) extern bool dhd_update_btfw_path(dhd_info_t *dhdinfo, char* btfw_path) { int fw_len; const char *fw = NULL; wifi_adapter_info_t *adapter = dhdinfo->adapter; /* Update bt firmware path. The path may be from adapter info or module parameter * The path from adapter info is used for initialization only (as it won't change). * * The btfw_path module parameter may be changed by the system at run * time. When it changes we need to copy it to dhdinfo->btfw_path. Also Android private * command may change dhdinfo->btfw_path. As such we need to clear the path info in * module parameter after it is copied. We won't update the path until the module parameter * is changed again (first character is not '\0') */ /* set default firmware and nvram path for built-in type driver */ if (!dhd_download_fw_on_driverload) { #ifdef CONFIG_BCMDHD_BTFW_PATH fw = CONFIG_BCMDHD_BTFW_PATH; #endif /* CONFIG_BCMDHD_FW_PATH */ } /* check if we need to initialize the path */ if (dhdinfo->btfw_path[0] == '\0') { if (adapter && adapter->btfw_path && adapter->btfw_path[0] != '\0') fw = adapter->btfw_path; } /* Use module parameter if it is valid, EVEN IF the path has not been initialized */ if (btfw_path[0] != '\0') fw = btfw_path; if (fw && fw[0] != '\0') { fw_len = strlen(fw); if (fw_len >= sizeof(dhdinfo->btfw_path)) { DHD_ERROR(("fw path len exceeds max len of dhdinfo->btfw_path\n")); return FALSE; } strncpy(dhdinfo->btfw_path, fw, sizeof(dhdinfo->btfw_path)); if (dhdinfo->btfw_path[fw_len-1] == '\n') dhdinfo->btfw_path[fw_len-1] = '\0'; } /* clear the path in module parameter */ btfw_path[0] = '\0'; if (dhdinfo->btfw_path[0] == '\0') { DHD_ERROR(("bt firmware path not found\n")); return FALSE; } return TRUE; } #endif /* defined (BT_OVER_SDIO) */ #ifdef CUSTOMER_HW4_DEBUG bool dhd_validate_chipid(dhd_pub_t *dhdp) { uint chipid = dhd_bus_chip_id(dhdp); uint config_chipid; #ifdef BCM4361_CHIP config_chipid = BCM4361_CHIP_ID; #elif defined(BCM4359_CHIP) config_chipid = BCM4359_CHIP_ID; #elif defined(BCM4358_CHIP) config_chipid = BCM4358_CHIP_ID; #elif defined(BCM4354_CHIP) config_chipid = BCM4354_CHIP_ID; #elif defined(BCM4339_CHIP) config_chipid = BCM4339_CHIP_ID; #elif defined(BCM43349_CHIP) config_chipid = BCM43349_CHIP_ID; #elif defined(BCM4335_CHIP) config_chipid = BCM4335_CHIP_ID; #elif defined(BCM43241_CHIP) config_chipid = BCM4324_CHIP_ID; #elif defined(BCM4330_CHIP) config_chipid = BCM4330_CHIP_ID; #elif defined(BCM43430_CHIP) config_chipid = BCM43430_CHIP_ID; #elif defined(BCM43018_CHIP) config_chipid = BCM43018_CHIP_ID; #elif defined(BCM43455_CHIP) config_chipid = BCM4345_CHIP_ID; #elif defined(BCM4334W_CHIP) config_chipid = BCM43342_CHIP_ID; #elif defined(BCM43454_CHIP) config_chipid = BCM43454_CHIP_ID; #elif defined(BCM43012_CHIP_) config_chipid = BCM43012_CHIP_ID; #else DHD_ERROR(("%s: Unknown chip id, if you use new chipset," " please add CONFIG_BCMXXXX into the Kernel and" " BCMXXXX_CHIP definition into the DHD driver\n", __FUNCTION__)); config_chipid = 0; return FALSE; #endif /* BCM4354_CHIP */ #ifdef SUPPORT_MULTIPLE_CHIP_4345X if (config_chipid == BCM43454_CHIP_ID || config_chipid == BCM4345_CHIP_ID) { return TRUE; } #endif /* SUPPORT_MULTIPLE_CHIP_4345X */ #if defined(BCM4359_CHIP) if (chipid == BCM4355_CHIP_ID && config_chipid == BCM4359_CHIP_ID) { return TRUE; } #endif /* BCM4359_CHIP */ #if defined(BCM4361_CHIP) if (chipid == BCM4347_CHIP_ID && config_chipid == BCM4361_CHIP_ID) { return TRUE; } #endif /* BCM4361_CHIP */ return config_chipid == chipid; } #endif /* CUSTOMER_HW4_DEBUG */ #if defined(BT_OVER_SDIO) wlan_bt_handle_t dhd_bt_get_pub_hndl(void) { DHD_ERROR(("%s: g_dhd_pub %p\n", __FUNCTION__, g_dhd_pub)); /* assuming that dhd_pub_t type pointer is available from a global variable */ return (wlan_bt_handle_t) g_dhd_pub; } EXPORT_SYMBOL(dhd_bt_get_pub_hndl); int dhd_download_btfw(wlan_bt_handle_t handle, char* btfw_path) { int ret = -1; dhd_pub_t *dhdp = (dhd_pub_t *)handle; dhd_info_t *dhd = (dhd_info_t*)dhdp->info; /* Download BT firmware image to the dongle */ if (dhd->pub.busstate == DHD_BUS_DATA && dhd_update_btfw_path(dhd, btfw_path)) { DHD_INFO(("%s: download btfw from: %s\n", __FUNCTION__, dhd->btfw_path)); ret = dhd_bus_download_btfw(dhd->pub.bus, dhd->pub.osh, dhd->btfw_path); if (ret < 0) { DHD_ERROR(("%s: failed to download btfw from: %s\n", __FUNCTION__, dhd->btfw_path)); return ret; } } return ret; } EXPORT_SYMBOL(dhd_download_btfw); #endif /* defined (BT_OVER_SDIO) */ #ifndef BCMDBUS int dhd_bus_start(dhd_pub_t *dhdp) { int ret = -1; dhd_info_t *dhd = (dhd_info_t*)dhdp->info; unsigned long flags; #if defined(DHD_DEBUG) && defined(BCMSDIO) int fw_download_start = 0, fw_download_end = 0, f2_sync_start = 0, f2_sync_end = 0; #endif /* DHD_DEBUG && BCMSDIO */ ASSERT(dhd); DHD_TRACE(("Enter %s:\n", __FUNCTION__)); DHD_PERIM_LOCK(dhdp); #ifdef HOFFLOAD_MODULES dhd_linux_get_modfw_address(dhdp); #endif /* try to download image and nvram to the dongle */ if (dhd->pub.busstate == DHD_BUS_DOWN && dhd_update_fw_nv_path(dhd)) { /* Indicate FW Download has not yet done */ dhd->pub.fw_download_done = FALSE; DHD_INFO(("%s download fw %s, nv %s, conf %s\n", __FUNCTION__, dhd->fw_path, dhd->nv_path, dhd->conf_path)); #if defined(DHD_DEBUG) && defined(BCMSDIO) fw_download_start = OSL_SYSUPTIME(); #endif /* DHD_DEBUG && BCMSDIO */ ret = dhd_bus_download_firmware(dhd->pub.bus, dhd->pub.osh, dhd->fw_path, dhd->nv_path, dhd->clm_path, dhd->conf_path); #if defined(DHD_DEBUG) && defined(BCMSDIO) fw_download_end = OSL_SYSUPTIME(); #endif /* DHD_DEBUG && BCMSDIO */ if (ret < 0) { DHD_ERROR(("%s: failed to download firmware %s\n", __FUNCTION__, dhd->fw_path)); DHD_PERIM_UNLOCK(dhdp); return ret; } /* Indicate FW Download has succeeded */ dhd->pub.fw_download_done = TRUE; } if (dhd->pub.busstate != DHD_BUS_LOAD) { DHD_PERIM_UNLOCK(dhdp); return -ENETDOWN; } #ifdef BCMSDIO dhd_os_sdlock(dhdp); #endif /* BCMSDIO */ /* Start the watchdog timer */ dhd->pub.tickcnt = 0; dhd_os_wd_timer(&dhd->pub, dhd_watchdog_ms); /* Bring up the bus */ if ((ret = dhd_bus_init(&dhd->pub, FALSE)) != 0) { DHD_ERROR(("%s, dhd_bus_init failed %d\n", __FUNCTION__, ret)); #ifdef BCMSDIO dhd_os_sdunlock(dhdp); #endif /* BCMSDIO */ DHD_PERIM_UNLOCK(dhdp); return ret; } DHD_ENABLE_RUNTIME_PM(&dhd->pub); #ifdef DHD_ULP dhd_ulp_set_ulp_state(dhdp, DHD_ULP_DISABLED); #endif /* DHD_ULP */ #if defined(OOB_INTR_ONLY) || defined(BCMPCIE_OOB_HOST_WAKE) /* Host registration for OOB interrupt */ if (dhd_bus_oob_intr_register(dhdp)) { /* deactivate timer and wait for the handler to finish */ #if !defined(BCMPCIE_OOB_HOST_WAKE) DHD_GENERAL_LOCK(&dhd->pub, flags); dhd->wd_timer_valid = FALSE; DHD_GENERAL_UNLOCK(&dhd->pub, flags); del_timer_sync(&dhd->timer); #endif /* !BCMPCIE_OOB_HOST_WAKE */ DHD_DISABLE_RUNTIME_PM(&dhd->pub); DHD_PERIM_UNLOCK(dhdp); DHD_ERROR(("%s Host failed to register for OOB\n", __FUNCTION__)); return -ENODEV; } #if defined(BCMPCIE_OOB_HOST_WAKE) dhd_bus_oob_intr_set(dhdp, TRUE); #else /* Enable oob at firmware */ dhd_enable_oob_intr(dhd->pub.bus, TRUE); #endif /* BCMPCIE_OOB_HOST_WAKE */ #elif defined(FORCE_WOWLAN) /* Enable oob at firmware */ dhd_enable_oob_intr(dhd->pub.bus, TRUE); #endif #ifdef PCIE_FULL_DONGLE { /* max_h2d_rings includes H2D common rings */ uint32 max_h2d_rings = dhd_bus_max_h2d_queues(dhd->pub.bus); DHD_ERROR(("%s: Initializing %u h2drings\n", __FUNCTION__, max_h2d_rings)); if ((ret = dhd_flow_rings_init(&dhd->pub, max_h2d_rings)) != BCME_OK) { #ifdef BCMSDIO dhd_os_sdunlock(dhdp); #endif /* BCMSDIO */ DHD_PERIM_UNLOCK(dhdp); return ret; } } #endif /* PCIE_FULL_DONGLE */ /* Do protocol initialization necessary for IOCTL/IOVAR */ ret = dhd_prot_init(&dhd->pub); if (unlikely(ret) != BCME_OK) { DHD_PERIM_UNLOCK(dhdp); DHD_OS_WD_WAKE_UNLOCK(&dhd->pub); return ret; } /* If bus is not ready, can't come up */ if (dhd->pub.busstate != DHD_BUS_DATA) { DHD_GENERAL_LOCK(&dhd->pub, flags); dhd->wd_timer_valid = FALSE; DHD_GENERAL_UNLOCK(&dhd->pub, flags); del_timer_sync(&dhd->timer); DHD_ERROR(("%s failed bus is not ready\n", __FUNCTION__)); DHD_DISABLE_RUNTIME_PM(&dhd->pub); #ifdef BCMSDIO dhd_os_sdunlock(dhdp); #endif /* BCMSDIO */ DHD_PERIM_UNLOCK(dhdp); return -ENODEV; } #ifdef BCMSDIO dhd_os_sdunlock(dhdp); #endif /* BCMSDIO */ /* Bus is ready, query any dongle information */ #if defined(DHD_DEBUG) && defined(BCMSDIO) f2_sync_start = OSL_SYSUPTIME(); #endif /* DHD_DEBUG && BCMSDIO */ if ((ret = dhd_sync_with_dongle(&dhd->pub)) < 0) { DHD_GENERAL_LOCK(&dhd->pub, flags); dhd->wd_timer_valid = FALSE; DHD_GENERAL_UNLOCK(&dhd->pub, flags); del_timer_sync(&dhd->timer); DHD_ERROR(("%s failed to sync with dongle\n", __FUNCTION__)); DHD_OS_WD_WAKE_UNLOCK(&dhd->pub); DHD_PERIM_UNLOCK(dhdp); return ret; } #if defined(CONFIG_SOC_EXYNOS8895) DHD_ERROR(("%s: Enable L1ss EP side\n", __FUNCTION__)); exynos_pcie_l1ss_ctrl(1, PCIE_L1SS_CTRL_WIFI); #endif /* CONFIG_SOC_EXYNOS8895 */ #if defined(DHD_DEBUG) && defined(BCMSDIO) f2_sync_end = OSL_SYSUPTIME(); DHD_PRINT("Time taken for FW download and F2 ready is: %d msec\n", (fw_download_end - fw_download_start) + (f2_sync_end - f2_sync_start)); #endif /* DHD_DEBUG && BCMSDIO */ #ifdef ARP_OFFLOAD_SUPPORT if (dhd->pend_ipaddr) { #ifdef AOE_IP_ALIAS_SUPPORT aoe_update_host_ipv4_table(&dhd->pub, dhd->pend_ipaddr, TRUE, 0); #endif /* AOE_IP_ALIAS_SUPPORT */ dhd->pend_ipaddr = 0; } #endif /* ARP_OFFLOAD_SUPPORT */ #if defined(TRAFFIC_MGMT_DWM) bzero(&dhd->pub.dhd_tm_dwm_tbl, sizeof(dhd_trf_mgmt_dwm_tbl_t)); #endif DHD_PERIM_UNLOCK(dhdp); return 0; } #endif /* !BCMDBUS */ #ifdef WLTDLS int _dhd_tdls_enable(dhd_pub_t *dhd, bool tdls_on, bool auto_on, struct ether_addr *mac) { uint32 tdls = tdls_on; int ret = 0; uint32 tdls_auto_op = 0; uint32 tdls_idle_time = CUSTOM_TDLS_IDLE_MODE_SETTING; int32 tdls_rssi_high = CUSTOM_TDLS_RSSI_THRESHOLD_HIGH; int32 tdls_rssi_low = CUSTOM_TDLS_RSSI_THRESHOLD_LOW; BCM_REFERENCE(mac); if (!FW_SUPPORTED(dhd, tdls)) return BCME_ERROR; if (dhd->tdls_enable == tdls_on) goto auto_mode; ret = dhd_iovar(dhd, 0, "tdls_enable", (char *)&tdls, sizeof(tdls), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: tdls %d failed %d\n", __FUNCTION__, tdls, ret)); goto exit; } dhd->tdls_enable = tdls_on; auto_mode: tdls_auto_op = auto_on; ret = dhd_iovar(dhd, 0, "tdls_auto_op", (char *)&tdls_auto_op, sizeof(tdls_auto_op), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: tdls_auto_op failed %d\n", __FUNCTION__, ret)); goto exit; } if (tdls_auto_op) { ret = dhd_iovar(dhd, 0, "tdls_idle_time", (char *)&tdls_idle_time, sizeof(tdls_idle_time), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: tdls_idle_time failed %d\n", __FUNCTION__, ret)); goto exit; } ret = dhd_iovar(dhd, 0, "tdls_rssi_high", (char *)&tdls_rssi_high, sizeof(tdls_rssi_high), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: tdls_rssi_high failed %d\n", __FUNCTION__, ret)); goto exit; } ret = dhd_iovar(dhd, 0, "tdls_rssi_low", (char *)&tdls_rssi_low, sizeof(tdls_rssi_low), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: tdls_rssi_low failed %d\n", __FUNCTION__, ret)); goto exit; } } exit: return ret; } int dhd_tdls_enable(struct net_device *dev, bool tdls_on, bool auto_on, struct ether_addr *mac) { dhd_info_t *dhd = DHD_DEV_INFO(dev); int ret = 0; if (dhd) ret = _dhd_tdls_enable(&dhd->pub, tdls_on, auto_on, mac); else ret = BCME_ERROR; return ret; } int dhd_tdls_set_mode(dhd_pub_t *dhd, bool wfd_mode) { int ret = 0; bool auto_on = false; uint32 mode = wfd_mode; #ifdef ENABLE_TDLS_AUTO_MODE if (wfd_mode) { auto_on = false; } else { auto_on = true; } #else auto_on = false; #endif /* ENABLE_TDLS_AUTO_MODE */ ret = _dhd_tdls_enable(dhd, false, auto_on, NULL); if (ret < 0) { DHD_ERROR(("Disable tdls_auto_op failed. %d\n", ret)); return ret; } ret = dhd_iovar(dhd, 0, "tdls_wfd_mode", (char *)&mode, sizeof(mode), NULL, 0, TRUE); if ((ret < 0) && (ret != BCME_UNSUPPORTED)) { DHD_ERROR(("%s: tdls_wfd_mode faile_wfd_mode %d\n", __FUNCTION__, ret)); return ret; } ret = _dhd_tdls_enable(dhd, true, auto_on, NULL); if (ret < 0) { DHD_ERROR(("enable tdls_auto_op failed. %d\n", ret)); return ret; } dhd->tdls_mode = mode; return ret; } #ifdef PCIE_FULL_DONGLE int dhd_tdls_update_peer_info(dhd_pub_t *dhdp, wl_event_msg_t *event) { dhd_pub_t *dhd_pub = dhdp; tdls_peer_node_t *cur = dhd_pub->peer_tbl.node; tdls_peer_node_t *new = NULL, *prev = NULL; int ifindex = dhd_ifname2idx(dhd_pub->info, event->ifname); uint8 *da = (uint8 *)&event->addr.octet[0]; bool connect = FALSE; uint32 reason = ntoh32(event->reason); unsigned long flags; if (reason == WLC_E_TDLS_PEER_CONNECTED) connect = TRUE; else if (reason == WLC_E_TDLS_PEER_DISCONNECTED) connect = FALSE; else { DHD_ERROR(("%s: TDLS Event reason is unknown\n", __FUNCTION__)); return BCME_ERROR; } if (ifindex == DHD_BAD_IF) return BCME_ERROR; if (connect) { while (cur != NULL) { if (!memcmp(da, cur->addr, ETHER_ADDR_LEN)) { DHD_ERROR(("%s: TDLS Peer exist already %d\n", __FUNCTION__, __LINE__)); return BCME_ERROR; } cur = cur->next; } new = MALLOC(dhd_pub->osh, sizeof(tdls_peer_node_t)); if (new == NULL) { DHD_ERROR(("%s: Failed to allocate memory\n", __FUNCTION__)); return BCME_ERROR; } memcpy(new->addr, da, ETHER_ADDR_LEN); DHD_TDLS_LOCK(&dhdp->tdls_lock, flags); new->next = dhd_pub->peer_tbl.node; dhd_pub->peer_tbl.node = new; dhd_pub->peer_tbl.tdls_peer_count++; DHD_TDLS_UNLOCK(&dhdp->tdls_lock, flags); } else { while (cur != NULL) { if (!memcmp(da, cur->addr, ETHER_ADDR_LEN)) { dhd_flow_rings_delete_for_peer(dhd_pub, (uint8)ifindex, da); DHD_TDLS_LOCK(&dhdp->tdls_lock, flags); if (prev) prev->next = cur->next; else dhd_pub->peer_tbl.node = cur->next; MFREE(dhd_pub->osh, cur, sizeof(tdls_peer_node_t)); dhd_pub->peer_tbl.tdls_peer_count--; DHD_TDLS_UNLOCK(&dhdp->tdls_lock, flags); return BCME_OK; } prev = cur; cur = cur->next; } DHD_ERROR(("%s: TDLS Peer Entry Not found\n", __FUNCTION__)); } return BCME_OK; } #endif /* PCIE_FULL_DONGLE */ #endif bool dhd_is_concurrent_mode(dhd_pub_t *dhd) { if (!dhd) return FALSE; if (dhd->op_mode & DHD_FLAG_CONCURR_MULTI_CHAN_MODE) return TRUE; else if ((dhd->op_mode & DHD_FLAG_CONCURR_SINGLE_CHAN_MODE) == DHD_FLAG_CONCURR_SINGLE_CHAN_MODE) return TRUE; else return FALSE; } #if !defined(AP) && defined(WLP2P) /* From Android JerryBean release, the concurrent mode is enabled by default and the firmware * name would be fw_bcmdhd.bin. So we need to determine whether P2P is enabled in the STA * firmware and accordingly enable concurrent mode (Apply P2P settings). SoftAP firmware * would still be named as fw_bcmdhd_apsta. */ uint32 dhd_get_concurrent_capabilites(dhd_pub_t *dhd) { int32 ret = 0; char buf[WLC_IOCTL_SMLEN]; bool mchan_supported = FALSE; /* if dhd->op_mode is already set for HOSTAP and Manufacturing * test mode, that means we only will use the mode as it is */ if (dhd->op_mode & (DHD_FLAG_HOSTAP_MODE | DHD_FLAG_MFG_MODE)) return 0; if (FW_SUPPORTED(dhd, vsdb)) { mchan_supported = TRUE; } if (!FW_SUPPORTED(dhd, p2p)) { DHD_TRACE(("Chip does not support p2p\n")); return 0; } else { /* Chip supports p2p but ensure that p2p is really implemented in firmware or not */ memset(buf, 0, sizeof(buf)); ret = dhd_iovar(dhd, 0, "p2p", NULL, 0, (char *)&buf, sizeof(buf), FALSE); if (ret < 0) { DHD_ERROR(("%s: Get P2P failed (error=%d)\n", __FUNCTION__, ret)); return 0; } else { if (buf[0] == 1) { /* By default, chip supports single chan concurrency, * now lets check for mchan */ ret = DHD_FLAG_CONCURR_SINGLE_CHAN_MODE; if (mchan_supported) ret |= DHD_FLAG_CONCURR_MULTI_CHAN_MODE; if (FW_SUPPORTED(dhd, rsdb)) { ret |= DHD_FLAG_RSDB_MODE; } #ifdef WL_SUPPORT_MULTIP2P if (FW_SUPPORTED(dhd, mp2p)) { ret |= DHD_FLAG_MP2P_MODE; } #endif /* WL_SUPPORT_MULTIP2P */ #if defined(WL_ENABLE_P2P_IF) || defined(WL_CFG80211_P2P_DEV_IF) return ret; #else return 0; #endif /* WL_ENABLE_P2P_IF || WL_CFG80211_P2P_DEV_IF */ } } } return 0; } #endif #ifdef SUPPORT_AP_POWERSAVE #define RXCHAIN_PWRSAVE_PPS 10 #define RXCHAIN_PWRSAVE_QUIET_TIME 10 #define RXCHAIN_PWRSAVE_STAS_ASSOC_CHECK 0 int dhd_set_ap_powersave(dhd_pub_t *dhdp, int ifidx, int enable) { int32 pps = RXCHAIN_PWRSAVE_PPS; int32 quiet_time = RXCHAIN_PWRSAVE_QUIET_TIME; int32 stas_assoc_check = RXCHAIN_PWRSAVE_STAS_ASSOC_CHECK; int ret; if (enable) { ret = dhd_iovar(dhdp, 0, "rxchain_pwrsave_enable", (char *)&enable, sizeof(enable), NULL, 0, TRUE); if (ret != BCME_OK) { DHD_ERROR(("Failed to enable AP power save\n")); } ret = dhd_iovar(dhdp, 0, "rxchain_pwrsave_pps", (char *)&pps, sizeof(pps), NULL, 0, TRUE); if (ret != BCME_OK) { DHD_ERROR(("Failed to set pps\n")); } ret = dhd_iovar(dhdp, 0, "rxchain_pwrsave_quiet_time", (char *)&quiet_time, sizeof(quiet_time), NULL, 0, TRUE); if (ret != BCME_OK) { DHD_ERROR(("Failed to set quiet time\n")); } ret = dhd_iovar(dhdp, 0, "rxchain_pwrsave_stas_assoc_check", (char *)&stas_assoc_check, sizeof(stas_assoc_check), NULL, 0, TRUE); if (ret != BCME_OK) { DHD_ERROR(("Failed to set stas assoc check\n")); } } else { ret = dhd_iovar(dhdp, 0, "rxchain_pwrsave_enable", (char *)&enable, sizeof(enable), NULL, 0, TRUE); if (ret != BCME_OK) { DHD_ERROR(("Failed to disable AP power save\n")); } } return 0; } #endif /* SUPPORT_AP_POWERSAVE */ #if defined(WLADPS) || defined(WLADPS_PRIVATE_CMD) int dhd_enable_adps(dhd_pub_t *dhd, uint8 on) { int i; int len; int ret = BCME_OK; bcm_iov_buf_t *iov_buf = NULL; wl_adps_params_v1_t *data = NULL; char buf[WL_EVENTING_MASK_LEN + 12]; /* Room for "event_msgs" + '\0' + bitvec */ len = OFFSETOF(bcm_iov_buf_t, data) + sizeof(*data); iov_buf = kmalloc(len, GFP_KERNEL); if (iov_buf == NULL) { DHD_ERROR(("%s - failed to allocate %d bytes for iov_buf\n", __FUNCTION__, len)); ret = BCME_NOMEM; goto exit; } iov_buf->version = WL_ADPS_IOV_VER; iov_buf->len = sizeof(*data); iov_buf->id = WL_ADPS_IOV_MODE; data = (wl_adps_params_v1_t *)iov_buf->data; data->version = ADPS_SUB_IOV_VERSION_1; data->length = sizeof(*data); data->mode = on; for (i = 1; i <= MAX_BANDS; i++) { data->band = i; bcm_mkiovar("adps", (char *)iov_buf, len, buf, sizeof(buf)); if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, buf, sizeof(buf), TRUE, 0)) < 0) { if (ret == BCME_UNSUPPORTED) { DHD_ERROR(("%s adps is not supported\n", __FUNCTION__)); ret = BCME_OK; goto exit; } else { DHD_ERROR(("%s fail to set adps %s for band %d (%d)\n", __FUNCTION__, on ? "On" : "Off", i, ret)); goto exit; } } } exit: if (iov_buf) { kfree(iov_buf); } return ret; } #endif /* WLADPS || WLADPS_PRIVATE_CMD */ int dhd_preinit_ioctls(dhd_pub_t *dhd) { int ret = 0; char eventmask[WL_EVENTING_MASK_LEN]; char iovbuf[WL_EVENTING_MASK_LEN + 12]; /* Room for "event_msgs" + '\0' + bitvec */ uint32 buf_key_b4_m4 = 1; uint8 msglen; eventmsgs_ext_t *eventmask_msg = NULL; char* iov_buf = NULL; int ret2 = 0; uint32 wnm_cap = 0; #if defined(CUSTOM_AMPDU_BA_WSIZE) uint32 ampdu_ba_wsize = 0; #endif #if defined(CUSTOM_AMPDU_MPDU) int32 ampdu_mpdu = 0; #endif #if defined(CUSTOM_AMPDU_RELEASE) int32 ampdu_release = 0; #endif #if defined(CUSTOM_AMSDU_AGGSF) int32 amsdu_aggsf = 0; #endif shub_control_t shub_ctl; #if defined(BCMSDIO) || defined(BCMDBUS) #ifdef PROP_TXSTATUS int wlfc_enable = TRUE; #ifndef DISABLE_11N uint32 hostreorder = 1; uint wl_down = 1; #endif /* DISABLE_11N */ #endif /* PROP_TXSTATUS */ #endif /* BCMSDIO || BCMDBUS */ #ifndef PCIE_FULL_DONGLE uint32 wl_ap_isolate; #endif /* PCIE_FULL_DONGLE */ uint32 frameburst = CUSTOM_FRAMEBURST_SET; uint wnm_bsstrans_resp = 0; #ifdef SUPPORT_SET_CAC uint32 cac = 1; #endif /* SUPPORT_SET_CAC */ #ifdef DHD_ENABLE_LPC uint32 lpc = 1; #endif /* DHD_ENABLE_LPC */ uint power_mode = PM_FAST; #if defined(BCMSDIO) uint32 dongle_align = DHD_SDALIGN; uint32 glom = CUSTOM_GLOM_SETTING; #endif /* defined(BCMSDIO) */ #if defined(CUSTOMER_HW2) && defined(USE_WL_CREDALL) uint32 credall = 1; #endif uint bcn_timeout = CUSTOM_BCN_TIMEOUT; uint scancache_enab = TRUE; #ifdef ENABLE_BCN_LI_BCN_WAKEUP uint32 bcn_li_bcn = 1; #endif /* ENABLE_BCN_LI_BCN_WAKEUP */ uint retry_max = CUSTOM_ASSOC_RETRY_MAX; #if defined(ARP_OFFLOAD_SUPPORT) int arpoe = 1; #endif int scan_assoc_time = DHD_SCAN_ASSOC_ACTIVE_TIME; int scan_unassoc_time = DHD_SCAN_UNASSOC_ACTIVE_TIME; int scan_passive_time = DHD_SCAN_PASSIVE_TIME; char buf[WLC_IOCTL_SMLEN]; char *ptr; uint32 listen_interval = CUSTOM_LISTEN_INTERVAL; /* Default Listen Interval in Beacons */ #if defined(DHD_8021X_DUMP) && defined(SHOW_LOGTRACE) wl_el_tag_params_t *el_tag = NULL; #endif /* DHD_8021X_DUMP */ #ifdef ROAM_ENABLE uint roamvar = 0; int roam_trigger[2] = {CUSTOM_ROAM_TRIGGER_SETTING, WLC_BAND_ALL}; int roam_scan_period[2] = {10, WLC_BAND_ALL}; int roam_delta[2] = {CUSTOM_ROAM_DELTA_SETTING, WLC_BAND_ALL}; #ifdef FULL_ROAMING_SCAN_PERIOD_60_SEC int roam_fullscan_period = 60; #else /* FULL_ROAMING_SCAN_PERIOD_60_SEC */ int roam_fullscan_period = 120; #endif /* FULL_ROAMING_SCAN_PERIOD_60_SEC */ #ifdef DISABLE_BCNLOSS_ROAM uint roam_bcnloss_off = 1; #endif /* DISABLE_BCNLOSS_ROAM */ #else #ifdef DISABLE_BUILTIN_ROAM uint roamvar = 1; #endif /* DISABLE_BUILTIN_ROAM */ #endif /* ROAM_ENABLE */ #if defined(SOFTAP) uint dtim = 1; #endif #if (defined(AP) && !defined(WLP2P)) || (!defined(AP) && defined(WL_CFG80211)) struct ether_addr p2p_ea; #endif #ifdef SOFTAP_UAPSD_OFF uint32 wme_apsd = 0; #endif /* SOFTAP_UAPSD_OFF */ #if (defined(AP) || defined(WLP2P)) && !defined(SOFTAP_AND_GC) uint32 apsta = 1; /* Enable APSTA mode */ #elif defined(SOFTAP_AND_GC) uint32 apsta = 0; int ap_mode = 1; #endif /* (defined(AP) || defined(WLP2P)) && !defined(SOFTAP_AND_GC) */ #ifdef GET_CUSTOM_MAC_ENABLE struct ether_addr ea_addr; char hw_ether[62]; #endif /* GET_CUSTOM_MAC_ENABLE */ #ifdef DISABLE_11N uint32 nmode = 0; #endif /* DISABLE_11N */ #ifdef USE_WL_TXBF uint32 txbf = 1; #endif /* USE_WL_TXBF */ #ifdef DISABLE_TXBFR uint32 txbf_bfr_cap = 0; #endif /* DISABLE_TXBFR */ #if defined(PROP_TXSTATUS) #ifdef USE_WFA_CERT_CONF uint32 proptx = 0; #endif /* USE_WFA_CERT_CONF */ #endif /* PROP_TXSTATUS */ #if defined(SUPPORT_5G_1024QAM_VHT) uint32 vht_features = 0; /* init to 0, will be set based on each support */ #endif #ifdef DISABLE_11N_PROPRIETARY_RATES uint32 ht_features = 0; #endif /* DISABLE_11N_PROPRIETARY_RATES */ #ifdef CUSTOM_PSPRETEND_THR uint32 pspretend_thr = CUSTOM_PSPRETEND_THR; #endif #ifdef CUSTOM_EVENT_PM_WAKE uint32 pm_awake_thresh = CUSTOM_EVENT_PM_WAKE; #endif /* CUSTOM_EVENT_PM_WAKE */ uint32 rsdb_mode = 0; #ifdef ENABLE_TEMP_THROTTLING wl_temp_control_t temp_control; #endif /* ENABLE_TEMP_THROTTLING */ #ifdef DISABLE_PRUNED_SCAN uint32 scan_features = 0; #endif /* DISABLE_PRUNED_SCAN */ #ifdef PKT_FILTER_SUPPORT dhd_pkt_filter_enable = TRUE; #ifdef APF dhd->apf_set = FALSE; #endif /* APF */ #endif /* PKT_FILTER_SUPPORT */ #ifdef WLTDLS dhd->tdls_enable = FALSE; dhd_tdls_set_mode(dhd, false); #endif /* WLTDLS */ dhd->suspend_bcn_li_dtim = CUSTOM_SUSPEND_BCN_LI_DTIM; #ifdef ENABLE_MAX_DTIM_IN_SUSPEND dhd->max_dtim_enable = TRUE; #else dhd->max_dtim_enable = FALSE; #endif /* ENABLE_MAX_DTIM_IN_SUSPEND */ #ifdef CUSTOM_SET_OCLOFF dhd->ocl_off = FALSE; #endif /* CUSTOM_SET_OCLOFF */ DHD_TRACE(("Enter %s\n", __FUNCTION__)); #ifdef DHDTCPACK_SUPPRESS dhd_tcpack_suppress_set(dhd, dhd->conf->tcpack_sup_mode); #endif dhd->op_mode = 0; #if defined(CUSTOM_COUNTRY_CODE) && defined(CUSTOMER_HW2) /* clear AP flags */ dhd->dhd_cflags &= ~WLAN_PLAT_AP_FLAG; #endif /* CUSTOM_COUNTRY_CODE && CUSTOMER_HW2 */ #ifdef CUSTOMER_HW4_DEBUG if (!dhd_validate_chipid(dhd)) { DHD_ERROR(("%s: CONFIG_BCMXXX and CHIP ID(%x) is mismatched\n", __FUNCTION__, dhd_bus_chip_id(dhd))); #ifndef SUPPORT_MULTIPLE_CHIPS ret = BCME_BADARG; goto done; #endif /* !SUPPORT_MULTIPLE_CHIPS */ } #endif /* CUSTOMER_HW4_DEBUG */ if ((!op_mode && dhd_get_fw_mode(dhd->info) == DHD_FLAG_MFG_MODE) || (op_mode == DHD_FLAG_MFG_MODE)) { dhd->op_mode = DHD_FLAG_MFG_MODE; #ifdef DHD_PCIE_RUNTIMEPM /* Disable RuntimePM in mfg mode */ DHD_DISABLE_RUNTIME_PM(dhd); DHD_ERROR(("%s : Disable RuntimePM in Manufactring Firmware\n", __FUNCTION__)); #endif /* DHD_PCIE_RUNTIME_PM */ /* Check and adjust IOCTL response timeout for Manufactring firmware */ dhd_os_set_ioctl_resp_timeout(MFG_IOCTL_RESP_TIMEOUT); DHD_ERROR(("%s : Set IOCTL response time for Manufactring Firmware\n", __FUNCTION__)); } else { dhd_os_set_ioctl_resp_timeout(IOCTL_RESP_TIMEOUT); DHD_INFO(("%s : Set IOCTL response time.\n", __FUNCTION__)); } #ifdef GET_CUSTOM_MAC_ENABLE memset(hw_ether, 0, sizeof(hw_ether)); ret = wifi_platform_get_mac_addr(dhd->info->adapter, hw_ether); #ifdef GET_CUSTOM_MAC_FROM_CONFIG if (!memcmp(ðer_null, &dhd->conf->hw_ether, ETHER_ADDR_LEN)) { ret = 0; } else #endif if (!ret) { memset(buf, 0, sizeof(buf)); #ifdef GET_CUSTOM_MAC_FROM_CONFIG memcpy(hw_ether, &dhd->conf->hw_ether, sizeof(dhd->conf->hw_ether)); #endif bcopy(hw_ether, ea_addr.octet, sizeof(struct ether_addr)); bcm_mkiovar("cur_etheraddr", (void *)&ea_addr, ETHER_ADDR_LEN, buf, sizeof(buf)); ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, buf, sizeof(buf), TRUE, 0); if (ret < 0) { memset(buf, 0, sizeof(buf)); bcm_mkiovar("hw_ether", hw_ether, sizeof(hw_ether), buf, sizeof(buf)); ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, buf, sizeof(buf), TRUE, 0); if (ret) { DHD_ERROR(("%s: can't set MAC address MAC="MACDBG", error=%d\n", __FUNCTION__, MAC2STRDBG(hw_ether), ret)); prhex("MACPAD", &hw_ether[ETHER_ADDR_LEN], sizeof(hw_ether)-ETHER_ADDR_LEN); ret = BCME_NOTUP; goto done; } } } else { DHD_ERROR(("%s: can't get custom MAC address, ret=%d\n", __FUNCTION__, ret)); ret = BCME_NOTUP; goto done; } #endif /* GET_CUSTOM_MAC_ENABLE */ /* Get the default device MAC address directly from firmware */ memset(buf, 0, sizeof(buf)); bcm_mkiovar("cur_etheraddr", 0, 0, buf, sizeof(buf)); if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_GET_VAR, buf, sizeof(buf), FALSE, 0)) < 0) { DHD_ERROR(("%s: can't get MAC address , error=%d\n", __FUNCTION__, ret)); ret = BCME_NOTUP; goto done; } /* Update public MAC address after reading from Firmware */ memcpy(dhd->mac.octet, buf, ETHER_ADDR_LEN); if ((ret = dhd_apply_default_clm(dhd, dhd->clm_path)) < 0) { DHD_ERROR(("%s: CLM set failed. Abort initialization.\n", __FUNCTION__)); goto done; } /* get a capabilities from firmware */ { uint32 cap_buf_size = sizeof(dhd->fw_capabilities); memset(dhd->fw_capabilities, 0, cap_buf_size); ret = dhd_iovar(dhd, 0, "cap", NULL, 0, dhd->fw_capabilities, (cap_buf_size - 1), FALSE); if (ret < 0) { DHD_ERROR(("%s: Get Capability failed (error=%d)\n", __FUNCTION__, ret)); return 0; } memmove(&dhd->fw_capabilities[1], dhd->fw_capabilities, (cap_buf_size - 1)); dhd->fw_capabilities[0] = ' '; dhd->fw_capabilities[cap_buf_size - 2] = ' '; dhd->fw_capabilities[cap_buf_size - 1] = '\0'; } if ((!op_mode && dhd_get_fw_mode(dhd->info) == DHD_FLAG_HOSTAP_MODE) || (op_mode == DHD_FLAG_HOSTAP_MODE)) { #ifdef SET_RANDOM_MAC_SOFTAP uint rand_mac; #endif /* SET_RANDOM_MAC_SOFTAP */ dhd->op_mode = DHD_FLAG_HOSTAP_MODE; #if defined(ARP_OFFLOAD_SUPPORT) arpoe = 0; #endif #ifdef PKT_FILTER_SUPPORT if (dhd_conf_get_insuspend(dhd, AP_FILTER_IN_SUSPEND)) dhd_pkt_filter_enable = TRUE; else dhd_pkt_filter_enable = FALSE; #endif #ifdef SET_RANDOM_MAC_SOFTAP SRANDOM32((uint)jiffies); rand_mac = RANDOM32(); iovbuf[0] = (unsigned char)(vendor_oui >> 16) | 0x02; /* local admin bit */ iovbuf[1] = (unsigned char)(vendor_oui >> 8); iovbuf[2] = (unsigned char)vendor_oui; iovbuf[3] = (unsigned char)(rand_mac & 0x0F) | 0xF0; iovbuf[4] = (unsigned char)(rand_mac >> 8); iovbuf[5] = (unsigned char)(rand_mac >> 16); ret = dhd_iovar(dhd, 0, "cur_etheraddr", (char *)&iovbuf, ETHER_ADDR_LEN, NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: can't set MAC address , error=%d\n", __FUNCTION__, ret)); } else memcpy(dhd->mac.octet, iovbuf, ETHER_ADDR_LEN); #endif /* SET_RANDOM_MAC_SOFTAP */ #ifdef USE_DYNAMIC_F2_BLKSIZE dhdsdio_func_blocksize(dhd, 2, DYNAMIC_F2_BLKSIZE_FOR_NONLEGACY); #endif /* USE_DYNAMIC_F2_BLKSIZE */ #ifdef SUPPORT_AP_POWERSAVE dhd_set_ap_powersave(dhd, 0, TRUE); #endif /* SUPPORT_AP_POWERSAVE */ #ifdef SOFTAP_UAPSD_OFF ret = dhd_iovar(dhd, 0, "wme_apsd", (char *)&wme_apsd, sizeof(wme_apsd), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: set wme_apsd 0 fail (error=%d)\n", __FUNCTION__, ret)); } #endif /* SOFTAP_UAPSD_OFF */ #if defined(CUSTOM_COUNTRY_CODE) && defined(CUSTOMER_HW2) /* set AP flag for specific country code of SOFTAP */ dhd->dhd_cflags |= WLAN_PLAT_AP_FLAG | WLAN_PLAT_NODFS_FLAG; #endif /* CUSTOM_COUNTRY_CODE && CUSTOMER_HW2 */ } else if ((!op_mode && dhd_get_fw_mode(dhd->info) == DHD_FLAG_MFG_MODE) || (op_mode == DHD_FLAG_MFG_MODE)) { #if defined(ARP_OFFLOAD_SUPPORT) arpoe = 0; #endif /* ARP_OFFLOAD_SUPPORT */ #ifdef PKT_FILTER_SUPPORT dhd_pkt_filter_enable = FALSE; #endif /* PKT_FILTER_SUPPORT */ dhd->op_mode = DHD_FLAG_MFG_MODE; #ifdef USE_DYNAMIC_F2_BLKSIZE dhdsdio_func_blocksize(dhd, 2, DYNAMIC_F2_BLKSIZE_FOR_NONLEGACY); #endif /* USE_DYNAMIC_F2_BLKSIZE */ if (FW_SUPPORTED(dhd, rsdb)) { rsdb_mode = 0; ret = dhd_iovar(dhd, 0, "rsdb_mode", (char *)&rsdb_mode, sizeof(rsdb_mode), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s Disable rsdb_mode is failed ret= %d\n", __FUNCTION__, ret)); } } } else { uint32 concurrent_mode = 0; if ((!op_mode && dhd_get_fw_mode(dhd->info) == DHD_FLAG_P2P_MODE) || (op_mode == DHD_FLAG_P2P_MODE)) { #if defined(ARP_OFFLOAD_SUPPORT) arpoe = 0; #endif #ifdef PKT_FILTER_SUPPORT dhd_pkt_filter_enable = FALSE; #endif dhd->op_mode = DHD_FLAG_P2P_MODE; } else if ((!op_mode && dhd_get_fw_mode(dhd->info) == DHD_FLAG_IBSS_MODE) || (op_mode == DHD_FLAG_IBSS_MODE)) { dhd->op_mode = DHD_FLAG_IBSS_MODE; } else dhd->op_mode = DHD_FLAG_STA_MODE; #if !defined(AP) && defined(WLP2P) if (dhd->op_mode != DHD_FLAG_IBSS_MODE && (concurrent_mode = dhd_get_concurrent_capabilites(dhd))) { #if defined(ARP_OFFLOAD_SUPPORT) arpoe = 1; #endif dhd->op_mode |= concurrent_mode; } /* Check if we are enabling p2p */ if (dhd->op_mode & DHD_FLAG_P2P_MODE) { ret = dhd_iovar(dhd, 0, "apsta", (char *)&apsta, sizeof(apsta), NULL, 0, TRUE); if (ret < 0) DHD_ERROR(("%s APSTA for P2P failed ret= %d\n", __FUNCTION__, ret)); #if defined(SOFTAP_AND_GC) if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_AP, (char *)&ap_mode, sizeof(ap_mode), TRUE, 0)) < 0) { DHD_ERROR(("%s WLC_SET_AP failed %d\n", __FUNCTION__, ret)); } #endif memcpy(&p2p_ea, &dhd->mac, ETHER_ADDR_LEN); ETHER_SET_LOCALADDR(&p2p_ea); ret = dhd_iovar(dhd, 0, "p2p_da_override", (char *)&p2p_ea, sizeof(p2p_ea), NULL, 0, TRUE); if (ret < 0) DHD_ERROR(("%s p2p_da_override ret= %d\n", __FUNCTION__, ret)); else DHD_INFO(("dhd_preinit_ioctls: p2p_da_override succeeded\n")); } #else (void)concurrent_mode; #endif } #if defined(RSDB_MODE_FROM_FILE) (void)dhd_rsdb_mode_from_file(dhd); #endif #ifdef DISABLE_PRUNED_SCAN if (FW_SUPPORTED(dhd, rsdb)) { ret = dhd_iovar(dhd, 0, "scan_features", (char *)&scan_features, sizeof(scan_features), iovbuf, sizeof(iovbuf), FALSE); if (ret < 0) { DHD_ERROR(("%s get scan_features is failed ret=%d\n", __FUNCTION__, ret)); } else { memcpy(&scan_features, iovbuf, 4); scan_features &= ~RSDB_SCAN_DOWNGRADED_CH_PRUNE_ROAM; ret = dhd_iovar(dhd, 0, "scan_features", (char *)&scan_features, sizeof(scan_features), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s set scan_features is failed ret=%d\n", __FUNCTION__, ret)); } } } #endif /* DISABLE_PRUNED_SCAN */ DHD_ERROR(("Firmware up: op_mode=0x%04x, MAC="MACDBG"\n", dhd->op_mode, MAC2STRDBG(dhd->mac.octet))); #ifdef CUSTOMER_HW2 #if defined(DHD_BLOB_EXISTENCE_CHECK) if (!dhd->pub.is_blob) #endif /* DHD_BLOB_EXISTENCE_CHECK */ { /* get a ccode and revision for the country code */ #if defined(CUSTOM_COUNTRY_CODE) get_customized_country_code(dhd->info->adapter, dhd->dhd_cspec.country_abbrev, &dhd->dhd_cspec, dhd->dhd_cflags); #else get_customized_country_code(dhd->info->adapter, dhd->dhd_cspec.country_abbrev, &dhd->dhd_cspec); #endif /* CUSTOM_COUNTRY_CODE */ } #endif /* CUSTOMER_HW2 */ #if defined(RXFRAME_THREAD) && defined(RXTHREAD_ONLYSTA) if (dhd->op_mode == DHD_FLAG_HOSTAP_MODE) dhd->info->rxthread_enabled = FALSE; else dhd->info->rxthread_enabled = TRUE; #endif /* Set Country code */ if (dhd->dhd_cspec.ccode[0] != 0) { ret = dhd_iovar(dhd, 0, "country", (char *)&dhd->dhd_cspec, sizeof(wl_country_t), NULL, 0, TRUE); if (ret < 0) DHD_ERROR(("%s: country code setting failed\n", __FUNCTION__)); } /* Set Listen Interval */ ret = dhd_iovar(dhd, 0, "assoc_listen", (char *)&listen_interval, sizeof(listen_interval), NULL, 0, TRUE); if (ret < 0) DHD_ERROR(("%s assoc_listen failed %d\n", __FUNCTION__, ret)); #if defined(ROAM_ENABLE) || defined(DISABLE_BUILTIN_ROAM) #ifdef USE_WFA_CERT_CONF if (sec_get_param_wfa_cert(dhd, SET_PARAM_ROAMOFF, &roamvar) == BCME_OK) { DHD_ERROR(("%s: read roam_off param =%d\n", __FUNCTION__, roamvar)); } #endif /* USE_WFA_CERT_CONF */ /* Disable built-in roaming to allowed ext supplicant to take care of roaming */ dhd_iovar(dhd, 0, "roam_off", (char *)&roamvar, sizeof(roamvar), NULL, 0, TRUE); #endif /* ROAM_ENABLE || DISABLE_BUILTIN_ROAM */ #if defined(ROAM_ENABLE) #ifdef DISABLE_BCNLOSS_ROAM dhd_iovar(dhd, 0, "roam_bcnloss_off", (char *)&roam_bcnloss_off, sizeof(roam_bcnloss_off), NULL, 0, TRUE); #endif /* DISABLE_BCNLOSS_ROAM */ if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_ROAM_TRIGGER, roam_trigger, sizeof(roam_trigger), TRUE, 0)) < 0) DHD_ERROR(("%s: roam trigger set failed %d\n", __FUNCTION__, ret)); if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_ROAM_SCAN_PERIOD, roam_scan_period, sizeof(roam_scan_period), TRUE, 0)) < 0) DHD_ERROR(("%s: roam scan period set failed %d\n", __FUNCTION__, ret)); if ((dhd_wl_ioctl_cmd(dhd, WLC_SET_ROAM_DELTA, roam_delta, sizeof(roam_delta), TRUE, 0)) < 0) DHD_ERROR(("%s: roam delta set failed %d\n", __FUNCTION__, ret)); ret = dhd_iovar(dhd, 0, "fullroamperiod", (char *)&roam_fullscan_period, sizeof(roam_fullscan_period), NULL, 0, TRUE); if (ret < 0) DHD_ERROR(("%s: roam fullscan period set failed %d\n", __FUNCTION__, ret)); #endif /* ROAM_ENABLE */ #ifdef CUSTOM_EVENT_PM_WAKE ret = dhd_iovar(dhd, 0, "const_awake_thresh", (char *)&pm_awake_thresh, sizeof(pm_awake_thresh), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s set const_awake_thresh failed %d\n", __FUNCTION__, ret)); } #endif /* CUSTOM_EVENT_PM_WAKE */ #ifdef WLTDLS #ifdef ENABLE_TDLS_AUTO_MODE /* by default TDLS on and auto mode on */ _dhd_tdls_enable(dhd, true, true, NULL); #else /* by default TDLS on and auto mode off */ _dhd_tdls_enable(dhd, true, false, NULL); #endif /* ENABLE_TDLS_AUTO_MODE */ #endif /* WLTDLS */ #ifdef DHD_ENABLE_LPC /* Set lpc 1 */ ret = dhd_iovar(dhd, 0, "lpc", (char *)&lpc, sizeof(lpc), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s Set lpc failed %d\n", __FUNCTION__, ret)); if (ret == BCME_NOTDOWN) { uint wl_down = 1; ret = dhd_wl_ioctl_cmd(dhd, WLC_DOWN, (char *)&wl_down, sizeof(wl_down), TRUE, 0); DHD_ERROR(("%s lpc fail WL_DOWN : %d, lpc = %d\n", __FUNCTION__, ret, lpc)); ret = dhd_iovar(dhd, 0, "lpc", (char *)&lpc, sizeof(lpc), NULL, 0, TRUE); DHD_ERROR(("%s Set lpc ret --> %d\n", __FUNCTION__, ret)); } } #endif /* DHD_ENABLE_LPC */ #ifdef WLADPS #ifdef WLADPS_SEAK_AP_WAR dhd->disabled_adps = FALSE; #endif /* WLADPS_SEAK_AP_WAR */ if (dhd->op_mode & DHD_FLAG_STA_MODE) { #ifdef ADPS_MODE_FROM_FILE dhd_adps_mode_from_file(dhd); #else if ((ret = dhd_enable_adps(dhd, ADPS_ENABLE)) != BCME_OK) { DHD_ERROR(("%s dhd_enable_adps failed %d\n", __FUNCTION__, ret)); } #endif /* ADPS_MODE_FROM_FILE */ } #endif /* WLADPS */ /* Set PowerSave mode */ (void) dhd_wl_ioctl_cmd(dhd, WLC_SET_PM, (char *)&power_mode, sizeof(power_mode), TRUE, 0); #if defined(BCMSDIO) /* Match Host and Dongle rx alignment */ dhd_iovar(dhd, 0, "bus:txglomalign", (char *)&dongle_align, sizeof(dongle_align), NULL, 0, TRUE); #if defined(CUSTOMER_HW2) && defined(USE_WL_CREDALL) /* enable credall to reduce the chance of no bus credit happened. */ dhd_iovar(dhd, 0, "bus:credall", (char *)&credall, sizeof(credall), NULL, 0, TRUE); #endif #ifdef USE_WFA_CERT_CONF if (sec_get_param_wfa_cert(dhd, SET_PARAM_BUS_TXGLOM_MODE, &glom) == BCME_OK) { DHD_ERROR(("%s, read txglom param =%d\n", __FUNCTION__, glom)); } #endif /* USE_WFA_CERT_CONF */ if (glom != DEFAULT_GLOM_VALUE) { DHD_INFO(("%s set glom=0x%X\n", __FUNCTION__, glom)); dhd_iovar(dhd, 0, "bus:txglom", (char *)&glom, sizeof(glom), NULL, 0, TRUE); } #endif /* defined(BCMSDIO) */ /* Setup timeout if Beacons are lost and roam is off to report link down */ dhd_iovar(dhd, 0, "bcn_timeout", (char *)&bcn_timeout, sizeof(bcn_timeout), NULL, 0, TRUE); /* Setup assoc_retry_max count to reconnect target AP in dongle */ dhd_iovar(dhd, 0, "assoc_retry_max", (char *)&retry_max, sizeof(retry_max), NULL, 0, TRUE); #if defined(AP) && !defined(WLP2P) dhd_iovar(dhd, 0, "apsta", (char *)&apsta, sizeof(apsta), NULL, 0, TRUE); #endif /* defined(AP) && !defined(WLP2P) */ #ifdef MIMO_ANT_SETTING dhd_sel_ant_from_file(dhd); #endif /* MIMO_ANT_SETTING */ #if defined(SOFTAP) if (ap_fw_loaded == TRUE) { dhd_wl_ioctl_cmd(dhd, WLC_SET_DTIMPRD, (char *)&dtim, sizeof(dtim), TRUE, 0); } #endif #if defined(KEEP_ALIVE) { /* Set Keep Alive : be sure to use FW with -keepalive */ int res; #if defined(SOFTAP) if (ap_fw_loaded == FALSE) #endif if (!(dhd->op_mode & (DHD_FLAG_HOSTAP_MODE | DHD_FLAG_MFG_MODE))) { if ((res = dhd_keep_alive_onoff(dhd)) < 0) DHD_ERROR(("%s set keeplive failed %d\n", __FUNCTION__, res)); } } #endif /* defined(KEEP_ALIVE) */ #ifdef USE_WL_TXBF ret = dhd_iovar(dhd, 0, "txbf", (char *)&txbf, sizeof(txbf), NULL, 0, TRUE); if (ret < 0) DHD_ERROR(("%s Set txbf failed %d\n", __FUNCTION__, ret)); #endif /* USE_WL_TXBF */ ret = dhd_iovar(dhd, 0, "scancache", (char *)&scancache_enab, sizeof(scancache_enab), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s Set scancache failed %d\n", __FUNCTION__, ret)); } #ifdef DISABLE_TXBFR ret = dhd_iovar(dhd, 0, "txbf_bfr_cap", (char *)&txbf_bfr_cap, sizeof(txbf_bfr_cap), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s Clear txbf_bfr_cap failed %d\n", __FUNCTION__, ret)); } #endif /* DISABLE_TXBFR */ #ifdef USE_WFA_CERT_CONF #ifdef USE_WL_FRAMEBURST if (sec_get_param_wfa_cert(dhd, SET_PARAM_FRAMEBURST, &frameburst) == BCME_OK) { DHD_ERROR(("%s, read frameburst param=%d\n", __FUNCTION__, frameburst)); } #endif /* USE_WL_FRAMEBURST */ #ifdef DISABLE_FRAMEBURST_VSDB g_frameburst = frameburst; #endif /* DISABLE_FRAMEBURST_VSDB */ #endif /* USE_WFA_CERT_CONF */ #ifdef DISABLE_WL_FRAMEBURST_SOFTAP /* Disable Framebursting for SofAP */ if (dhd->op_mode & DHD_FLAG_HOSTAP_MODE) { frameburst = 0; } #endif /* DISABLE_WL_FRAMEBURST_SOFTAP */ /* Set frameburst to value */ if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_FAKEFRAG, (char *)&frameburst, sizeof(frameburst), TRUE, 0)) < 0) { DHD_INFO(("%s frameburst not supported %d\n", __FUNCTION__, ret)); } iov_buf = (char*)kmalloc(WLC_IOCTL_SMLEN, GFP_KERNEL); if (iov_buf == NULL) { DHD_ERROR(("failed to allocate %d bytes for iov_buf\n", WLC_IOCTL_SMLEN)); ret = BCME_NOMEM; goto done; } #if defined(CUSTOM_AMPDU_BA_WSIZE) /* Set ampdu ba wsize to 64 or 16 */ #ifdef CUSTOM_AMPDU_BA_WSIZE ampdu_ba_wsize = CUSTOM_AMPDU_BA_WSIZE; #endif if (ampdu_ba_wsize != 0) { ret = dhd_iovar(dhd, 0, "ampdu_ba_wsize", (char *)&du_ba_wsize, sizeof(ampdu_ba_wsize), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s Set ampdu_ba_wsize to %d failed %d\n", __FUNCTION__, ampdu_ba_wsize, ret)); } } #endif #ifdef ENABLE_TEMP_THROTTLING if (dhd->op_mode & DHD_FLAG_STA_MODE) { memset(&temp_control, 0, sizeof(temp_control)); temp_control.enable = 1; temp_control.control_bit = TEMP_THROTTLE_CONTROL_BIT; ret = dhd_iovar(dhd, 0, "temp_throttle_control", (char *)&temp_control, sizeof(temp_control), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s Set temp_throttle_control to %d failed \n", __FUNCTION__, ret)); } } #endif /* ENABLE_TEMP_THROTTLING */ #if defined(CUSTOM_AMPDU_MPDU) ampdu_mpdu = CUSTOM_AMPDU_MPDU; if (ampdu_mpdu != 0 && (ampdu_mpdu <= ampdu_ba_wsize)) { ret = dhd_iovar(dhd, 0, "ampdu_mpdu", (char *)&du_mpdu, sizeof(ampdu_mpdu), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s Set ampdu_mpdu to %d failed %d\n", __FUNCTION__, CUSTOM_AMPDU_MPDU, ret)); } } #endif /* CUSTOM_AMPDU_MPDU */ #if defined(CUSTOM_AMPDU_RELEASE) ampdu_release = CUSTOM_AMPDU_RELEASE; if (ampdu_release != 0 && (ampdu_release <= ampdu_ba_wsize)) { ret = dhd_iovar(dhd, 0, "ampdu_release", (char *)&du_release, sizeof(ampdu_release), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s Set ampdu_release to %d failed %d\n", __FUNCTION__, CUSTOM_AMPDU_RELEASE, ret)); } } #endif /* CUSTOM_AMPDU_RELEASE */ #if defined(CUSTOM_AMSDU_AGGSF) amsdu_aggsf = CUSTOM_AMSDU_AGGSF; if (amsdu_aggsf != 0) { ret = dhd_iovar(dhd, 0, "amsdu_aggsf", (char *)&amsdu_aggsf, sizeof(amsdu_aggsf), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s Set amsdu_aggsf to %d failed %d\n", __FUNCTION__, CUSTOM_AMSDU_AGGSF, ret)); } } #endif /* CUSTOM_AMSDU_AGGSF */ #if defined(SUPPORT_5G_1024QAM_VHT) #ifdef SUPPORT_5G_1024QAM_VHT if (dhd_get_chipid(dhd) == BCM4361_CHIP_ID) { vht_features |= 0x6; /* 5G 1024 QAM support */ } #endif /* SUPPORT_5G_1024QAM_VHT */ if (vht_features) { ret = dhd_iovar(dhd, 0, "vht_features", (char *)&vht_features, sizeof(vht_features), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s vht_features set failed %d\n", __FUNCTION__, ret)); if (ret == BCME_NOTDOWN) { uint wl_down = 1; ret = dhd_wl_ioctl_cmd(dhd, WLC_DOWN, (char *)&wl_down, sizeof(wl_down), TRUE, 0); DHD_ERROR(("%s vht_features fail WL_DOWN : %d," " vht_features = 0x%x\n", __FUNCTION__, ret, vht_features)); ret = dhd_iovar(dhd, 0, "vht_features", (char *)&vht_features, sizeof(vht_features), NULL, 0, TRUE); DHD_ERROR(("%s vht_features set. ret --> %d\n", __FUNCTION__, ret)); } } } #endif #ifdef DISABLE_11N_PROPRIETARY_RATES ret = dhd_iovar(dhd, 0, "ht_features", (char *)&ht_features, sizeof(ht_features), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s ht_features set failed %d\n", __FUNCTION__, ret)); } #endif /* DISABLE_11N_PROPRIETARY_RATES */ #ifdef CUSTOM_PSPRETEND_THR /* Turn off MPC in AP mode */ ret = dhd_iovar(dhd, 0, "pspretend_threshold", (char *)&pspretend_thr, sizeof(pspretend_thr), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s pspretend_threshold for HostAPD failed %d\n", __FUNCTION__, ret)); } #endif ret = dhd_iovar(dhd, 0, "buf_key_b4_m4", (char *)&buf_key_b4_m4, sizeof(buf_key_b4_m4), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s buf_key_b4_m4 set failed %d\n", __FUNCTION__, ret)); } #ifdef SUPPORT_SET_CAC bcm_mkiovar("cac", (char *)&cac, sizeof(cac), iovbuf, sizeof(iovbuf)); if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0)) < 0) { DHD_ERROR(("%s Failed to set cac to %d, %d\n", __FUNCTION__, cac, ret)); } #endif /* SUPPORT_SET_CAC */ #ifdef DHD_ULP /* Get the required details from dongle during preinit ioctl */ dhd_ulp_preinit(dhd); #endif /* DHD_ULP */ /* Read event_msgs mask */ ret = dhd_iovar(dhd, 0, "event_msgs", eventmask, WL_EVENTING_MASK_LEN, iovbuf, sizeof(iovbuf), FALSE); if (ret < 0) { DHD_ERROR(("%s read Event mask failed %d\n", __FUNCTION__, ret)); goto done; } bcopy(iovbuf, eventmask, WL_EVENTING_MASK_LEN); /* Setup event_msgs */ setbit(eventmask, WLC_E_SET_SSID); setbit(eventmask, WLC_E_PRUNE); setbit(eventmask, WLC_E_AUTH); setbit(eventmask, WLC_E_AUTH_IND); setbit(eventmask, WLC_E_ASSOC); setbit(eventmask, WLC_E_REASSOC); setbit(eventmask, WLC_E_REASSOC_IND); if (!(dhd->op_mode & DHD_FLAG_IBSS_MODE)) setbit(eventmask, WLC_E_DEAUTH); setbit(eventmask, WLC_E_DEAUTH_IND); setbit(eventmask, WLC_E_DISASSOC_IND); setbit(eventmask, WLC_E_DISASSOC); setbit(eventmask, WLC_E_JOIN); setbit(eventmask, WLC_E_BSSID); setbit(eventmask, WLC_E_START); setbit(eventmask, WLC_E_ASSOC_IND); #ifdef DHD_LOAD_CHIPALIVE setbit(eventmask, WLC_E_OVERLAY_REQ); #else setbit(eventmask, WLC_E_PSK_SUP); #endif setbit(eventmask, WLC_E_LINK); setbit(eventmask, WLC_E_MIC_ERROR); setbit(eventmask, WLC_E_ASSOC_REQ_IE); setbit(eventmask, WLC_E_ASSOC_RESP_IE); #ifdef LIMIT_BORROW setbit(eventmask, WLC_E_ALLOW_CREDIT_BORROW); #endif #ifndef WL_CFG80211 setbit(eventmask, WLC_E_PMKID_CACHE); // setbit(eventmask, WLC_E_TXFAIL); // terence 20181106: remove unnecessary event #endif setbit(eventmask, WLC_E_JOIN_START); // setbit(eventmask, WLC_E_SCAN_COMPLETE); // terence 20150628: remove redundant event #ifdef DHD_DEBUG setbit(eventmask, WLC_E_SCAN_CONFIRM_IND); #endif #ifdef WLMEDIA_HTSF setbit(eventmask, WLC_E_HTSFSYNC); #endif /* WLMEDIA_HTSF */ #ifdef PNO_SUPPORT setbit(eventmask, WLC_E_PFN_NET_FOUND); setbit(eventmask, WLC_E_PFN_BEST_BATCHING); setbit(eventmask, WLC_E_PFN_BSSID_NET_FOUND); setbit(eventmask, WLC_E_PFN_BSSID_NET_LOST); #endif /* PNO_SUPPORT */ /* enable dongle roaming event */ setbit(eventmask, WLC_E_ROAM); #ifdef WLTDLS setbit(eventmask, WLC_E_TDLS_PEER_EVENT); #endif /* WLTDLS */ #ifdef WL_ESCAN setbit(eventmask, WLC_E_ESCAN_RESULT); #endif /* WL_ESCAN */ #ifdef CSI_SUPPORT setbit(eventmask, WLC_E_CSI); #endif /* CSI_SUPPORT */ #ifdef RTT_SUPPORT setbit(eventmask, WLC_E_PROXD); #endif /* RTT_SUPPORT */ #ifdef WL_CFG80211 setbit(eventmask, WLC_E_ESCAN_RESULT); setbit(eventmask, WLC_E_AP_STARTED); setbit(eventmask, WLC_E_ACTION_FRAME_RX); if (dhd->op_mode & DHD_FLAG_P2P_MODE) { setbit(eventmask, WLC_E_P2P_DISC_LISTEN_COMPLETE); } #endif /* WL_CFG80211 */ #if defined(SHOW_LOGTRACE) && defined(LOGTRACE_FROM_FILE) if (dhd_logtrace_from_file(dhd)) { setbit(eventmask, WLC_E_TRACE); } else { clrbit(eventmask, WLC_E_TRACE); } #elif defined(SHOW_LOGTRACE) setbit(eventmask, WLC_E_TRACE); #else clrbit(eventmask, WLC_E_TRACE); #endif /* defined(SHOW_LOGTRACE) && defined(LOGTRACE_FROM_FILE) */ setbit(eventmask, WLC_E_CSA_COMPLETE_IND); #ifdef DHD_WMF setbit(eventmask, WLC_E_PSTA_PRIMARY_INTF_IND); #endif #ifdef CUSTOM_EVENT_PM_WAKE setbit(eventmask, WLC_E_EXCESS_PM_WAKE_EVENT); #endif /* CUSTOM_EVENT_PM_WAKE */ #ifdef DHD_LOSSLESS_ROAMING setbit(eventmask, WLC_E_ROAM_PREP); #endif #if defined(PCIE_FULL_DONGLE) && defined(DHD_LOSSLESS_ROAMING) dhd_update_flow_prio_map(dhd, DHD_FLOW_PRIO_LLR_MAP); #endif /* defined(PCIE_FULL_DONGLE) && defined(DHD_LOSSLESS_ROAMING) */ #if defined(BCMPCIE) && defined(EAPOL_PKT_PRIO) dhd_update_flow_prio_map(dhd, DHD_FLOW_PRIO_LLR_MAP); #endif /* defined(BCMPCIE) && defined(EAPOL_PKT_PRIO) */ /* Write updated Event mask */ ret = dhd_iovar(dhd, 0, "event_msgs", eventmask, WL_EVENTING_MASK_LEN, NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s Set Event mask failed %d\n", __FUNCTION__, ret)); goto done; } /* make up event mask ext message iovar for event larger than 128 */ msglen = ROUNDUP(WLC_E_LAST, NBBY)/NBBY + EVENTMSGS_EXT_STRUCT_SIZE; eventmask_msg = (eventmsgs_ext_t*)kmalloc(msglen, GFP_KERNEL); if (eventmask_msg == NULL) { DHD_ERROR(("failed to allocate %d bytes for event_msg_ext\n", msglen)); ret = BCME_NOMEM; goto done; } bzero(eventmask_msg, msglen); eventmask_msg->ver = EVENTMSGS_VER; eventmask_msg->len = ROUNDUP(WLC_E_LAST, NBBY)/NBBY; /* Read event_msgs_ext mask */ ret2 = dhd_iovar(dhd, 0, "event_msgs_ext", (char *)eventmask_msg, msglen, iov_buf, WLC_IOCTL_SMLEN, FALSE); if (ret2 == 0) { /* event_msgs_ext must be supported */ bcopy(iov_buf, eventmask_msg, msglen); #ifdef RSSI_MONITOR_SUPPORT setbit(eventmask_msg->mask, WLC_E_RSSI_LQM); #endif /* RSSI_MONITOR_SUPPORT */ #ifdef GSCAN_SUPPORT setbit(eventmask_msg->mask, WLC_E_PFN_GSCAN_FULL_RESULT); setbit(eventmask_msg->mask, WLC_E_PFN_SCAN_COMPLETE); setbit(eventmask_msg->mask, WLC_E_PFN_SSID_EXT); setbit(eventmask_msg->mask, WLC_E_ROAM_EXP_EVENT); #endif /* GSCAN_SUPPORT */ setbit(eventmask_msg->mask, WLC_E_RSSI_LQM); #ifdef BT_WIFI_HANDOVER setbit(eventmask_msg->mask, WLC_E_BT_WIFI_HANDOVER_REQ); #endif /* BT_WIFI_HANDOVER */ #ifdef DBG_PKT_MON setbit(eventmask_msg->mask, WLC_E_ROAM_PREP); #endif /* DBG_PKT_MON */ #ifdef DHD_ULP setbit(eventmask_msg->mask, WLC_E_ULP); #endif #ifdef ENABLE_TEMP_THROTTLING setbit(eventmask_msg->mask, WLC_E_TEMP_THROTTLE); #endif /* ENABLE_TEMP_THROTTLING */ #ifdef WL_CLIENT_SAE setbit(eventmask_msg->mask, WLC_E_JOIN_START); #endif /* WL_CLIENT_SAE */ /* Write updated Event mask */ eventmask_msg->ver = EVENTMSGS_VER; eventmask_msg->command = EVENTMSGS_SET_MASK; eventmask_msg->len = ROUNDUP(WLC_E_LAST, NBBY)/NBBY; ret = dhd_iovar(dhd, 0, "event_msgs_ext", (char *)eventmask_msg, msglen, NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s write event mask ext failed %d\n", __FUNCTION__, ret)); goto done; } } else if (ret2 == BCME_UNSUPPORTED || ret2 == BCME_VERSION) { /* Skip for BCME_UNSUPPORTED or BCME_VERSION */ DHD_ERROR(("%s event_msgs_ext not support or version mismatch %d\n", __FUNCTION__, ret2)); } else { DHD_ERROR(("%s read event mask ext failed %d\n", __FUNCTION__, ret2)); ret = ret2; goto done; } #if defined(DHD_8021X_DUMP) && defined(SHOW_LOGTRACE) /* Enabling event log trace for EAP events */ el_tag = (wl_el_tag_params_t *)kmalloc(sizeof(wl_el_tag_params_t), GFP_KERNEL); if (el_tag == NULL) { DHD_ERROR(("failed to allocate %d bytes for event_msg_ext\n", (int)sizeof(wl_el_tag_params_t))); ret = BCME_NOMEM; goto done; } el_tag->tag = EVENT_LOG_TAG_4WAYHANDSHAKE; el_tag->set = 1; el_tag->flags = EVENT_LOG_TAG_FLAG_LOG; bcm_mkiovar("event_log_tag_control", (char *)el_tag, sizeof(*el_tag), iovbuf, sizeof(iovbuf)); dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0); #endif /* DHD_8021X_DUMP */ dhd_wl_ioctl_cmd(dhd, WLC_SET_SCAN_CHANNEL_TIME, (char *)&scan_assoc_time, sizeof(scan_assoc_time), TRUE, 0); dhd_wl_ioctl_cmd(dhd, WLC_SET_SCAN_UNASSOC_TIME, (char *)&scan_unassoc_time, sizeof(scan_unassoc_time), TRUE, 0); dhd_wl_ioctl_cmd(dhd, WLC_SET_SCAN_PASSIVE_TIME, (char *)&scan_passive_time, sizeof(scan_passive_time), TRUE, 0); #ifdef ARP_OFFLOAD_SUPPORT /* Set and enable ARP offload feature for STA only */ #if defined(SOFTAP) if (arpoe && !ap_fw_loaded) #else if (arpoe) #endif { dhd_arp_offload_enable(dhd, TRUE); dhd_arp_offload_set(dhd, dhd_arp_mode); } else { dhd_arp_offload_enable(dhd, FALSE); dhd_arp_offload_set(dhd, 0); } dhd_arp_enable = arpoe; #endif /* ARP_OFFLOAD_SUPPORT */ #ifdef PKT_FILTER_SUPPORT /* Setup default defintions for pktfilter , enable in suspend */ if (dhd_master_mode) { dhd->pktfilter_count = 6; dhd->pktfilter[DHD_BROADCAST_FILTER_NUM] = NULL; if (!FW_SUPPORTED(dhd, pf6)) { dhd->pktfilter[DHD_MULTICAST4_FILTER_NUM] = NULL; dhd->pktfilter[DHD_MULTICAST6_FILTER_NUM] = NULL; } else { /* Immediately pkt filter TYPE 6 Discard IPv4/IPv6 Multicast Packet */ dhd->pktfilter[DHD_MULTICAST4_FILTER_NUM] = DISCARD_IPV4_MCAST; dhd->pktfilter[DHD_MULTICAST6_FILTER_NUM] = DISCARD_IPV6_MCAST; } /* apply APP pktfilter */ dhd->pktfilter[DHD_ARP_FILTER_NUM] = "105 0 0 12 0xFFFF 0x0806"; /* Setup filter to allow only unicast */ dhd->pktfilter[DHD_UNICAST_FILTER_NUM] = "100 0 0 0 0x01 0x00"; /* Add filter to pass multicastDNS packet and NOT filter out as Broadcast */ dhd->pktfilter[DHD_MDNS_FILTER_NUM] = NULL; dhd->pktfilter[DHD_BROADCAST_ARP_FILTER_NUM] = NULL; if (FW_SUPPORTED(dhd, pf6)) { /* Immediately pkt filter TYPE 6 Dicard Broadcast IP packet */ dhd->pktfilter[DHD_IP4BCAST_DROP_FILTER_NUM] = "107 1 6 IP4_H:16 0xf0 !0xe0 IP4_H:19 0xff 0xff"; dhd->pktfilter_count = 8; } #ifdef GAN_LITE_NAT_KEEPALIVE_FILTER dhd->pktfilter_count = 4; /* Setup filter to block broadcast and NAT Keepalive packets */ /* discard all broadcast packets */ dhd->pktfilter[DHD_UNICAST_FILTER_NUM] = "100 0 0 0 0xffffff 0xffffff"; /* discard NAT Keepalive packets */ dhd->pktfilter[DHD_BROADCAST_FILTER_NUM] = "102 0 0 36 0xffffffff 0x11940009"; /* discard NAT Keepalive packets */ dhd->pktfilter[DHD_MULTICAST4_FILTER_NUM] = "104 0 0 38 0xffffffff 0x11940009"; dhd->pktfilter[DHD_MULTICAST6_FILTER_NUM] = NULL; #endif /* GAN_LITE_NAT_KEEPALIVE_FILTER */ } else dhd_conf_discard_pkt_filter(dhd); dhd_conf_add_pkt_filter(dhd); #if defined(SOFTAP) if (ap_fw_loaded) { dhd_enable_packet_filter(0, dhd); } #endif /* defined(SOFTAP) */ dhd_set_packet_filter(dhd); #endif /* PKT_FILTER_SUPPORT */ #ifdef DISABLE_11N ret = dhd_iovar(dhd, 0, "nmode", (char *)&nmode, sizeof(nmode), NULL, 0, TRUE); if (ret < 0) DHD_ERROR(("%s wl nmode 0 failed %d\n", __FUNCTION__, ret)); #endif /* DISABLE_11N */ #ifdef ENABLE_BCN_LI_BCN_WAKEUP dhd_iovar(dhd, 0, "bcn_li_bcn", (char *)&bcn_li_bcn, sizeof(bcn_li_bcn), NULL, 0, TRUE); #endif /* ENABLE_BCN_LI_BCN_WAKEUP */ /* query for 'clmver' to get clm version info from firmware */ memset(buf, 0, sizeof(buf)); ret = dhd_iovar(dhd, 0, "clmver", NULL, 0, buf, sizeof(buf), FALSE); if (ret < 0) DHD_ERROR(("%s clmver failed %d\n", __FUNCTION__, ret)); else { char *ver_temp_buf = NULL, *ver_date_buf = NULL; int len; if ((ver_temp_buf = bcmstrstr(buf, "Data:")) == NULL) { DHD_ERROR(("Couldn't find \"Data:\"\n")); } else { ver_date_buf = bcmstrstr(buf, "Creation:"); ptr = (ver_temp_buf + strlen("Data:")); if ((ver_temp_buf = bcmstrtok(&ptr, "\n", 0)) == NULL) { DHD_ERROR(("Couldn't find New line character\n")); } else { memset(clm_version, 0, CLM_VER_STR_LEN); len = snprintf(clm_version, CLM_VER_STR_LEN - 1, "%s", ver_temp_buf); if (ver_date_buf) { ptr = (ver_date_buf + strlen("Creation:")); ver_date_buf = bcmstrtok(&ptr, "\n", 0); if (ver_date_buf) snprintf(clm_version+len, CLM_VER_STR_LEN-1-len, " (%s)", ver_date_buf); } DHD_INFO(("CLM version = %s\n", clm_version)); } } } /* query for 'ver' to get version info from firmware */ memset(buf, 0, sizeof(buf)); ptr = buf; ret = dhd_iovar(dhd, 0, "ver", NULL, 0, (char *)&buf, sizeof(buf), FALSE); if (ret < 0) DHD_ERROR(("%s failed %d\n", __FUNCTION__, ret)); else { bcmstrtok(&ptr, "\n", 0); strncpy(fw_version, buf, FW_VER_STR_LEN); fw_version[FW_VER_STR_LEN-1] = '\0'; dhd_set_version_info(dhd, buf); #ifdef WRITE_WLANINFO sec_save_wlinfo(buf, EPI_VERSION_STR, dhd->info->nv_path, clm_version); #endif /* WRITE_WLANINFO */ } #ifdef GEN_SOFTAP_INFO_FILE sec_save_softap_info(); #endif /* GEN_SOFTAP_INFO_FILE */ #if defined(BCMSDIO) dhd_txglom_enable(dhd, dhd->conf->bus_rxglom); #endif /* defined(BCMSDIO) */ #if defined(BCMSDIO) || defined(BCMDBUS) #ifdef PROP_TXSTATUS if (disable_proptx || #ifdef PROP_TXSTATUS_VSDB /* enable WLFC only if the firmware is VSDB when it is in STA mode */ (dhd->op_mode != DHD_FLAG_HOSTAP_MODE && dhd->op_mode != DHD_FLAG_IBSS_MODE) || #endif /* PROP_TXSTATUS_VSDB */ FALSE) { wlfc_enable = FALSE; } ret = dhd_conf_get_disable_proptx(dhd); if (ret == 0){ disable_proptx = 0; wlfc_enable = TRUE; } else if (ret >= 1) { disable_proptx = 1; wlfc_enable = FALSE; /* terence 20161229: we should set ampdu_hostreorder=0 when disable_proptx=1 */ hostreorder = 0; } #if defined(PROP_TXSTATUS) #ifdef USE_WFA_CERT_CONF if (sec_get_param_wfa_cert(dhd, SET_PARAM_PROPTX, &proptx) == BCME_OK) { DHD_ERROR(("%s , read proptx param=%d\n", __FUNCTION__, proptx)); wlfc_enable = proptx; } #endif /* USE_WFA_CERT_CONF */ #endif /* PROP_TXSTATUS */ #ifndef DISABLE_11N ret = dhd_wl_ioctl_cmd(dhd, WLC_DOWN, (char *)&wl_down, sizeof(wl_down), TRUE, 0); ret2 = dhd_iovar(dhd, 0, "ampdu_hostreorder", (char *)&hostreorder, sizeof(hostreorder), NULL, 0, TRUE); if (ret2 < 0) { DHD_ERROR(("%s wl ampdu_hostreorder failed %d\n", __FUNCTION__, ret2)); if (ret2 != BCME_UNSUPPORTED) ret = ret2; if (ret == BCME_NOTDOWN) { uint wl_down = 1; ret2 = dhd_wl_ioctl_cmd(dhd, WLC_DOWN, (char *)&wl_down, sizeof(wl_down), TRUE, 0); DHD_ERROR(("%s ampdu_hostreorder fail WL_DOWN : %d, hostreorder :%d\n", __FUNCTION__, ret2, hostreorder)); ret2 = dhd_iovar(dhd, 0, "ampdu_hostreorder", (char *)&hostreorder, sizeof(hostreorder), NULL, 0, TRUE); DHD_ERROR(("%s wl ampdu_hostreorder. ret --> %d\n", __FUNCTION__, ret2)); if (ret2 != BCME_UNSUPPORTED) ret = ret2; } if (ret2 != BCME_OK) hostreorder = 0; } #endif /* DISABLE_11N */ if (wlfc_enable) { dhd_wlfc_init(dhd); /* terence 20161229: enable ampdu_hostreorder if tlv enabled */ dhd_conf_set_intiovar(dhd, WLC_SET_VAR, "ampdu_hostreorder", 1, 0, TRUE); } #ifndef DISABLE_11N else if (hostreorder) dhd_wlfc_hostreorder_init(dhd); #endif /* DISABLE_11N */ #else /* terence 20161229: disable ampdu_hostreorder if PROP_TXSTATUS not defined */ DHD_PRINT("%s: not define PROP_TXSTATUS\n", __FUNCTION__); dhd_conf_set_intiovar(dhd, WLC_SET_VAR, "ampdu_hostreorder", 0, 0, TRUE); #endif /* PROP_TXSTATUS */ #endif /* BCMSDIO || BCMDBUS */ #ifndef PCIE_FULL_DONGLE /* For FD we need all the packets at DHD to handle intra-BSS forwarding */ if (FW_SUPPORTED(dhd, ap)) { wl_ap_isolate = AP_ISOLATE_SENDUP_ALL; ret = dhd_iovar(dhd, 0, "ap_isolate", (char *)&wl_ap_isolate, sizeof(wl_ap_isolate), NULL, 0, TRUE); if (ret < 0) DHD_ERROR(("%s failed %d\n", __FUNCTION__, ret)); } #endif /* PCIE_FULL_DONGLE */ #ifdef PNO_SUPPORT if (!dhd->pno_state) { dhd_pno_init(dhd); } #endif #ifdef RTT_SUPPORT if (!dhd->rtt_state) { ret = dhd_rtt_init(dhd); if (ret < 0) { DHD_ERROR(("%s failed to initialize RTT\n", __FUNCTION__)); } } #endif #ifdef WL11U dhd_interworking_enable(dhd); #endif /* WL11U */ #ifdef SUPPORT_SENSORHUB DHD_ERROR(("%s: SensorHub enabled %d\n", __FUNCTION__, dhd->info->shub_enable)); ret2 = dhd_iovar(dhd, 0, "shub", NULL, 0, (char *)&shub_ctl, sizeof(shub_ctl), FALSE); if (ret2 < 0) { DHD_ERROR(("%s failed to get shub hub enable information %d\n", __FUNCTION__, ret2)); dhd->info->shub_enable = 0; } else { dhd->info->shub_enable = shub_ctl.enable; DHD_ERROR(("%s: checking sensorhub enable %d\n", __FUNCTION__, dhd->info->shub_enable)); } #else DHD_ERROR(("%s: SensorHub diabled %d\n", __FUNCTION__, dhd->info->shub_enable)); dhd->info->shub_enable = FALSE; shub_ctl.enable = FALSE; ret2 = dhd_iovar(dhd, 0, "shub", (char *)&shub_ctl, sizeof(shub_ctl), NULL, 0, TRUE); if (ret2 < 0) { DHD_ERROR(("%s failed to set ShubHub disable\n", __FUNCTION__)); } #endif /* SUPPORT_SENSORHUB */ #ifdef NDO_CONFIG_SUPPORT dhd->ndo_enable = FALSE; dhd->ndo_host_ip_overflow = FALSE; dhd->ndo_max_host_ip = NDO_MAX_HOST_IP_ENTRIES; #endif /* NDO_CONFIG_SUPPORT */ /* ND offload version supported */ dhd->ndo_version = dhd_ndo_get_version(dhd); if (dhd->ndo_version > 0) { DHD_INFO(("%s: ndo version %d\n", __FUNCTION__, dhd->ndo_version)); #ifdef NDO_CONFIG_SUPPORT /* enable Unsolicited NA filter */ ret = dhd_ndo_unsolicited_na_filter_enable(dhd, 1); if (ret < 0) { DHD_ERROR(("%s failed to enable Unsolicited NA filter\n", __FUNCTION__)); } #endif /* NDO_CONFIG_SUPPORT */ } /* check dongle supports wbtext or not */ dhd->wbtext_support = FALSE; if (dhd_wl_ioctl_get_intiovar(dhd, "wnm_bsstrans_resp", &wnm_bsstrans_resp, WLC_GET_VAR, FALSE, 0) != BCME_OK) { DHD_ERROR(("failed to get wnm_bsstrans_resp\n")); } if (wnm_bsstrans_resp == WL_BSSTRANS_POLICY_PRODUCT_WBTEXT) { dhd->wbtext_support = TRUE; } #ifndef WBTEXT /* driver can turn off wbtext feature through makefile */ if (dhd->wbtext_support) { if (dhd_wl_ioctl_set_intiovar(dhd, "wnm_bsstrans_resp", WL_BSSTRANS_POLICY_ROAM_ALWAYS, WLC_SET_VAR, FALSE, 0) != BCME_OK) { DHD_ERROR(("failed to disable WBTEXT\n")); } } #endif /* !WBTEXT */ /* WNM capabilities */ wnm_cap = 0 #ifdef WL11U | WL_WNM_BSSTRANS | WL_WNM_NOTIF #endif #ifdef WBTEXT | WL_WNM_BSSTRANS | WL_WNM_MAXIDLE #endif ; if (dhd_iovar(dhd, 0, "wnm", (char *)&wnm_cap, sizeof(wnm_cap), NULL, 0, TRUE) < 0) { DHD_ERROR(("failed to set WNM capabilities\n")); } dhd_conf_postinit_ioctls(dhd); done: if (eventmask_msg) kfree(eventmask_msg); if (iov_buf) kfree(iov_buf); #if defined(DHD_8021X_DUMP) && defined(SHOW_LOGTRACE) if (el_tag) kfree(el_tag); #endif /* DHD_8021X_DUMP */ return ret; } #ifdef DHD_LOAD_CHIPALIVE void dhd_alive_preinit(dhd_pub_t *dhd) { /* We should set bus_rxglom first, so DON'T set/get any fw cmd in this function, */ DHD_TRACE(("Enter %s\n", __FUNCTION__)); #ifdef WL_EXT_IAPSTA if (op_mode == 0) { wl_ext_iapsta_alive_preinit(dhd->info->iflist[0]->net); } #endif dhd_txglom_enable_host(dhd, dhd->conf->bus_rxglom); } void dhd_alive_postinit(dhd_pub_t *dhd) { int ret = 0, ret2 = 0; char buf[WLC_IOCTL_SMLEN]; char *ptr; #ifdef WLTDLS uint32 tdls; #endif /* WLTDLS */ #if defined(ARP_OFFLOAD_SUPPORT) int arpoe = 0; uint32 version; #endif shub_control_t shub_ctl; uint wnm_bsstrans_resp = 0; /* Don't change any fw setting here, only get fw seettings to sync for host side */ DHD_TRACE(("Enter %s\n", __FUNCTION__)); if (op_mode == 0) { #ifdef WL_EXT_IAPSTA op_mode = wl_ext_iapsta_alive_postinit(dhd->info->iflist[0]->net); #else op_mode = DHD_FLAG_STA_MODE; #endif } DHD_PRINT("%s: set op_mode %d\n", __FUNCTION__, op_mode); dhd->op_mode = op_mode; if (dhd->op_mode == DHD_FLAG_MFG_MODE) { /* Check and adjust IOCTL response timeout for Manufactring firmware */ dhd_os_set_ioctl_resp_timeout(MFG_IOCTL_RESP_TIMEOUT); DHD_ERROR(("%s : Set IOCTL response time for Manufactring Firmware\n", __FUNCTION__)); } else { dhd_os_set_ioctl_resp_timeout(IOCTL_RESP_TIMEOUT); DHD_INFO(("%s : Set IOCTL response time.\n", __FUNCTION__)); } dhd->suspend_bcn_li_dtim = CUSTOM_SUSPEND_BCN_LI_DTIM; #ifdef DHDTCPACK_SUPPRESS DHD_PRINT("%s: Set tcpack_sup_mode %d\n", __FUNCTION__, dhd->conf->tcpack_sup_mode); dhd_tcpack_suppress_set(dhd, dhd->conf->tcpack_sup_mode); #endif if (dhd->op_mode == DHD_FLAG_HOSTAP_MODE) { #ifdef PKT_FILTER_SUPPORT if (dhd_conf_get_insuspend(dhd, AP_FILTER_IN_SUSPEND)) dhd_pkt_filter_enable = TRUE; else dhd_pkt_filter_enable = FALSE; #endif } #ifdef ARP_OFFLOAD_SUPPORT dhd_conf_get_iovar(dhd, 0, WLC_GET_VAR, "arpoe", (char *)&arpoe, sizeof(arpoe)); if (arpoe) { ret = dhd_conf_get_iovar(dhd, 0, WLC_GET_VAR, "arp_version", (char *)&version, sizeof(version)); if (ret) { dhd->arp_version = 1; } else { DHD_INFO(("%s: ARP Version= %x\n", __FUNCTION__, version)); dhd->arp_version = version; } } dhd_arp_enable = arpoe; #endif /* ARP_OFFLOAD_SUPPORT */ /* Get the default device MAC address directly from firmware */ dhd_conf_get_iovar(dhd, 0, WLC_GET_VAR, "cur_etheraddr", (char *)dhd->mac.octet, ETHER_ADDR_LEN); /* get a capabilities from firmware */ { uint32 cap_buf_size = sizeof(dhd->fw_capabilities); memset(dhd->fw_capabilities, 0, cap_buf_size); ret = dhd_iovar(dhd, 0, "cap", NULL, 0, dhd->fw_capabilities, (cap_buf_size - 1), FALSE); if (ret < 0) { DHD_ERROR(("%s: Get Capability failed (error=%d)\n", __FUNCTION__, ret)); } else { memmove(&dhd->fw_capabilities[1], dhd->fw_capabilities, (cap_buf_size - 1)); dhd->fw_capabilities[0] = ' '; dhd->fw_capabilities[cap_buf_size - 2] = ' '; dhd->fw_capabilities[cap_buf_size - 1] = '\0'; } } dhd_conf_get_country(dhd, &dhd->dhd_cspec); #ifdef WLTDLS if (FW_SUPPORTED(dhd, tdls)) { ret= dhd_conf_get_iovar(dhd, 0, WLC_GET_VAR, "tdls_enable", (char *)&tdls, sizeof(tdls)); if (ret) dhd->tdls_enable = FALSE; else dhd->tdls_enable = TRUE; } #endif /* WLTDLS */ #ifdef PKT_FILTER_SUPPORT /* Setup default defintions for pktfilter , enable in suspend */ if (dhd_master_mode) { dhd->pktfilter_count = 6; dhd->pktfilter[DHD_BROADCAST_FILTER_NUM] = NULL; if (!FW_SUPPORTED(dhd, pf6)) { dhd->pktfilter[DHD_MULTICAST4_FILTER_NUM] = NULL; dhd->pktfilter[DHD_MULTICAST6_FILTER_NUM] = NULL; } else { /* Immediately pkt filter TYPE 6 Discard IPv4/IPv6 Multicast Packet */ dhd->pktfilter[DHD_MULTICAST4_FILTER_NUM] = DISCARD_IPV4_MCAST; dhd->pktfilter[DHD_MULTICAST6_FILTER_NUM] = DISCARD_IPV6_MCAST; } /* apply APP pktfilter */ dhd->pktfilter[DHD_ARP_FILTER_NUM] = "105 0 0 12 0xFFFF 0x0806"; /* Setup filter to allow only unicast */ dhd->pktfilter[DHD_UNICAST_FILTER_NUM] = "100 0 0 0 0x01 0x00"; /* Add filter to pass multicastDNS packet and NOT filter out as Broadcast */ dhd->pktfilter[DHD_MDNS_FILTER_NUM] = NULL; dhd->pktfilter[DHD_BROADCAST_ARP_FILTER_NUM] = NULL; if (FW_SUPPORTED(dhd, pf6)) { /* Immediately pkt filter TYPE 6 Dicard Broadcast IP packet */ dhd->pktfilter[DHD_IP4BCAST_DROP_FILTER_NUM] = "107 1 6 IP4_H:16 0xf0 !0xe0 IP4_H:19 0xff 0xff"; dhd->pktfilter_count = 8; } #ifdef GAN_LITE_NAT_KEEPALIVE_FILTER dhd->pktfilter_count = 4; /* Setup filter to block broadcast and NAT Keepalive packets */ /* discard all broadcast packets */ dhd->pktfilter[DHD_UNICAST_FILTER_NUM] = "100 0 0 0 0xffffff 0xffffff"; /* discard NAT Keepalive packets */ dhd->pktfilter[DHD_BROADCAST_FILTER_NUM] = "102 0 0 36 0xffffffff 0x11940009"; /* discard NAT Keepalive packets */ dhd->pktfilter[DHD_MULTICAST4_FILTER_NUM] = "104 0 0 38 0xffffffff 0x11940009"; dhd->pktfilter[DHD_MULTICAST6_FILTER_NUM] = NULL; #endif /* GAN_LITE_NAT_KEEPALIVE_FILTER */ } else dhd_conf_discard_pkt_filter(dhd); dhd_conf_add_pkt_filter(dhd); #endif /* PKT_FILTER_SUPPORT */ /* query for 'ver' to get version info from firmware */ memset(buf, 0, sizeof(buf)); ptr = buf; dhd_conf_get_iovar(dhd, 0, WLC_GET_VAR, "ver", (char *)buf, sizeof(buf)); if (!ret) { bcmstrtok(&ptr, "\n", 0); /* Print fw version info */ dhd_set_version_info(dhd, buf); } #ifdef PROP_TXSTATUS /* 1. In AP mode, we have to issue "dhd -i wlan0 proptx 0" before host shut down * to avoid MAC_OPEN/MAC_CLOSE from fw when there is client in the "wl assoclist". * So we have to enable proptxstatus again when we back from chip alive. * 2. Otherwise, call dhd_chipalive_wlfc_init to check fw have init wlfc already or not, * if initialized, issue proptx_credit_map to trigger WLC_E_FIFO_CREDIT_MAP * and WLC_E_BCMC_CREDIT_SUPPORT to sync for dhd driver. */ if (op_mode & DHD_FLAG_HOSTAP_MODE && dhd->conf->disable_proptx!=1) { dhd_wlfc_init(dhd); } else { ret = dhd_chipalive_wlfc_init(dhd); if (!ret) { dhd_conf_get_iovar(dhd, 0, WLC_GET_VAR, "proptx_credit_map", (char *)buf, sizeof(buf)); } } #endif #ifdef PNO_SUPPORT if (!dhd->pno_state) { dhd_pno_init(dhd); } #endif #ifdef RTT_SUPPORT if (!dhd->rtt_state) { ret = dhd_rtt_init(dhd); if (ret < 0) { DHD_ERROR(("%s failed to initialize RTT\n", __FUNCTION__)); } } #endif #ifdef SUPPORT_SENSORHUB DHD_ERROR(("%s: SensorHub enabled %d\n", __FUNCTION__, dhd->info->shub_enable)); ret2 = dhd_iovar(dhd, 0, "shub", NULL, 0, (char *)&shub_ctl, sizeof(shub_ctl), FALSE); if (ret2 < 0) { DHD_ERROR(("%s failed to get shub hub enable information %d\n", __FUNCTION__, ret2)); dhd->info->shub_enable = 0; } else { dhd->info->shub_enable = shub_ctl.enable; DHD_ERROR(("%s: checking sensorhub enable %d\n", __FUNCTION__, dhd->info->shub_enable)); } #else DHD_PRINT("%s: SensorHub diabled %d\n", __FUNCTION__, dhd->info->shub_enable); dhd->info->shub_enable = FALSE; shub_ctl.enable = FALSE; ret2 = dhd_iovar(dhd, 0, "shub", (char *)&shub_ctl, sizeof(shub_ctl), NULL, 0, TRUE); if (ret2 < 0) { DHD_PRINT("%s failed to set ShubHub disable\n", __FUNCTION__); } #endif /* SUPPORT_SENSORHUB */ #ifdef NDO_CONFIG_SUPPORT dhd->ndo_enable = FALSE; dhd->ndo_host_ip_overflow = FALSE; dhd->ndo_max_host_ip = NDO_MAX_HOST_IP_ENTRIES; #endif /* NDO_CONFIG_SUPPORT */ /* ND offload version supported */ dhd->ndo_version = dhd_ndo_get_version(dhd); if (dhd->ndo_version > 0) { DHD_INFO(("%s: ndo version %d\n", __FUNCTION__, dhd->ndo_version)); #ifdef NDO_CONFIG_SUPPORT /* enable Unsolicited NA filter */ ret = dhd_ndo_unsolicited_na_filter_enable(dhd, 1); if (ret < 0) { DHD_ERROR(("%s failed to enable Unsolicited NA filter\n", __FUNCTION__)); } #endif /* NDO_CONFIG_SUPPORT */ } /* check dongle supports wbtext or not */ dhd->wbtext_support = FALSE; if (dhd_wl_ioctl_get_intiovar(dhd, "wnm_bsstrans_resp", &wnm_bsstrans_resp, WLC_GET_VAR, FALSE, 0) != BCME_OK) { DHD_ERROR(("failed to get wnm_bsstrans_resp\n")); } if (wnm_bsstrans_resp == WL_BSSTRANS_POLICY_PRODUCT_WBTEXT) { dhd->wbtext_support = TRUE; } } #endif int dhd_iovar(dhd_pub_t *pub, int ifidx, char *name, char *param_buf, uint param_len, char *res_buf, uint res_len, int set) { char *buf = NULL; int input_len; wl_ioctl_t ioc; int ret; if (res_len > WLC_IOCTL_MAXLEN || param_len > WLC_IOCTL_MAXLEN) return BCME_BADARG; input_len = strlen(name) + 1 + param_len; if (input_len > WLC_IOCTL_MAXLEN) return BCME_BADARG; buf = NULL; if (set) { if (res_buf || res_len != 0) { DHD_ERROR(("%s: SET wrong arguemnet\n", __FUNCTION__)); ret = BCME_BADARG; goto exit; } buf = kzalloc(input_len, GFP_KERNEL); if (!buf) { DHD_ERROR(("%s: mem alloc failed\n", __FUNCTION__)); ret = BCME_NOMEM; goto exit; } ret = bcm_mkiovar(name, param_buf, param_len, buf, input_len); if (!ret) { ret = BCME_NOMEM; goto exit; } ioc.cmd = WLC_SET_VAR; ioc.buf = buf; ioc.len = input_len; ioc.set = set; ret = dhd_wl_ioctl(pub, ifidx, &ioc, ioc.buf, ioc.len); } else { if (!res_buf || !res_len) { DHD_ERROR(("%s: GET failed. resp_buf NULL or length 0.\n", __FUNCTION__)); ret = BCME_BADARG; goto exit; } if (res_len < input_len) { DHD_INFO(("%s: res_len(%d) < input_len(%d)\n", __FUNCTION__, res_len, input_len)); buf = kzalloc(input_len, GFP_KERNEL); if (!buf) { DHD_ERROR(("%s: mem alloc failed\n", __FUNCTION__)); ret = BCME_NOMEM; goto exit; } ret = bcm_mkiovar(name, param_buf, param_len, buf, input_len); if (!ret) { ret = BCME_NOMEM; goto exit; } ioc.cmd = WLC_GET_VAR; ioc.buf = buf; ioc.len = input_len; ioc.set = set; ret = dhd_wl_ioctl(pub, ifidx, &ioc, ioc.buf, ioc.len); if (ret == BCME_OK) { memcpy(res_buf, buf, res_len); } } else { memset(res_buf, 0, res_len); ret = bcm_mkiovar(name, param_buf, param_len, res_buf, res_len); if (!ret) { ret = BCME_NOMEM; goto exit; } ioc.cmd = WLC_GET_VAR; ioc.buf = res_buf; ioc.len = res_len; ioc.set = set; ret = dhd_wl_ioctl(pub, ifidx, &ioc, ioc.buf, ioc.len); } } exit: kfree(buf); return ret; } int dhd_getiovar(dhd_pub_t *pub, int ifidx, char *name, char *cmd_buf, uint cmd_len, char **resptr, uint resp_len) { int len = resp_len; int ret; char *buf = *resptr; wl_ioctl_t ioc; if (resp_len > WLC_IOCTL_MAXLEN) return BCME_BADARG; memset(buf, 0, resp_len); ret = bcm_mkiovar(name, cmd_buf, cmd_len, buf, len); if (ret == 0) { return BCME_BUFTOOSHORT; } memset(&ioc, 0, sizeof(ioc)); ioc.cmd = WLC_GET_VAR; ioc.buf = buf; ioc.len = len; ioc.set = 0; ret = dhd_wl_ioctl(pub, ifidx, &ioc, ioc.buf, ioc.len); return ret; } int dhd_change_mtu(dhd_pub_t *dhdp, int new_mtu, int ifidx) { struct dhd_info *dhd = dhdp->info; struct net_device *dev = NULL; ASSERT(dhd && dhd->iflist[ifidx]); dev = dhd->iflist[ifidx]->net; ASSERT(dev); if (netif_running(dev)) { DHD_ERROR(("%s: Must be down to change its MTU\n", dev->name)); return BCME_NOTDOWN; } #define DHD_MIN_MTU 1500 #define DHD_MAX_MTU 1752 if ((new_mtu < DHD_MIN_MTU) || (new_mtu > DHD_MAX_MTU)) { DHD_ERROR(("%s: MTU size %d is invalid.\n", __FUNCTION__, new_mtu)); return BCME_BADARG; } dev->mtu = new_mtu; return 0; } #ifdef ARP_OFFLOAD_SUPPORT /* add or remove AOE host ip(s) (up to 8 IPs on the interface) */ void aoe_update_host_ipv4_table(dhd_pub_t *dhd_pub, u32 ipa, bool add, int idx) { u32 ipv4_buf[MAX_IPV4_ENTRIES]; /* temp save for AOE host_ip table */ int i; int ret; bzero(ipv4_buf, sizeof(ipv4_buf)); /* display what we've got */ ret = dhd_arp_get_arp_hostip_table(dhd_pub, ipv4_buf, sizeof(ipv4_buf), idx); DHD_ARPOE(("%s: hostip table read from Dongle:\n", __FUNCTION__)); #ifdef AOE_DBG dhd_print_buf(ipv4_buf, 32, 4); /* max 8 IPs 4b each */ #endif /* now we saved hoste_ip table, clr it in the dongle AOE */ dhd_aoe_hostip_clr(dhd_pub, idx); if (ret) { DHD_ERROR(("%s failed\n", __FUNCTION__)); return; } for (i = 0; i < MAX_IPV4_ENTRIES; i++) { if (add && (ipv4_buf[i] == 0)) { ipv4_buf[i] = ipa; add = FALSE; /* added ipa to local table */ DHD_ARPOE(("%s: Saved new IP in temp arp_hostip[%d]\n", __FUNCTION__, i)); } else if (ipv4_buf[i] == ipa) { ipv4_buf[i] = 0; DHD_ARPOE(("%s: removed IP:%x from temp table %d\n", __FUNCTION__, ipa, i)); } if (ipv4_buf[i] != 0) { /* add back host_ip entries from our local cache */ dhd_arp_offload_add_ip(dhd_pub, ipv4_buf[i], idx); DHD_ARPOE(("%s: added IP:%x to dongle arp_hostip[%d]\n\n", __FUNCTION__, ipv4_buf[i], i)); } } #ifdef AOE_DBG /* see the resulting hostip table */ dhd_arp_get_arp_hostip_table(dhd_pub, ipv4_buf, sizeof(ipv4_buf), idx); DHD_ARPOE(("%s: read back arp_hostip table:\n", __FUNCTION__)); dhd_print_buf(ipv4_buf, 32, 4); /* max 8 IPs 4b each */ #endif } /* * Notification mechanism from kernel to our driver. This function is called by the Linux kernel * whenever there is an event related to an IP address. * ptr : kernel provided pointer to IP address that has changed */ static int dhd_inetaddr_notifier_call(struct notifier_block *this, unsigned long event, void *ptr) { struct in_ifaddr *ifa = (struct in_ifaddr *)ptr; dhd_info_t *dhd; dhd_pub_t *dhd_pub; int idx; if (!dhd_arp_enable) return NOTIFY_DONE; if (!ifa || !(ifa->ifa_dev->dev)) return NOTIFY_DONE; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 31)) /* Filter notifications meant for non Broadcom devices */ if ((ifa->ifa_dev->dev->netdev_ops != &dhd_ops_pri) && (ifa->ifa_dev->dev->netdev_ops != &dhd_ops_virt)) { #if defined(WL_ENABLE_P2P_IF) if (!wl_cfgp2p_is_ifops(ifa->ifa_dev->dev->netdev_ops)) #endif /* WL_ENABLE_P2P_IF */ return NOTIFY_DONE; } #endif /* LINUX_VERSION_CODE */ dhd = DHD_DEV_INFO(ifa->ifa_dev->dev); if (!dhd) return NOTIFY_DONE; dhd_pub = &dhd->pub; if (dhd_pub->arp_version == 1) { idx = 0; } else { for (idx = 0; idx < DHD_MAX_IFS; idx++) { if (dhd->iflist[idx] && dhd->iflist[idx]->net == ifa->ifa_dev->dev) break; } if (idx < DHD_MAX_IFS) DHD_TRACE(("ifidx : %p %s %d\n", dhd->iflist[idx]->net, dhd->iflist[idx]->name, dhd->iflist[idx]->idx)); else { DHD_ERROR(("Cannot find ifidx for(%s) set to 0\n", ifa->ifa_label)); idx = 0; } } switch (event) { case NETDEV_UP: DHD_ARPOE(("%s: [%s] Up IP: 0x%x\n", __FUNCTION__, ifa->ifa_label, ifa->ifa_address)); if (dhd->pub.busstate != DHD_BUS_DATA) { DHD_ERROR(("%s: bus not ready, exit\n", __FUNCTION__)); if (dhd->pend_ipaddr) { DHD_ERROR(("%s: overwrite pending ipaddr: 0x%x\n", __FUNCTION__, dhd->pend_ipaddr)); } dhd->pend_ipaddr = ifa->ifa_address; break; } #ifdef AOE_IP_ALIAS_SUPPORT DHD_ARPOE(("%s:add aliased IP to AOE hostip cache\n", __FUNCTION__)); aoe_update_host_ipv4_table(dhd_pub, ifa->ifa_address, TRUE, idx); #endif /* AOE_IP_ALIAS_SUPPORT */ dhd_conf_set_garp(dhd_pub, idx, ifa->ifa_address, TRUE); break; case NETDEV_DOWN: DHD_ARPOE(("%s: [%s] Down IP: 0x%x\n", __FUNCTION__, ifa->ifa_label, ifa->ifa_address)); dhd->pend_ipaddr = 0; #ifdef AOE_IP_ALIAS_SUPPORT DHD_ARPOE(("%s:interface is down, AOE clr all for this if\n", __FUNCTION__)); if ((dhd_pub->op_mode & DHD_FLAG_HOSTAP_MODE) || (ifa->ifa_dev->dev != dhd_linux_get_primary_netdev(dhd_pub))) { aoe_update_host_ipv4_table(dhd_pub, ifa->ifa_address, FALSE, idx); } else #endif /* AOE_IP_ALIAS_SUPPORT */ { dhd_aoe_hostip_clr(&dhd->pub, idx); dhd_aoe_arp_clr(&dhd->pub, idx); } dhd_conf_set_garp(dhd_pub, idx, ifa->ifa_address, FALSE); break; default: DHD_ARPOE(("%s: do noting for [%s] Event: %lu\n", __func__, ifa->ifa_label, event)); break; } return NOTIFY_DONE; } #endif /* ARP_OFFLOAD_SUPPORT */ #if defined(CONFIG_IPV6) && defined(IPV6_NDO_SUPPORT) /* Neighbor Discovery Offload: defered handler */ static void dhd_inet6_work_handler(void *dhd_info, void *event_data, u8 event) { struct ipv6_work_info_t *ndo_work = (struct ipv6_work_info_t *)event_data; dhd_info_t *dhd = (dhd_info_t *)dhd_info; dhd_pub_t *dhdp; int ret; if (!dhd) { DHD_ERROR(("%s: invalid dhd_info\n", __FUNCTION__)); goto done; } dhdp = &dhd->pub; if (event != DHD_WQ_WORK_IPV6_NDO) { DHD_ERROR(("%s: unexpected event\n", __FUNCTION__)); goto done; } if (!ndo_work) { DHD_ERROR(("%s: ipv6 work info is not initialized\n", __FUNCTION__)); return; } switch (ndo_work->event) { case NETDEV_UP: #ifndef NDO_CONFIG_SUPPORT DHD_TRACE(("%s: Enable NDO \n ", __FUNCTION__)); ret = dhd_ndo_enable(dhdp, TRUE); if (ret < 0) { DHD_ERROR(("%s: Enabling NDO Failed %d\n", __FUNCTION__, ret)); } #endif /* !NDO_CONFIG_SUPPORT */ DHD_TRACE(("%s: Add a host ip for NDO\n", __FUNCTION__)); if (dhdp->ndo_version > 0) { /* inet6 addr notifier called only for unicast address */ ret = dhd_ndo_add_ip_with_type(dhdp, &ndo_work->ipv6_addr[0], WL_ND_IPV6_ADDR_TYPE_UNICAST, ndo_work->if_idx); } else { ret = dhd_ndo_add_ip(dhdp, &ndo_work->ipv6_addr[0], ndo_work->if_idx); } if (ret < 0) { DHD_ERROR(("%s: Adding a host ip for NDO failed %d\n", __FUNCTION__, ret)); } break; case NETDEV_DOWN: if (dhdp->ndo_version > 0) { DHD_TRACE(("%s: Remove a host ip for NDO\n", __FUNCTION__)); ret = dhd_ndo_remove_ip_by_addr(dhdp, &ndo_work->ipv6_addr[0], ndo_work->if_idx); } else { DHD_TRACE(("%s: Clear host ip table for NDO \n", __FUNCTION__)); ret = dhd_ndo_remove_ip(dhdp, ndo_work->if_idx); } if (ret < 0) { DHD_ERROR(("%s: Removing host ip for NDO failed %d\n", __FUNCTION__, ret)); goto done; } #ifdef NDO_CONFIG_SUPPORT if (dhdp->ndo_host_ip_overflow) { ret = dhd_dev_ndo_update_inet6addr( dhd_idx2net(dhdp, ndo_work->if_idx)); if ((ret < 0) && (ret != BCME_NORESOURCE)) { DHD_ERROR(("%s: Updating host ip for NDO failed %d\n", __FUNCTION__, ret)); goto done; } } #else /* !NDO_CONFIG_SUPPORT */ DHD_TRACE(("%s: Disable NDO\n ", __FUNCTION__)); ret = dhd_ndo_enable(dhdp, FALSE); if (ret < 0) { DHD_ERROR(("%s: disabling NDO Failed %d\n", __FUNCTION__, ret)); goto done; } #endif /* NDO_CONFIG_SUPPORT */ break; default: DHD_ERROR(("%s: unknown notifier event \n", __FUNCTION__)); break; } done: /* free ndo_work. alloced while scheduling the work */ if (ndo_work) { kfree(ndo_work); } return; } /* * Neighbor Discovery Offload: Called when an interface * is assigned with ipv6 address. * Handles only primary interface */ int dhd_inet6addr_notifier_call(struct notifier_block *this, unsigned long event, void *ptr) { dhd_info_t *dhd; dhd_pub_t *dhdp; struct inet6_ifaddr *inet6_ifa = ptr; struct ipv6_work_info_t *ndo_info; int idx; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 31)) /* Filter notifications meant for non Broadcom devices */ if (inet6_ifa->idev->dev->netdev_ops != &dhd_ops_pri) { return NOTIFY_DONE; } #endif /* LINUX_VERSION_CODE */ dhd = DHD_DEV_INFO(inet6_ifa->idev->dev); if (!dhd) { return NOTIFY_DONE; } dhdp = &dhd->pub; /* Supports only primary interface */ idx = dhd_net2idx(dhd, inet6_ifa->idev->dev); if (idx != 0) { return NOTIFY_DONE; } /* FW capability */ if (!FW_SUPPORTED(dhdp, ndoe)) { return NOTIFY_DONE; } ndo_info = (struct ipv6_work_info_t *)kzalloc(sizeof(struct ipv6_work_info_t), GFP_ATOMIC); if (!ndo_info) { DHD_ERROR(("%s: ipv6 work alloc failed\n", __FUNCTION__)); return NOTIFY_DONE; } /* fill up ndo_info */ ndo_info->event = event; ndo_info->if_idx = idx; memcpy(ndo_info->ipv6_addr, &inet6_ifa->addr, IPV6_ADDR_LEN); /* defer the work to thread as it may block kernel */ dhd_deferred_schedule_work(dhd->dhd_deferred_wq, (void *)ndo_info, DHD_WQ_WORK_IPV6_NDO, dhd_inet6_work_handler, DHD_WQ_WORK_PRIORITY_LOW); return NOTIFY_DONE; } #endif /* CONFIG_IPV6 && IPV6_NDO_SUPPORT */ int dhd_register_if(dhd_pub_t *dhdp, int ifidx, bool need_rtnl_lock) { dhd_info_t *dhd = (dhd_info_t *)dhdp->info; dhd_if_t *ifp; struct net_device *net = NULL; int err = 0; uint8 temp_addr[ETHER_ADDR_LEN] = { 0x00, 0x90, 0x4c, 0x11, 0x22, 0x33 }; DHD_TRACE(("%s: ifidx %d\n", __FUNCTION__, ifidx)); if (dhd == NULL || dhd->iflist[ifidx] == NULL) { DHD_ERROR(("%s: Invalid Interface\n", __FUNCTION__)); return BCME_ERROR; } ASSERT(dhd && dhd->iflist[ifidx]); ifp = dhd->iflist[ifidx]; net = ifp->net; ASSERT(net && (ifp->idx == ifidx)); #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31)) ASSERT(!net->open); net->get_stats = dhd_get_stats; net->do_ioctl = dhd_ioctl_entry; net->hard_start_xmit = dhd_start_xmit; net->set_mac_address = dhd_set_mac_address; net->set_multicast_list = dhd_set_multicast_list; net->open = net->stop = NULL; #else ASSERT(!net->netdev_ops); net->netdev_ops = &dhd_ops_virt; #endif /* LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31) */ /* Ok, link into the network layer... */ if (ifidx == 0) { /* * device functions for the primary interface only */ #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31)) net->open = dhd_open; net->stop = dhd_stop; #else net->netdev_ops = &dhd_ops_pri; #endif /* LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31) */ if (!ETHER_ISNULLADDR(dhd->pub.mac.octet)) memcpy(temp_addr, dhd->pub.mac.octet, ETHER_ADDR_LEN); } else { /* * We have to use the primary MAC for virtual interfaces */ memcpy(temp_addr, ifp->mac_addr, ETHER_ADDR_LEN); /* * Android sets the locally administered bit to indicate that this is a * portable hotspot. This will not work in simultaneous AP/STA mode, * nor with P2P. Need to set the Donlge's MAC address, and then use that. */ if (!memcmp(temp_addr, dhd->iflist[0]->mac_addr, ETHER_ADDR_LEN)) { DHD_ERROR(("%s interface [%s]: set locally administered bit in MAC\n", __func__, net->name)); temp_addr[0] |= 0x02; } } net->hard_header_len = ETH_HLEN + dhd->pub.hdrlen; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24) net->ethtool_ops = &dhd_ethtool_ops; #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24) */ #if defined(WL_WIRELESS_EXT) #if WIRELESS_EXT < 19 net->get_wireless_stats = dhd_get_wireless_stats; #endif /* WIRELESS_EXT < 19 */ #if WIRELESS_EXT > 12 net->wireless_handlers = &wl_iw_handler_def; #endif /* WIRELESS_EXT > 12 */ #endif /* defined(WL_WIRELESS_EXT) */ dhd->pub.rxsz = DBUS_RX_BUFFER_SIZE_DHD(net); #ifdef WLMESH if (ifidx >= 2 && dhdp->conf->fw_type == FW_TYPE_MESH) { temp_addr[4] ^= 0x80; temp_addr[4] += ifidx; temp_addr[5] += ifidx; } #endif memcpy(net->dev_addr, temp_addr, ETHER_ADDR_LEN); if (ifidx == 0) DHD_PRINT("%s\n", dhd_version); else { #ifdef WL_EXT_IAPSTA wl_ext_iapsta_update_net_device(net, ifidx); #endif /* WL_EXT_IAPSTA */ if (_dhd_set_mac_address(dhd, ifidx, net->dev_addr) == 0) DHD_INFO(("%s: MACID is overwritten\n", __FUNCTION__)); else DHD_ERROR(("%s: _dhd_set_mac_address() failed\n", __FUNCTION__)); } if (need_rtnl_lock) err = register_netdev(net); else err = register_netdevice(net); if (err != 0) { DHD_ERROR(("couldn't register the net device [%s], err %d\n", net->name, err)); goto fail; } #if defined(WL_EXT_IAPSTA) || defined(USE_IW) || defined(WL_ESCAN) wl_ext_event_attach_netdev(net, ifidx, ifp->bssidx); #ifdef WL_ESCAN wl_escan_event_attach(net, dhdp); #endif /* WL_ESCAN */ #ifdef WL_EXT_IAPSTA wl_ext_iapsta_attach_netdev(net, ifidx, ifp->bssidx); wl_ext_iapsta_attach_name(net, ifidx); #endif /* WL_EXT_IAPSTA */ #endif /* WL_EXT_IAPSTA || USE_IW || WL_ESCAN */ DHD_PRINT("Register interface [%s] MAC: "MACDBG"\n\n", net->name, #if defined(CUSTOMER_HW4_DEBUG) MAC2STRDBG(dhd->pub.mac.octet)); #else MAC2STRDBG(net->dev_addr)); #endif /* CUSTOMER_HW4_DEBUG */ #if defined(SOFTAP) && defined(WL_WIRELESS_EXT) && !defined(WL_CFG80211) // wl_iw_iscan_set_scan_broadcast_prep(net, 1); #endif #if (defined(BCMPCIE) || (defined(BCMLXSDMMC) && (LINUX_VERSION_CODE >= \ KERNEL_VERSION(2, 6, 27))) || defined(BCMDBUS)) if (ifidx == 0) { #if defined(BCMLXSDMMC) && !defined(DHD_PRELOAD) up(&dhd_registration_sem); #endif /* BCMLXSDMMC */ if (!dhd_download_fw_on_driverload) { #ifdef WL_CFG80211 wl_terminate_event_handler(net); #endif /* WL_CFG80211 */ #if defined(DHD_LB_RXP) __skb_queue_purge(&dhd->rx_pend_queue); #endif /* DHD_LB_RXP */ #if defined(DHD_LB_TXP) skb_queue_purge(&dhd->tx_pend_queue); #endif /* DHD_LB_TXP */ #ifdef SHOW_LOGTRACE /* Release the skbs from queue for WLC_E_TRACE event */ dhd_event_logtrace_flush_queue(dhdp); #endif /* SHOW_LOGTRACE */ #ifdef DHDTCPACK_SUPPRESS dhd_tcpack_suppress_set(dhdp, TCPACK_SUP_OFF); #endif /* DHDTCPACK_SUPPRESS */ dhd_net_bus_devreset(net, TRUE); #ifdef BCMLXSDMMC dhd_net_bus_suspend(net); #endif /* BCMLXSDMMC */ #ifdef DHD_LOAD_CHIPALIVE if (!dhd_chip_alive) #endif wifi_platform_set_power(dhdp->info->adapter, FALSE, WIFI_TURNOFF_DELAY); #if defined(BT_OVER_SDIO) dhd->bus_user_count--; #endif /* BT_OVER_SDIO */ } #if defined(WL_WIRELESS_EXT) wl_iw_down(net, &dhd->pub); #endif /* defined(WL_WIRELESS_EXT) */ } #endif /* OEM_ANDROID && (BCMPCIE || (BCMLXSDMMC && KERNEL_VERSION >= 2.6.27)) */ return 0; fail: #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31) net->open = NULL; #else net->netdev_ops = NULL; #endif return err; } void dhd_bus_detach(dhd_pub_t *dhdp) { dhd_info_t *dhd; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (dhdp) { dhd = (dhd_info_t *)dhdp->info; if (dhd) { /* * In case of Android cfg80211 driver, the bus is down in dhd_stop, * calling stop again will cuase SD read/write errors. */ if (dhd->pub.busstate != DHD_BUS_DOWN && dhd_download_fw_on_driverload) { /* Stop the protocol module */ dhd_prot_stop(&dhd->pub); /* Stop the bus module */ #ifdef BCMDBUS /* Force Dongle terminated */ if (dhd_wl_ioctl_cmd(dhdp, WLC_TERMINATED, NULL, 0, TRUE, 0) < 0) DHD_ERROR(("%s Setting WLC_TERMINATED failed\n", __FUNCTION__)); dbus_stop(dhd->pub.bus); dhd->pub.busstate = DHD_BUS_DOWN; #else dhd_bus_stop(dhd->pub.bus, TRUE); #endif /* BCMDBUS */ } #if defined(OOB_INTR_ONLY) || defined(BCMPCIE_OOB_HOST_WAKE) dhd_bus_oob_intr_unregister(dhdp); #endif } } } void dhd_detach(dhd_pub_t *dhdp) { dhd_info_t *dhd; unsigned long flags; int timer_valid = FALSE; struct net_device *dev; #ifdef WL_CFG80211 struct bcm_cfg80211 *cfg = NULL; #endif #ifdef HOFFLOAD_MODULES struct module_metadata *hmem = NULL; #endif if (!dhdp) return; dhd = (dhd_info_t *)dhdp->info; if (!dhd) return; dev = dhd->iflist[0]->net; if (dev) { rtnl_lock(); if (dev->flags & IFF_UP) { /* If IFF_UP is still up, it indicates that * "ifconfig wlan0 down" hasn't been called. * So invoke dev_close explicitly here to * bring down the interface. */ DHD_TRACE(("IFF_UP flag is up. Enforcing dev_close from detach \n")); dev_close(dev); } rtnl_unlock(); } DHD_TRACE(("%s: Enter state 0x%x\n", __FUNCTION__, dhd->dhd_state)); dhd->pub.up = 0; if (!(dhd->dhd_state & DHD_ATTACH_STATE_DONE)) { /* Give sufficient time for threads to start running in case * dhd_attach() has failed */ OSL_SLEEP(100); } #ifdef DHD_WET dhd_free_wet_info(&dhd->pub, dhd->pub.wet_info); #endif /* DHD_WET */ #if defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) #endif /* defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) */ #ifdef PROP_TXSTATUS #ifdef DHD_WLFC_THREAD if (dhd->pub.wlfc_thread) { kthread_stop(dhd->pub.wlfc_thread); dhdp->wlfc_thread_go = TRUE; wake_up_interruptible(&dhdp->wlfc_wqhead); } dhd->pub.wlfc_thread = NULL; #endif /* DHD_WLFC_THREAD */ #endif /* PROP_TXSTATUS */ #ifdef DHD_TIMESYNC if (dhd->dhd_state & DHD_ATTACH_TIMESYNC_ATTACH_DONE) { dhd_timesync_detach(dhdp); } #endif /* DHD_TIMESYNC */ #ifdef WL_CFG80211 if (dev) { wl_cfg80211_down(dev); } #endif /* WL_CFG80211 */ if (dhd->dhd_state & DHD_ATTACH_STATE_PROT_ATTACH) { dhd_bus_detach(dhdp); #ifdef BCMPCIE if (is_reboot == SYS_RESTART) { extern bcmdhd_wifi_platdata_t *dhd_wifi_platdata; if (dhd_wifi_platdata && !dhdp->dongle_reset) { dhdpcie_bus_clock_stop(dhdp->bus); wifi_platform_set_power(dhd_wifi_platdata->adapters, FALSE, WIFI_TURNOFF_DELAY); } } #endif /* BCMPCIE */ #ifndef PCIE_FULL_DONGLE if (dhdp->prot) dhd_prot_detach(dhdp); #endif /* !PCIE_FULL_DONGLE */ } #ifdef ARP_OFFLOAD_SUPPORT if (dhd_inetaddr_notifier_registered) { dhd_inetaddr_notifier_registered = FALSE; unregister_inetaddr_notifier(&dhd_inetaddr_notifier); } #endif /* ARP_OFFLOAD_SUPPORT */ #if defined(CONFIG_IPV6) && defined(IPV6_NDO_SUPPORT) if (dhd_inet6addr_notifier_registered) { dhd_inet6addr_notifier_registered = FALSE; unregister_inet6addr_notifier(&dhd_inet6addr_notifier); } #endif /* CONFIG_IPV6 && IPV6_NDO_SUPPORT */ #if defined(CONFIG_HAS_EARLYSUSPEND) && defined(DHD_USE_EARLYSUSPEND) if (dhd->dhd_state & DHD_ATTACH_STATE_EARLYSUSPEND_DONE) { if (dhd->early_suspend.suspend) unregister_early_suspend(&dhd->early_suspend); } #endif /* CONFIG_HAS_EARLYSUSPEND && DHD_USE_EARLYSUSPEND */ #if defined(WL_WIRELESS_EXT) if (dhd->dhd_state & DHD_ATTACH_STATE_WL_ATTACH) { /* Detatch and unlink in the iw */ wl_iw_detach(dev, dhdp); } #endif /* defined(WL_WIRELESS_EXT) */ #if defined(WL_EXT_IAPSTA) || defined(USE_IW) || defined(WL_ESCAN) #ifdef WL_EXT_IAPSTA wl_ext_iapsta_dettach(dhdp); #endif /* WL_EXT_IAPSTA */ #ifdef WL_ESCAN wl_escan_detach(dev, dhdp); #endif /* WL_ESCAN */ wl_ext_event_dettach(dhdp); #endif /* WL_EXT_IAPSTA || USE_IW || WL_ESCAN */ #ifdef DHD_ULP dhd_ulp_deinit(dhd->pub.osh, dhdp); #endif /* DHD_ULP */ /* delete all interfaces, start with virtual */ if (dhd->dhd_state & DHD_ATTACH_STATE_ADD_IF) { int i = 1; dhd_if_t *ifp; /* Cleanup virtual interfaces */ dhd_net_if_lock_local(dhd); for (i = 1; i < DHD_MAX_IFS; i++) { if (dhd->iflist[i]) { dhd_remove_if(&dhd->pub, i, TRUE); } } dhd_net_if_unlock_local(dhd); /* delete primary interface 0 */ ifp = dhd->iflist[0]; ASSERT(ifp); ASSERT(ifp->net); if (ifp && ifp->net) { #ifdef WL_CFG80211 cfg = wl_get_cfg(ifp->net); #endif /* in unregister_netdev case, the interface gets freed by net->destructor * (which is set to free_netdev) */ if (ifp->net->reg_state == NETREG_UNINITIALIZED) { free_netdev(ifp->net); } else { argos_register_notifier_deinit(); #ifdef SET_RPS_CPUS custom_rps_map_clear(ifp->net->_rx); #endif /* SET_RPS_CPUS */ netif_tx_disable(ifp->net); unregister_netdev(ifp->net); } #ifdef PCIE_FULL_DONGLE ifp->net = DHD_NET_DEV_NULL; #else ifp->net = NULL; #endif /* PCIE_FULL_DONGLE */ #ifdef DHD_WMF dhd_wmf_cleanup(dhdp, 0); #endif /* DHD_WMF */ #ifdef DHD_L2_FILTER bcm_l2_filter_arp_table_update(dhdp->osh, ifp->phnd_arp_table, TRUE, NULL, FALSE, dhdp->tickcnt); deinit_l2_filter_arp_table(dhdp->osh, ifp->phnd_arp_table); ifp->phnd_arp_table = NULL; #endif /* DHD_L2_FILTER */ dhd_if_del_sta_list(ifp); MFREE(dhd->pub.osh, ifp, sizeof(*ifp)); dhd->iflist[0] = NULL; } } /* Clear the watchdog timer */ DHD_GENERAL_LOCK(&dhd->pub, flags); timer_valid = dhd->wd_timer_valid; dhd->wd_timer_valid = FALSE; DHD_GENERAL_UNLOCK(&dhd->pub, flags); if (timer_valid) del_timer_sync(&dhd->timer); DHD_DISABLE_RUNTIME_PM(&dhd->pub); #ifdef BCMDBUS tasklet_kill(&dhd->tasklet); #else if (dhd->dhd_state & DHD_ATTACH_STATE_THREADS_CREATED) { #ifdef DHD_PCIE_RUNTIMEPM if (dhd->thr_rpm_ctl.thr_pid >= 0) { PROC_STOP(&dhd->thr_rpm_ctl); } #endif /* DHD_PCIE_RUNTIMEPM */ if (dhd->thr_wdt_ctl.thr_pid >= 0) { PROC_STOP(&dhd->thr_wdt_ctl); } if (dhd->rxthread_enabled && dhd->thr_rxf_ctl.thr_pid >= 0) { PROC_STOP(&dhd->thr_rxf_ctl); } if (dhd->thr_dpc_ctl.thr_pid >= 0) { PROC_STOP(&dhd->thr_dpc_ctl); } else { tasklet_kill(&dhd->tasklet); } } #endif /* BCMDBUS */ #ifdef DHD_LB if (dhd->dhd_state & DHD_ATTACH_STATE_LB_ATTACH_DONE) { /* Clear the flag first to avoid calling the cpu notifier */ dhd->dhd_state &= ~DHD_ATTACH_STATE_LB_ATTACH_DONE; /* Kill the Load Balancing Tasklets */ #ifdef DHD_LB_RXP cancel_work_sync(&dhd->rx_napi_dispatcher_work); __skb_queue_purge(&dhd->rx_pend_queue); #endif /* DHD_LB_RXP */ #ifdef DHD_LB_TXP cancel_work_sync(&dhd->tx_dispatcher_work); tasklet_kill(&dhd->tx_tasklet); __skb_queue_purge(&dhd->tx_pend_queue); #endif /* DHD_LB_TXP */ #ifdef DHD_LB_TXC cancel_work_sync(&dhd->tx_compl_dispatcher_work); tasklet_kill(&dhd->tx_compl_tasklet); #endif /* DHD_LB_TXC */ #ifdef DHD_LB_RXC tasklet_kill(&dhd->rx_compl_tasklet); #endif /* DHD_LB_RXC */ if (dhd->cpu_notifier.notifier_call != NULL) { unregister_cpu_notifier(&dhd->cpu_notifier); } dhd_cpumasks_deinit(dhd); DHD_LB_STATS_DEINIT(&dhd->pub); } #endif /* DHD_LB */ #ifdef CSI_SUPPORT dhd_csi_deinit(dhdp); #endif /* CSI_SUPPORT */ DHD_SSSR_MEMPOOL_DEINIT(&dhd->pub); #ifdef DHD_LOG_DUMP dhd_log_dump_deinit(&dhd->pub); #endif /* DHD_LOG_DUMP */ #ifdef WL_CFG80211 if (dhd->dhd_state & DHD_ATTACH_STATE_CFG80211) { if (!cfg) { DHD_ERROR(("cfg NULL!\n")); ASSERT(0); } else { wl_cfg80211_detach(cfg); dhd_monitor_uninit(); } } #endif #ifdef DEBUGABILITY if (dhdp->dbg) { #ifdef DBG_PKT_MON dhd_os_dbg_detach_pkt_monitor(dhdp); dhd_os_spin_lock_deinit(dhd->pub.osh, dhd->pub.dbg->pkt_mon_lock); #endif /* DBG_PKT_MON */ dhd_os_dbg_detach(dhdp); } #endif /* DEBUGABILITY */ #ifdef SHOW_LOGTRACE #ifdef DHD_PKT_LOGGING dhd_os_detach_pktlog(dhdp); #endif /* DHD_PKT_LOGGING */ /* Release the skbs from queue for WLC_E_TRACE event */ dhd_event_logtrace_flush_queue(dhdp); if (dhd->dhd_state & DHD_ATTACH_LOGTRACE_INIT) { if (dhd->event_data.fmts) { MFREE(dhd->pub.osh, dhd->event_data.fmts, dhd->event_data.fmts_size); dhd->event_data.fmts = NULL; } if (dhd->event_data.raw_fmts) { MFREE(dhd->pub.osh, dhd->event_data.raw_fmts, dhd->event_data.raw_fmts_size); dhd->event_data.raw_fmts = NULL; } if (dhd->event_data.raw_sstr) { MFREE(dhd->pub.osh, dhd->event_data.raw_sstr, dhd->event_data.raw_sstr_size); dhd->event_data.raw_sstr = NULL; } if (dhd->event_data.rom_raw_sstr) { MFREE(dhd->pub.osh, dhd->event_data.rom_raw_sstr, dhd->event_data.rom_raw_sstr_size); dhd->event_data.rom_raw_sstr = NULL; } dhd->dhd_state &= ~DHD_ATTACH_LOGTRACE_INIT; } #endif /* SHOW_LOGTRACE */ #ifdef BCMPCIE if (dhdp->extended_trap_data) { MFREE(dhdp->osh, dhdp->extended_trap_data, BCMPCIE_EXT_TRAP_DATA_MAXLEN); dhdp->extended_trap_data = NULL; } #endif /* BCMPCIE */ #ifdef PNO_SUPPORT if (dhdp->pno_state) dhd_pno_deinit(dhdp); #endif #ifdef RTT_SUPPORT if (dhdp->rtt_state) { dhd_rtt_deinit(dhdp); } #endif #if defined(CONFIG_PM_SLEEP) if (dhd_pm_notifier_registered) { unregister_pm_notifier(&dhd->pm_notifier); dhd_pm_notifier_registered = FALSE; } #endif /* CONFIG_PM_SLEEP */ #ifdef DEBUG_CPU_FREQ if (dhd->new_freq) free_percpu(dhd->new_freq); dhd->new_freq = NULL; cpufreq_unregister_notifier(&dhd->freq_trans, CPUFREQ_TRANSITION_NOTIFIER); #endif DHD_TRACE(("wd wakelock count:%d\n", dhd->wakelock_wd_counter)); #ifdef CONFIG_HAS_WAKELOCK dhd->wakelock_wd_counter = 0; wake_lock_destroy(&dhd->wl_wdwake); // terence 20161023: can not destroy wl_wifi when wlan down, it will happen null pointer in dhd_ioctl_entry wake_lock_destroy(&dhd->wl_wifi); #endif /* CONFIG_HAS_WAKELOCK */ if (dhd->dhd_state & DHD_ATTACH_STATE_WAKELOCKS_INIT) { DHD_OS_WAKE_LOCK_DESTROY(dhd); } #ifdef DHDTCPACK_SUPPRESS /* This will free all MEM allocated for TCPACK SUPPRESS */ dhd_tcpack_suppress_set(&dhd->pub, TCPACK_SUP_OFF); #endif /* DHDTCPACK_SUPPRESS */ #ifdef PCIE_FULL_DONGLE dhd_flow_rings_deinit(dhdp); if (dhdp->prot) dhd_prot_detach(dhdp); #endif #if defined(WLTDLS) && defined(PCIE_FULL_DONGLE) dhd_free_tdls_peer_list(dhdp); #endif #ifdef HOFFLOAD_MODULES hmem = &dhdp->hmem; dhd_free_module_memory(dhdp->bus, hmem); #endif /* HOFFLOAD_MODULES */ #if defined(BT_OVER_SDIO) mutex_destroy(&dhd->bus_user_lock); #endif /* BT_OVER_SDIO */ #ifdef DUMP_IOCTL_IOV_LIST dhd_iov_li_delete(dhdp, &(dhdp->dump_iovlist_head)); #endif /* DUMP_IOCTL_IOV_LIST */ #ifdef DHD_DEBUG /* memory waste feature list initilization */ dhd_mw_list_delete(dhdp, &(dhdp->mw_list_head)); #endif /* DHD_DEBUG */ #ifdef WL_MONITOR dhd_del_monitor_if(dhd, NULL, DHD_WQ_WORK_IF_DEL); #endif /* WL_MONITOR */ /* Prefer adding de-init code above this comment unless necessary. * The idea is to cancel work queue, sysfs and flags at the end. */ dhd_deferred_work_deinit(dhd->dhd_deferred_wq); dhd->dhd_deferred_wq = NULL; #ifdef SHOW_LOGTRACE /* Wait till event_log_dispatcher_work finishes */ cancel_work_sync(&dhd->event_log_dispatcher_work); #endif /* SHOW_LOGTRACE */ dhd_sysfs_exit(dhd); dhd->pub.fw_download_done = FALSE; dhd_conf_detach(dhdp); } void dhd_free(dhd_pub_t *dhdp) { dhd_info_t *dhd; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (dhdp) { int i; for (i = 0; i < ARRAYSIZE(dhdp->reorder_bufs); i++) { if (dhdp->reorder_bufs[i]) { reorder_info_t *ptr; uint32 buf_size = sizeof(struct reorder_info); ptr = dhdp->reorder_bufs[i]; buf_size += ((ptr->max_idx + 1) * sizeof(void*)); DHD_REORDER(("free flow id buf %d, maxidx is %d, buf_size %d\n", i, ptr->max_idx, buf_size)); MFREE(dhdp->osh, dhdp->reorder_bufs[i], buf_size); dhdp->reorder_bufs[i] = NULL; } } dhd_sta_pool_fini(dhdp, DHD_MAX_STA); dhd = (dhd_info_t *)dhdp->info; if (dhdp->soc_ram) { #if defined(CONFIG_DHD_USE_STATIC_BUF) && defined(DHD_USE_STATIC_MEMDUMP) DHD_OS_PREFREE(dhdp, dhdp->soc_ram, dhdp->soc_ram_length); #else MFREE(dhdp->osh, dhdp->soc_ram, dhdp->soc_ram_length); #endif /* CONFIG_DHD_USE_STATIC_BUF && DHD_USE_STATIC_MEMDUMP */ dhdp->soc_ram = NULL; } #ifdef CACHE_FW_IMAGES if (dhdp->cached_fw) { MFREE(dhdp->osh, dhdp->cached_fw, dhdp->bus->ramsize); dhdp->cached_fw = NULL; } if (dhdp->cached_nvram) { MFREE(dhdp->osh, dhdp->cached_nvram, MAX_NVRAMBUF_SIZE); dhdp->cached_nvram = NULL; } #endif if (dhd) { #ifdef REPORT_FATAL_TIMEOUTS deinit_dhd_timeouts(&dhd->pub); #endif /* REPORT_FATAL_TIMEOUTS */ /* If pointer is allocated by dhd_os_prealloc then avoid MFREE */ if (dhd != (dhd_info_t *)dhd_os_prealloc(dhdp, DHD_PREALLOC_DHD_INFO, 0, FALSE)) MFREE(dhd->pub.osh, dhd, sizeof(*dhd)); dhd = NULL; } } } void dhd_clear(dhd_pub_t *dhdp) { DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (dhdp) { int i; #ifdef DHDTCPACK_SUPPRESS /* Clean up timer/data structure for any remaining/pending packet or timer. */ dhd_tcpack_info_tbl_clean(dhdp); #endif /* DHDTCPACK_SUPPRESS */ for (i = 0; i < ARRAYSIZE(dhdp->reorder_bufs); i++) { if (dhdp->reorder_bufs[i]) { reorder_info_t *ptr; uint32 buf_size = sizeof(struct reorder_info); ptr = dhdp->reorder_bufs[i]; buf_size += ((ptr->max_idx + 1) * sizeof(void*)); DHD_REORDER(("free flow id buf %d, maxidx is %d, buf_size %d\n", i, ptr->max_idx, buf_size)); MFREE(dhdp->osh, dhdp->reorder_bufs[i], buf_size); dhdp->reorder_bufs[i] = NULL; } } dhd_sta_pool_clear(dhdp, DHD_MAX_STA); if (dhdp->soc_ram) { #if defined(CONFIG_DHD_USE_STATIC_BUF) && defined(DHD_USE_STATIC_MEMDUMP) DHD_OS_PREFREE(dhdp, dhdp->soc_ram, dhdp->soc_ram_length); #else MFREE(dhdp->osh, dhdp->soc_ram, dhdp->soc_ram_length); #endif /* CONFIG_DHD_USE_STATIC_BUF && DHD_USE_STATIC_MEMDUMP */ dhdp->soc_ram = NULL; } } } static void dhd_module_cleanup(void) { printf("%s: Enter\n", __FUNCTION__); dhd_bus_unregister(); wl_android_exit(); dhd_wifi_platform_unregister_drv(); printf("%s: Exit\n", __FUNCTION__); } static void dhd_module_exit(void) { atomic_set(&exit_in_progress, 1); dhd_module_cleanup(); unregister_reboot_notifier(&dhd_reboot_notifier); dhd_destroy_to_notifier_skt(); } static int dhd_module_init(void) { int err; int retry = 0; printf("%s: in %s\n", __FUNCTION__, dhd_version); DHD_PERIM_RADIO_INIT(); if (firmware_path[0] != '\0') { strncpy(fw_bak_path, firmware_path, MOD_PARAM_PATHLEN); fw_bak_path[MOD_PARAM_PATHLEN-1] = '\0'; } if (nvram_path[0] != '\0') { strncpy(nv_bak_path, nvram_path, MOD_PARAM_PATHLEN); nv_bak_path[MOD_PARAM_PATHLEN-1] = '\0'; } do { err = dhd_wifi_platform_register_drv(); if (!err) { register_reboot_notifier(&dhd_reboot_notifier); break; } else { DHD_ERROR(("%s: Failed to load the driver, try cnt %d\n", __FUNCTION__, retry)); strncpy(firmware_path, fw_bak_path, MOD_PARAM_PATHLEN); firmware_path[MOD_PARAM_PATHLEN-1] = '\0'; strncpy(nvram_path, nv_bak_path, MOD_PARAM_PATHLEN); nvram_path[MOD_PARAM_PATHLEN-1] = '\0'; } } while (retry--); dhd_create_to_notifier_skt(); if (err) { DHD_ERROR(("%s: Failed to load driver max retry reached**\n", __FUNCTION__)); } else { if (!dhd_download_fw_on_driverload) { dhd_driver_init_done = TRUE; } } printf("%s: Exit err=%d\n", __FUNCTION__, err); return err; } static int dhd_reboot_callback(struct notifier_block *this, unsigned long code, void *unused) { DHD_TRACE(("%s: code = %ld\n", __FUNCTION__, code)); if (code == SYS_RESTART) { #ifdef BCMPCIE is_reboot = code; #endif /* BCMPCIE */ } return NOTIFY_DONE; } //rk /* The debugfs functions are optimized away when CONFIG_DEBUG_FS isn't set. */ //static char tcp_keepalive_param[200]; static char sabuf[20]="", dabuf[20]=""; static char seabuf[ETHER_ADDR_STR_LEN]=""; static char deabuf[ETHER_ADDR_STR_LEN]=""; static uint16 source, dest, window, ip_id; static uint32 seq = 0, seq_ack = 0, tcp_option_len = 0, tcp_data_len = 0, tsval = 0, tsecr = 0; #include #include #include #include static int tcp_param_show(struct seq_file *s, void *data) { seq_printf(s, "dhd_priv wl tcpka_conn_add 1 %s %s %s 1 %d %d 1 1 1 1 1 2 0xc000\n", deabuf, sabuf, dabuf, source, dest); return 0; } #ifndef CONFIG_PROC_FS DEFINE_SHOW_ATTRIBUTE(tcp_param); #endif static void rk_bcm_add_tcp_keepalive_debugfs(void) { #ifdef CONFIG_PROC_FS proc_create_single("tcp_params", 0, NULL, tcp_param_show); #else struct dentry *root; root = debugfs_create_dir("tcp_keepalive_param", NULL); if (IS_ERR(root)) /* Don't complain -- debugfs just isn't enabled */ return; if (!root) /* Complain -- debugfs is enabled, but it failed to * create the directory. */ goto err_root; if (!debugfs_create_file("tcp_param", S_IRUSR, root, NULL, &tcp_param_fops)) goto err_node; return; err_node: debugfs_remove_recursive(root); err_root: pr_err("failed to initialize keepalive debugfs\n"); #endif } static int wifi_init_thread(void *data) { rk_bcm_add_tcp_keepalive_debugfs(); dhd_module_init(); return 0; } int rockchip_wifi_init_module_rkwifi(void) { struct task_struct *kthread = NULL; kthread = kthread_run(wifi_init_thread, NULL, "wifi_init_thread"); if (IS_ERR(kthread)) pr_err("create wifi_init_thread failed.\n"); return 0; } void rockchip_wifi_exit_module_rkwifi(void) { dhd_module_exit(); } #ifdef CONFIG_WIFI_BUILD_MODULE module_init(rockchip_wifi_init_module_rkwifi); module_exit(rockchip_wifi_exit_module_rkwifi); #else #ifdef CONFIG_WIFI_LOAD_DRIVER_WHEN_KERNEL_BOOTUP late_initcall(rockchip_wifi_init_module_rkwifi); module_exit(rockchip_wifi_exit_module_rkwifi); #else module_init(rockchip_wifi_init_module_rkwifi); module_exit(rockchip_wifi_exit_module_rkwifi); #endif #endif #if 0 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) #if defined(CONFIG_DEFERRED_INITCALLS) && !defined(EXYNOS_PCIE_MODULE_PATCH) #if defined(CONFIG_MACH_UNIVERSAL7420) || defined(CONFIG_SOC_EXYNOS8890) || \ defined(CONFIG_ARCH_MSM8996) || defined(CONFIG_SOC_EXYNOS8895) || \ defined(CONFIG_ARCH_MSM8998) deferred_module_init_sync(dhd_module_init); #else deferred_module_init(dhd_module_init); #endif /* CONFIG_MACH_UNIVERSAL7420 || CONFIG_SOC_EXYNOS8890 || * CONFIG_ARCH_MSM8996 || CONFIG_SOC_EXYNOS8895 || CONFIG_ARCH_MSM8998 */ #elif defined(USE_LATE_INITCALL_SYNC) late_initcall_sync(dhd_module_init); #else late_initcall(dhd_module_init); #endif /* USE_LATE_INITCALL_SYNC */ #else module_init(dhd_module_init); #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) */ module_exit(dhd_module_exit); #endif /* * OS specific functions required to implement DHD driver in OS independent way */ int dhd_os_proto_block(dhd_pub_t *pub) { dhd_info_t * dhd = (dhd_info_t *)(pub->info); if (dhd) { DHD_PERIM_UNLOCK(pub); down(&dhd->proto_sem); DHD_PERIM_LOCK(pub); return 1; } return 0; } int dhd_os_proto_unblock(dhd_pub_t *pub) { dhd_info_t * dhd = (dhd_info_t *)(pub->info); if (dhd) { up(&dhd->proto_sem); return 1; } return 0; } void dhd_os_dhdiovar_lock(dhd_pub_t *pub) { dhd_info_t * dhd = (dhd_info_t *)(pub->info); if (dhd) { mutex_lock(&dhd->dhd_iovar_mutex); } } void dhd_os_dhdiovar_unlock(dhd_pub_t *pub) { dhd_info_t * dhd = (dhd_info_t *)(pub->info); if (dhd) { mutex_unlock(&dhd->dhd_iovar_mutex); } } unsigned int dhd_os_get_ioctl_resp_timeout(void) { return ((unsigned int)dhd_ioctl_timeout_msec); } void dhd_os_set_ioctl_resp_timeout(unsigned int timeout_msec) { dhd_ioctl_timeout_msec = (int)timeout_msec; } int dhd_os_ioctl_resp_wait(dhd_pub_t *pub, uint *condition) { dhd_info_t * dhd = (dhd_info_t *)(pub->info); int timeout; /* Convert timeout in millsecond to jiffies */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) timeout = msecs_to_jiffies(dhd_ioctl_timeout_msec); #else timeout = dhd_ioctl_timeout_msec * HZ / 1000; #endif DHD_PERIM_UNLOCK(pub); timeout = wait_event_timeout(dhd->ioctl_resp_wait, (*condition), timeout); DHD_PERIM_LOCK(pub); return timeout; } int dhd_os_ioctl_resp_wake(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); wake_up(&dhd->ioctl_resp_wait); return 0; } int dhd_os_d3ack_wait(dhd_pub_t *pub, uint *condition) { dhd_info_t * dhd = (dhd_info_t *)(pub->info); int timeout; /* Convert timeout in millsecond to jiffies */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) timeout = msecs_to_jiffies(dhd_ioctl_timeout_msec); #else timeout = dhd_ioctl_timeout_msec * HZ / 1000; #endif DHD_PERIM_UNLOCK(pub); timeout = wait_event_timeout(dhd->d3ack_wait, (*condition), timeout); DHD_PERIM_LOCK(pub); return timeout; } #ifdef PCIE_INB_DW int dhd_os_ds_exit_wait(dhd_pub_t *pub, uint *condition) { dhd_info_t * dhd = (dhd_info_t *)(pub->info); int timeout; /* Convert timeout in millsecond to jiffies */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) timeout = msecs_to_jiffies(ds_exit_timeout_msec); #else timeout = ds_exit_timeout_msec * HZ / 1000; #endif DHD_PERIM_UNLOCK(pub); timeout = wait_event_timeout(dhd->ds_exit_wait, (*condition), timeout); DHD_PERIM_LOCK(pub); return timeout; } int dhd_os_ds_exit_wake(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); wake_up(&dhd->ds_exit_wait); return 0; } #endif /* PCIE_INB_DW */ int dhd_os_d3ack_wake(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); wake_up(&dhd->d3ack_wait); return 0; } int dhd_os_busbusy_wait_negation(dhd_pub_t *pub, uint *condition) { dhd_info_t * dhd = (dhd_info_t *)(pub->info); int timeout; /* Wait for bus usage contexts to gracefully exit within some timeout value * Set time out to little higher than dhd_ioctl_timeout_msec, * so that IOCTL timeout should not get affected. */ /* Convert timeout in millsecond to jiffies */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) timeout = msecs_to_jiffies(DHD_BUS_BUSY_TIMEOUT); #else timeout = DHD_BUS_BUSY_TIMEOUT * HZ / 1000; #endif timeout = wait_event_timeout(dhd->dhd_bus_busy_state_wait, !(*condition), timeout); return timeout; } /* * Wait until the condition *var == condition is met. * Returns 0 if the @condition evaluated to false after the timeout elapsed * Returns 1 if the @condition evaluated to true */ int dhd_os_busbusy_wait_condition(dhd_pub_t *pub, uint *var, uint condition) { dhd_info_t * dhd = (dhd_info_t *)(pub->info); int timeout; /* Convert timeout in millsecond to jiffies */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) timeout = msecs_to_jiffies(DHD_BUS_BUSY_TIMEOUT); #else timeout = DHD_BUS_BUSY_TIMEOUT * HZ / 1000; #endif timeout = wait_event_timeout(dhd->dhd_bus_busy_state_wait, (*var == condition), timeout); return timeout; } #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36)) /* Fix compilation error for FC11 */ INLINE #endif int dhd_os_busbusy_wake(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); /* Call wmb() to make sure before waking up the other event value gets updated */ OSL_SMP_WMB(); wake_up(&dhd->dhd_bus_busy_state_wait); return 0; } void dhd_os_wd_timer_extend(void *bus, bool extend) { #ifndef BCMDBUS dhd_pub_t *pub = bus; dhd_info_t *dhd = (dhd_info_t *)pub->info; if (extend) dhd_os_wd_timer(bus, WATCHDOG_EXTEND_INTERVAL); else dhd_os_wd_timer(bus, dhd->default_wd_interval); #endif /* !BCMDBUS */ } void dhd_os_wd_timer(void *bus, uint wdtick) { #ifndef BCMDBUS dhd_pub_t *pub = bus; dhd_info_t *dhd = (dhd_info_t *)pub->info; unsigned long flags; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (!dhd) { DHD_ERROR(("%s: dhd NULL\n", __FUNCTION__)); return; } DHD_GENERAL_LOCK(pub, flags); /* don't start the wd until fw is loaded */ if (pub->busstate == DHD_BUS_DOWN) { DHD_GENERAL_UNLOCK(pub, flags); return; } /* Totally stop the timer */ if (!wdtick && dhd->wd_timer_valid == TRUE) { dhd->wd_timer_valid = FALSE; DHD_GENERAL_UNLOCK(pub, flags); del_timer_sync(&dhd->timer); return; } if (wdtick) { dhd_watchdog_ms = (uint)wdtick; /* Re arm the timer, at last watchdog period */ mod_timer(&dhd->timer, jiffies + msecs_to_jiffies(dhd_watchdog_ms)); dhd->wd_timer_valid = TRUE; } DHD_GENERAL_UNLOCK(pub, flags); #endif /* !BCMDBUS */ } #ifdef DHD_PCIE_RUNTIMEPM void dhd_os_runtimepm_timer(void *bus, uint tick) { dhd_pub_t *pub = bus; dhd_info_t *dhd = (dhd_info_t *)pub->info; unsigned long flags; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (!dhd) { DHD_ERROR(("%s: dhd is NULL\n", __FUNCTION__)); return; } DHD_GENERAL_LOCK(pub, flags); /* don't start the RPM until fw is loaded */ if (DHD_BUS_CHECK_DOWN_OR_DOWN_IN_PROGRESS(pub)) { DHD_GENERAL_UNLOCK(pub, flags); return; } /* If tick is non-zero, the request is to start the timer */ if (tick) { /* Start the timer only if its not already running */ if (dhd->rpm_timer_valid == FALSE) { mod_timer(&dhd->rpm_timer, jiffies + msecs_to_jiffies(dhd_runtimepm_ms)); dhd->rpm_timer_valid = TRUE; } } else { /* tick is zero, we have to stop the timer */ /* Stop the timer only if its running, otherwise we don't have to do anything */ if (dhd->rpm_timer_valid == TRUE) { dhd->rpm_timer_valid = FALSE; DHD_GENERAL_UNLOCK(pub, flags); del_timer_sync(&dhd->rpm_timer); /* we have already released the lock, so just go to exit */ goto exit; } } DHD_GENERAL_UNLOCK(pub, flags); exit: return; } #endif /* DHD_PCIE_RUNTIMEPM */ void * dhd_os_open_image(char *filename) { struct file *fp; int size; fp = filp_open(filename, O_RDONLY, 0); /* * 2.6.11 (FC4) supports filp_open() but later revs don't? * Alternative: * fp = open_namei(AT_FDCWD, filename, O_RD, 0); * ??? */ if (IS_ERR(fp)) { fp = NULL; goto err; } if (!S_ISREG(file_inode(fp)->i_mode)) { DHD_ERROR(("%s: %s is not regular file\n", __FUNCTION__, filename)); fp = NULL; goto err; } size = i_size_read(file_inode(fp)); if (size <= 0) { DHD_ERROR(("%s: %s file size invalid %d\n", __FUNCTION__, filename, size)); fp = NULL; goto err; } DHD_PRINT("%s: %s (%d bytes) open success\n", __FUNCTION__, filename, size); err: return fp; } int dhd_os_get_image_block(char *buf, int len, void *image) { struct file *fp = (struct file *)image; int rdlen; int size; if (!image) { return 0; } size = i_size_read(file_inode(fp)); #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0) rdlen = kernel_read(fp, buf, MIN(len, size), &fp->f_pos); #else rdlen = kernel_read(fp, fp->f_pos, buf, MIN(len, size)); #endif if (len >= size && size != rdlen) { return -EIO; } #if LINUX_VERSION_CODE < KERNEL_VERSION(4, 14, 0) if (rdlen > 0) { fp->f_pos += rdlen; } #endif return rdlen; } int dhd_os_get_image_size(void *image) { struct file *fp = (struct file *)image; int size; if (!image) { return 0; } size = i_size_read(file_inode(fp)); return size; } #if defined(BT_OVER_SDIO) int dhd_os_gets_image(dhd_pub_t *pub, char *str, int len, void *image) { struct file *fp = (struct file *)image; int rd_len; uint str_len = 0; char *str_end = NULL; if (!image) return 0; #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0) rd_len = kernel_read(fp, str, len, &fp->f_pos); #else rd_len = kernel_read(fp, fp->f_pos, str, len); #endif str_end = strnchr(str, len, '\n'); if (str_end == NULL) { goto err; } str_len = (uint)(str_end - str); /* Advance file pointer past the string length */ fp->f_pos += str_len + 1; bzero(str_end, rd_len - str_len); err: return str_len; } #endif /* defined (BT_OVER_SDIO) */ void dhd_os_close_image(void *image) { if (image) filp_close((struct file *)image, NULL); } void dhd_os_sdlock(dhd_pub_t *pub) { dhd_info_t *dhd; dhd = (dhd_info_t *)(pub->info); #ifdef BCMDBUS spin_lock_bh(&dhd->sdlock); #else if (dhd_dpc_prio >= 0) down(&dhd->sdsem); else spin_lock_bh(&dhd->sdlock); #endif /* !BCMDBUS */ } void dhd_os_sdunlock(dhd_pub_t *pub) { dhd_info_t *dhd; dhd = (dhd_info_t *)(pub->info); #ifdef BCMDBUS spin_unlock_bh(&dhd->sdlock); #else if (dhd_dpc_prio >= 0) up(&dhd->sdsem); else spin_unlock_bh(&dhd->sdlock); #endif /* !BCMDBUS */ } void dhd_os_sdlock_txq(dhd_pub_t *pub) { dhd_info_t *dhd; dhd = (dhd_info_t *)(pub->info); #ifdef BCMDBUS spin_lock_irqsave(&dhd->txqlock, dhd->txqlock_flags); #else spin_lock_bh(&dhd->txqlock); #endif /* BCMDBUS */ } void dhd_os_sdunlock_txq(dhd_pub_t *pub) { dhd_info_t *dhd; dhd = (dhd_info_t *)(pub->info); #ifdef BCMDBUS spin_unlock_irqrestore(&dhd->txqlock, dhd->txqlock_flags); #else spin_unlock_bh(&dhd->txqlock); #endif /* BCMDBUS */ } void dhd_os_sdlock_rxq(dhd_pub_t *pub) { #if 0 dhd_info_t *dhd; dhd = (dhd_info_t *)(pub->info); spin_lock_bh(&dhd->rxqlock); #endif } void dhd_os_sdunlock_rxq(dhd_pub_t *pub) { #if 0 dhd_info_t *dhd; dhd = (dhd_info_t *)(pub->info); spin_unlock_bh(&dhd->rxqlock); #endif } static void dhd_os_rxflock(dhd_pub_t *pub) { dhd_info_t *dhd; dhd = (dhd_info_t *)(pub->info); spin_lock_bh(&dhd->rxf_lock); } static void dhd_os_rxfunlock(dhd_pub_t *pub) { dhd_info_t *dhd; dhd = (dhd_info_t *)(pub->info); spin_unlock_bh(&dhd->rxf_lock); } #ifdef DHDTCPACK_SUPPRESS unsigned long dhd_os_tcpacklock(dhd_pub_t *pub) { dhd_info_t *dhd; unsigned long flags = 0; dhd = (dhd_info_t *)(pub->info); if (dhd) { #ifdef BCMSDIO spin_lock_bh(&dhd->tcpack_lock); #else spin_lock_irqsave(&dhd->tcpack_lock, flags); #endif /* BCMSDIO */ } return flags; } void dhd_os_tcpackunlock(dhd_pub_t *pub, unsigned long flags) { dhd_info_t *dhd; #ifdef BCMSDIO BCM_REFERENCE(flags); #endif /* BCMSDIO */ dhd = (dhd_info_t *)(pub->info); if (dhd) { #ifdef BCMSDIO spin_unlock_bh(&dhd->tcpack_lock); #else spin_unlock_irqrestore(&dhd->tcpack_lock, flags); #endif /* BCMSDIO */ } } #endif /* DHDTCPACK_SUPPRESS */ uint8* dhd_os_prealloc(dhd_pub_t *dhdpub, int section, uint size, bool kmalloc_if_fail) { uint8* buf; gfp_t flags = CAN_SLEEP() ? GFP_KERNEL: GFP_ATOMIC; buf = (uint8*)wifi_platform_prealloc(dhdpub->info->adapter, section, size); if (buf == NULL && kmalloc_if_fail) buf = kmalloc(size, flags); return buf; } void dhd_os_prefree(dhd_pub_t *dhdpub, void *addr, uint size) { } #if defined(WL_WIRELESS_EXT) struct iw_statistics * dhd_get_wireless_stats(struct net_device *dev) { int res = 0; dhd_info_t *dhd = DHD_DEV_INFO(dev); if (!dhd->pub.up) { return NULL; } res = wl_iw_get_wireless_stats(dev, &dhd->iw.wstats); if (res == 0) return &dhd->iw.wstats; else return NULL; } #endif /* defined(WL_WIRELESS_EXT) */ static int dhd_wl_host_event(dhd_info_t *dhd, int ifidx, void *pktdata, uint16 pktlen, wl_event_msg_t *event, void **data) { int bcmerror = 0; #ifdef WL_CFG80211 unsigned long flags = 0; #endif /* WL_CFG80211 */ ASSERT(dhd != NULL); #ifdef SHOW_LOGTRACE bcmerror = wl_process_host_event(&dhd->pub, &ifidx, pktdata, pktlen, event, data, &dhd->event_data); #else bcmerror = wl_process_host_event(&dhd->pub, &ifidx, pktdata, pktlen, event, data, NULL); #endif /* SHOW_LOGTRACE */ if (bcmerror != BCME_OK) return (bcmerror); #if defined(WL_EXT_IAPSTA) || defined(USE_IW) wl_ext_event_send(dhd->pub.event_params, event, *data); #endif #ifdef WL_CFG80211 ASSERT(dhd->iflist[ifidx] != NULL); ASSERT(dhd->iflist[ifidx]->net != NULL); if (dhd->iflist[ifidx]->net) { spin_lock_irqsave(&dhd->pub.up_lock, flags); if (dhd->pub.up) { wl_cfg80211_event(dhd->iflist[ifidx]->net, event, *data); } spin_unlock_irqrestore(&dhd->pub.up_lock, flags); } #endif /* defined(WL_CFG80211) */ return (bcmerror); } /* send up locally generated event */ void dhd_sendup_event(dhd_pub_t *dhdp, wl_event_msg_t *event, void *data) { /* Just return from here */ return; } #ifdef LOG_INTO_TCPDUMP void dhd_sendup_log(dhd_pub_t *dhdp, void *data, int data_len) { struct sk_buff *p, *skb; uint32 pktlen; int len; dhd_if_t *ifp; dhd_info_t *dhd; uchar *skb_data; int ifidx = 0; struct ether_header eth; pktlen = sizeof(eth) + data_len; dhd = dhdp->info; if ((p = PKTGET(dhdp->osh, pktlen, FALSE))) { ASSERT(ISALIGNED((uintptr)PKTDATA(dhdp->osh, p), sizeof(uint32))); bcopy(&dhdp->mac, ð.ether_dhost, ETHER_ADDR_LEN); bcopy(&dhdp->mac, ð.ether_shost, ETHER_ADDR_LEN); ETHER_TOGGLE_LOCALADDR(ð.ether_shost); eth.ether_type = hton16(ETHER_TYPE_BRCM); bcopy((void *)ð, PKTDATA(dhdp->osh, p), sizeof(eth)); bcopy(data, PKTDATA(dhdp->osh, p) + sizeof(eth), data_len); skb = PKTTONATIVE(dhdp->osh, p); skb_data = skb->data; len = skb->len; ifidx = dhd_ifname2idx(dhd, "wlan0"); ifp = dhd->iflist[ifidx]; if (ifp == NULL) ifp = dhd->iflist[0]; ASSERT(ifp); skb->dev = ifp->net; skb->protocol = eth_type_trans(skb, skb->dev); skb->data = skb_data; skb->len = len; /* Strip header, count, deliver upward */ skb_pull(skb, ETH_HLEN); bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__); /* Send the packet */ if (in_interrupt()) { netif_rx(skb); } else { netif_rx_ni(skb); } } else { /* Could not allocate a sk_buf */ DHD_ERROR(("%s: unable to alloc sk_buf\n", __FUNCTION__)); } } #endif /* LOG_INTO_TCPDUMP */ void dhd_wait_for_event(dhd_pub_t *dhd, bool *lockvar) { #if defined(BCMSDIO) && (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0)) struct dhd_info *dhdinfo = dhd->info; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) int timeout = msecs_to_jiffies(IOCTL_RESP_TIMEOUT); #else int timeout = (IOCTL_RESP_TIMEOUT / 1000) * HZ; #endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) */ dhd_os_sdunlock(dhd); wait_event_timeout(dhdinfo->ctrl_wait, (*lockvar == FALSE), timeout); dhd_os_sdlock(dhd); #endif /* defined(BCMSDIO) && (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0)) */ return; } void dhd_wait_event_wakeup(dhd_pub_t *dhd) { #if defined(BCMSDIO) && (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0)) struct dhd_info *dhdinfo = dhd->info; if (waitqueue_active(&dhdinfo->ctrl_wait)) wake_up(&dhdinfo->ctrl_wait); #endif return; } #if defined(BCMSDIO) || defined(BCMPCIE) || defined(BCMDBUS) int dhd_net_bus_devreset(struct net_device *dev, uint8 flag) { int ret; dhd_info_t *dhd = DHD_DEV_INFO(dev); if (flag == TRUE) { /* Issue wl down command before resetting the chip */ if (dhd_wl_ioctl_cmd(&dhd->pub, WLC_DOWN, NULL, 0, TRUE, 0) < 0) { DHD_TRACE(("%s: wl down failed\n", __FUNCTION__)); } #ifdef PROP_TXSTATUS if (dhd->pub.wlfc_enabled) { dhd_wlfc_deinit(&dhd->pub); } #endif /* PROP_TXSTATUS */ #ifdef PNO_SUPPORT if (dhd->pub.pno_state) { dhd_pno_deinit(&dhd->pub); } #endif #ifdef RTT_SUPPORT if (dhd->pub.rtt_state) { dhd_rtt_deinit(&dhd->pub); } #endif /* RTT_SUPPORT */ #if defined(DBG_PKT_MON) && !defined(DBG_PKT_MON_INIT_DEFAULT) dhd_os_dbg_detach_pkt_monitor(&dhd->pub); #endif /* DBG_PKT_MON */ } #ifdef BCMSDIO if (!flag) { dhd_update_fw_nv_path(dhd); /* update firmware and nvram path to sdio bus */ dhd_bus_update_fw_nv_path(dhd->pub.bus, dhd->fw_path, dhd->nv_path, dhd->clm_path, dhd->conf_path); } #endif /* BCMSDIO */ ret = dhd_bus_devreset(&dhd->pub, flag); if (ret) { DHD_ERROR(("%s: dhd_bus_devreset: %d\n", __FUNCTION__, ret)); return ret; } return ret; } #ifdef BCMSDIO int dhd_net_bus_suspend(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); return dhd_bus_suspend(&dhd->pub); } int dhd_net_bus_resume(struct net_device *dev, uint8 stage) { dhd_info_t *dhd = DHD_DEV_INFO(dev); return dhd_bus_resume(&dhd->pub, stage); } #endif /* BCMSDIO */ #endif /* BCMSDIO || BCMPCIE || BCMDBUS */ int net_os_set_suspend_disable(struct net_device *dev, int val) { dhd_info_t *dhd = DHD_DEV_INFO(dev); int ret = 0; if (dhd) { ret = dhd->pub.suspend_disable_flag; dhd->pub.suspend_disable_flag = val; } return ret; } int net_os_set_suspend(struct net_device *dev, int val, int force) { int ret = 0; dhd_info_t *dhd = DHD_DEV_INFO(dev); if (dhd && dhd->pub.conf->suspend_mode == EARLY_SUSPEND) { if (!val) dhd_conf_set_suspend_resume(&dhd->pub, val); #ifdef CONFIG_MACH_UNIVERSAL7420 #endif /* CONFIG_MACH_UNIVERSAL7420 */ #if defined(CONFIG_HAS_EARLYSUSPEND) && defined(DHD_USE_EARLYSUSPEND) ret = dhd_set_suspend(val, &dhd->pub); #else ret = dhd_suspend_resume_helper(dhd, val, force); #endif #ifdef WL_CFG80211 wl_cfg80211_update_power_mode(dev); #endif if (val) dhd_conf_set_suspend_resume(&dhd->pub, val); } return ret; } int net_os_set_suspend_bcn_li_dtim(struct net_device *dev, int val) { dhd_info_t *dhd = DHD_DEV_INFO(dev); if (dhd) dhd->pub.suspend_bcn_li_dtim = val; return 0; } int net_os_set_max_dtim_enable(struct net_device *dev, int val) { dhd_info_t *dhd = DHD_DEV_INFO(dev); if (dhd) { DHD_ERROR(("%s: use MAX bcn_li_dtim in suspend %s\n", __FUNCTION__, (val ? "Enable" : "Disable"))); if (val) { dhd->pub.max_dtim_enable = TRUE; } else { dhd->pub.max_dtim_enable = FALSE; } } else { return -1; } return 0; } #ifdef PKT_FILTER_SUPPORT int net_os_rxfilter_add_remove(struct net_device *dev, int add_remove, int num) { int ret = 0; #ifndef GAN_LITE_NAT_KEEPALIVE_FILTER dhd_info_t *dhd = DHD_DEV_INFO(dev); if (!dhd_master_mode) add_remove = !add_remove; DHD_ERROR(("%s: add_remove = %d, num = %d\n", __FUNCTION__, add_remove, num)); if (!dhd || (num == DHD_UNICAST_FILTER_NUM)) { return 0; } if (num >= dhd->pub.pktfilter_count) { return -EINVAL; } ret = dhd_packet_filter_add_remove(&dhd->pub, add_remove, num); #endif /* !GAN_LITE_NAT_KEEPALIVE_FILTER */ return ret; } int dhd_os_enable_packet_filter(dhd_pub_t *dhdp, int val) { int ret = 0; /* Packet filtering is set only if we still in early-suspend and * we need either to turn it ON or turn it OFF * We can always turn it OFF in case of early-suspend, but we turn it * back ON only if suspend_disable_flag was not set */ if (dhdp && dhdp->up) { if (dhdp->in_suspend) { if (!val || (val && !dhdp->suspend_disable_flag)) dhd_enable_packet_filter(val, dhdp); } } return ret; } /* function to enable/disable packet for Network device */ int net_os_enable_packet_filter(struct net_device *dev, int val) { dhd_info_t *dhd = DHD_DEV_INFO(dev); DHD_ERROR(("%s: val = %d\n", __FUNCTION__, val)); return dhd_os_enable_packet_filter(&dhd->pub, val); } #endif /* PKT_FILTER_SUPPORT */ int dhd_dev_init_ioctl(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); int ret; if ((ret = dhd_sync_with_dongle(&dhd->pub)) < 0) goto done; done: return ret; } int dhd_dev_get_feature_set(struct net_device *dev) { dhd_info_t *ptr = *(dhd_info_t **)netdev_priv(dev); dhd_pub_t *dhd = (&ptr->pub); int feature_set = 0; if (FW_SUPPORTED(dhd, sta)) feature_set |= WIFI_FEATURE_INFRA; if (FW_SUPPORTED(dhd, dualband)) feature_set |= WIFI_FEATURE_INFRA_5G; if (FW_SUPPORTED(dhd, p2p)) feature_set |= WIFI_FEATURE_P2P; if (dhd->op_mode & DHD_FLAG_HOSTAP_MODE) feature_set |= WIFI_FEATURE_SOFT_AP; if (FW_SUPPORTED(dhd, tdls)) feature_set |= WIFI_FEATURE_TDLS; if (FW_SUPPORTED(dhd, vsdb)) feature_set |= WIFI_FEATURE_TDLS_OFFCHANNEL; if (FW_SUPPORTED(dhd, nan)) { feature_set |= WIFI_FEATURE_NAN; /* NAN is essentail for d2d rtt */ if (FW_SUPPORTED(dhd, rttd2d)) feature_set |= WIFI_FEATURE_D2D_RTT; } #ifdef RTT_SUPPORT if (dhd->rtt_supported) { feature_set |= WIFI_FEATURE_D2D_RTT; feature_set |= WIFI_FEATURE_D2AP_RTT; } #endif /* RTT_SUPPORT */ #ifdef LINKSTAT_SUPPORT feature_set |= WIFI_FEATURE_LINKSTAT; #endif /* LINKSTAT_SUPPORT */ #ifdef PNO_SUPPORT if (dhd_is_pno_supported(dhd)) { feature_set |= WIFI_FEATURE_PNO; #ifdef GSCAN_SUPPORT /* terence 20171115: remove to get GTS PASS * com.google.android.gts.wifi.WifiHostTest#testWifiScannerBatchTimestamp */ // feature_set |= WIFI_FEATURE_GSCAN; // feature_set |= WIFI_FEATURE_HAL_EPNO; #endif /* GSCAN_SUPPORT */ } #endif /* PNO_SUPPORT */ #ifdef RSSI_MONITOR_SUPPORT if (FW_SUPPORTED(dhd, rssi_mon)) { feature_set |= WIFI_FEATURE_RSSI_MONITOR; } #endif /* RSSI_MONITOR_SUPPORT */ #ifdef WL11U feature_set |= WIFI_FEATURE_HOTSPOT; #endif /* WL11U */ #ifdef NDO_CONFIG_SUPPORT feature_set |= WIFI_FEATURE_CONFIG_NDO; #endif /* NDO_CONFIG_SUPPORT */ #ifdef KEEP_ALIVE feature_set |= WIFI_FEATURE_MKEEP_ALIVE; #endif /* KEEP_ALIVE */ return feature_set; } int dhd_dev_get_feature_set_matrix(struct net_device *dev, int num) { int feature_set_full; int ret = 0; feature_set_full = dhd_dev_get_feature_set(dev); /* Common feature set for all interface */ ret = (feature_set_full & WIFI_FEATURE_INFRA) | (feature_set_full & WIFI_FEATURE_INFRA_5G) | (feature_set_full & WIFI_FEATURE_D2D_RTT) | (feature_set_full & WIFI_FEATURE_D2AP_RTT) | (feature_set_full & WIFI_FEATURE_RSSI_MONITOR) | (feature_set_full & WIFI_FEATURE_EPR); /* Specific feature group for each interface */ switch (num) { case 0: ret |= (feature_set_full & WIFI_FEATURE_P2P) | /* Not supported yet */ /* (feature_set_full & WIFI_FEATURE_NAN) | */ (feature_set_full & WIFI_FEATURE_TDLS) | (feature_set_full & WIFI_FEATURE_PNO) | (feature_set_full & WIFI_FEATURE_HAL_EPNO) | (feature_set_full & WIFI_FEATURE_BATCH_SCAN) | (feature_set_full & WIFI_FEATURE_GSCAN) | (feature_set_full & WIFI_FEATURE_HOTSPOT) | (feature_set_full & WIFI_FEATURE_ADDITIONAL_STA); break; case 1: ret |= (feature_set_full & WIFI_FEATURE_P2P); /* Not yet verified NAN with P2P */ /* (feature_set_full & WIFI_FEATURE_NAN) | */ break; case 2: ret |= (feature_set_full & WIFI_FEATURE_NAN) | (feature_set_full & WIFI_FEATURE_TDLS) | (feature_set_full & WIFI_FEATURE_TDLS_OFFCHANNEL); break; default: ret = WIFI_FEATURE_INVALID; DHD_ERROR(("%s: Out of index(%d) for get feature set\n", __FUNCTION__, num)); break; } return ret; } #ifdef CUSTOM_FORCE_NODFS_FLAG int dhd_dev_set_nodfs(struct net_device *dev, u32 nodfs) { dhd_info_t *dhd = DHD_DEV_INFO(dev); if (nodfs) dhd->pub.dhd_cflags |= WLAN_PLAT_NODFS_FLAG; else dhd->pub.dhd_cflags &= ~WLAN_PLAT_NODFS_FLAG; dhd->pub.force_country_change = TRUE; return 0; } #endif /* CUSTOM_FORCE_NODFS_FLAG */ #ifdef NDO_CONFIG_SUPPORT int dhd_dev_ndo_cfg(struct net_device *dev, u8 enable) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); dhd_pub_t *dhdp = &dhd->pub; int ret = 0; if (enable) { /* enable ND offload feature (will be enabled in FW on suspend) */ dhdp->ndo_enable = TRUE; /* Update changes of anycast address & DAD failed address */ ret = dhd_dev_ndo_update_inet6addr(dev); if ((ret < 0) && (ret != BCME_NORESOURCE)) { DHD_ERROR(("%s: failed to update host ip addr: %d\n", __FUNCTION__, ret)); return ret; } } else { /* disable ND offload feature */ dhdp->ndo_enable = FALSE; /* disable ND offload in FW */ ret = dhd_ndo_enable(dhdp, 0); if (ret < 0) { DHD_ERROR(("%s: failed to disable NDO: %d\n", __FUNCTION__, ret)); } } return ret; } /* #pragma used as a WAR to fix build failure, * ignore dropping of 'const' qualifier in 'list_entry' macro * this pragma disables the warning only for the following function */ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" static int dhd_dev_ndo_get_valid_inet6addr_count(struct inet6_dev *inet6) { struct inet6_ifaddr *ifa; struct ifacaddr6 *acaddr = NULL; int addr_count = 0; /* lock */ read_lock_bh(&inet6->lock); /* Count valid unicast address */ list_for_each_entry(ifa, &inet6->addr_list, if_list) { if ((ifa->flags & IFA_F_DADFAILED) == 0) { addr_count++; } } /* Count anycast address */ acaddr = inet6->ac_list; while (acaddr) { addr_count++; acaddr = acaddr->aca_next; } /* unlock */ read_unlock_bh(&inet6->lock); return addr_count; } int dhd_dev_ndo_update_inet6addr(struct net_device *dev) { dhd_info_t *dhd; dhd_pub_t *dhdp; struct inet6_dev *inet6; struct inet6_ifaddr *ifa; struct ifacaddr6 *acaddr = NULL; struct in6_addr *ipv6_addr = NULL; int cnt, i; int ret = BCME_OK; /* * this function evaulates host ip address in struct inet6_dev * unicast addr in inet6_dev->addr_list * anycast addr in inet6_dev->ac_list * while evaluating inet6_dev, read_lock_bh() is required to prevent * access on null(freed) pointer. */ if (dev) { inet6 = dev->ip6_ptr; if (!inet6) { DHD_ERROR(("%s: Invalid inet6_dev\n", __FUNCTION__)); return BCME_ERROR; } dhd = DHD_DEV_INFO(dev); if (!dhd) { DHD_ERROR(("%s: Invalid dhd_info\n", __FUNCTION__)); return BCME_ERROR; } dhdp = &dhd->pub; if (dhd_net2idx(dhd, dev) != 0) { DHD_ERROR(("%s: Not primary interface\n", __FUNCTION__)); return BCME_ERROR; } } else { DHD_ERROR(("%s: Invalid net_device\n", __FUNCTION__)); return BCME_ERROR; } /* Check host IP overflow */ cnt = dhd_dev_ndo_get_valid_inet6addr_count(inet6); if (cnt > dhdp->ndo_max_host_ip) { if (!dhdp->ndo_host_ip_overflow) { dhdp->ndo_host_ip_overflow = TRUE; /* Disable ND offload in FW */ DHD_INFO(("%s: Host IP overflow, disable NDO\n", __FUNCTION__)); ret = dhd_ndo_enable(dhdp, 0); } return ret; } /* * Allocate ipv6 addr buffer to store addresses to be added/removed. * driver need to lock inet6_dev while accessing structure. but, driver * cannot use ioctl while inet6_dev locked since it requires scheduling * hence, copy addresses to the buffer and do ioctl after unlock. */ ipv6_addr = (struct in6_addr *)MALLOC(dhdp->osh, sizeof(struct in6_addr) * dhdp->ndo_max_host_ip); if (!ipv6_addr) { DHD_ERROR(("%s: failed to alloc ipv6 addr buffer\n", __FUNCTION__)); return BCME_NOMEM; } /* Find DAD failed unicast address to be removed */ cnt = 0; read_lock_bh(&inet6->lock); list_for_each_entry(ifa, &inet6->addr_list, if_list) { /* DAD failed unicast address */ if ((ifa->flags & IFA_F_DADFAILED) && (cnt < dhdp->ndo_max_host_ip)) { memcpy(&ipv6_addr[cnt], &ifa->addr, sizeof(struct in6_addr)); cnt++; } } read_unlock_bh(&inet6->lock); /* Remove DAD failed unicast address */ for (i = 0; i < cnt; i++) { DHD_INFO(("%s: Remove DAD failed addr\n", __FUNCTION__)); ret = dhd_ndo_remove_ip_by_addr(dhdp, (char *)&ipv6_addr[i], 0); if (ret < 0) { goto done; } } /* Remove all anycast address */ ret = dhd_ndo_remove_ip_by_type(dhdp, WL_ND_IPV6_ADDR_TYPE_ANYCAST, 0); if (ret < 0) { goto done; } /* * if ND offload was disabled due to host ip overflow, * attempt to add valid unicast address. */ if (dhdp->ndo_host_ip_overflow) { /* Find valid unicast address */ cnt = 0; read_lock_bh(&inet6->lock); list_for_each_entry(ifa, &inet6->addr_list, if_list) { /* valid unicast address */ if (!(ifa->flags & IFA_F_DADFAILED) && (cnt < dhdp->ndo_max_host_ip)) { memcpy(&ipv6_addr[cnt], &ifa->addr, sizeof(struct in6_addr)); cnt++; } } read_unlock_bh(&inet6->lock); /* Add valid unicast address */ for (i = 0; i < cnt; i++) { ret = dhd_ndo_add_ip_with_type(dhdp, (char *)&ipv6_addr[i], WL_ND_IPV6_ADDR_TYPE_UNICAST, 0); if (ret < 0) { goto done; } } } /* Find anycast address */ cnt = 0; read_lock_bh(&inet6->lock); acaddr = inet6->ac_list; while (acaddr) { if (cnt < dhdp->ndo_max_host_ip) { memcpy(&ipv6_addr[cnt], &acaddr->aca_addr, sizeof(struct in6_addr)); cnt++; } acaddr = acaddr->aca_next; } read_unlock_bh(&inet6->lock); /* Add anycast address */ for (i = 0; i < cnt; i++) { ret = dhd_ndo_add_ip_with_type(dhdp, (char *)&ipv6_addr[i], WL_ND_IPV6_ADDR_TYPE_ANYCAST, 0); if (ret < 0) { goto done; } } /* Now All host IP addr were added successfully */ if (dhdp->ndo_host_ip_overflow) { dhdp->ndo_host_ip_overflow = FALSE; if (dhdp->in_suspend) { /* drvier is in (early) suspend state, need to enable ND offload in FW */ DHD_INFO(("%s: enable NDO\n", __FUNCTION__)); ret = dhd_ndo_enable(dhdp, 1); } } done: if (ipv6_addr) { MFREE(dhdp->osh, ipv6_addr, sizeof(struct in6_addr) * dhdp->ndo_max_host_ip); } return ret; } #pragma GCC diagnostic pop #endif /* NDO_CONFIG_SUPPORT */ #ifdef PNO_SUPPORT /* Linux wrapper to call common dhd_pno_stop_for_ssid */ int dhd_dev_pno_stop_for_ssid(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); return (dhd_pno_stop_for_ssid(&dhd->pub)); } /* Linux wrapper to call common dhd_pno_set_for_ssid */ int dhd_dev_pno_set_for_ssid(struct net_device *dev, wlc_ssid_ext_t* ssids_local, int nssid, uint16 scan_fr, int pno_repeat, int pno_freq_expo_max, uint16 *channel_list, int nchan) { dhd_info_t *dhd = DHD_DEV_INFO(dev); return (dhd_pno_set_for_ssid(&dhd->pub, ssids_local, nssid, scan_fr, pno_repeat, pno_freq_expo_max, channel_list, nchan)); } /* Linux wrapper to call common dhd_pno_enable */ int dhd_dev_pno_enable(struct net_device *dev, int enable) { dhd_info_t *dhd = DHD_DEV_INFO(dev); return (dhd_pno_enable(&dhd->pub, enable)); } /* Linux wrapper to call common dhd_pno_set_for_hotlist */ int dhd_dev_pno_set_for_hotlist(struct net_device *dev, wl_pfn_bssid_t *p_pfn_bssid, struct dhd_pno_hotlist_params *hotlist_params) { dhd_info_t *dhd = DHD_DEV_INFO(dev); return (dhd_pno_set_for_hotlist(&dhd->pub, p_pfn_bssid, hotlist_params)); } /* Linux wrapper to call common dhd_dev_pno_stop_for_batch */ int dhd_dev_pno_stop_for_batch(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); return (dhd_pno_stop_for_batch(&dhd->pub)); } /* Linux wrapper to call common dhd_dev_pno_set_for_batch */ int dhd_dev_pno_set_for_batch(struct net_device *dev, struct dhd_pno_batch_params *batch_params) { dhd_info_t *dhd = DHD_DEV_INFO(dev); return (dhd_pno_set_for_batch(&dhd->pub, batch_params)); } /* Linux wrapper to call common dhd_dev_pno_get_for_batch */ int dhd_dev_pno_get_for_batch(struct net_device *dev, char *buf, int bufsize) { dhd_info_t *dhd = DHD_DEV_INFO(dev); return (dhd_pno_get_for_batch(&dhd->pub, buf, bufsize, PNO_STATUS_NORMAL)); } #endif /* PNO_SUPPORT */ #if defined(PNO_SUPPORT) #ifdef GSCAN_SUPPORT bool dhd_dev_is_legacy_pno_enabled(struct net_device *dev) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_is_legacy_pno_enabled(&dhd->pub)); } int dhd_dev_set_epno(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); if (!dhd) { return BCME_ERROR; } return dhd_pno_set_epno(&dhd->pub); } int dhd_dev_flush_fw_epno(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); if (!dhd) { return BCME_ERROR; } return dhd_pno_flush_fw_epno(&dhd->pub); } /* Linux wrapper to call common dhd_pno_set_cfg_gscan */ int dhd_dev_pno_set_cfg_gscan(struct net_device *dev, dhd_pno_gscan_cmd_cfg_t type, void *buf, bool flush) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_pno_set_cfg_gscan(&dhd->pub, type, buf, flush)); } /* Linux wrapper to call common dhd_wait_batch_results_complete */ int dhd_dev_wait_batch_results_complete(struct net_device *dev) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_wait_batch_results_complete(&dhd->pub)); } /* Linux wrapper to call common dhd_pno_lock_batch_results */ int dhd_dev_pno_lock_access_batch_results(struct net_device *dev) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_pno_lock_batch_results(&dhd->pub)); } /* Linux wrapper to call common dhd_pno_unlock_batch_results */ void dhd_dev_pno_unlock_access_batch_results(struct net_device *dev) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_pno_unlock_batch_results(&dhd->pub)); } /* Linux wrapper to call common dhd_pno_initiate_gscan_request */ int dhd_dev_pno_run_gscan(struct net_device *dev, bool run, bool flush) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_pno_initiate_gscan_request(&dhd->pub, run, flush)); } /* Linux wrapper to call common dhd_pno_enable_full_scan_result */ int dhd_dev_pno_enable_full_scan_result(struct net_device *dev, bool real_time_flag) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_pno_enable_full_scan_result(&dhd->pub, real_time_flag)); } /* Linux wrapper to call common dhd_handle_hotlist_scan_evt */ void * dhd_dev_hotlist_scan_event(struct net_device *dev, const void *data, int *send_evt_bytes, hotlist_type_t type) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_handle_hotlist_scan_evt(&dhd->pub, data, send_evt_bytes, type)); } /* Linux wrapper to call common dhd_process_full_gscan_result */ void * dhd_dev_process_full_gscan_result(struct net_device *dev, const void *data, uint32 len, int *send_evt_bytes) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_process_full_gscan_result(&dhd->pub, data, len, send_evt_bytes)); } void dhd_dev_gscan_hotlist_cache_cleanup(struct net_device *dev, hotlist_type_t type) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); dhd_gscan_hotlist_cache_cleanup(&dhd->pub, type); return; } int dhd_dev_gscan_batch_cache_cleanup(struct net_device *dev) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_gscan_batch_cache_cleanup(&dhd->pub)); } /* Linux wrapper to call common dhd_retreive_batch_scan_results */ int dhd_dev_retrieve_batch_scan(struct net_device *dev) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_retreive_batch_scan_results(&dhd->pub)); } /* Linux wrapper to call common dhd_pno_process_epno_result */ void * dhd_dev_process_epno_result(struct net_device *dev, const void *data, uint32 event, int *send_evt_bytes) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_pno_process_epno_result(&dhd->pub, data, event, send_evt_bytes)); } int dhd_dev_set_lazy_roam_cfg(struct net_device *dev, wlc_roam_exp_params_t *roam_param) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); wl_roam_exp_cfg_t roam_exp_cfg; int err; if (!roam_param) { return BCME_BADARG; } DHD_ERROR(("a_band_boost_thr %d a_band_penalty_thr %d\n", roam_param->a_band_boost_threshold, roam_param->a_band_penalty_threshold)); DHD_ERROR(("a_band_boost_factor %d a_band_penalty_factor %d cur_bssid_boost %d\n", roam_param->a_band_boost_factor, roam_param->a_band_penalty_factor, roam_param->cur_bssid_boost)); DHD_ERROR(("alert_roam_trigger_thr %d a_band_max_boost %d\n", roam_param->alert_roam_trigger_threshold, roam_param->a_band_max_boost)); memcpy(&roam_exp_cfg.params, roam_param, sizeof(*roam_param)); roam_exp_cfg.version = ROAM_EXP_CFG_VERSION; roam_exp_cfg.flags = ROAM_EXP_CFG_PRESENT; if (dhd->pub.lazy_roam_enable) { roam_exp_cfg.flags |= ROAM_EXP_ENABLE_FLAG; } err = dhd_iovar(&dhd->pub, 0, "roam_exp_params", (char *)&roam_exp_cfg, sizeof(roam_exp_cfg), NULL, 0, TRUE); if (err < 0) { DHD_ERROR(("%s : Failed to execute roam_exp_params %d\n", __FUNCTION__, err)); } return err; } int dhd_dev_lazy_roam_enable(struct net_device *dev, uint32 enable) { int err; dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); wl_roam_exp_cfg_t roam_exp_cfg; memset(&roam_exp_cfg, 0, sizeof(roam_exp_cfg)); roam_exp_cfg.version = ROAM_EXP_CFG_VERSION; if (enable) { roam_exp_cfg.flags = ROAM_EXP_ENABLE_FLAG; } err = dhd_iovar(&dhd->pub, 0, "roam_exp_params", (char *)&roam_exp_cfg, sizeof(roam_exp_cfg), NULL, 0, TRUE); if (err < 0) { DHD_ERROR(("%s : Failed to execute roam_exp_params %d\n", __FUNCTION__, err)); } else { dhd->pub.lazy_roam_enable = (enable != 0); } return err; } int dhd_dev_set_lazy_roam_bssid_pref(struct net_device *dev, wl_bssid_pref_cfg_t *bssid_pref, uint32 flush) { int err; int len; dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); bssid_pref->version = BSSID_PREF_LIST_VERSION; /* By default programming bssid pref flushes out old values */ bssid_pref->flags = (flush && !bssid_pref->count) ? ROAM_EXP_CLEAR_BSSID_PREF: 0; len = sizeof(wl_bssid_pref_cfg_t); len += (bssid_pref->count - 1) * sizeof(wl_bssid_pref_list_t); err = dhd_iovar(&(dhd->pub), 0, "roam_exp_bssid_pref", (char *)bssid_pref, len, NULL, 0, TRUE); if (err != BCME_OK) { DHD_ERROR(("%s : Failed to execute roam_exp_bssid_pref %d\n", __FUNCTION__, err)); } return err; } int dhd_dev_set_blacklist_bssid(struct net_device *dev, maclist_t *blacklist, uint32 len, uint32 flush) { int err; dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); int macmode; if (blacklist) { err = dhd_wl_ioctl_cmd(&(dhd->pub), WLC_SET_MACLIST, (char *)blacklist, len, TRUE, 0); if (err != BCME_OK) { DHD_ERROR(("%s : WLC_SET_MACLIST failed %d\n", __FUNCTION__, err)); return err; } } /* By default programming blacklist flushes out old values */ macmode = (flush && !blacklist) ? WLC_MACMODE_DISABLED : WLC_MACMODE_DENY; err = dhd_wl_ioctl_cmd(&(dhd->pub), WLC_SET_MACMODE, (char *)&macmode, sizeof(macmode), TRUE, 0); if (err != BCME_OK) { DHD_ERROR(("%s : WLC_SET_MACMODE failed %d\n", __FUNCTION__, err)); } return err; } int dhd_dev_set_whitelist_ssid(struct net_device *dev, wl_ssid_whitelist_t *ssid_whitelist, uint32 len, uint32 flush) { int err; dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); wl_ssid_whitelist_t whitelist_ssid_flush; if (!ssid_whitelist) { if (flush) { ssid_whitelist = &whitelist_ssid_flush; ssid_whitelist->ssid_count = 0; } else { DHD_ERROR(("%s : Nothing to do here\n", __FUNCTION__)); return BCME_BADARG; } } ssid_whitelist->version = SSID_WHITELIST_VERSION; ssid_whitelist->flags = flush ? ROAM_EXP_CLEAR_SSID_WHITELIST : 0; err = dhd_iovar(&(dhd->pub), 0, "roam_exp_ssid_whitelist", (char *)ssid_whitelist, len, NULL, 0, TRUE); if (err != BCME_OK) { DHD_ERROR(("%s : Failed to execute roam_exp_bssid_pref %d\n", __FUNCTION__, err)); } return err; } #endif /* GSCAN_SUPPORT */ #if defined(GSCAN_SUPPORT) || defined(DHD_GET_VALID_CHANNELS) /* Linux wrapper to call common dhd_pno_get_gscan */ void * dhd_dev_pno_get_gscan(struct net_device *dev, dhd_pno_gscan_cmd_cfg_t type, void *info, uint32 *len) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_pno_get_gscan(&dhd->pub, type, info, len)); } #endif /* GSCAN_SUPPORT || DHD_GET_VALID_CHANNELS */ #endif #ifdef RSSI_MONITOR_SUPPORT int dhd_dev_set_rssi_monitor_cfg(struct net_device *dev, int start, int8 max_rssi, int8 min_rssi) { int err; wl_rssi_monitor_cfg_t rssi_monitor; dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); rssi_monitor.version = RSSI_MONITOR_VERSION; rssi_monitor.max_rssi = max_rssi; rssi_monitor.min_rssi = min_rssi; rssi_monitor.flags = start ? 0: RSSI_MONITOR_STOP; err = dhd_iovar(&(dhd->pub), 0, "rssi_monitor", (char *)&rssi_monitor, sizeof(rssi_monitor), NULL, 0, TRUE); if (err < 0 && err != BCME_UNSUPPORTED) { DHD_ERROR(("%s : Failed to execute rssi_monitor %d\n", __FUNCTION__, err)); } return err; } #endif /* RSSI_MONITOR_SUPPORT */ #ifdef DHDTCPACK_SUPPRESS int dhd_dev_set_tcpack_sup_mode_cfg(struct net_device *dev, uint8 enable) { int err; dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); err = dhd_tcpack_suppress_set(&(dhd->pub), enable); if (err != BCME_OK) { DHD_ERROR(("%s : Failed to execute rssi_monitor %d\n", __FUNCTION__, err)); } return err; } #endif /* DHDTCPACK_SUPPRESS */ int dhd_dev_cfg_rand_mac_oui(struct net_device *dev, uint8 *oui) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); dhd_pub_t *dhdp = &dhd->pub; if (!dhdp || !oui) { DHD_ERROR(("NULL POINTER : %s\n", __FUNCTION__)); return BCME_ERROR; } if (ETHER_ISMULTI(oui)) { DHD_ERROR(("Expected unicast OUI\n")); return BCME_ERROR; } else { uint8 *rand_mac_oui = dhdp->rand_mac_oui; memcpy(rand_mac_oui, oui, DOT11_OUI_LEN); DHD_ERROR(("Random MAC OUI to be used - %02x:%02x:%02x\n", rand_mac_oui[0], rand_mac_oui[1], rand_mac_oui[2])); } return BCME_OK; } int dhd_set_rand_mac_oui(dhd_pub_t *dhd) { int err; wl_pfn_macaddr_cfg_t wl_cfg; uint8 *rand_mac_oui = dhd->rand_mac_oui; memset(&wl_cfg.macaddr, 0, ETHER_ADDR_LEN); memcpy(&wl_cfg.macaddr, rand_mac_oui, DOT11_OUI_LEN); wl_cfg.version = WL_PFN_MACADDR_CFG_VER; if (ETHER_ISNULLADDR(&wl_cfg.macaddr)) { wl_cfg.flags = 0; } else { wl_cfg.flags = (WL_PFN_MAC_OUI_ONLY_MASK | WL_PFN_SET_MAC_UNASSOC_MASK); } DHD_ERROR(("Setting rand mac oui to FW - %02x:%02x:%02x\n", rand_mac_oui[0], rand_mac_oui[1], rand_mac_oui[2])); err = dhd_iovar(dhd, 0, "pfn_macaddr", (char *)&wl_cfg, sizeof(wl_cfg), NULL, 0, TRUE); if (err < 0) { DHD_ERROR(("%s : failed to execute pfn_macaddr %d\n", __FUNCTION__, err)); } return err; } #ifdef RTT_SUPPORT #ifdef WL_CFG80211 /* Linux wrapper to call common dhd_pno_set_cfg_gscan */ int dhd_dev_rtt_set_cfg(struct net_device *dev, void *buf) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_rtt_set_cfg(&dhd->pub, buf)); } int dhd_dev_rtt_cancel_cfg(struct net_device *dev, struct ether_addr *mac_list, int mac_cnt) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_rtt_stop(&dhd->pub, mac_list, mac_cnt)); } int dhd_dev_rtt_register_noti_callback(struct net_device *dev, void *ctx, dhd_rtt_compl_noti_fn noti_fn) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_rtt_register_noti_callback(&dhd->pub, ctx, noti_fn)); } int dhd_dev_rtt_unregister_noti_callback(struct net_device *dev, dhd_rtt_compl_noti_fn noti_fn) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_rtt_unregister_noti_callback(&dhd->pub, noti_fn)); } int dhd_dev_rtt_capability(struct net_device *dev, rtt_capabilities_t *capa) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_rtt_capability(&dhd->pub, capa)); } int dhd_dev_rtt_avail_channel(struct net_device *dev, wifi_channel_info *channel_info) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_rtt_avail_channel(&dhd->pub, channel_info)); } int dhd_dev_rtt_enable_responder(struct net_device *dev, wifi_channel_info *channel_info) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_rtt_enable_responder(&dhd->pub, channel_info)); } int dhd_dev_rtt_cancel_responder(struct net_device *dev) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_rtt_cancel_responder(&dhd->pub)); } #endif /* WL_CFG80211 */ #endif /* RTT_SUPPORT */ #ifdef KEEP_ALIVE #define KA_TEMP_BUF_SIZE 512 #define KA_FRAME_SIZE 300 int dhd_dev_start_mkeep_alive(dhd_pub_t *dhd_pub, uint8 mkeep_alive_id, uint8 *ip_pkt, uint16 ip_pkt_len, uint8* src_mac, uint8* dst_mac, uint32 period_msec) { const int ETHERTYPE_LEN = 2; char *pbuf = NULL; const char *str; wl_mkeep_alive_pkt_t mkeep_alive_pkt; wl_mkeep_alive_pkt_t *mkeep_alive_pktp = NULL; int buf_len = 0; int str_len = 0; int res = BCME_ERROR; int len_bytes = 0; int i = 0; /* ether frame to have both max IP pkt (256 bytes) and ether header */ char *pmac_frame = NULL; char *pmac_frame_begin = NULL; /* * The mkeep_alive packet is for STA interface only; if the bss is configured as AP, * dongle shall reject a mkeep_alive request. */ if (!dhd_support_sta_mode(dhd_pub)) return res; DHD_TRACE(("%s execution\n", __FUNCTION__)); if ((pbuf = kzalloc(KA_TEMP_BUF_SIZE, GFP_KERNEL)) == NULL) { DHD_ERROR(("failed to allocate buf with size %d\n", KA_TEMP_BUF_SIZE)); res = BCME_NOMEM; return res; } if ((pmac_frame = kzalloc(KA_FRAME_SIZE, GFP_KERNEL)) == NULL) { DHD_ERROR(("failed to allocate mac_frame with size %d\n", KA_FRAME_SIZE)); res = BCME_NOMEM; goto exit; } pmac_frame_begin = pmac_frame; /* * Get current mkeep-alive status. */ res = dhd_iovar(dhd_pub, 0, "mkeep_alive", &mkeep_alive_id, sizeof(mkeep_alive_id), pbuf, KA_TEMP_BUF_SIZE, FALSE); if (res < 0) { DHD_ERROR(("%s: Get mkeep_alive failed (error=%d)\n", __FUNCTION__, res)); goto exit; } else { /* Check available ID whether it is occupied */ mkeep_alive_pktp = (wl_mkeep_alive_pkt_t *) pbuf; if (dtoh32(mkeep_alive_pktp->period_msec != 0)) { DHD_ERROR(("%s: Get mkeep_alive failed, ID %u is in use.\n", __FUNCTION__, mkeep_alive_id)); /* Current occupied ID info */ DHD_ERROR(("%s: mkeep_alive\n", __FUNCTION__)); DHD_ERROR((" Id : %d\n" " Period: %d msec\n" " Length: %d\n" " Packet: 0x", mkeep_alive_pktp->keep_alive_id, dtoh32(mkeep_alive_pktp->period_msec), dtoh16(mkeep_alive_pktp->len_bytes))); for (i = 0; i < mkeep_alive_pktp->len_bytes; i++) { DHD_ERROR(("%02x", mkeep_alive_pktp->data[i])); } DHD_ERROR(("\n")); res = BCME_NOTFOUND; goto exit; } } /* Request the specified ID */ memset(&mkeep_alive_pkt, 0, sizeof(wl_mkeep_alive_pkt_t)); memset(pbuf, 0, KA_TEMP_BUF_SIZE); str = "mkeep_alive"; str_len = strlen(str); strncpy(pbuf, str, str_len); pbuf[str_len] = '\0'; mkeep_alive_pktp = (wl_mkeep_alive_pkt_t *) (pbuf + str_len + 1); mkeep_alive_pkt.period_msec = htod32(period_msec); buf_len = str_len + 1; mkeep_alive_pkt.version = htod16(WL_MKEEP_ALIVE_VERSION); mkeep_alive_pkt.length = htod16(WL_MKEEP_ALIVE_FIXED_LEN); /* ID assigned */ mkeep_alive_pkt.keep_alive_id = mkeep_alive_id; buf_len += WL_MKEEP_ALIVE_FIXED_LEN; /* * Build up Ethernet Frame */ /* Mapping dest mac addr */ memcpy(pmac_frame, dst_mac, ETHER_ADDR_LEN); pmac_frame += ETHER_ADDR_LEN; /* Mapping src mac addr */ memcpy(pmac_frame, src_mac, ETHER_ADDR_LEN); pmac_frame += ETHER_ADDR_LEN; /* Mapping Ethernet type (ETHERTYPE_IP: 0x0800) */ *(pmac_frame++) = 0x08; *(pmac_frame++) = 0x00; /* Mapping IP pkt */ memcpy(pmac_frame, ip_pkt, ip_pkt_len); pmac_frame += ip_pkt_len; /* * Length of ether frame (assume to be all hexa bytes) * = src mac + dst mac + ether type + ip pkt len */ len_bytes = ETHER_ADDR_LEN*2 + ETHERTYPE_LEN + ip_pkt_len; memcpy(mkeep_alive_pktp->data, pmac_frame_begin, len_bytes); buf_len += len_bytes; mkeep_alive_pkt.len_bytes = htod16(len_bytes); /* * Keep-alive attributes are set in local variable (mkeep_alive_pkt), and * then memcpy'ed into buffer (mkeep_alive_pktp) since there is no * guarantee that the buffer is properly aligned. */ memcpy((char *)mkeep_alive_pktp, &mkeep_alive_pkt, WL_MKEEP_ALIVE_FIXED_LEN); res = dhd_wl_ioctl_cmd(dhd_pub, WLC_SET_VAR, pbuf, buf_len, TRUE, 0); exit: kfree(pmac_frame_begin); kfree(pbuf); return res; } int dhd_dev_stop_mkeep_alive(dhd_pub_t *dhd_pub, uint8 mkeep_alive_id) { char *pbuf; wl_mkeep_alive_pkt_t mkeep_alive_pkt; wl_mkeep_alive_pkt_t *mkeep_alive_pktp; int res = BCME_ERROR; int i; /* * The mkeep_alive packet is for STA interface only; if the bss is configured as AP, * dongle shall reject a mkeep_alive request. */ if (!dhd_support_sta_mode(dhd_pub)) return res; DHD_TRACE(("%s execution\n", __FUNCTION__)); /* * Get current mkeep-alive status. Skip ID 0 which is being used for NULL pkt. */ if ((pbuf = kmalloc(KA_TEMP_BUF_SIZE, GFP_KERNEL)) == NULL) { DHD_ERROR(("failed to allocate buf with size %d\n", KA_TEMP_BUF_SIZE)); return res; } res = dhd_iovar(dhd_pub, 0, "mkeep_alive", &mkeep_alive_id, sizeof(mkeep_alive_id), pbuf, KA_TEMP_BUF_SIZE, FALSE); if (res < 0) { DHD_ERROR(("%s: Get mkeep_alive failed (error=%d)\n", __FUNCTION__, res)); goto exit; } else { /* Check occupied ID */ mkeep_alive_pktp = (wl_mkeep_alive_pkt_t *) pbuf; DHD_INFO(("%s: mkeep_alive\n", __FUNCTION__)); DHD_INFO((" Id : %d\n" " Period: %d msec\n" " Length: %d\n" " Packet: 0x", mkeep_alive_pktp->keep_alive_id, dtoh32(mkeep_alive_pktp->period_msec), dtoh16(mkeep_alive_pktp->len_bytes))); for (i = 0; i < mkeep_alive_pktp->len_bytes; i++) { DHD_INFO(("%02x", mkeep_alive_pktp->data[i])); } DHD_INFO(("\n")); } /* Make it stop if available */ if (dtoh32(mkeep_alive_pktp->period_msec != 0)) { DHD_INFO(("stop mkeep_alive on ID %d\n", mkeep_alive_id)); memset(&mkeep_alive_pkt, 0, sizeof(wl_mkeep_alive_pkt_t)); mkeep_alive_pkt.period_msec = 0; mkeep_alive_pkt.version = htod16(WL_MKEEP_ALIVE_VERSION); mkeep_alive_pkt.length = htod16(WL_MKEEP_ALIVE_FIXED_LEN); mkeep_alive_pkt.keep_alive_id = mkeep_alive_id; res = dhd_iovar(dhd_pub, 0, "mkeep_alive", (char *)&mkeep_alive_pkt, WL_MKEEP_ALIVE_FIXED_LEN, NULL, 0, TRUE); } else { DHD_ERROR(("%s: ID %u does not exist.\n", __FUNCTION__, mkeep_alive_id)); res = BCME_NOTFOUND; } exit: kfree(pbuf); return res; } #endif /* KEEP_ALIVE */ #if defined(PKT_FILTER_SUPPORT) && defined(APF) static void _dhd_apf_lock_local(dhd_info_t *dhd) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) if (dhd) { mutex_lock(&dhd->dhd_apf_mutex); } #endif } static void _dhd_apf_unlock_local(dhd_info_t *dhd) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) if (dhd) { mutex_unlock(&dhd->dhd_apf_mutex); } #endif } static int __dhd_apf_add_filter(struct net_device *ndev, uint32 filter_id, u8* program, uint32 program_len) { dhd_info_t *dhd = DHD_DEV_INFO(ndev); dhd_pub_t *dhdp = &dhd->pub; wl_pkt_filter_t * pkt_filterp; wl_apf_program_t *apf_program; char *buf; u32 cmd_len, buf_len; int ifidx, ret; gfp_t kflags; char cmd[] = "pkt_filter_add"; ifidx = dhd_net2idx(dhd, ndev); if (ifidx == DHD_BAD_IF) { DHD_ERROR(("%s: bad ifidx\n", __FUNCTION__)); return -ENODEV; } cmd_len = sizeof(cmd); /* Check if the program_len is more than the expected len * and if the program is NULL return from here. */ if ((program_len > WL_APF_PROGRAM_MAX_SIZE) || (program == NULL)) { DHD_ERROR(("%s Invalid program_len: %d, program: %pK\n", __FUNCTION__, program_len, program)); return -EINVAL; } buf_len = cmd_len + WL_PKT_FILTER_FIXED_LEN + WL_APF_PROGRAM_FIXED_LEN + program_len; kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL; buf = kzalloc(buf_len, kflags); if (unlikely(!buf)) { DHD_ERROR(("%s: MALLOC failure, %d bytes\n", __FUNCTION__, buf_len)); return -ENOMEM; } memcpy(buf, cmd, cmd_len); pkt_filterp = (wl_pkt_filter_t *) (buf + cmd_len); pkt_filterp->id = htod32(filter_id); pkt_filterp->negate_match = htod32(FALSE); pkt_filterp->type = htod32(WL_PKT_FILTER_TYPE_APF_MATCH); apf_program = &pkt_filterp->u.apf_program; apf_program->version = htod16(WL_APF_INTERNAL_VERSION); apf_program->instr_len = htod16(program_len); memcpy(apf_program->instrs, program, program_len); ret = dhd_wl_ioctl_cmd(dhdp, WLC_SET_VAR, buf, buf_len, TRUE, ifidx); if (unlikely(ret)) { DHD_ERROR(("%s: failed to add APF filter, id=%d, ret=%d\n", __FUNCTION__, filter_id, ret)); } if (buf) { kfree(buf); } return ret; } static int __dhd_apf_config_filter(struct net_device *ndev, uint32 filter_id, uint32 mode, uint32 enable) { dhd_info_t *dhd = DHD_DEV_INFO(ndev); dhd_pub_t *dhdp = &dhd->pub; wl_pkt_filter_enable_t * pkt_filterp; char *buf; u32 cmd_len, buf_len; int ifidx, ret; gfp_t kflags; char cmd[] = "pkt_filter_enable"; ifidx = dhd_net2idx(dhd, ndev); if (ifidx == DHD_BAD_IF) { DHD_ERROR(("%s: bad ifidx\n", __FUNCTION__)); return -ENODEV; } cmd_len = sizeof(cmd); buf_len = cmd_len + sizeof(*pkt_filterp); kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL; buf = kzalloc(buf_len, kflags); if (unlikely(!buf)) { DHD_ERROR(("%s: MALLOC failure, %d bytes\n", __FUNCTION__, buf_len)); return -ENOMEM; } memcpy(buf, cmd, cmd_len); pkt_filterp = (wl_pkt_filter_enable_t *) (buf + cmd_len); pkt_filterp->id = htod32(filter_id); pkt_filterp->enable = htod32(enable); ret = dhd_wl_ioctl_cmd(dhdp, WLC_SET_VAR, buf, buf_len, TRUE, ifidx); if (unlikely(ret)) { DHD_ERROR(("%s: failed to enable APF filter, id=%d, ret=%d\n", __FUNCTION__, filter_id, ret)); goto exit; } ret = dhd_wl_ioctl_set_intiovar(dhdp, "pkt_filter_mode", dhd_master_mode, WLC_SET_VAR, TRUE, ifidx); if (unlikely(ret)) { DHD_ERROR(("%s: failed to set APF filter mode, id=%d, ret=%d\n", __FUNCTION__, filter_id, ret)); } exit: if (buf) { kfree(buf); } return ret; } static int __dhd_apf_delete_filter(struct net_device *ndev, uint32 filter_id) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(ndev); dhd_pub_t *dhdp = &dhd->pub; int ifidx, ret; ifidx = dhd_net2idx(dhd, ndev); if (ifidx == DHD_BAD_IF) { DHD_ERROR(("%s: bad ifidx\n", __FUNCTION__)); return -ENODEV; } ret = dhd_wl_ioctl_set_intiovar(dhdp, "pkt_filter_delete", htod32(filter_id), WLC_SET_VAR, TRUE, ifidx); if (unlikely(ret)) { DHD_ERROR(("%s: failed to delete APF filter, id=%d, ret=%d\n", __FUNCTION__, filter_id, ret)); } return ret; } void dhd_apf_lock(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); _dhd_apf_lock_local(dhd); } void dhd_apf_unlock(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); _dhd_apf_unlock_local(dhd); } int dhd_dev_apf_get_version(struct net_device *ndev, uint32 *version) { dhd_info_t *dhd = DHD_DEV_INFO(ndev); dhd_pub_t *dhdp = &dhd->pub; int ifidx, ret; if (!FW_SUPPORTED(dhdp, apf)) { DHD_ERROR(("%s: firmware doesn't support APF\n", __FUNCTION__)); /* * Notify Android framework that APF is not supported by setting * version as zero. */ *version = 0; return BCME_OK; } ifidx = dhd_net2idx(dhd, ndev); if (ifidx == DHD_BAD_IF) { DHD_ERROR(("%s: bad ifidx\n", __FUNCTION__)); return -ENODEV; } ret = dhd_wl_ioctl_get_intiovar(dhdp, "apf_ver", version, WLC_GET_VAR, FALSE, ifidx); if (unlikely(ret)) { DHD_ERROR(("%s: failed to get APF version, ret=%d\n", __FUNCTION__, ret)); } return ret; } int dhd_dev_apf_get_max_len(struct net_device *ndev, uint32 *max_len) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(ndev); dhd_pub_t *dhdp = &dhd->pub; int ifidx, ret; if (!FW_SUPPORTED(dhdp, apf)) { DHD_ERROR(("%s: firmware doesn't support APF\n", __FUNCTION__)); *max_len = 0; return BCME_OK; } ifidx = dhd_net2idx(dhd, ndev); if (ifidx == DHD_BAD_IF) { DHD_ERROR(("%s bad ifidx\n", __FUNCTION__)); return -ENODEV; } ret = dhd_wl_ioctl_get_intiovar(dhdp, "apf_size_limit", max_len, WLC_GET_VAR, FALSE, ifidx); if (unlikely(ret)) { DHD_ERROR(("%s: failed to get APF size limit, ret=%d\n", __FUNCTION__, ret)); } return ret; } int dhd_dev_apf_add_filter(struct net_device *ndev, u8* program, uint32 program_len) { dhd_info_t *dhd = DHD_DEV_INFO(ndev); dhd_pub_t *dhdp = &dhd->pub; int ret; DHD_APF_LOCK(ndev); /* delete, if filter already exists */ if (dhdp->apf_set) { ret = __dhd_apf_delete_filter(ndev, PKT_FILTER_APF_ID); if (unlikely(ret)) { goto exit; } dhdp->apf_set = FALSE; } ret = __dhd_apf_add_filter(ndev, PKT_FILTER_APF_ID, program, program_len); if (ret) { goto exit; } dhdp->apf_set = TRUE; if (dhdp->in_suspend && dhdp->apf_set && !(dhdp->op_mode & DHD_FLAG_HOSTAP_MODE)) { /* Driver is still in (early) suspend state, enable APF filter back */ ret = __dhd_apf_config_filter(ndev, PKT_FILTER_APF_ID, PKT_FILTER_MODE_FORWARD_ON_MATCH, TRUE); } exit: DHD_APF_UNLOCK(ndev); return ret; } int dhd_dev_apf_enable_filter(struct net_device *ndev) { dhd_info_t *dhd = DHD_DEV_INFO(ndev); dhd_pub_t *dhdp = &dhd->pub; int ret = 0; DHD_APF_LOCK(ndev); if (dhdp->apf_set && !(dhdp->op_mode & DHD_FLAG_HOSTAP_MODE)) { ret = __dhd_apf_config_filter(ndev, PKT_FILTER_APF_ID, PKT_FILTER_MODE_FORWARD_ON_MATCH, TRUE); } DHD_APF_UNLOCK(ndev); return ret; } int dhd_dev_apf_disable_filter(struct net_device *ndev) { dhd_info_t *dhd = DHD_DEV_INFO(ndev); dhd_pub_t *dhdp = &dhd->pub; int ret = 0; DHD_APF_LOCK(ndev); if (dhdp->apf_set) { ret = __dhd_apf_config_filter(ndev, PKT_FILTER_APF_ID, PKT_FILTER_MODE_FORWARD_ON_MATCH, FALSE); } DHD_APF_UNLOCK(ndev); return ret; } int dhd_dev_apf_delete_filter(struct net_device *ndev) { dhd_info_t *dhd = DHD_DEV_INFO(ndev); dhd_pub_t *dhdp = &dhd->pub; int ret = 0; DHD_APF_LOCK(ndev); if (dhdp->apf_set) { ret = __dhd_apf_delete_filter(ndev, PKT_FILTER_APF_ID); if (!ret) { dhdp->apf_set = FALSE; } } DHD_APF_UNLOCK(ndev); return ret; } #endif /* PKT_FILTER_SUPPORT && APF */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) static void dhd_hang_process(void *dhd_info, void *event_info, u8 event) { dhd_info_t *dhd; struct net_device *dev; dhd = (dhd_info_t *)dhd_info; if (!dhd || !dhd->iflist[0]) return; dev = dhd->iflist[0]->net; if (dev) { /* * For HW2, dev_close need to be done to recover * from upper layer after hang. For Interposer skip * dev_close so that dhd iovars can be used to take * socramdump after crash, also skip for HW4 as * handling of hang event is different */ #if !defined(CUSTOMER_HW2_INTERPOSER) rtnl_lock(); dev_close(dev); rtnl_unlock(); #endif #if defined(WL_WIRELESS_EXT) wl_iw_send_priv_event(dev, "HANG"); #endif #if defined(WL_CFG80211) wl_cfg80211_hang(dev, WLAN_REASON_UNSPECIFIED); #endif } } #ifdef EXYNOS_PCIE_LINKDOWN_RECOVERY extern dhd_pub_t *link_recovery; void dhd_host_recover_link(void) { DHD_ERROR(("****** %s ******\n", __FUNCTION__)); link_recovery->hang_reason = HANG_REASON_PCIE_LINK_DOWN; dhd_bus_set_linkdown(link_recovery, TRUE); dhd_os_send_hang_message(link_recovery); } EXPORT_SYMBOL(dhd_host_recover_link); #endif /* EXYNOS_PCIE_LINKDOWN_RECOVERY */ int dhd_os_send_hang_message(dhd_pub_t *dhdp) { int ret = 0; if (dhdp) { #if defined(DHD_HANG_SEND_UP_TEST) if (dhdp->req_hang_type) { DHD_ERROR(("%s, Clear HANG test request 0x%x\n", __FUNCTION__, dhdp->req_hang_type)); dhdp->req_hang_type = 0; } #endif /* DHD_HANG_SEND_UP_TEST */ if (!dhdp->hang_was_sent) { #if defined(CONFIG_BCM_DETECT_CONSECUTIVE_HANG) dhdp->hang_counts++; if (dhdp->hang_counts >= MAX_CONSECUTIVE_HANG_COUNTS) { DHD_ERROR(("%s, Consecutive hang from Dongle :%u\n", __func__, dhdp->hang_counts)); BUG_ON(1); } #endif /* CONFIG_BCM_DETECT_CONSECUTIVE_HANG */ #ifdef DHD_DEBUG_UART /* If PCIe lane has broken, execute the debug uart application * to gether a ramdump data from dongle via uart */ if (!dhdp->info->duart_execute) { dhd_deferred_schedule_work(dhdp->info->dhd_deferred_wq, (void *)dhdp, DHD_WQ_WORK_DEBUG_UART_DUMP, dhd_debug_uart_exec_rd, DHD_WQ_WORK_PRIORITY_HIGH); } #endif /* DHD_DEBUG_UART */ dhdp->hang_was_sent = 1; #ifdef BT_OVER_SDIO dhdp->is_bt_recovery_required = TRUE; #endif dhd_deferred_schedule_work(dhdp->info->dhd_deferred_wq, (void *)dhdp, DHD_WQ_WORK_HANG_MSG, dhd_hang_process, DHD_WQ_WORK_PRIORITY_HIGH); DHD_ERROR(("%s: Event HANG send up due to re=%d te=%d s=%d\n", __FUNCTION__, dhdp->rxcnt_timeout, dhdp->txcnt_timeout, dhdp->busstate)); } } return ret; } int net_os_send_hang_message(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); int ret = 0; if (dhd) { /* Report FW problem when enabled */ if (dhd->pub.hang_report) { #ifdef BT_OVER_SDIO if (netif_running(dev)) { #endif /* BT_OVER_SDIO */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) ret = dhd_os_send_hang_message(&dhd->pub); #else ret = wl_cfg80211_hang(dev, WLAN_REASON_UNSPECIFIED); #endif #ifdef BT_OVER_SDIO } DHD_ERROR(("%s: HANG -> Reset BT\n", __FUNCTION__)); bcmsdh_btsdio_process_dhd_hang_notification(!netif_running(dev)); #endif /* BT_OVER_SDIO */ } else { DHD_ERROR(("%s: FW HANG ignored (for testing purpose) and not sent up\n", __FUNCTION__)); } } return ret; } int net_os_send_hang_message_reason(struct net_device *dev, const char *string_num) { dhd_info_t *dhd = NULL; dhd_pub_t *dhdp = NULL; int reason; dhd = DHD_DEV_INFO(dev); if (dhd) { dhdp = &dhd->pub; } if (!dhd || !dhdp) { return 0; } reason = bcm_strtoul(string_num, NULL, 0); DHD_INFO(("%s: Enter, reason=0x%x\n", __FUNCTION__, reason)); if ((reason <= HANG_REASON_MASK) || (reason >= HANG_REASON_MAX)) { reason = 0; } dhdp->hang_reason = reason; return net_os_send_hang_message(dev); } #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27) && OEM_ANDROID */ int dhd_net_wifi_platform_set_power(struct net_device *dev, bool on, unsigned long delay_msec) { dhd_info_t *dhd = DHD_DEV_INFO(dev); return wifi_platform_set_power(dhd->adapter, on, delay_msec); } bool dhd_force_country_change(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); if (dhd && dhd->pub.up) return dhd->pub.force_country_change; return FALSE; } void dhd_get_customized_country_code(struct net_device *dev, char *country_iso_code, wl_country_t *cspec) { dhd_info_t *dhd = DHD_DEV_INFO(dev); #if defined(DHD_BLOB_EXISTENCE_CHECK) if (!dhd->pub.is_blob) #endif /* DHD_BLOB_EXISTENCE_CHECK */ { #if defined(CUSTOM_COUNTRY_CODE) get_customized_country_code(dhd->adapter, country_iso_code, cspec, dhd->pub.dhd_cflags); #else get_customized_country_code(dhd->adapter, country_iso_code, cspec); #endif /* CUSTOM_COUNTRY_CODE */ } BCM_REFERENCE(dhd); } void dhd_bus_country_set(struct net_device *dev, wl_country_t *cspec, bool notify) { dhd_info_t *dhd = DHD_DEV_INFO(dev); #ifdef WL_CFG80211 struct bcm_cfg80211 *cfg = wl_get_cfg(dev); #endif if (dhd && dhd->pub.up) { memcpy(&dhd->pub.dhd_cspec, cspec, sizeof(wl_country_t)); #ifdef WL_CFG80211 wl_update_wiphybands(cfg, notify); #endif } } void dhd_bus_band_set(struct net_device *dev, uint band) { dhd_info_t *dhd = DHD_DEV_INFO(dev); #ifdef WL_CFG80211 struct bcm_cfg80211 *cfg = wl_get_cfg(dev); #endif if (dhd && dhd->pub.up) { #ifdef WL_CFG80211 wl_update_wiphybands(cfg, true); #endif } } int dhd_net_set_fw_path(struct net_device *dev, char *fw) { dhd_info_t *dhd = DHD_DEV_INFO(dev); if (!fw || fw[0] == '\0') return -EINVAL; strncpy(dhd->fw_path, fw, sizeof(dhd->fw_path) - 1); dhd->fw_path[sizeof(dhd->fw_path)-1] = '\0'; #if defined(SOFTAP) if (strstr(fw, "apsta") != NULL) { DHD_INFO(("GOT APSTA FIRMWARE\n")); ap_fw_loaded = TRUE; } else { DHD_INFO(("GOT STA FIRMWARE\n")); ap_fw_loaded = FALSE; } #endif return 0; } void dhd_net_if_lock(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); dhd_net_if_lock_local(dhd); } void dhd_net_if_unlock(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); dhd_net_if_unlock_local(dhd); } static void dhd_net_if_lock_local(dhd_info_t *dhd) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) if (dhd) mutex_lock(&dhd->dhd_net_if_mutex); #endif } static void dhd_net_if_unlock_local(dhd_info_t *dhd) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) if (dhd) mutex_unlock(&dhd->dhd_net_if_mutex); #endif } static void dhd_suspend_lock(dhd_pub_t *pub) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) mutex_lock(&dhd->dhd_suspend_mutex); #endif } static void dhd_suspend_unlock(dhd_pub_t *pub) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) mutex_unlock(&dhd->dhd_suspend_mutex); #endif } unsigned long dhd_os_general_spin_lock(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); unsigned long flags = 0; if (dhd) spin_lock_irqsave(&dhd->dhd_lock, flags); return flags; } void dhd_os_general_spin_unlock(dhd_pub_t *pub, unsigned long flags) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) spin_unlock_irqrestore(&dhd->dhd_lock, flags); } /* Linux specific multipurpose spinlock API */ void * dhd_os_spin_lock_init(osl_t *osh) { /* Adding 4 bytes since the sizeof(spinlock_t) could be 0 */ /* if CONFIG_SMP and CONFIG_DEBUG_SPINLOCK are not defined */ /* and this results in kernel asserts in internal builds */ spinlock_t * lock = MALLOC(osh, sizeof(spinlock_t) + 4); if (lock) spin_lock_init(lock); return ((void *)lock); } void dhd_os_spin_lock_deinit(osl_t *osh, void *lock) { if (lock) MFREE(osh, lock, sizeof(spinlock_t) + 4); } unsigned long dhd_os_spin_lock(void *lock) { unsigned long flags = 0; if (lock) spin_lock_irqsave((spinlock_t *)lock, flags); return flags; } void dhd_os_spin_unlock(void *lock, unsigned long flags) { if (lock) spin_unlock_irqrestore((spinlock_t *)lock, flags); } static int dhd_get_pend_8021x_cnt(dhd_info_t *dhd) { return (atomic_read(&dhd->pend_8021x_cnt)); } #define MAX_WAIT_FOR_8021X_TX 100 int dhd_wait_pend8021x(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); int timeout = msecs_to_jiffies(10); int ntimes = MAX_WAIT_FOR_8021X_TX; int pend = dhd_get_pend_8021x_cnt(dhd); while (ntimes && pend) { if (pend) { set_current_state(TASK_INTERRUPTIBLE); DHD_PERIM_UNLOCK(&dhd->pub); schedule_timeout(timeout); DHD_PERIM_LOCK(&dhd->pub); set_current_state(TASK_RUNNING); ntimes--; } pend = dhd_get_pend_8021x_cnt(dhd); } if (ntimes == 0) { atomic_set(&dhd->pend_8021x_cnt, 0); WL_MSG(dev->name, "TIMEOUT\n"); } return pend; } #if defined(DHD_DEBUG) int write_file(const char * file_name, uint32 flags, uint8 *buf, int size) { int ret = 0; struct file *fp = NULL; mm_segment_t old_fs; loff_t pos = 0; /* change to KERNEL_DS address limit */ old_fs = get_fs(); set_fs(KERNEL_DS); /* open file to write */ fp = filp_open(file_name, flags, 0664); if (IS_ERR(fp)) { DHD_ERROR(("open file error, err = %ld\n", PTR_ERR(fp))); ret = -1; goto exit; } /* Write buf to file */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0) ret = kernel_write(fp, buf, size, &pos); #else ret = vfs_write(fp, buf, size, &pos); #endif if (ret < 0) { DHD_ERROR(("write file error, err = %d\n", ret)); goto exit; } /* Sync file from filesystem to physical media */ ret = vfs_fsync(fp, 0); if (ret < 0) { DHD_ERROR(("sync file error, error = %d\n", ret)); goto exit; } ret = BCME_OK; exit: /* close file before return */ if (!IS_ERR(fp)) filp_close(fp, current->files); /* restore previous address limit */ set_fs(old_fs); return ret; } #endif #ifdef DHD_DEBUG static void dhd_convert_memdump_type_to_str(uint32 type, char *buf) { char *type_str = NULL; switch (type) { case DUMP_TYPE_RESUMED_ON_TIMEOUT: type_str = "resumed_on_timeout"; break; case DUMP_TYPE_D3_ACK_TIMEOUT: type_str = "D3_ACK_timeout"; break; case DUMP_TYPE_DONGLE_TRAP: type_str = "Dongle_Trap"; break; case DUMP_TYPE_MEMORY_CORRUPTION: type_str = "Memory_Corruption"; break; case DUMP_TYPE_PKTID_AUDIT_FAILURE: type_str = "PKTID_AUDIT_Fail"; break; case DUMP_TYPE_PKTID_INVALID: type_str = "PKTID_INVALID"; break; case DUMP_TYPE_SCAN_TIMEOUT: type_str = "SCAN_timeout"; break; case DUMP_TYPE_JOIN_TIMEOUT: type_str = "JOIN_timeout"; break; case DUMP_TYPE_SCAN_BUSY: type_str = "SCAN_Busy"; break; case DUMP_TYPE_BY_SYSDUMP: type_str = "BY_SYSDUMP"; break; case DUMP_TYPE_BY_LIVELOCK: type_str = "BY_LIVELOCK"; break; case DUMP_TYPE_AP_LINKUP_FAILURE: type_str = "BY_AP_LINK_FAILURE"; break; case DUMP_TYPE_AP_ABNORMAL_ACCESS: type_str = "INVALID_ACCESS"; break; case DUMP_TYPE_CFG_VENDOR_TRIGGERED: type_str = "CFG_VENDOR_TRIGGERED"; break; case DUMP_TYPE_RESUMED_ON_TIMEOUT_RX: type_str = "ERROR_RX_TIMED_OUT"; break; case DUMP_TYPE_RESUMED_ON_TIMEOUT_TX: type_str = "ERROR_TX_TIMED_OUT"; break; case DUMP_TYPE_RESUMED_ON_INVALID_RING_RDWR: type_str = "BY_INVALID_RING_RDWR"; break; case DUMP_TYPE_DONGLE_HOST_EVENT: type_str = "BY_DONGLE_HOST_EVENT"; break; case DUMP_TYPE_TRANS_ID_MISMATCH: type_str = "BY_TRANS_ID_MISMATCH"; break; case DUMP_TYPE_HANG_ON_IFACE_OP_FAIL: type_str = "HANG_IFACE_OP_FAIL"; break; #ifdef SUPPORT_LINKDOWN_RECOVERY case DUMP_TYPE_READ_SHM_FAIL: type_str = "READ_SHM_FAIL"; break; #endif /* SUPPORT_LINKDOWN_RECOVERY */ default: type_str = "Unknown_type"; break; } strncpy(buf, type_str, strlen(type_str)); buf[strlen(type_str)] = 0; } int write_dump_to_file(dhd_pub_t *dhd, uint8 *buf, int size, char *fname) { int ret = 0; char memdump_path[128]; char memdump_type[32]; struct osl_timespec curtime; uint32 file_mode; /* Init file name */ memset(memdump_path, 0, sizeof(memdump_path)); memset(memdump_type, 0, sizeof(memdump_type)); osl_do_gettimeofday(&curtime); dhd_convert_memdump_type_to_str(dhd->memdump_type, memdump_type); #ifdef CUSTOMER_HW4_DEBUG snprintf(memdump_path, sizeof(memdump_path), "%s%s_%s_%ld.%ld", DHD_COMMON_DUMP_PATH, fname, memdump_type, (unsigned long)curtime.tv_sec, (unsigned long)curtime.tv_usec); file_mode = O_CREAT | O_WRONLY | O_SYNC; #elif defined(CUSTOMER_HW2) snprintf(memdump_path, sizeof(memdump_path), "%s%s_%s_%ld.%ld", "/data/misc/wifi/", fname, memdump_type, (unsigned long)curtime.tv_sec, (unsigned long)curtime.tv_usec); file_mode = O_CREAT | O_WRONLY | O_SYNC; #elif (defined(BOARD_PANDA) || defined(__ARM_ARCH_7A__)) snprintf(memdump_path, sizeof(memdump_path), "%s%s_%s_%ld.%ld", "/data/misc/wifi/", fname, memdump_type, (unsigned long)curtime.tv_sec, (unsigned long)curtime.tv_usec); file_mode = O_CREAT | O_WRONLY; #else snprintf(memdump_path, sizeof(memdump_path), "%s%s_%s_%ld.%ld", "/installmedia/", fname, memdump_type, (unsigned long)curtime.tv_sec, (unsigned long)curtime.tv_usec); /* Extra flags O_DIRECT and O_SYNC are required for Brix Android, as we are * calling BUG_ON immediately after collecting the socram dump. * So the file write operation should directly write the contents into the * file instead of caching it. O_TRUNC flag ensures that file will be re-written * instead of appending. */ file_mode = O_CREAT | O_WRONLY | O_SYNC; { struct file *fp = filp_open(memdump_path, file_mode, 0664); /* Check if it is live Brix image having /installmedia, else use /data */ if (IS_ERR(fp)) { DHD_ERROR(("open file %s, try /data/\n", memdump_path)); snprintf(memdump_path, sizeof(memdump_path), "%s%s_%s_%ld.%ld", "/data/", fname, memdump_type, (unsigned long)curtime.tv_sec, (unsigned long)curtime.tv_usec); } else { filp_close(fp, NULL); } } #endif /* CUSTOMER_HW4_DEBUG */ /* print SOCRAM dump file path */ DHD_ERROR(("%s: file_path = %s\n", __FUNCTION__, memdump_path)); /* Write file */ ret = write_file(memdump_path, file_mode, buf, size); return ret; } #endif /* DHD_DEBUG */ int dhd_os_wake_lock_timeout(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); unsigned long flags; int ret = 0; if (dhd && (dhd->dhd_state & DHD_ATTACH_STATE_WAKELOCKS_INIT)) { spin_lock_irqsave(&dhd->wakelock_spinlock, flags); ret = dhd->wakelock_rx_timeout_enable > dhd->wakelock_ctrl_timeout_enable ? dhd->wakelock_rx_timeout_enable : dhd->wakelock_ctrl_timeout_enable; #ifdef CONFIG_HAS_WAKELOCK if (dhd->wakelock_rx_timeout_enable) wake_lock_timeout(&dhd->wl_rxwake, msecs_to_jiffies(dhd->wakelock_rx_timeout_enable)); if (dhd->wakelock_ctrl_timeout_enable) wake_lock_timeout(&dhd->wl_ctrlwake, msecs_to_jiffies(dhd->wakelock_ctrl_timeout_enable)); #endif dhd->wakelock_rx_timeout_enable = 0; dhd->wakelock_ctrl_timeout_enable = 0; spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); } return ret; } int net_os_wake_lock_timeout(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); int ret = 0; if (dhd) ret = dhd_os_wake_lock_timeout(&dhd->pub); return ret; } int dhd_os_wake_lock_rx_timeout_enable(dhd_pub_t *pub, int val) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); unsigned long flags; if (dhd && (dhd->dhd_state & DHD_ATTACH_STATE_WAKELOCKS_INIT)) { spin_lock_irqsave(&dhd->wakelock_spinlock, flags); if (val > dhd->wakelock_rx_timeout_enable) dhd->wakelock_rx_timeout_enable = val; spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); } return 0; } int dhd_os_wake_lock_ctrl_timeout_enable(dhd_pub_t *pub, int val) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); unsigned long flags; if (dhd && (dhd->dhd_state & DHD_ATTACH_STATE_WAKELOCKS_INIT)) { spin_lock_irqsave(&dhd->wakelock_spinlock, flags); if (val > dhd->wakelock_ctrl_timeout_enable) dhd->wakelock_ctrl_timeout_enable = val; spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); } return 0; } int dhd_os_wake_lock_ctrl_timeout_cancel(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); unsigned long flags; if (dhd && (dhd->dhd_state & DHD_ATTACH_STATE_WAKELOCKS_INIT)) { spin_lock_irqsave(&dhd->wakelock_spinlock, flags); dhd->wakelock_ctrl_timeout_enable = 0; #ifdef CONFIG_HAS_WAKELOCK if (wake_lock_active(&dhd->wl_ctrlwake)) wake_unlock(&dhd->wl_ctrlwake); #endif spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); } return 0; } int net_os_wake_lock_rx_timeout_enable(struct net_device *dev, int val) { dhd_info_t *dhd = DHD_DEV_INFO(dev); int ret = 0; if (dhd) ret = dhd_os_wake_lock_rx_timeout_enable(&dhd->pub, val); return ret; } int net_os_wake_lock_ctrl_timeout_enable(struct net_device *dev, int val) { dhd_info_t *dhd = DHD_DEV_INFO(dev); int ret = 0; if (dhd) ret = dhd_os_wake_lock_ctrl_timeout_enable(&dhd->pub, val); return ret; } #if defined(DHD_TRACE_WAKE_LOCK) #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0)) #include #else #include #endif /* KERNEL_VER >= KERNEL_VERSION(3, 7, 0) */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0)) /* Define 2^5 = 32 bucket size hash table */ DEFINE_HASHTABLE(wklock_history, 5); #else /* Define 2^5 = 32 bucket size hash table */ struct hlist_head wklock_history[32] = { [0 ... 31] = HLIST_HEAD_INIT }; #endif /* KERNEL_VER >= KERNEL_VERSION(3, 7, 0) */ int trace_wklock_onoff = 1; typedef enum dhd_wklock_type { DHD_WAKE_LOCK, DHD_WAKE_UNLOCK, DHD_WAIVE_LOCK, DHD_RESTORE_LOCK } dhd_wklock_t; struct wk_trace_record { unsigned long addr; /* Address of the instruction */ dhd_wklock_t lock_type; /* lock_type */ unsigned long long counter; /* counter information */ struct hlist_node wklock_node; /* hash node */ }; static struct wk_trace_record *find_wklock_entry(unsigned long addr) { struct wk_trace_record *wklock_info; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0)) hash_for_each_possible(wklock_history, wklock_info, wklock_node, addr) #else struct hlist_node *entry; int index = hash_long(addr, ilog2(ARRAY_SIZE(wklock_history))); hlist_for_each_entry(wklock_info, entry, &wklock_history[index], wklock_node) #endif /* KERNEL_VER >= KERNEL_VERSION(3, 7, 0) */ { if (wklock_info->addr == addr) { return wklock_info; } } return NULL; } #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0)) #define HASH_ADD(hashtable, node, key) \ do { \ hash_add(hashtable, node, key); \ } while (0); #else #define HASH_ADD(hashtable, node, key) \ do { \ int index = hash_long(key, ilog2(ARRAY_SIZE(hashtable))); \ hlist_add_head(node, &hashtable[index]); \ } while (0); #endif /* KERNEL_VER < KERNEL_VERSION(3, 7, 0) */ #define STORE_WKLOCK_RECORD(wklock_type) \ do { \ struct wk_trace_record *wklock_info = NULL; \ unsigned long func_addr = (unsigned long)__builtin_return_address(0); \ wklock_info = find_wklock_entry(func_addr); \ if (wklock_info) { \ if (wklock_type == DHD_WAIVE_LOCK || wklock_type == DHD_RESTORE_LOCK) { \ wklock_info->counter = dhd->wakelock_counter; \ } else { \ wklock_info->counter++; \ } \ } else { \ wklock_info = kzalloc(sizeof(*wklock_info), GFP_ATOMIC); \ if (!wklock_info) {\ printk("Can't allocate wk_trace_record \n"); \ } else { \ wklock_info->addr = func_addr; \ wklock_info->lock_type = wklock_type; \ if (wklock_type == DHD_WAIVE_LOCK || \ wklock_type == DHD_RESTORE_LOCK) { \ wklock_info->counter = dhd->wakelock_counter; \ } else { \ wklock_info->counter++; \ } \ HASH_ADD(wklock_history, &wklock_info->wklock_node, func_addr); \ } \ } \ } while (0); static inline void dhd_wk_lock_rec_dump(void) { int bkt; struct wk_trace_record *wklock_info; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0)) hash_for_each(wklock_history, bkt, wklock_info, wklock_node) #else struct hlist_node *entry = NULL; int max_index = ARRAY_SIZE(wklock_history); for (bkt = 0; bkt < max_index; bkt++) hlist_for_each_entry(wklock_info, entry, &wklock_history[bkt], wklock_node) #endif /* KERNEL_VER >= KERNEL_VERSION(3, 7, 0) */ { switch (wklock_info->lock_type) { case DHD_WAKE_LOCK: printk("wakelock lock : %pS lock_counter : %llu \n", (void *)wklock_info->addr, wklock_info->counter); break; case DHD_WAKE_UNLOCK: printk("wakelock unlock : %pS, unlock_counter : %llu \n", (void *)wklock_info->addr, wklock_info->counter); break; case DHD_WAIVE_LOCK: printk("wakelock waive : %pS before_waive : %llu \n", (void *)wklock_info->addr, wklock_info->counter); break; case DHD_RESTORE_LOCK: printk("wakelock restore : %pS, after_waive : %llu \n", (void *)wklock_info->addr, wklock_info->counter); break; } } } static void dhd_wk_lock_trace_init(struct dhd_info *dhd) { unsigned long flags; #if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 7, 0)) int i; #endif /* KERNEL_VER >= KERNEL_VERSION(3, 7, 0) */ spin_lock_irqsave(&dhd->wakelock_spinlock, flags); #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0)) hash_init(wklock_history); #else for (i = 0; i < ARRAY_SIZE(wklock_history); i++) INIT_HLIST_HEAD(&wklock_history[i]); #endif /* KERNEL_VER >= KERNEL_VERSION(3, 7, 0) */ spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); } static void dhd_wk_lock_trace_deinit(struct dhd_info *dhd) { int bkt; struct wk_trace_record *wklock_info; struct hlist_node *tmp; unsigned long flags; #if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 7, 0)) struct hlist_node *entry = NULL; int max_index = ARRAY_SIZE(wklock_history); #endif /* KERNEL_VER >= KERNEL_VERSION(3, 7, 0) */ spin_lock_irqsave(&dhd->wakelock_spinlock, flags); #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0)) hash_for_each_safe(wklock_history, bkt, tmp, wklock_info, wklock_node) #else for (bkt = 0; bkt < max_index; bkt++) hlist_for_each_entry_safe(wklock_info, entry, tmp, &wklock_history[bkt], wklock_node) #endif /* KERNEL_VER >= KERNEL_VERSION(3, 7, 0)) */ { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0)) hash_del(&wklock_info->wklock_node); #else hlist_del_init(&wklock_info->wklock_node); #endif /* KERNEL_VER >= KERNEL_VERSION(3, 7, 0)) */ kfree(wklock_info); } spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); } void dhd_wk_lock_stats_dump(dhd_pub_t *dhdp) { dhd_info_t *dhd = (dhd_info_t *)(dhdp->info); unsigned long flags; printk(KERN_ERR"DHD Printing wl_wake Lock/Unlock Record \r\n"); spin_lock_irqsave(&dhd->wakelock_spinlock, flags); dhd_wk_lock_rec_dump(); spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); } #else #define STORE_WKLOCK_RECORD(wklock_type) #endif /* ! DHD_TRACE_WAKE_LOCK */ int dhd_os_wake_lock(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); unsigned long flags; int ret = 0; if (dhd && (dhd->dhd_state & DHD_ATTACH_STATE_WAKELOCKS_INIT)) { spin_lock_irqsave(&dhd->wakelock_spinlock, flags); if (dhd->wakelock_counter == 0 && !dhd->waive_wakelock) { #ifdef CONFIG_HAS_WAKELOCK wake_lock(&dhd->wl_wifi); #elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36)) dhd_bus_dev_pm_stay_awake(pub); #endif } #ifdef DHD_TRACE_WAKE_LOCK if (trace_wklock_onoff) { STORE_WKLOCK_RECORD(DHD_WAKE_LOCK); } #endif /* DHD_TRACE_WAKE_LOCK */ dhd->wakelock_counter++; ret = dhd->wakelock_counter; spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); } return ret; } void dhd_event_wake_lock(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) { #ifdef CONFIG_HAS_WAKELOCK wake_lock(&dhd->wl_evtwake); #elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36)) dhd_bus_dev_pm_stay_awake(pub); #endif } } void dhd_pm_wake_lock_timeout(dhd_pub_t *pub, int val) { #ifdef CONFIG_HAS_WAKELOCK dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) { wake_lock_timeout(&dhd->wl_pmwake, msecs_to_jiffies(val)); } #endif /* CONFIG_HAS_WAKE_LOCK */ } void dhd_txfl_wake_lock_timeout(dhd_pub_t *pub, int val) { #ifdef CONFIG_HAS_WAKELOCK dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) { wake_lock_timeout(&dhd->wl_txflwake, msecs_to_jiffies(val)); } #endif /* CONFIG_HAS_WAKE_LOCK */ } int net_os_wake_lock(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); int ret = 0; if (dhd) ret = dhd_os_wake_lock(&dhd->pub); return ret; } int dhd_os_wake_unlock(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); unsigned long flags; int ret = 0; dhd_os_wake_lock_timeout(pub); if (dhd && (dhd->dhd_state & DHD_ATTACH_STATE_WAKELOCKS_INIT)) { spin_lock_irqsave(&dhd->wakelock_spinlock, flags); if (dhd->wakelock_counter > 0) { dhd->wakelock_counter--; #ifdef DHD_TRACE_WAKE_LOCK if (trace_wklock_onoff) { STORE_WKLOCK_RECORD(DHD_WAKE_UNLOCK); } #endif /* DHD_TRACE_WAKE_LOCK */ if (dhd->wakelock_counter == 0 && !dhd->waive_wakelock) { #ifdef CONFIG_HAS_WAKELOCK wake_unlock(&dhd->wl_wifi); #elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36)) dhd_bus_dev_pm_relax(pub); #endif } ret = dhd->wakelock_counter; } spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); } return ret; } void dhd_event_wake_unlock(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) { #ifdef CONFIG_HAS_WAKELOCK wake_unlock(&dhd->wl_evtwake); #elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36)) dhd_bus_dev_pm_relax(pub); #endif } } void dhd_pm_wake_unlock(dhd_pub_t *pub) { #ifdef CONFIG_HAS_WAKELOCK dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) { /* if wl_pmwake is active, unlock it */ if (wake_lock_active(&dhd->wl_pmwake)) { wake_unlock(&dhd->wl_pmwake); } } #endif /* CONFIG_HAS_WAKELOCK */ } void dhd_txfl_wake_unlock(dhd_pub_t *pub) { #ifdef CONFIG_HAS_WAKELOCK dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) { /* if wl_txflwake is active, unlock it */ if (wake_lock_active(&dhd->wl_txflwake)) { wake_unlock(&dhd->wl_txflwake); } } #endif /* CONFIG_HAS_WAKELOCK */ } int dhd_os_check_wakelock(dhd_pub_t *pub) { #if defined(CONFIG_HAS_WAKELOCK) || (defined(BCMSDIO) && (LINUX_VERSION_CODE > \ KERNEL_VERSION(2, 6, 36))) dhd_info_t *dhd; if (!pub) return 0; dhd = (dhd_info_t *)(pub->info); #endif /* CONFIG_HAS_WAKELOCK || BCMSDIO */ #ifdef CONFIG_HAS_WAKELOCK /* Indicate to the SD Host to avoid going to suspend if internal locks are up */ if (dhd && (wake_lock_active(&dhd->wl_wifi) || (wake_lock_active(&dhd->wl_wdwake)))) return 1; #elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36)) if (dhd && (dhd->wakelock_counter > 0) && dhd_bus_dev_pm_enabled(pub)) return 1; #endif return 0; } int dhd_os_check_wakelock_all(dhd_pub_t *pub) { #if defined(CONFIG_HAS_WAKELOCK) || (defined(BCMSDIO) && (LINUX_VERSION_CODE > \ KERNEL_VERSION(2, 6, 36))) #if defined(CONFIG_HAS_WAKELOCK) int l1, l2, l3, l4, l7, l8, l9; int l5 = 0, l6 = 0; int c, lock_active; #endif /* CONFIG_HAS_WAKELOCK */ dhd_info_t *dhd; if (!pub) { return 0; } dhd = (dhd_info_t *)(pub->info); if (!dhd) { return 0; } #endif /* CONFIG_HAS_WAKELOCK || BCMSDIO */ #ifdef CONFIG_HAS_WAKELOCK c = dhd->wakelock_counter; l1 = wake_lock_active(&dhd->wl_wifi); l2 = wake_lock_active(&dhd->wl_wdwake); l3 = wake_lock_active(&dhd->wl_rxwake); l4 = wake_lock_active(&dhd->wl_ctrlwake); l7 = wake_lock_active(&dhd->wl_evtwake); #ifdef BCMPCIE_OOB_HOST_WAKE l5 = wake_lock_active(&dhd->wl_intrwake); #endif /* BCMPCIE_OOB_HOST_WAKE */ #ifdef DHD_USE_SCAN_WAKELOCK l6 = wake_lock_active(&dhd->wl_scanwake); #endif /* DHD_USE_SCAN_WAKELOCK */ l8 = wake_lock_active(&dhd->wl_pmwake); l9 = wake_lock_active(&dhd->wl_txflwake); lock_active = (l1 || l2 || l3 || l4 || l5 || l6 || l7 || l8 || l9); /* Indicate to the Host to avoid going to suspend if internal locks are up */ if (lock_active) { DHD_ERROR(("%s wakelock c-%d wl-%d wd-%d rx-%d " "ctl-%d intr-%d scan-%d evt-%d, pm-%d, txfl-%d\n", __FUNCTION__, c, l1, l2, l3, l4, l5, l6, l7, l8, l9)); return 1; } #elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36)) if (dhd && (dhd->wakelock_counter > 0) && dhd_bus_dev_pm_enabled(pub)) { return 1; } #endif /* defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36)) */ return 0; } int net_os_wake_unlock(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); int ret = 0; if (dhd) ret = dhd_os_wake_unlock(&dhd->pub); return ret; } int dhd_os_wd_wake_lock(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); unsigned long flags; int ret = 0; if (dhd) { spin_lock_irqsave(&dhd->wakelock_spinlock, flags); #ifdef CONFIG_HAS_WAKELOCK /* if wakelock_wd_counter was never used : lock it at once */ if (!dhd->wakelock_wd_counter) wake_lock(&dhd->wl_wdwake); #endif dhd->wakelock_wd_counter++; ret = dhd->wakelock_wd_counter; spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); } return ret; } int dhd_os_wd_wake_unlock(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); unsigned long flags; int ret = 0; if (dhd) { spin_lock_irqsave(&dhd->wakelock_spinlock, flags); if (dhd->wakelock_wd_counter) { dhd->wakelock_wd_counter = 0; #ifdef CONFIG_HAS_WAKELOCK wake_unlock(&dhd->wl_wdwake); #endif } spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); } return ret; } #ifdef BCMPCIE_OOB_HOST_WAKE void dhd_os_oob_irq_wake_lock_timeout(dhd_pub_t *pub, int val) { #ifdef CONFIG_HAS_WAKELOCK dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) { wake_lock_timeout(&dhd->wl_intrwake, msecs_to_jiffies(val)); } #endif /* CONFIG_HAS_WAKELOCK */ } void dhd_os_oob_irq_wake_unlock(dhd_pub_t *pub) { #ifdef CONFIG_HAS_WAKELOCK dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) { /* if wl_intrwake is active, unlock it */ if (wake_lock_active(&dhd->wl_intrwake)) { wake_unlock(&dhd->wl_intrwake); } } #endif /* CONFIG_HAS_WAKELOCK */ } #endif /* BCMPCIE_OOB_HOST_WAKE */ #ifdef DHD_USE_SCAN_WAKELOCK void dhd_os_scan_wake_lock_timeout(dhd_pub_t *pub, int val) { #ifdef CONFIG_HAS_WAKELOCK dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) { wake_lock_timeout(&dhd->wl_scanwake, msecs_to_jiffies(val)); } #endif /* CONFIG_HAS_WAKELOCK */ } void dhd_os_scan_wake_unlock(dhd_pub_t *pub) { #ifdef CONFIG_HAS_WAKELOCK dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) { /* if wl_scanwake is active, unlock it */ if (wake_lock_active(&dhd->wl_scanwake)) { wake_unlock(&dhd->wl_scanwake); } } #endif /* CONFIG_HAS_WAKELOCK */ } #endif /* DHD_USE_SCAN_WAKELOCK */ /* waive wakelocks for operations such as IOVARs in suspend function, must be closed * by a paired function call to dhd_wakelock_restore. returns current wakelock counter */ int dhd_os_wake_lock_waive(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); unsigned long flags; int ret = 0; if (dhd && (dhd->dhd_state & DHD_ATTACH_STATE_WAKELOCKS_INIT)) { spin_lock_irqsave(&dhd->wakelock_spinlock, flags); /* dhd_wakelock_waive/dhd_wakelock_restore must be paired */ if (dhd->waive_wakelock == FALSE) { #ifdef DHD_TRACE_WAKE_LOCK if (trace_wklock_onoff) { STORE_WKLOCK_RECORD(DHD_WAIVE_LOCK); } #endif /* DHD_TRACE_WAKE_LOCK */ /* record current lock status */ dhd->wakelock_before_waive = dhd->wakelock_counter; dhd->waive_wakelock = TRUE; } ret = dhd->wakelock_wd_counter; spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); } return ret; } int dhd_os_wake_lock_restore(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); unsigned long flags; int ret = 0; if (!dhd) return 0; if ((dhd->dhd_state & DHD_ATTACH_STATE_WAKELOCKS_INIT) == 0) return 0; spin_lock_irqsave(&dhd->wakelock_spinlock, flags); /* dhd_wakelock_waive/dhd_wakelock_restore must be paired */ if (!dhd->waive_wakelock) goto exit; dhd->waive_wakelock = FALSE; /* if somebody else acquires wakelock between dhd_wakelock_waive/dhd_wakelock_restore, * we need to make it up by calling wake_lock or pm_stay_awake. or if somebody releases * the lock in between, do the same by calling wake_unlock or pm_relax */ #ifdef DHD_TRACE_WAKE_LOCK if (trace_wklock_onoff) { STORE_WKLOCK_RECORD(DHD_RESTORE_LOCK); } #endif /* DHD_TRACE_WAKE_LOCK */ if (dhd->wakelock_before_waive == 0 && dhd->wakelock_counter > 0) { #ifdef CONFIG_HAS_WAKELOCK wake_lock(&dhd->wl_wifi); #elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36)) dhd_bus_dev_pm_stay_awake(&dhd->pub); #endif } else if (dhd->wakelock_before_waive > 0 && dhd->wakelock_counter == 0) { #ifdef CONFIG_HAS_WAKELOCK wake_unlock(&dhd->wl_wifi); #elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36)) dhd_bus_dev_pm_relax(&dhd->pub); #endif } dhd->wakelock_before_waive = 0; exit: ret = dhd->wakelock_wd_counter; spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); return ret; } void dhd_os_wake_lock_init(struct dhd_info *dhd) { DHD_TRACE(("%s: initialize wake_lock_counters\n", __FUNCTION__)); dhd->wakelock_counter = 0; dhd->wakelock_rx_timeout_enable = 0; dhd->wakelock_ctrl_timeout_enable = 0; #ifdef CONFIG_HAS_WAKELOCK // terence 20161023: can not destroy wl_wifi when wlan down, it will happen null pointer in dhd_ioctl_entry wake_lock_init(&dhd->wl_rxwake, WAKE_LOCK_SUSPEND, "wlan_rx_wake"); wake_lock_init(&dhd->wl_ctrlwake, WAKE_LOCK_SUSPEND, "wlan_ctrl_wake"); wake_lock_init(&dhd->wl_evtwake, WAKE_LOCK_SUSPEND, "wlan_evt_wake"); wake_lock_init(&dhd->wl_pmwake, WAKE_LOCK_SUSPEND, "wlan_pm_wake"); wake_lock_init(&dhd->wl_txflwake, WAKE_LOCK_SUSPEND, "wlan_txfl_wake"); #ifdef BCMPCIE_OOB_HOST_WAKE wake_lock_init(&dhd->wl_intrwake, WAKE_LOCK_SUSPEND, "wlan_oob_irq_wake"); #endif /* BCMPCIE_OOB_HOST_WAKE */ #ifdef DHD_USE_SCAN_WAKELOCK wake_lock_init(&dhd->wl_scanwake, WAKE_LOCK_SUSPEND, "wlan_scan_wake"); #endif /* DHD_USE_SCAN_WAKELOCK */ #endif /* CONFIG_HAS_WAKELOCK */ #ifdef DHD_TRACE_WAKE_LOCK dhd_wk_lock_trace_init(dhd); #endif /* DHD_TRACE_WAKE_LOCK */ } void dhd_os_wake_lock_destroy(struct dhd_info *dhd) { DHD_TRACE(("%s: deinit wake_lock_counters\n", __FUNCTION__)); #ifdef CONFIG_HAS_WAKELOCK dhd->wakelock_counter = 0; dhd->wakelock_rx_timeout_enable = 0; dhd->wakelock_ctrl_timeout_enable = 0; // terence 20161023: can not destroy wl_wifi when wlan down, it will happen null pointer in dhd_ioctl_entry wake_lock_destroy(&dhd->wl_rxwake); wake_lock_destroy(&dhd->wl_ctrlwake); wake_lock_destroy(&dhd->wl_evtwake); wake_lock_destroy(&dhd->wl_pmwake); wake_lock_destroy(&dhd->wl_txflwake); #ifdef BCMPCIE_OOB_HOST_WAKE wake_lock_destroy(&dhd->wl_intrwake); #endif /* BCMPCIE_OOB_HOST_WAKE */ #ifdef DHD_USE_SCAN_WAKELOCK wake_lock_destroy(&dhd->wl_scanwake); #endif /* DHD_USE_SCAN_WAKELOCK */ #ifdef DHD_TRACE_WAKE_LOCK dhd_wk_lock_trace_deinit(dhd); #endif /* DHD_TRACE_WAKE_LOCK */ #endif /* CONFIG_HAS_WAKELOCK */ } bool dhd_os_check_if_up(dhd_pub_t *pub) { if (!pub) return FALSE; return pub->up; } /* function to collect firmware, chip id and chip version info */ void dhd_set_version_info(dhd_pub_t *dhdp, char *fw) { int i; i = snprintf(info_string, sizeof(info_string), " Driver: %s\n Firmware: %s\n CLM: %s ", EPI_VERSION_STR, fw, clm_version); DHD_PRINT("%s\n", info_string); if (!dhdp) return; i = snprintf(&info_string[i], sizeof(info_string) - i, "\n Chip: %x Rev %x", dhd_conf_get_chip(dhdp), dhd_conf_get_chiprev(dhdp)); } int dhd_ioctl_entry_local(struct net_device *net, wl_ioctl_t *ioc, int cmd) { int ifidx; int ret = 0; dhd_info_t *dhd = NULL; if (!net || !DEV_PRIV(net)) { DHD_ERROR(("%s invalid parameter\n", __FUNCTION__)); return -EINVAL; } dhd = DHD_DEV_INFO(net); if (!dhd) return -EINVAL; ifidx = dhd_net2idx(dhd, net); if (ifidx == DHD_BAD_IF) { DHD_ERROR(("%s bad ifidx\n", __FUNCTION__)); return -ENODEV; } DHD_OS_WAKE_LOCK(&dhd->pub); DHD_PERIM_LOCK(&dhd->pub); ret = dhd_wl_ioctl(&dhd->pub, ifidx, ioc, ioc->buf, ioc->len); dhd_check_hang(net, &dhd->pub, ret); DHD_PERIM_UNLOCK(&dhd->pub); DHD_OS_WAKE_UNLOCK(&dhd->pub); return ret; } bool dhd_os_check_hang(dhd_pub_t *dhdp, int ifidx, int ret) { struct net_device *net; net = dhd_idx2net(dhdp, ifidx); if (!net) { DHD_ERROR(("%s : Invalid index : %d\n", __FUNCTION__, ifidx)); return -EINVAL; } return dhd_check_hang(net, dhdp, ret); } /* Return instance */ int dhd_get_instance(dhd_pub_t *dhdp) { return dhdp->info->unit; } #ifdef PROP_TXSTATUS void dhd_wlfc_plat_init(void *dhd) { #ifdef USE_DYNAMIC_F2_BLKSIZE dhdsdio_func_blocksize((dhd_pub_t *)dhd, 2, DYNAMIC_F2_BLKSIZE_FOR_NONLEGACY); #endif /* USE_DYNAMIC_F2_BLKSIZE */ return; } void dhd_wlfc_plat_deinit(void *dhd) { #ifdef USE_DYNAMIC_F2_BLKSIZE dhdsdio_func_blocksize((dhd_pub_t *)dhd, 2, sd_f2_blocksize); #endif /* USE_DYNAMIC_F2_BLKSIZE */ return; } bool dhd_wlfc_skip_fc(void * dhdp, uint8 idx) { #ifdef SKIP_WLFC_ON_CONCURRENT #ifdef WL_CFG80211 struct net_device * net = dhd_idx2net((dhd_pub_t *)dhdp, idx); if (net) /* enable flow control in vsdb mode */ return !(wl_cfg80211_is_concurrent_mode(net)); #else return TRUE; /* skip flow control */ #endif /* WL_CFG80211 */ #else return FALSE; #endif /* SKIP_WLFC_ON_CONCURRENT */ return FALSE; } #endif /* PROP_TXSTATUS */ #ifdef BCMDBGFS #include typedef struct dhd_dbgfs { struct dentry *debugfs_dir; struct dentry *debugfs_mem; dhd_pub_t *dhdp; uint32 size; } dhd_dbgfs_t; dhd_dbgfs_t g_dbgfs; extern uint32 dhd_readregl(void *bp, uint32 addr); extern uint32 dhd_writeregl(void *bp, uint32 addr, uint32 data); static int dhd_dbg_state_open(struct inode *inode, struct file *file) { file->private_data = inode->i_private; return 0; } static ssize_t dhd_dbg_state_read(struct file *file, char __user *ubuf, size_t count, loff_t *ppos) { ssize_t rval; uint32 tmp; loff_t pos = *ppos; size_t ret; if (pos < 0) return -EINVAL; if (pos >= g_dbgfs.size || !count) return 0; if (count > g_dbgfs.size - pos) count = g_dbgfs.size - pos; /* Basically enforce aligned 4 byte reads. It's up to the user to work out the details */ tmp = dhd_readregl(g_dbgfs.dhdp->bus, file->f_pos & (~3)); ret = copy_to_user(ubuf, &tmp, 4); if (ret == count) return -EFAULT; count -= ret; *ppos = pos + count; rval = count; return rval; } static ssize_t dhd_debugfs_write(struct file *file, const char __user *ubuf, size_t count, loff_t *ppos) { loff_t pos = *ppos; size_t ret; uint32 buf; if (pos < 0) return -EINVAL; if (pos >= g_dbgfs.size || !count) return 0; if (count > g_dbgfs.size - pos) count = g_dbgfs.size - pos; ret = copy_from_user(&buf, ubuf, sizeof(uint32)); if (ret == count) return -EFAULT; /* Basically enforce aligned 4 byte writes. It's up to the user to work out the details */ dhd_writeregl(g_dbgfs.dhdp->bus, file->f_pos & (~3), buf); return count; } loff_t dhd_debugfs_lseek(struct file *file, loff_t off, int whence) { loff_t pos = -1; switch (whence) { case 0: pos = off; break; case 1: pos = file->f_pos + off; break; case 2: pos = g_dbgfs.size - off; } return (pos < 0 || pos > g_dbgfs.size) ? -EINVAL : (file->f_pos = pos); } static const struct file_operations dhd_dbg_state_ops = { .read = dhd_dbg_state_read, .write = dhd_debugfs_write, .open = dhd_dbg_state_open, .llseek = dhd_debugfs_lseek }; static void dhd_dbgfs_create(void) { if (g_dbgfs.debugfs_dir) { g_dbgfs.debugfs_mem = debugfs_create_file("mem", 0644, g_dbgfs.debugfs_dir, NULL, &dhd_dbg_state_ops); } } void dhd_dbgfs_init(dhd_pub_t *dhdp) { g_dbgfs.dhdp = dhdp; g_dbgfs.size = 0x20000000; /* Allow access to various cores regs */ g_dbgfs.debugfs_dir = debugfs_create_dir("dhd", 0); if (IS_ERR(g_dbgfs.debugfs_dir)) { g_dbgfs.debugfs_dir = NULL; return; } dhd_dbgfs_create(); return; } void dhd_dbgfs_remove(void) { debugfs_remove(g_dbgfs.debugfs_mem); debugfs_remove(g_dbgfs.debugfs_dir); bzero((unsigned char *) &g_dbgfs, sizeof(g_dbgfs)); } #endif /* BCMDBGFS */ #ifdef WLMEDIA_HTSF static void dhd_htsf_addtxts(dhd_pub_t *dhdp, void *pktbuf) { dhd_info_t *dhd = (dhd_info_t *)(dhdp->info); struct sk_buff *skb; uint32 htsf = 0; uint16 dport = 0, oldmagic = 0xACAC; char *p1; htsfts_t ts; /* timestamp packet */ p1 = (char*) PKTDATA(dhdp->osh, pktbuf); if (PKTLEN(dhdp->osh, pktbuf) > HTSF_MINLEN) { /* memcpy(&proto, p1+26, 4); */ memcpy(&dport, p1+40, 2); /* proto = ((ntoh32(proto))>> 16) & 0xFF; */ dport = ntoh16(dport); } /* timestamp only if icmp or udb iperf with port 5555 */ /* if (proto == 17 && dport == tsport) { */ if (dport >= tsport && dport <= tsport + 20) { skb = (struct sk_buff *) pktbuf; htsf = dhd_get_htsf(dhd, 0); memset(skb->data + 44, 0, 2); /* clear checksum */ memcpy(skb->data+82, &oldmagic, 2); memcpy(skb->data+84, &htsf, 4); memset(&ts, 0, sizeof(htsfts_t)); ts.magic = HTSFMAGIC; ts.prio = PKTPRIO(pktbuf); ts.seqnum = htsf_seqnum++; ts.c10 = get_cycles(); ts.t10 = htsf; ts.endmagic = HTSFENDMAGIC; memcpy(skb->data + HTSF_HOSTOFFSET, &ts, sizeof(ts)); } } static void dhd_dump_htsfhisto(histo_t *his, char *s) { int pktcnt = 0, curval = 0, i; for (i = 0; i < (NUMBIN-2); i++) { curval += 500; printf("%d ", his->bin[i]); pktcnt += his->bin[i]; } printf(" max: %d TotPkt: %d neg: %d [%s]\n", his->bin[NUMBIN-2], pktcnt, his->bin[NUMBIN-1], s); } static void sorttobin(int value, histo_t *histo) { int i, binval = 0; if (value < 0) { histo->bin[NUMBIN-1]++; return; } if (value > histo->bin[NUMBIN-2]) /* store the max value */ histo->bin[NUMBIN-2] = value; for (i = 0; i < (NUMBIN-2); i++) { binval += 500; /* 500m s bins */ if (value <= binval) { histo->bin[i]++; return; } } histo->bin[NUMBIN-3]++; } static void dhd_htsf_addrxts(dhd_pub_t *dhdp, void *pktbuf) { dhd_info_t *dhd = (dhd_info_t *)dhdp->info; struct sk_buff *skb; char *p1; uint16 old_magic; int d1, d2, d3, end2end; htsfts_t *htsf_ts; uint32 htsf; skb = PKTTONATIVE(dhdp->osh, pktbuf); p1 = (char*)PKTDATA(dhdp->osh, pktbuf); if (PKTLEN(osh, pktbuf) > HTSF_MINLEN) { memcpy(&old_magic, p1+78, 2); htsf_ts = (htsfts_t*) (p1 + HTSF_HOSTOFFSET - 4); } else { return; } if (htsf_ts->magic == HTSFMAGIC) { htsf_ts->tE0 = dhd_get_htsf(dhd, 0); htsf_ts->cE0 = get_cycles(); } if (old_magic == 0xACAC) { tspktcnt++; htsf = dhd_get_htsf(dhd, 0); memcpy(skb->data+92, &htsf, sizeof(uint32)); memcpy(&ts[tsidx].t1, skb->data+80, 16); d1 = ts[tsidx].t2 - ts[tsidx].t1; d2 = ts[tsidx].t3 - ts[tsidx].t2; d3 = ts[tsidx].t4 - ts[tsidx].t3; end2end = ts[tsidx].t4 - ts[tsidx].t1; sorttobin(d1, &vi_d1); sorttobin(d2, &vi_d2); sorttobin(d3, &vi_d3); sorttobin(end2end, &vi_d4); if (end2end > 0 && end2end > maxdelay) { maxdelay = end2end; maxdelaypktno = tspktcnt; memcpy(&maxdelayts, &ts[tsidx], 16); } if (++tsidx >= TSMAX) tsidx = 0; } } uint32 dhd_get_htsf(dhd_info_t *dhd, int ifidx) { uint32 htsf = 0, cur_cycle, delta, delta_us; uint32 factor, baseval, baseval2; cycles_t t; t = get_cycles(); cur_cycle = t; if (cur_cycle > dhd->htsf.last_cycle) delta = cur_cycle - dhd->htsf.last_cycle; else { delta = cur_cycle + (0xFFFFFFFF - dhd->htsf.last_cycle); } delta = delta >> 4; if (dhd->htsf.coef) { /* times ten to get the first digit */ factor = (dhd->htsf.coef*10 + dhd->htsf.coefdec1); baseval = (delta*10)/factor; baseval2 = (delta*10)/(factor+1); delta_us = (baseval - (((baseval - baseval2) * dhd->htsf.coefdec2)) / 10); htsf = (delta_us << 4) + dhd->htsf.last_tsf + HTSF_BUS_DELAY; } else { DHD_ERROR(("-------dhd->htsf.coef = 0 -------\n")); } return htsf; } static void dhd_dump_latency(void) { int i, max = 0; int d1, d2, d3, d4, d5; printf("T1 T2 T3 T4 d1 d2 t4-t1 i \n"); for (i = 0; i < TSMAX; i++) { d1 = ts[i].t2 - ts[i].t1; d2 = ts[i].t3 - ts[i].t2; d3 = ts[i].t4 - ts[i].t3; d4 = ts[i].t4 - ts[i].t1; d5 = ts[max].t4-ts[max].t1; if (d4 > d5 && d4 > 0) { max = i; } printf("%08X %08X %08X %08X \t%d %d %d %d i=%d\n", ts[i].t1, ts[i].t2, ts[i].t3, ts[i].t4, d1, d2, d3, d4, i); } printf("current idx = %d \n", tsidx); printf("Highest latency %d pkt no.%d total=%d\n", maxdelay, maxdelaypktno, tspktcnt); printf("%08X %08X %08X %08X \t%d %d %d %d\n", maxdelayts.t1, maxdelayts.t2, maxdelayts.t3, maxdelayts.t4, maxdelayts.t2 - maxdelayts.t1, maxdelayts.t3 - maxdelayts.t2, maxdelayts.t4 - maxdelayts.t3, maxdelayts.t4 - maxdelayts.t1); } static int dhd_ioctl_htsf_get(dhd_info_t *dhd, int ifidx) { char buf[32]; int ret; uint32 s1, s2; struct tsf { uint32 low; uint32 high; } tsf_buf; memset(&tsf_buf, 0, sizeof(tsf_buf)); s1 = dhd_get_htsf(dhd, 0); ret = dhd_iovar(&dhd->pub, ifidx, "tsf", NULL, 0, buf, sizeof(buf), FALSE); if (ret < 0) { if (ret == -EIO) { DHD_ERROR(("%s: tsf is not supported by device\n", dhd_ifname(&dhd->pub, ifidx))); return -EOPNOTSUPP; } return ret; } s2 = dhd_get_htsf(dhd, 0); memcpy(&tsf_buf, buf, sizeof(tsf_buf)); printf(" TSF_h=%04X lo=%08X Calc:htsf=%08X, coef=%d.%d%d delta=%d ", tsf_buf.high, tsf_buf.low, s2, dhd->htsf.coef, dhd->htsf.coefdec1, dhd->htsf.coefdec2, s2-tsf_buf.low); printf("lasttsf=%08X lastcycle=%08X\n", dhd->htsf.last_tsf, dhd->htsf.last_cycle); return 0; } void htsf_update(dhd_info_t *dhd, void *data) { static ulong cur_cycle = 0, prev_cycle = 0; uint32 htsf, tsf_delta = 0; uint32 hfactor = 0, cyc_delta, dec1 = 0, dec2, dec3, tmp; ulong b, a; cycles_t t; /* cycles_t in inlcude/mips/timex.h */ t = get_cycles(); prev_cycle = cur_cycle; cur_cycle = t; if (cur_cycle > prev_cycle) cyc_delta = cur_cycle - prev_cycle; else { b = cur_cycle; a = prev_cycle; cyc_delta = cur_cycle + (0xFFFFFFFF - prev_cycle); } if (data == NULL) printf(" tsf update ata point er is null \n"); memcpy(&prev_tsf, &cur_tsf, sizeof(tsf_t)); memcpy(&cur_tsf, data, sizeof(tsf_t)); if (cur_tsf.low == 0) { DHD_INFO((" ---- 0 TSF, do not update, return\n")); return; } if (cur_tsf.low > prev_tsf.low) tsf_delta = (cur_tsf.low - prev_tsf.low); else { DHD_INFO((" ---- tsf low is smaller cur_tsf= %08X, prev_tsf=%08X, \n", cur_tsf.low, prev_tsf.low)); if (cur_tsf.high > prev_tsf.high) { tsf_delta = cur_tsf.low + (0xFFFFFFFF - prev_tsf.low); DHD_INFO((" ---- Wrap around tsf coutner adjusted TSF=%08X\n", tsf_delta)); } else { return; /* do not update */ } } if (tsf_delta) { hfactor = cyc_delta / tsf_delta; tmp = (cyc_delta - (hfactor * tsf_delta))*10; dec1 = tmp/tsf_delta; dec2 = ((tmp - dec1*tsf_delta)*10) / tsf_delta; tmp = (tmp - (dec1*tsf_delta))*10; dec3 = ((tmp - dec2*tsf_delta)*10) / tsf_delta; if (dec3 > 4) { if (dec2 == 9) { dec2 = 0; if (dec1 == 9) { dec1 = 0; hfactor++; } else { dec1++; } } else { dec2++; } } } if (hfactor) { htsf = ((cyc_delta * 10) / (hfactor*10+dec1)) + prev_tsf.low; dhd->htsf.coef = hfactor; dhd->htsf.last_cycle = cur_cycle; dhd->htsf.last_tsf = cur_tsf.low; dhd->htsf.coefdec1 = dec1; dhd->htsf.coefdec2 = dec2; } else { htsf = prev_tsf.low; } } #endif /* WLMEDIA_HTSF */ #ifdef CUSTOM_SET_CPUCORE void dhd_set_cpucore(dhd_pub_t *dhd, int set) { int e_dpc = 0, e_rxf = 0, retry_set = 0; if (!(dhd->chan_isvht80)) { DHD_ERROR(("%s: chan_status(%d) cpucore!!!\n", __FUNCTION__, dhd->chan_isvht80)); return; } if (DPC_CPUCORE) { do { if (set == TRUE) { e_dpc = set_cpus_allowed_ptr(dhd->current_dpc, cpumask_of(DPC_CPUCORE)); } else { e_dpc = set_cpus_allowed_ptr(dhd->current_dpc, cpumask_of(PRIMARY_CPUCORE)); } if (retry_set++ > MAX_RETRY_SET_CPUCORE) { DHD_ERROR(("%s: dpc(%d) invalid cpu!\n", __FUNCTION__, e_dpc)); return; } if (e_dpc < 0) OSL_SLEEP(1); } while (e_dpc < 0); } if (RXF_CPUCORE) { do { if (set == TRUE) { e_rxf = set_cpus_allowed_ptr(dhd->current_rxf, cpumask_of(RXF_CPUCORE)); } else { e_rxf = set_cpus_allowed_ptr(dhd->current_rxf, cpumask_of(PRIMARY_CPUCORE)); } if (retry_set++ > MAX_RETRY_SET_CPUCORE) { DHD_ERROR(("%s: rxf(%d) invalid cpu!\n", __FUNCTION__, e_rxf)); return; } if (e_rxf < 0) OSL_SLEEP(1); } while (e_rxf < 0); } #ifdef DHD_OF_SUPPORT interrupt_set_cpucore(set, DPC_CPUCORE, PRIMARY_CPUCORE); #endif /* DHD_OF_SUPPORT */ DHD_TRACE(("%s: set(%d) cpucore success!\n", __FUNCTION__, set)); return; } #endif /* CUSTOM_SET_CPUCORE */ #ifdef DHD_MCAST_REGEN /* Get interface specific ap_isolate configuration */ int dhd_get_mcast_regen_bss_enable(dhd_pub_t *dhdp, uint32 idx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; return ifp->mcast_regen_bss_enable; } /* Set interface specific mcast_regen configuration */ int dhd_set_mcast_regen_bss_enable(dhd_pub_t *dhdp, uint32 idx, int val) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; ifp->mcast_regen_bss_enable = val; /* Disable rx_pkt_chain feature for interface, if mcast_regen feature * is enabled */ dhd_update_rx_pkt_chainable_state(dhdp, idx); return BCME_OK; } #endif /* DHD_MCAST_REGEN */ /* Get interface specific ap_isolate configuration */ int dhd_get_ap_isolate(dhd_pub_t *dhdp, uint32 idx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; return ifp->ap_isolate; } /* Set interface specific ap_isolate configuration */ int dhd_set_ap_isolate(dhd_pub_t *dhdp, uint32 idx, int val) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; if (ifp) ifp->ap_isolate = val; return 0; } #ifdef DHD_FW_COREDUMP #if defined(CONFIG_X86) #define MEMDUMPINFO_LIVE "/installmedia/.memdump.info" #define MEMDUMPINFO_INST "/data/.memdump.info" #endif /* CONFIG_X86 && OEM_ANDROID */ #ifdef CUSTOMER_HW4_DEBUG #define MEMDUMPINFO PLATFORM_PATH".memdump.info" #elif defined(CUSTOMER_HW2) #define MEMDUMPINFO "/data/misc/wifi/.memdump.info" #elif (defined(BOARD_PANDA) || defined(__ARM_ARCH_7A__)) #define MEMDUMPINFO "/data/misc/wifi/.memdump.info" #else #define MEMDUMPINFO "/data/misc/wifi/.memdump.info" #endif /* CUSTOMER_HW4_DEBUG */ void dhd_get_memdump_info(dhd_pub_t *dhd) { struct file *fp = NULL; uint32 mem_val = DUMP_MEMFILE_MAX; int ret = 0; char *filepath = MEMDUMPINFO; /* Read memdump info from the file */ fp = filp_open(filepath, O_RDONLY, 0); if (IS_ERR(fp)) { DHD_PRINT("%s: File [%s] doesn't exist\n", __FUNCTION__, filepath); #if defined(CONFIG_X86) /* Check if it is Live Brix Image */ if (strcmp(filepath, MEMDUMPINFO_LIVE) != 0) { goto done; } /* Try if it is Installed Brix Image */ filepath = MEMDUMPINFO_INST; DHD_ERROR(("%s: Try File [%s]\n", __FUNCTION__, filepath)); fp = filp_open(filepath, O_RDONLY, 0); if (IS_ERR(fp)) { DHD_ERROR(("%s: File [%s] doesn't exist\n", __FUNCTION__, filepath)); goto done; } #else /* Non Brix Android platform */ goto done; #endif /* CONFIG_X86 && OEM_ANDROID */ } /* Handle success case */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0) ret = kernel_read(fp, (char *)&mem_val, 4, NULL); #else ret = kernel_read(fp, 0, (char *)&mem_val, 4); #endif if (ret < 0) { DHD_ERROR(("%s: File read error, ret=%d\n", __FUNCTION__, ret)); filp_close(fp, NULL); goto done; } mem_val = bcm_atoi((char *)&mem_val); filp_close(fp, NULL); #ifdef DHD_INIT_DEFAULT_MEMDUMP if (mem_val == 0 || mem_val == DUMP_MEMFILE_MAX) mem_val = DUMP_MEMFILE_BUGON; #endif /* DHD_INIT_DEFAULT_MEMDUMP */ done: #ifdef CUSTOMER_HW4_DEBUG dhd->memdump_enabled = (mem_val < DUMP_MEMFILE_MAX) ? mem_val : DUMP_DISABLED; #else dhd->memdump_enabled = (mem_val < DUMP_MEMFILE_MAX) ? mem_val : DUMP_MEMFILE; #endif /* CUSTOMER_HW4_DEBUG */ DHD_PRINT("%s: MEMDUMP ENABLED = %d\n", __FUNCTION__, dhd->memdump_enabled); } void dhd_schedule_memdump(dhd_pub_t *dhdp, uint8 *buf, uint32 size) { dhd_dump_t *dump = NULL; dump = (dhd_dump_t *)MALLOC(dhdp->osh, sizeof(dhd_dump_t)); if (dump == NULL) { DHD_ERROR(("%s: dhd dump memory allocation failed\n", __FUNCTION__)); return; } dump->buf = buf; dump->bufsize = size; #if defined(CONFIG_ARM64) DHD_ERROR(("%s: buf(va)=%llx, buf(pa)=%llx, bufsize=%d\n", __FUNCTION__, (uint64)buf, (uint64)__virt_to_phys((ulong)buf), size)); #elif defined(__ARM_ARCH_7A__) DHD_ERROR(("%s: buf(va)=%x, buf(pa)=%x, bufsize=%d\n", __FUNCTION__, (uint32)buf, (uint32)__virt_to_phys((ulong)buf), size)); #endif /* __ARM_ARCH_7A__ */ if (dhdp->memdump_enabled == DUMP_MEMONLY) { BUG_ON(1); } #ifdef DHD_LOG_DUMP if (dhdp->memdump_type != DUMP_TYPE_BY_SYSDUMP) { dhd_schedule_log_dump(dhdp); } #endif /* DHD_LOG_DUMP */ dhd_deferred_schedule_work(dhdp->info->dhd_deferred_wq, (void *)dump, DHD_WQ_WORK_SOC_RAM_DUMP, dhd_mem_dump, DHD_WQ_WORK_PRIORITY_HIGH); } static void dhd_mem_dump(void *handle, void *event_info, u8 event) { dhd_info_t *dhd = handle; dhd_dump_t *dump = event_info; if (!dhd) { DHD_ERROR(("%s: dhd is NULL\n", __FUNCTION__)); return; } if (!dump) { DHD_ERROR(("%s: dump is NULL\n", __FUNCTION__)); return; } if (write_dump_to_file(&dhd->pub, dump->buf, dump->bufsize, "mem_dump")) { DHD_ERROR(("%s: writing SoC_RAM dump to the file failed\n", __FUNCTION__)); dhd->pub.memdump_success = FALSE; } if (dhd->pub.memdump_enabled == DUMP_MEMFILE_BUGON && #ifdef DHD_LOG_DUMP dhd->pub.memdump_type != DUMP_TYPE_BY_SYSDUMP && #endif /* DHD_LOG_DUMP */ #ifdef DHD_DEBUG_UART dhd->pub.memdump_success == TRUE && #endif /* DHD_DEBUG_UART */ dhd->pub.memdump_type != DUMP_TYPE_CFG_VENDOR_TRIGGERED) { #ifdef SHOW_LOGTRACE /* Wait till event_log_dispatcher_work finishes */ cancel_work_sync(&dhd->event_log_dispatcher_work); #endif /* SHOW_LOGTRACE */ BUG_ON(1); } MFREE(dhd->pub.osh, dump, sizeof(dhd_dump_t)); } #endif /* DHD_FW_COREDUMP */ #ifdef DHD_SSSR_DUMP static void dhd_sssr_dump(void *handle, void *event_info, u8 event) { dhd_info_t *dhd = handle; dhd_pub_t *dhdp; int i; char before_sr_dump[128]; char after_sr_dump[128]; if (!dhd) { DHD_ERROR(("%s: dhd is NULL\n", __FUNCTION__)); return; } dhdp = &dhd->pub; for (i = 0; i < MAX_NUM_D11CORES; i++) { /* Init file name */ memset(before_sr_dump, 0, sizeof(before_sr_dump)); memset(after_sr_dump, 0, sizeof(after_sr_dump)); snprintf(before_sr_dump, sizeof(before_sr_dump), "%s_%d_%s", "sssr_core", i, "before_SR"); snprintf(after_sr_dump, sizeof(after_sr_dump), "%s_%d_%s", "sssr_core", i, "after_SR"); if (dhdp->sssr_d11_before[i] && dhdp->sssr_d11_outofreset[i]) { if (write_dump_to_file(dhdp, (uint8 *)dhdp->sssr_d11_before[i], dhdp->sssr_reg_info.mac_regs[i].sr_size, before_sr_dump)) { DHD_ERROR(("%s: writing SSSR MAIN dump before to the file failed\n", __FUNCTION__)); } } if (dhdp->sssr_d11_after[i] && dhdp->sssr_d11_outofreset[i]) { if (write_dump_to_file(dhdp, (uint8 *)dhdp->sssr_d11_after[i], dhdp->sssr_reg_info.mac_regs[i].sr_size, after_sr_dump)) { DHD_ERROR(("%s: writing SSSR AUX dump after to the file failed\n", __FUNCTION__)); } } } if (dhdp->sssr_vasip_buf_before) { if (write_dump_to_file(dhdp, (uint8 *)dhdp->sssr_vasip_buf_before, dhdp->sssr_reg_info.vasip_regs.vasip_sr_size, "sssr_vasip_before_SR")) { DHD_ERROR(("%s: writing SSSR VASIP dump before to the file failed\n", __FUNCTION__)); } } if (dhdp->sssr_vasip_buf_after) { if (write_dump_to_file(dhdp, (uint8 *)dhdp->sssr_vasip_buf_after, dhdp->sssr_reg_info.vasip_regs.vasip_sr_size, "sssr_vasip_after_SR")) { DHD_ERROR(("%s: writing SSSR VASIP dump after to the file failed\n", __FUNCTION__)); } } } void dhd_schedule_sssr_dump(dhd_pub_t *dhdp) { dhd_deferred_schedule_work(dhdp->info->dhd_deferred_wq, NULL, DHD_WQ_WORK_SSSR_DUMP, dhd_sssr_dump, DHD_WQ_WORK_PRIORITY_HIGH); } #endif /* DHD_SSSR_DUMP */ #ifdef DHD_LOG_DUMP static void dhd_log_dump(void *handle, void *event_info, u8 event) { dhd_info_t *dhd = handle; if (!dhd) { DHD_ERROR(("%s: dhd is NULL\n", __FUNCTION__)); return; } if (do_dhd_log_dump(&dhd->pub)) { DHD_ERROR(("%s: writing debug dump to the file failed\n", __FUNCTION__)); return; } } void dhd_schedule_log_dump(dhd_pub_t *dhdp) { dhd_deferred_schedule_work(dhdp->info->dhd_deferred_wq, (void*)NULL, DHD_WQ_WORK_DHD_LOG_DUMP, dhd_log_dump, DHD_WQ_WORK_PRIORITY_HIGH); } static int do_dhd_log_dump(dhd_pub_t *dhdp) { int ret = 0, i = 0; struct file *fp = NULL; mm_segment_t old_fs; loff_t pos = 0; unsigned int wr_size = 0; char dump_path[128]; struct osl_timespec curtime; uint32 file_mode; unsigned long flags = 0; struct dhd_log_dump_buf *dld_buf = &g_dld_buf[0]; const char *pre_strs = "-------------------- General log ---------------------------\n"; const char *post_strs = "-------------------- Specific log --------------------------\n"; if (!dhdp) { return -1; } DHD_ERROR(("DHD version: %s\n", dhd_version)); DHD_ERROR(("F/W version: %s\n", fw_version)); /* change to KERNEL_DS address limit */ old_fs = get_fs(); set_fs(KERNEL_DS); /* Init file name */ memset(dump_path, 0, sizeof(dump_path)); osl_do_gettimeofday(&curtime); snprintf(dump_path, sizeof(dump_path), "%s_%ld.%ld", DHD_COMMON_DUMP_PATH "debug_dump", (unsigned long)curtime.tv_sec, (unsigned long)curtime.tv_usec); file_mode = O_CREAT | O_WRONLY | O_SYNC; DHD_ERROR(("debug_dump_path = %s\n", dump_path)); fp = filp_open(dump_path, file_mode, 0664); if (IS_ERR(fp)) { ret = PTR_ERR(fp); DHD_ERROR(("open file error, err = %d\n", ret)); goto exit; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0) ret = kernel_write(fp, pre_strs, strlen(pre_strs), &pos); #else ret = vfs_write(fp, pre_strs, strlen(pre_strs), &pos); #endif if (ret < 0) { DHD_ERROR(("write file error, err = %d\n", ret)); goto exit; } do { unsigned int buf_size = (unsigned int)(dld_buf->max - (unsigned long)dld_buf->buffer); if (dld_buf->wraparound) { wr_size = buf_size; } else { if (!dld_buf->buffer[0]) { /* print log if buf is empty. */ DHD_ERROR_EX(("Buffer is empty. No event/log.\n")); } wr_size = (unsigned int)(dld_buf->present - dld_buf->front); } #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0) ret = kernel_write(fp, dld_buf->buffer, wr_size, &pos); #else ret = vfs_write(fp, dld_buf->buffer, wr_size, &pos); #endif if (ret < 0) { DHD_ERROR(("write file error, err = %d\n", ret)); goto exit; } /* re-init dhd_log_dump_buf structure */ spin_lock_irqsave(&dld_buf->lock, flags); dld_buf->wraparound = 0; dld_buf->present = dld_buf->front; dld_buf->remain = buf_size; bzero(dld_buf->buffer, buf_size); spin_unlock_irqrestore(&dld_buf->lock, flags); ret = BCME_OK; if (++i < DLD_BUFFER_NUM) { dld_buf = &g_dld_buf[i]; } else { break; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0) ret = kernel_write(fp, post_strs, strlen(post_strs), &pos); #else ret = vfs_write(fp, post_strs, strlen(post_strs), &pos); #endif if (ret < 0) { DHD_ERROR(("write file error, err = %d\n", ret)); goto exit; } } while (1); exit: #if defined(STAT_REPORT) if (!IS_ERR(fp) && ret >= 0) { wl_stat_report_file_save(dhdp, fp); } #endif /* STAT_REPORT */ if (!IS_ERR(fp)) { filp_close(fp, NULL); } set_fs(old_fs); return ret; } #endif /* DHD_LOG_DUMP */ #ifdef BCMASSERT_LOG #ifdef CUSTOMER_HW4_DEBUG #define ASSERTINFO PLATFORM_PATH".assert.info" #elif defined(CUSTOMER_HW2) #define ASSERTINFO "/data/misc/wifi/.assert.info" #else #define ASSERTINFO "/installmedia/.assert.info" #endif /* CUSTOMER_HW4_DEBUG */ void dhd_get_assert_info(dhd_pub_t *dhd) { struct file *fp = NULL; char *filepath = ASSERTINFO; int mem_val = -1; /* * Read assert info from the file * 0: Trigger Kernel crash by panic() * 1: Print out the logs and don't trigger Kernel panic. (default) * 2: Trigger Kernel crash by BUG() * File doesn't exist: Keep default value (1). */ fp = filp_open(filepath, O_RDONLY, 0); if (IS_ERR(fp)) { DHD_ERROR(("%s: File [%s] doesn't exist\n", __FUNCTION__, filepath)); } else { #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0) ssize_t ret = kernel_read(fp, (char *)&mem_val, 4, NULL); #else int ret = kernel_read(fp, 0, (char *)&mem_val, 4); #endif if (ret < 0) { DHD_ERROR(("%s: File read error, ret=%d\n", __FUNCTION__, ret)); } else { mem_val = bcm_atoi((char *)&mem_val); DHD_ERROR(("%s: ASSERT ENABLED = %d\n", __FUNCTION__, mem_val)); } filp_close(fp, NULL); } #ifdef CUSTOMER_HW4_DEBUG /* By default. set to 1, No Kernel Panic */ g_assert_type = (mem_val >= 0) ? mem_val : 1; #else /* By default. set to 0, Kernel Panic */ g_assert_type = (mem_val >= 0) ? mem_val : 0; #endif } #endif /* BCMASSERT_LOG */ /* * This call is to get the memdump size so that, * halutil can alloc that much buffer in user space. */ int dhd_os_socram_dump(struct net_device *dev, uint32 *dump_size) { int ret = BCME_OK; dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); dhd_pub_t *dhdp = &dhd->pub; if (dhdp->busstate == DHD_BUS_DOWN) { DHD_ERROR(("%s: bus is down\n", __FUNCTION__)); return BCME_ERROR; } if (DHD_BUS_CHECK_SUSPEND_OR_SUSPEND_IN_PROGRESS(dhdp)) { DHD_ERROR(("%s: bus is in suspend(%d) or suspending(0x%x) state, so skip\n", __FUNCTION__, dhdp->busstate, dhdp->dhd_bus_busy_state)); return BCME_ERROR; } ret = dhd_common_socram_dump(dhdp); if (ret == BCME_OK) { *dump_size = dhdp->soc_ram_length; } return ret; } /* * This is to get the actual memdup after getting the memdump size */ int dhd_os_get_socram_dump(struct net_device *dev, char **buf, uint32 *size) { int ret = BCME_OK; int orig_len = 0; dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); dhd_pub_t *dhdp = &dhd->pub; if (buf == NULL) return BCME_ERROR; orig_len = *size; if (dhdp->soc_ram) { if (orig_len >= dhdp->soc_ram_length) { memcpy(*buf, dhdp->soc_ram, dhdp->soc_ram_length); /* reset the storage of dump */ memset(dhdp->soc_ram, 0, dhdp->soc_ram_length); *size = dhdp->soc_ram_length; } else { ret = BCME_BUFTOOSHORT; DHD_ERROR(("The length of the buffer is too short" " to save the memory dump with %d\n", dhdp->soc_ram_length)); } } else { DHD_ERROR(("socram_dump is not ready to get\n")); ret = BCME_NOTREADY; } return ret; } int dhd_os_get_version(struct net_device *dev, bool dhd_ver, char **buf, uint32 size) { char *fw_str; if (size == 0) return BCME_BADARG; fw_str = strstr(info_string, "Firmware: "); if (fw_str == NULL) { return BCME_ERROR; } memset(*buf, 0, size); if (dhd_ver) { strncpy(*buf, dhd_version, size - 1); } else { strncpy(*buf, fw_str, size - 1); } return BCME_OK; } #ifdef DHD_WMF /* Returns interface specific WMF configuration */ dhd_wmf_t* dhd_wmf_conf(dhd_pub_t *dhdp, uint32 idx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; return &ifp->wmf; } #endif /* DHD_WMF */ #if defined(TRAFFIC_MGMT_DWM) void traffic_mgmt_pkt_set_prio(dhd_pub_t *dhdp, void * pktbuf) { struct ether_header *eh; struct ethervlan_header *evh; uint8 *pktdata, *ip_body; uint8 dwm_filter; uint8 tos_tc = 0; uint8 dscp = 0; pktdata = (uint8 *)PKTDATA(dhdp->osh, pktbuf); eh = (struct ether_header *) pktdata; ip_body = NULL; if (dhdp->dhd_tm_dwm_tbl.dhd_dwm_enabled) { if (eh->ether_type == hton16(ETHER_TYPE_8021Q)) { evh = (struct ethervlan_header *)eh; if ((evh->ether_type == hton16(ETHER_TYPE_IP)) || (evh->ether_type == hton16(ETHER_TYPE_IPV6))) { ip_body = pktdata + sizeof(struct ethervlan_header); } } else if ((eh->ether_type == hton16(ETHER_TYPE_IP)) || (eh->ether_type == hton16(ETHER_TYPE_IPV6))) { ip_body = pktdata + sizeof(struct ether_header); } if (ip_body) { tos_tc = IP_TOS46(ip_body); dscp = tos_tc >> IPV4_TOS_DSCP_SHIFT; } if (dscp < DHD_DWM_TBL_SIZE) { dwm_filter = dhdp->dhd_tm_dwm_tbl.dhd_dwm_tbl[dscp]; if (DHD_TRF_MGMT_DWM_IS_FILTER_SET(dwm_filter)) { PKTSETPRIO(pktbuf, DHD_TRF_MGMT_DWM_PRIO(dwm_filter)); } } } } #endif bool dhd_sta_associated(dhd_pub_t *dhdp, uint32 bssidx, uint8 *mac) { return dhd_find_sta(dhdp, bssidx, mac) ? TRUE : FALSE; } #ifdef DHD_L2_FILTER arp_table_t* dhd_get_ifp_arp_table_handle(dhd_pub_t *dhdp, uint32 bssidx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(bssidx < DHD_MAX_IFS); ifp = dhd->iflist[bssidx]; return ifp->phnd_arp_table; } int dhd_get_parp_status(dhd_pub_t *dhdp, uint32 idx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; if (ifp) return ifp->parp_enable; else return FALSE; } /* Set interface specific proxy arp configuration */ int dhd_set_parp_status(dhd_pub_t *dhdp, uint32 idx, int val) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; if (!ifp) return BCME_ERROR; /* At present all 3 variables are being * handled at once */ ifp->parp_enable = val; ifp->parp_discard = val; ifp->parp_allnode = val; /* Flush ARP entries when disabled */ if (val == FALSE) { bcm_l2_filter_arp_table_update(dhdp->osh, ifp->phnd_arp_table, TRUE, NULL, FALSE, dhdp->tickcnt); } return BCME_OK; } bool dhd_parp_discard_is_enabled(dhd_pub_t *dhdp, uint32 idx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; ASSERT(ifp); return ifp->parp_discard; } bool dhd_parp_allnode_is_enabled(dhd_pub_t *dhdp, uint32 idx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; ASSERT(ifp); return ifp->parp_allnode; } int dhd_get_dhcp_unicast_status(dhd_pub_t *dhdp, uint32 idx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; ASSERT(ifp); return ifp->dhcp_unicast; } int dhd_set_dhcp_unicast_status(dhd_pub_t *dhdp, uint32 idx, int val) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; ASSERT(ifp); ifp->dhcp_unicast = val; return BCME_OK; } int dhd_get_block_ping_status(dhd_pub_t *dhdp, uint32 idx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; ASSERT(ifp); return ifp->block_ping; } int dhd_set_block_ping_status(dhd_pub_t *dhdp, uint32 idx, int val) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; ASSERT(ifp); ifp->block_ping = val; /* Disable rx_pkt_chain feature for interface if block_ping option is * enabled */ dhd_update_rx_pkt_chainable_state(dhdp, idx); return BCME_OK; } int dhd_get_grat_arp_status(dhd_pub_t *dhdp, uint32 idx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; ASSERT(ifp); return ifp->grat_arp; } int dhd_set_grat_arp_status(dhd_pub_t *dhdp, uint32 idx, int val) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; ASSERT(ifp); ifp->grat_arp = val; return BCME_OK; } #endif /* DHD_L2_FILTER */ #if defined(SET_RPS_CPUS) int dhd_rps_cpus_enable(struct net_device *net, int enable) { dhd_info_t *dhd = DHD_DEV_INFO(net); dhd_if_t *ifp; int ifidx; char * RPS_CPU_SETBUF; ifidx = dhd_net2idx(dhd, net); if (ifidx == DHD_BAD_IF) { DHD_ERROR(("%s bad ifidx\n", __FUNCTION__)); return -ENODEV; } if (ifidx == PRIMARY_INF) { if (dhd->pub.op_mode == DHD_FLAG_IBSS_MODE) { DHD_INFO(("%s : set for IBSS.\n", __FUNCTION__)); RPS_CPU_SETBUF = RPS_CPUS_MASK_IBSS; } else { DHD_INFO(("%s : set for BSS.\n", __FUNCTION__)); RPS_CPU_SETBUF = RPS_CPUS_MASK; } } else if (ifidx == VIRTUAL_INF) { DHD_INFO(("%s : set for P2P.\n", __FUNCTION__)); RPS_CPU_SETBUF = RPS_CPUS_MASK_P2P; } else { DHD_ERROR(("%s : Invalid index : %d.\n", __FUNCTION__, ifidx)); return -EINVAL; } ifp = dhd->iflist[ifidx]; if (ifp) { if (enable) { DHD_INFO(("%s : set rps_cpus as [%s]\n", __FUNCTION__, RPS_CPU_SETBUF)); custom_rps_map_set(ifp->net->_rx, RPS_CPU_SETBUF, strlen(RPS_CPU_SETBUF)); } else { custom_rps_map_clear(ifp->net->_rx); } } else { DHD_ERROR(("%s : ifp is NULL!!\n", __FUNCTION__)); return -ENODEV; } return BCME_OK; } int custom_rps_map_set(struct netdev_rx_queue *queue, char *buf, size_t len) { struct rps_map *old_map, *map; cpumask_var_t mask; int err, cpu, i; static DEFINE_SPINLOCK(rps_map_lock); DHD_INFO(("%s : Entered.\n", __FUNCTION__)); if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { DHD_ERROR(("%s : alloc_cpumask_var fail.\n", __FUNCTION__)); return -ENOMEM; } err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); if (err) { free_cpumask_var(mask); DHD_ERROR(("%s : bitmap_parse fail.\n", __FUNCTION__)); return err; } map = kzalloc(max_t(unsigned int, RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES), GFP_KERNEL); if (!map) { free_cpumask_var(mask); DHD_ERROR(("%s : map malloc fail.\n", __FUNCTION__)); return -ENOMEM; } i = 0; for_each_cpu(cpu, mask) { map->cpus[i++] = cpu; } if (i) { map->len = i; } else { kfree(map); map = NULL; free_cpumask_var(mask); DHD_ERROR(("%s : mapping cpu fail.\n", __FUNCTION__)); return -1; } spin_lock(&rps_map_lock); old_map = rcu_dereference_protected(queue->rps_map, lockdep_is_held(&rps_map_lock)); rcu_assign_pointer(queue->rps_map, map); spin_unlock(&rps_map_lock); if (map) { static_key_slow_inc(&rps_needed); } if (old_map) { kfree_rcu(old_map, rcu); static_key_slow_dec(&rps_needed); } free_cpumask_var(mask); DHD_INFO(("%s : Done. mapping cpu nummber : %d\n", __FUNCTION__, map->len)); return map->len; } void custom_rps_map_clear(struct netdev_rx_queue *queue) { struct rps_map *map; DHD_INFO(("%s : Entered.\n", __FUNCTION__)); map = rcu_dereference_protected(queue->rps_map, 1); if (map) { RCU_INIT_POINTER(queue->rps_map, NULL); kfree_rcu(map, rcu); DHD_INFO(("%s : rps_cpus map clear.\n", __FUNCTION__)); } } #endif #ifdef DHD_DEBUG_PAGEALLOC void dhd_page_corrupt_cb(void *handle, void *addr_corrupt, size_t len) { dhd_pub_t *dhdp = (dhd_pub_t *)handle; DHD_ERROR(("%s: Got dhd_page_corrupt_cb 0x%p %d\n", __FUNCTION__, addr_corrupt, (uint32)len)); DHD_OS_WAKE_LOCK(dhdp); prhex("Page Corruption:", addr_corrupt, len); dhd_dump_to_kernelog(dhdp); #if defined(BCMPCIE) && defined(DHD_FW_COREDUMP) /* Load the dongle side dump to host memory and then BUG_ON() */ dhdp->memdump_enabled = DUMP_MEMONLY; dhdp->memdump_type = DUMP_TYPE_MEMORY_CORRUPTION; dhd_bus_mem_dump(dhdp); #endif /* BCMPCIE && DHD_FW_COREDUMP */ DHD_OS_WAKE_UNLOCK(dhdp); } EXPORT_SYMBOL(dhd_page_corrupt_cb); #endif /* DHD_DEBUG_PAGEALLOC */ #if defined(BCMPCIE) && defined(DHD_PKTID_AUDIT_ENABLED) void dhd_pktid_error_handler(dhd_pub_t *dhdp) { DHD_ERROR(("%s: Got Pkt Id Audit failure \n", __FUNCTION__)); DHD_OS_WAKE_LOCK(dhdp); dhd_dump_to_kernelog(dhdp); #ifdef DHD_FW_COREDUMP /* Load the dongle side dump to host memory */ if (dhdp->memdump_enabled == DUMP_DISABLED) { dhdp->memdump_enabled = DUMP_MEMFILE; } dhdp->memdump_type = DUMP_TYPE_PKTID_AUDIT_FAILURE; dhd_bus_mem_dump(dhdp); #endif /* DHD_FW_COREDUMP */ dhdp->hang_reason = HANG_REASON_PCIE_PKTID_ERROR; dhd_os_check_hang(dhdp, 0, -EREMOTEIO); DHD_OS_WAKE_UNLOCK(dhdp); } #endif /* BCMPCIE && DHD_PKTID_AUDIT_ENABLED */ struct net_device * dhd_linux_get_primary_netdev(dhd_pub_t *dhdp) { dhd_info_t *dhd = dhdp->info; if (dhd->iflist[0] && dhd->iflist[0]->net) return dhd->iflist[0]->net; else return NULL; } #ifdef DHD_ARP_DUMP #define ARP_PRINT(str) \ do { \ printk("[dhd-%s] " str " [%s] : %s(%s) %s %s(%s)\n", \ ifname, tx?"TX":"RX", \ tx?sabuf:dabuf, tx?seabuf:deabuf, \ tx?"->":"<-", tx?dabuf:sabuf, tx?deabuf:seabuf); \ } while (0) #define ARP_PRINT_OTHER(str) \ do { \ printk("[dhd-%s] " str " [%s] : %s(%s) %s %s(%s) op_code=%d\n", \ ifname, tx?"TX":"RX", \ tx?sabuf:dabuf, tx?seabuf:deabuf, \ tx?"->":"<-", tx?dabuf:sabuf, tx?deabuf:seabuf, opcode); \ } while (0) static void dhd_arp_dump(char *ifname, uint8 *pktdata, bool tx) { uint8 *pkt = (uint8 *)&pktdata[ETHER_HDR_LEN]; struct bcmarp *arph = (struct bcmarp *)pkt; uint16 opcode; char sabuf[20]="", dabuf[20]=""; char seabuf[ETHER_ADDR_STR_LEN]=""; char deabuf[ETHER_ADDR_STR_LEN]=""; if (!(dump_msg_level & DUMP_ARP_VAL)) return; /* validation check */ if (arph->htype != hton16(HTYPE_ETHERNET) || arph->hlen != ETHER_ADDR_LEN || arph->plen != 4) { return; } opcode = ntoh16(arph->oper); bcm_ip_ntoa((struct ipv4_addr *)arph->src_ip, sabuf); bcm_ip_ntoa((struct ipv4_addr *)arph->dst_ip, dabuf); bcm_ether_ntoa((struct ether_addr *)arph->dst_eth, deabuf); bcm_ether_ntoa((struct ether_addr *)arph->src_eth, seabuf); if (opcode == ARP_OPC_REQUEST) { ARP_PRINT("ARP REQUEST "); } else if (opcode == ARP_OPC_REPLY) { ARP_PRINT("ARP RESPONSE"); } else { ARP_PRINT_OTHER("ARP OTHER"); } } #endif /* DHD_ARP_DUMP */ struct tcp_fmt { struct iphdr ip_header; struct tcphdr tcp_header; }; #define KP_PORT 443 static void dhd_tcp_dump(char *ifname, uint8 *pktdata, bool tx) { struct tcp_fmt *b = (struct tcp_fmt *) &pktdata[ETHER_HDR_LEN]; struct iphdr *h = &b->ip_header; uint32 ip_saddr, ip_daddr, c, max_c, opt, tsval_t, tsecr_t; unsigned char *opts; /* check IP header */ if (h->ihl != 5 || h->version != 4 || h->protocol != IPPROTO_TCP) { return; } if ((ntohs(b->tcp_header.source) != KP_PORT) && (ntohs(b->tcp_header.dest) != KP_PORT)) return; if (tx) { ip_saddr = h->saddr; ip_daddr = h->daddr; ip_id = ntohs(h->id); bcm_ip_ntoa((struct ipv4_addr *)&ip_saddr, sabuf); bcm_ip_ntoa((struct ipv4_addr *)&ip_daddr, dabuf); bcm_ether_ntoa((struct ether_addr *)pktdata, deabuf); bcm_ether_ntoa((struct ether_addr *)(pktdata+6), seabuf); source = ntohs(b->tcp_header.source); dest = ntohs(b->tcp_header.dest); seq = ntohl(b->tcp_header.seq); seq_ack = ntohl(b->tcp_header.ack_seq); window = ntohs(b->tcp_header.window); tcp_data_len = ntohs(h->tot_len) - 20 - (b->tcp_header.doff * 4); } tcp_option_len = (b->tcp_header.doff * 4) - 20; if (tcp_option_len) { max_c = tcp_option_len; opts = &pktdata[ETHER_HDR_LEN + 40]; for (c = 0; c < max_c; ) { opt = opts[c]; switch (opt) { case 0x00: /* End of options. */ pr_debug("rk tcp_parseopt: EOL\n"); return; case 0x01: /* NOP option. */ ++c; pr_debug("rk tcp_parseopt: NOP\n"); break; case 0x02: pr_debug("rk tcp_parseopt: MSS\n"); if (opts[c + 1] != 0x04 || c + 0x04 > max_c) { /* Bad length */ pr_err("rk tcp_parseopt: bad length\n"); return; } /* Advance to next option */ c += 0x04; break; case 0x08: pr_debug("rk tcp_parseopt: TS\n"); if (opts[c + 1] != 0x0A || c + 0x0A > max_c) { /* Bad length */ pr_err("rk tcp_parseopt: bad length\n"); return; } /* TCP timestamp option with valid length */ tsval_t = (opts[c+2]) | (opts[c+3] << 8) | (opts[c+4] << 16) | (opts[c+5] << 24); tsecr_t = (opts[c+6]) | (opts[c+7] << 8) | (opts[c+8] << 16) | (opts[c+9] << 24); if (tx) { tsval = ntohl(tsval_t); tsecr = ntohl(tsecr_t); } else { tsecr = ntohl(tsval_t); tsval = ntohl(tsecr_t); } /* Advance to next option */ c += 0x0A; break; default: pr_debug("rk tcp_parseopt: other\n"); if (opts[c + 1] == 0) { pr_err("rk tcp_parseopt: bad length\n"); /* If the length field is zero, the options are malformed and we don't process them further. */ return; } /* All other options have a length field, so that we easily can skip past them. */ c += opts[c + 1]; } } } if (tx) pr_debug("[%s-%s] %s %s %s %s %d, %d, %d, %8u, %8u, %d, %d, %d, %8u, %8u\n", ifname, tx ? "tx" : "rx", sabuf, dabuf, seabuf, deabuf, ip_id, source, dest, seq, seq_ack, window, tcp_option_len, tcp_data_len, tsval, tsecr); } #ifdef DHD_DHCP_DUMP #define DHCP_PRINT(str) \ do { \ printk("[dhd-%s] " str " %8s, %8s [%s] : %s(%s) %s %s(%s)\n", \ ifname, dhcp_types[dhcp_type], dhcp_ops[b->op], \ tx?"TX":"RX", \ tx?sabuf:dabuf, tx?seabuf:deabuf, \ tx?"->":"<-", tx?dabuf:sabuf, tx?deabuf:seabuf); \ } while (0) static void dhd_dhcp_dump(char *ifname, uint8 *pktdata, bool tx) { struct bootp_fmt *b = (struct bootp_fmt *) &pktdata[ETHER_HDR_LEN]; struct iphdr *h = &b->ip_header; uint8 *ptr, *opt, *end = (uint8 *) b + ntohs(b->ip_header.tot_len); int dhcp_type = 0, len, opt_len; uint32 ip_saddr, ip_daddr; char sabuf[20]="", dabuf[20]=""; char seabuf[ETHER_ADDR_STR_LEN]=""; char deabuf[ETHER_ADDR_STR_LEN]=""; if (!(dump_msg_level & DUMP_DHCP_VAL)) return; /* check IP header */ if (h->ihl != 5 || h->version != 4 || h->protocol != IPPROTO_UDP) { return; } /* check UDP port for bootp (67, 68) */ if (b->udp_header.source != htons(67) && b->udp_header.source != htons(68) && b->udp_header.dest != htons(67) && b->udp_header.dest != htons(68)) { return; } /* check header length */ if (ntohs(h->tot_len) < ntohs(b->udp_header.len) + sizeof(struct iphdr)) { return; } ip_saddr = h->saddr; ip_daddr = h->daddr; bcm_ip_ntoa((struct ipv4_addr *)&ip_saddr, sabuf); bcm_ip_ntoa((struct ipv4_addr *)&ip_daddr, dabuf); bcm_ether_ntoa((struct ether_addr *)pktdata, deabuf); bcm_ether_ntoa((struct ether_addr *)(pktdata+6), seabuf); len = ntohs(b->udp_header.len) - sizeof(struct udphdr); opt_len = len - (sizeof(*b) - sizeof(struct iphdr) - sizeof(struct udphdr) - sizeof(b->options)); /* parse bootp options */ if (opt_len >= 4 && !memcmp(b->options, bootp_magic_cookie, 4)) { ptr = &b->options[4]; while (ptr < end && *ptr != 0xff) { opt = ptr++; if (*opt == 0) { continue; } ptr += *ptr + 1; if (ptr >= end) { break; } /* 53 is dhcp type */ if (*opt == 53) { if (opt[1]) { dhcp_type = opt[2]; DHCP_PRINT("DHCP"); break; } } } } } #endif /* DHD_DHCP_DUMP */ #ifdef DHD_ICMP_DUMP #define ICMP_TYPE_ECHO_REQUEST 8 /* ICMP type echo request */ #define ICMP_TYPE_ECHO_REPLY 0 /* ICMP type echo reply */ #define ICMP_TYPE_DEST_UNREACH 3 #define ICMP_ECHO_SEQ_OFFSET 6 #define ICMP_ECHO_SEQ(h) (*(uint16 *)((uint8 *)(h) + (ICMP_ECHO_SEQ_OFFSET))) #define ICMP_PING_PRINT(str) \ do { \ printk("[dhd-%s] " str " [%2s] : %s(%s) %s %s(%s) SEQNUM=%d\n", \ ifname, tx?"TX":"RX", tx?sabuf:dabuf, tx?seabuf:deabuf, \ tx?"->":"<-", tx?dabuf:sabuf, tx?deabuf:seabuf, seqnum); \ } while (0) #define ICMP_PRINT(str) \ do { \ printk("[dhd-%s] " str " [%2s] : %s(%s) %s %s(%s)\n", \ ifname, tx?"TX":"RX", tx?sabuf:dabuf, tx?seabuf:deabuf, \ tx?"->":"<-", tx?dabuf:sabuf, tx?deabuf:seabuf); \ } while (0) static void dhd_icmp_dump(char *ifname, uint8 *pktdata, bool tx) { uint8 *pkt = (uint8 *)&pktdata[ETHER_HDR_LEN]; struct iphdr *iph = (struct iphdr *)pkt; struct icmphdr *icmph; uint32 ip_saddr, ip_daddr; char sabuf[20]="", dabuf[20]=""; char seabuf[ETHER_ADDR_STR_LEN]=""; char deabuf[ETHER_ADDR_STR_LEN]=""; uint16 seqnum, type, code; if (!(dump_msg_level & DUMP_ICMP_VAL)) return; /* check IP header */ if (iph->ihl != 5 || iph->version != 4 || iph->protocol != IP_PROT_ICMP) { return; } icmph = (struct icmphdr *)((uint8 *)pkt + sizeof(struct iphdr)); seqnum = 0; type = icmph->type; code = icmph->code; ip_saddr = iph->saddr; ip_daddr = iph->daddr; bcm_ip_ntoa((struct ipv4_addr *)&ip_saddr, sabuf); bcm_ip_ntoa((struct ipv4_addr *)&ip_daddr, dabuf); bcm_ether_ntoa((struct ether_addr *)pktdata, deabuf); bcm_ether_ntoa((struct ether_addr *)(pktdata+6), seabuf); if (type == ICMP_TYPE_ECHO_REQUEST) { seqnum = ntoh16(ICMP_ECHO_SEQ(icmph)); ICMP_PING_PRINT("PING REQUEST"); } else if (type == ICMP_TYPE_ECHO_REPLY) { seqnum = ntoh16(ICMP_ECHO_SEQ(icmph)); ICMP_PING_PRINT("PING REPLY "); } else if (type == ICMP_TYPE_DEST_UNREACH) { ICMP_PRINT("ICMP DEST UNREACH"); } else { ICMP_PRINT("ICMP OTHER"); } } #endif /* DHD_ICMP_DUMP */ #ifdef SHOW_LOGTRACE void dhd_get_read_buf_ptr(dhd_pub_t *dhd_pub, trace_buf_info_t *trace_buf_info) { dhd_dbg_ring_status_t ring_status; uint32 rlen; rlen = dhd_dbg_ring_pull_single(dhd_pub, FW_VERBOSE_RING_ID, trace_buf_info->buf, TRACE_LOG_BUF_MAX_SIZE, TRUE); trace_buf_info->size = rlen; trace_buf_info->availability = NEXT_BUF_NOT_AVAIL; if (rlen == 0) { trace_buf_info->availability = BUF_NOT_AVAILABLE; return; } dhd_dbg_get_ring_status(dhd_pub, FW_VERBOSE_RING_ID, &ring_status); if (ring_status.written_bytes != ring_status.read_bytes) { trace_buf_info->availability = NEXT_BUF_AVAIL; } } #endif /* SHOW_LOGTRACE */ bool dhd_fw_download_status(dhd_pub_t * dhd_pub) { return dhd_pub->fw_download_done; } int dhd_create_to_notifier_skt(void) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0)) /* Kernel 3.7 onwards this API accepts only 3 arguments. */ /* Kernel version 3.6 is a special case which accepts 4 arguments */ nl_to_event_sk = netlink_kernel_create(&init_net, BCM_NL_USER, &g_cfg); #elif (LINUX_VERSION_CODE < KERNEL_VERSION(3, 6, 0)) /* Kernel version 3.5 and below use this old API format */ nl_to_event_sk = netlink_kernel_create(&init_net, BCM_NL_USER, 0, dhd_process_daemon_msg, NULL, THIS_MODULE); #else nl_to_event_sk = netlink_kernel_create(&init_net, BCM_NL_USER, THIS_MODULE, &g_cfg); #endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0)) */ if (!nl_to_event_sk) { printf("Error creating socket.\n"); return -1; } DHD_INFO(("nl_to socket created successfully...\n")); return 0; } void dhd_destroy_to_notifier_skt(void) { DHD_INFO(("Destroying nl_to socket\n")); if (nl_to_event_sk) { netlink_kernel_release(nl_to_event_sk); } } static void dhd_recv_msg_from_daemon(struct sk_buff *skb) { struct nlmsghdr *nlh; bcm_to_info_t *cmd; nlh = (struct nlmsghdr *)skb->data; cmd = (bcm_to_info_t *)nlmsg_data(nlh); if ((cmd->magic == BCM_TO_MAGIC) && (cmd->reason == REASON_DAEMON_STARTED)) { sender_pid = ((struct nlmsghdr *)(skb->data))->nlmsg_pid; DHD_INFO(("DHD Daemon Started\n")); } } int dhd_send_msg_to_daemon(struct sk_buff *skb, void *data, int size) { struct nlmsghdr *nlh; struct sk_buff *skb_out; if (!nl_to_event_sk) { DHD_INFO(("No socket available\n")); return -1; } BCM_REFERENCE(skb); if (sender_pid == 0) { DHD_INFO(("Invalid PID 0\n")); return -1; } if ((skb_out = nlmsg_new(size, 0)) == NULL) { DHD_ERROR(("%s: skb alloc failed\n", __FUNCTION__)); return -1; } nlh = nlmsg_put(skb_out, 0, 0, NLMSG_DONE, size, 0); NETLINK_CB(skb_out).dst_group = 0; /* Unicast */ memcpy(nlmsg_data(nlh), (char *)data, size); if ((nlmsg_unicast(nl_to_event_sk, skb_out, sender_pid)) < 0) { DHD_INFO(("Error sending message\n")); } return 0; } static void dhd_process_daemon_msg(struct sk_buff *skb) { bcm_to_info_t to_info; to_info.magic = BCM_TO_MAGIC; to_info.reason = REASON_DAEMON_STARTED; to_info.trap = NO_TRAP; dhd_recv_msg_from_daemon(skb); dhd_send_msg_to_daemon(skb, &to_info, sizeof(to_info)); } #ifdef REPORT_FATAL_TIMEOUTS static void dhd_send_trap_to_fw(dhd_pub_t * pub, int reason, int trap) { bcm_to_info_t to_info; to_info.magic = BCM_TO_MAGIC; to_info.reason = reason; to_info.trap = trap; DHD_ERROR(("Sending Event reason:%d trap:%d\n", reason, trap)); dhd_send_msg_to_daemon(NULL, (void *)&to_info, sizeof(bcm_to_info_t)); } void dhd_send_trap_to_fw_for_timeout(dhd_pub_t * pub, timeout_reasons_t reason) { int to_reason; int trap = NO_TRAP; switch (reason) { case DHD_REASON_COMMAND_TO: to_reason = REASON_COMMAND_TO; trap = DO_TRAP; break; case DHD_REASON_JOIN_TO: to_reason = REASON_JOIN_TO; break; case DHD_REASON_SCAN_TO: to_reason = REASON_SCAN_TO; break; case DHD_REASON_OQS_TO: to_reason = REASON_OQS_TO; trap = DO_TRAP; break; default: to_reason = REASON_UNKOWN; } dhd_send_trap_to_fw(pub, to_reason, trap); } #endif /* REPORT_FATAL_TIMEOUTS */ #ifdef DHD_LOG_DUMP void dhd_log_dump_init(dhd_pub_t *dhd) { struct dhd_log_dump_buf *dld_buf; int i = 0; #if defined(CONFIG_DHD_USE_STATIC_BUF) && defined(DHD_USE_STATIC_MEMDUMP) int prealloc_idx = DHD_PREALLOC_DHD_LOG_DUMP_BUF; #endif /* CONFIG_DHD_USE_STATIC_BUF && DHD_USE_STATIC_MEMDUMP */ for (i = 0; i < DLD_BUFFER_NUM; i++) { dld_buf = &g_dld_buf[i]; spin_lock_init(&dld_buf->lock); #if defined(CONFIG_DHD_USE_STATIC_BUF) && defined(DHD_USE_STATIC_MEMDUMP) dld_buf->buffer = DHD_OS_PREALLOC(dhd, prealloc_idx++, dld_buf_size[i]); #else dld_buf->buffer = kmalloc(dld_buf_size[i], GFP_KERNEL); #endif /* CONFIG_DHD_USE_STATIC_BUF && DHD_USE_STATIC_MEMDUMP */ if (!dld_buf->buffer) { dld_buf->buffer = kmalloc(dld_buf_size[i], GFP_KERNEL); DHD_ERROR(("Try to allocate memory using kmalloc().\n")); if (!dld_buf->buffer) { DHD_ERROR(("Failed to allocate memory for dld_buf[%d].\n", i)); goto fail; } } dld_buf->wraparound = 0; dld_buf->max = (unsigned long)dld_buf->buffer + dld_buf_size[i]; dld_buf->present = dld_buf->front = dld_buf->buffer; dld_buf->remain = dld_buf_size[i]; dld_buf->enable = 1; } return; fail: for (i = 0; i < DLD_BUFFER_NUM; i++) { if (dld_buf[i].buffer) { kfree(dld_buf[i].buffer); } } } void dhd_log_dump_deinit(dhd_pub_t *dhd) { struct dhd_log_dump_buf *dld_buf; int i = 0; for (i = 0; i < DLD_BUFFER_NUM; i++) { dld_buf = &g_dld_buf[i]; dld_buf->enable = 0; #if defined(CONFIG_DHD_USE_STATIC_BUF) && defined(DHD_USE_STATIC_MEMDUMP) DHD_OS_PREFREE(dhd, dld_buf->buffer, dld_buf_size[i]); #else kfree(dld_buf->buffer); #endif /* CONFIG_DHD_USE_STATIC_BUF && DHD_USE_STATIC_MEMDUMP */ } } void dhd_log_dump_write(int type, const char *fmt, ...) { int len = 0; char tmp_buf[DHD_LOG_DUMP_MAX_TEMP_BUFFER_SIZE] = {0, }; va_list args; unsigned long flags = 0; struct dhd_log_dump_buf *dld_buf = NULL; switch (type) { case DLD_BUF_TYPE_GENERAL: dld_buf = &g_dld_buf[type]; break; case DLD_BUF_TYPE_SPECIAL: dld_buf = &g_dld_buf[type]; break; default: DHD_ERROR(("%s: Unknown DHD_LOG_DUMP_BUF_TYPE(%d).\n", __FUNCTION__, type)); return; } if (dld_buf->enable != 1) { return; } va_start(args, fmt); len = vsnprintf(tmp_buf, DHD_LOG_DUMP_MAX_TEMP_BUFFER_SIZE, fmt, args); /* Non ANSI C99 compliant returns -1, * ANSI compliant return len >= DHD_LOG_DUMP_MAX_TEMP_BUFFER_SIZE */ if (len < 0) { return; } if (len >= DHD_LOG_DUMP_MAX_TEMP_BUFFER_SIZE) { len = DHD_LOG_DUMP_MAX_TEMP_BUFFER_SIZE - 1; tmp_buf[len] = '\0'; } /* make a critical section to eliminate race conditions */ spin_lock_irqsave(&dld_buf->lock, flags); if (dld_buf->remain < len) { dld_buf->wraparound = 1; dld_buf->present = dld_buf->front; dld_buf->remain = dld_buf_size[type]; } strncpy(dld_buf->present, tmp_buf, len); dld_buf->remain -= len; dld_buf->present += len; spin_unlock_irqrestore(&dld_buf->lock, flags); /* double check invalid memory operation */ ASSERT((unsigned long)dld_buf->present <= dld_buf->max); va_end(args); } char* dhd_log_dump_get_timestamp(void) { static char buf[16]; u64 ts_nsec; unsigned long rem_nsec; ts_nsec = local_clock(); rem_nsec = do_div(ts_nsec, 1000000000); snprintf(buf, sizeof(buf), "%5lu.%06lu", (unsigned long)ts_nsec, rem_nsec / 1000); return buf; } #endif /* DHD_LOG_DUMP */ int dhd_write_file(const char *filepath, char *buf, int buf_len) { struct file *fp = NULL; mm_segment_t old_fs; int ret = 0; /* change to KERNEL_DS address limit */ old_fs = get_fs(); set_fs(KERNEL_DS); /* File is always created. */ fp = filp_open(filepath, O_RDWR | O_CREAT, 0664); if (IS_ERR(fp)) { DHD_ERROR(("%s: Couldn't open file '%s' err %ld\n", __FUNCTION__, filepath, PTR_ERR(fp))); ret = BCME_ERROR; } else { if (fp->f_mode & FMODE_WRITE) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0) ret = kernel_write(fp, buf, buf_len, &fp->f_pos); #else ret = vfs_write(fp, buf, buf_len, &fp->f_pos); #endif if (ret < 0) { DHD_ERROR(("%s: Couldn't write file '%s'\n", __FUNCTION__, filepath)); ret = BCME_ERROR; } else { ret = BCME_OK; } } filp_close(fp, NULL); } /* restore previous address limit */ set_fs(old_fs); return ret; } int dhd_read_file(const char *filepath, char *buf, int buf_len) { struct file *fp = NULL; mm_segment_t old_fs; int ret; /* change to KERNEL_DS address limit */ old_fs = get_fs(); set_fs(KERNEL_DS); fp = filp_open(filepath, O_RDONLY, 0); if (IS_ERR(fp)) { set_fs(old_fs); DHD_ERROR(("%s: File %s doesn't exist\n", __FUNCTION__, filepath)); return BCME_ERROR; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0) ret = kernel_read(fp, buf, buf_len, NULL); #else ret = kernel_read(fp, 0, buf, buf_len); #endif filp_close(fp, NULL); /* restore previous address limit */ set_fs(old_fs); /* Return the number of bytes read */ if (ret > 0) { /* Success to read */ ret = 0; } else { DHD_ERROR(("%s: Couldn't read the file %s, ret=%d\n", __FUNCTION__, filepath, ret)); ret = BCME_ERROR; } return ret; } int dhd_write_file_and_check(const char *filepath, char *buf, int buf_len) { int ret; ret = dhd_write_file(filepath, buf, buf_len); if (ret < 0) { return ret; } /* Read the file again and check if the file size is not zero */ memset(buf, 0, buf_len); ret = dhd_read_file(filepath, buf, buf_len); return ret; } #ifdef DHD_LB_TXP #define DHD_LB_TXBOUND 64 /* * Function that performs the TX processing on a given CPU */ bool dhd_lb_tx_process(dhd_info_t *dhd) { struct sk_buff *skb; int cnt = 0; struct net_device *net; int ifidx; bool resched = FALSE; DHD_TRACE(("%s(): TX Processing \r\n", __FUNCTION__)); if (dhd == NULL) { DHD_ERROR((" Null pointer DHD \r\n")); return resched; } DHD_LB_STATS_PERCPU_ARR_INCR(dhd->txp_percpu_run_cnt); /* Base Loop to perform the actual Tx */ do { skb = skb_dequeue(&dhd->tx_pend_queue); if (skb == NULL) { DHD_TRACE(("Dequeued a Null Packet \r\n")); break; } cnt++; net = DHD_LB_TX_PKTTAG_NETDEV((dhd_tx_lb_pkttag_fr_t *)PKTTAG(skb)); ifidx = DHD_LB_TX_PKTTAG_IFIDX((dhd_tx_lb_pkttag_fr_t *)PKTTAG(skb)); BCM_REFERENCE(net); DHD_TRACE(("Processing skb %p for net %p index %d \r\n", skb, net, ifidx)); __dhd_sendpkt(&dhd->pub, ifidx, skb); if (cnt >= DHD_LB_TXBOUND) { resched = TRUE; break; } } while (1); DHD_INFO(("%s(): Processed %d packets \r\n", __FUNCTION__, cnt)); return resched; } void dhd_lb_tx_handler(unsigned long data) { dhd_info_t *dhd = (dhd_info_t *)data; if (dhd_lb_tx_process(dhd)) { dhd_tasklet_schedule(&dhd->tx_tasklet); } } #endif /* DHD_LB_TXP */ /* ---------------------------------------------------------------------------- * Infrastructure code for sysfs interface support for DHD * * What is sysfs interface? * https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt * * Why sysfs interface? * This is the Linux standard way of changing/configuring Run Time parameters * for a driver. We can use this interface to control "linux" specific driver * parameters. * * ----------------------------------------------------------------------------- */ #include #include #if defined(DHD_TRACE_WAKE_LOCK) /* Function to show the history buffer */ static ssize_t show_wklock_trace(struct dhd_info *dev, char *buf) { ssize_t ret = 0; dhd_info_t *dhd = (dhd_info_t *)dev; buf[ret] = '\n'; buf[ret+1] = 0; dhd_wk_lock_stats_dump(&dhd->pub); return ret+1; } /* Function to enable/disable wakelock trace */ static ssize_t wklock_trace_onoff(struct dhd_info *dev, const char *buf, size_t count) { unsigned long onoff; unsigned long flags; dhd_info_t *dhd = (dhd_info_t *)dev; onoff = bcm_strtoul(buf, NULL, 10); if (onoff != 0 && onoff != 1) { return -EINVAL; } spin_lock_irqsave(&dhd->wakelock_spinlock, flags); trace_wklock_onoff = onoff; spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); if (trace_wklock_onoff) { printk("ENABLE WAKLOCK TRACE\n"); } else { printk("DISABLE WAKELOCK TRACE\n"); } return (ssize_t)(onoff+1); } #endif /* DHD_TRACE_WAKE_LOCK */ #if defined(DHD_LB_TXP) static ssize_t show_lbtxp(struct dhd_info *dev, char *buf) { ssize_t ret = 0; unsigned long onoff; dhd_info_t *dhd = (dhd_info_t *)dev; onoff = atomic_read(&dhd->lb_txp_active); ret = scnprintf(buf, PAGE_SIZE - 1, "%lu \n", onoff); return ret; } static ssize_t lbtxp_onoff(struct dhd_info *dev, const char *buf, size_t count) { unsigned long onoff; dhd_info_t *dhd = (dhd_info_t *)dev; int i; onoff = bcm_strtoul(buf, NULL, 10); sscanf(buf, "%lu", &onoff); if (onoff != 0 && onoff != 1) { return -EINVAL; } atomic_set(&dhd->lb_txp_active, onoff); /* Since the scheme is changed clear the counters */ for (i = 0; i < NR_CPUS; i++) { DHD_LB_STATS_CLR(dhd->txp_percpu_run_cnt[i]); DHD_LB_STATS_CLR(dhd->tx_start_percpu_run_cnt[i]); } return count; } #endif /* DHD_LB_TXP */ /* * Generic Attribute Structure for DHD. * If we have to add a new sysfs entry under /sys/bcm-dhd/, we have * to instantiate an object of type dhd_attr, populate it with * the required show/store functions (ex:- dhd_attr_cpumask_primary) * and add the object to default_attrs[] array, that gets registered * to the kobject of dhd (named bcm-dhd). */ struct dhd_attr { struct attribute attr; ssize_t(*show)(struct dhd_info *, char *); ssize_t(*store)(struct dhd_info *, const char *, size_t count); }; #if defined(DHD_TRACE_WAKE_LOCK) static struct dhd_attr dhd_attr_wklock = __ATTR(wklock_trace, 0660, show_wklock_trace, wklock_trace_onoff); #endif /* defined(DHD_TRACE_WAKE_LOCK */ #if defined(DHD_LB_TXP) static struct dhd_attr dhd_attr_lbtxp = __ATTR(lbtxp, 0660, show_lbtxp, lbtxp_onoff); #endif /* DHD_LB_TXP */ /* Attribute object that gets registered with "bcm-dhd" kobject tree */ static struct attribute *default_attrs[] = { #if defined(DHD_TRACE_WAKE_LOCK) &dhd_attr_wklock.attr, #endif /* DHD_TRACE_WAKE_LOCK */ #if defined(DHD_LB_TXP) &dhd_attr_lbtxp.attr, #endif /* DHD_LB_TXP */ NULL }; #define to_dhd(k) container_of(k, struct dhd_info, dhd_kobj) #define to_attr(a) container_of(a, struct dhd_attr, attr) /* * bcm-dhd kobject show function, the "attr" attribute specifices to which * node under "bcm-dhd" the show function is called. */ static ssize_t dhd_show(struct kobject *kobj, struct attribute *attr, char *buf) { #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" #endif dhd_info_t *dhd = to_dhd(kobj); struct dhd_attr *d_attr = to_attr(attr); #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic pop #endif int ret; if (d_attr->show) ret = d_attr->show(dhd, buf); else ret = -EIO; return ret; } /* * bcm-dhd kobject show function, the "attr" attribute specifices to which * node under "bcm-dhd" the store function is called. */ static ssize_t dhd_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" #endif dhd_info_t *dhd = to_dhd(kobj); struct dhd_attr *d_attr = to_attr(attr); #if defined(STRICT_GCC_WARNINGS) && defined(__GNUC__) #pragma GCC diagnostic pop #endif int ret; if (d_attr->store) ret = d_attr->store(dhd, buf, count); else ret = -EIO; return ret; } static struct sysfs_ops dhd_sysfs_ops = { .show = dhd_show, .store = dhd_store, }; static struct kobj_type dhd_ktype = { .sysfs_ops = &dhd_sysfs_ops, .default_attrs = default_attrs, }; #ifdef CSI_SUPPORT /* Function to show current ccode */ static ssize_t read_csi_data(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { dhd_info_t *dhd = to_dhd(kobj); int n = 0; n = dhd_csi_dump_list(&dhd->pub, buf); DHD_INFO(("Dump data to file, size %d\n", n)); dhd_csi_clean_list(&dhd->pub); return n; } static struct bin_attribute dhd_attr_csi = { .attr = { .name = "csi", .mode = 0660, }, .size = MAX_CSI_FILESZ, .read = read_csi_data, }; #endif /* CSI_SUPPORT */ /* Create a kobject and attach to sysfs interface */ static int dhd_sysfs_init(dhd_info_t *dhd) { int ret = -1; if (dhd == NULL) { DHD_ERROR(("%s(): dhd is NULL \r\n", __FUNCTION__)); return ret; } /* Initialize the kobject */ ret = kobject_init_and_add(&dhd->dhd_kobj, &dhd_ktype, NULL, "bcm-dhd"); if (ret) { kobject_put(&dhd->dhd_kobj); DHD_ERROR(("%s(): Unable to allocate kobject \r\n", __FUNCTION__)); return ret; } #ifdef CSI_SUPPORT ret = sysfs_create_bin_file(&dhd->dhd_kobj, &dhd_attr_csi); if (ret) { DHD_ERROR(("%s: can't create %s\n", __FUNCTION__, dhd_attr_csi.attr.name)); kobject_put(&dhd->dhd_kobj); return ret; } #endif /* CSI_SUPPORT */ /* * We are always responsible for sending the uevent that the kobject * was added to the system. */ kobject_uevent(&dhd->dhd_kobj, KOBJ_ADD); return ret; } /* Done with the kobject and detach the sysfs interface */ static void dhd_sysfs_exit(dhd_info_t *dhd) { if (dhd == NULL) { DHD_ERROR(("%s(): dhd is NULL \r\n", __FUNCTION__)); return; } /* Releae the kobject */ if (dhd->dhd_kobj.state_initialized) kobject_put(&dhd->dhd_kobj); } #ifdef DHD_DEBUG_UART bool dhd_debug_uart_is_running(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); if (dhd->duart_execute) { return TRUE; } return FALSE; } static void dhd_debug_uart_exec_rd(void *handle, void *event_info, u8 event) { dhd_pub_t *dhdp = handle; dhd_debug_uart_exec(dhdp, "rd"); } static void dhd_debug_uart_exec(dhd_pub_t *dhdp, char *cmd) { int ret; char *argv[] = {DHD_DEBUG_UART_EXEC_PATH, cmd, NULL}; char *envp[] = {"HOME=/", "TERM=linux", "PATH=/sbin:/system/bin", NULL}; #ifdef DHD_FW_COREDUMP if (dhdp->memdump_enabled == DUMP_MEMFILE_BUGON) #endif { if (dhdp->hang_reason == HANG_REASON_PCIE_LINK_DOWN || #ifdef DHD_FW_COREDUMP dhdp->memdump_success == FALSE || #endif FALSE) { dhdp->info->duart_execute = TRUE; DHD_ERROR(("DHD: %s - execute %s %s\n", __FUNCTION__, DHD_DEBUG_UART_EXEC_PATH, cmd)); ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC); DHD_ERROR(("DHD: %s - %s %s ret = %d\n", __FUNCTION__, DHD_DEBUG_UART_EXEC_PATH, cmd, ret)); dhdp->info->duart_execute = FALSE; #ifdef DHD_LOG_DUMP if (dhdp->memdump_type != DUMP_TYPE_BY_SYSDUMP) #endif { BUG_ON(1); } } } } #endif /* DHD_DEBUG_UART */ #if defined(DHD_BLOB_EXISTENCE_CHECK) void dhd_set_blob_support(dhd_pub_t *dhdp, char *fw_path) { struct file *fp; char *filepath = CONFIG_BCMDHD_CLM_PATH; fp = filp_open(filepath, O_RDONLY, 0); if (IS_ERR(fp)) { DHD_ERROR(("%s: ----- blob file dosen't exist -----\n", __FUNCTION__)); dhdp->is_blob = FALSE; } else { DHD_ERROR(("%s: ----- blob file exist -----\n", __FUNCTION__)); dhdp->is_blob = TRUE; #if defined(CONCATE_BLOB) strncat(fw_path, "_blob", strlen("_blob")); #else BCM_REFERENCE(fw_path); #endif /* SKIP_CONCATE_BLOB */ filp_close(fp, NULL); } } #endif /* DHD_BLOB_EXISTENCE_CHECK */ #if defined(PCIE_FULL_DONGLE) /** test / loopback */ void dmaxfer_free_dmaaddr_handler(void *handle, void *event_info, u8 event) { dmaxref_mem_map_t *dmmap = (dmaxref_mem_map_t *)event_info; dhd_info_t *dhd_info = (dhd_info_t *)handle; dhd_pub_t *dhdp = &dhd_info->pub; if (event != DHD_WQ_WORK_DMA_LB_MEM_REL) { DHD_ERROR(("%s: unexpected event \n", __FUNCTION__)); return; } if ((dhd_info == NULL) || (dhdp == NULL)) { DHD_ERROR(("%s: invalid dhd_info\n", __FUNCTION__)); return; } if (dmmap == NULL) { DHD_ERROR(("%s: dmmap is null\n", __FUNCTION__)); return; } dmaxfer_free_prev_dmaaddr(dhdp, dmmap); } void dhd_schedule_dmaxfer_free(dhd_pub_t *dhdp, dmaxref_mem_map_t *dmmap) { dhd_info_t *dhd_info = dhdp->info; dhd_deferred_schedule_work(dhd_info->dhd_deferred_wq, (void *)dmmap, DHD_WQ_WORK_DMA_LB_MEM_REL, dmaxfer_free_dmaaddr_handler, DHD_WQ_WORK_PRIORITY_LOW); } #endif /* PCIE_FULL_DONGLE */ /* ---------------------------- End of sysfs implementation ------------------------------------- */ #ifdef HOFFLOAD_MODULES void dhd_linux_get_modfw_address(dhd_pub_t *dhd) { const char* module_name = NULL; const struct firmware *module_fw; struct module_metadata *hmem = &dhd->hmem; if (dhd_hmem_module_string[0] != '\0') { module_name = dhd_hmem_module_string; } else { DHD_ERROR(("%s No module image name specified\n", __FUNCTION__)); return; } if (request_firmware(&module_fw, module_name, dhd_bus_to_dev(dhd->bus))) { DHD_ERROR(("modules.img not available\n")); return; } if (!dhd_alloc_module_memory(dhd->bus, module_fw->size, hmem)) { release_firmware(module_fw); return; } memcpy(hmem->data, module_fw->data, module_fw->size); release_firmware(module_fw); } #endif /* HOFFLOAD_MODULES */ #ifdef SET_PCIE_IRQ_CPU_CORE void dhd_set_irq_cpucore(dhd_pub_t *dhdp, int set) { unsigned int irq; if (!dhdp) { DHD_ERROR(("%s : dhd is NULL\n", __FUNCTION__)); return; } if (!dhdp->bus) { DHD_ERROR(("%s : dhd->bus is NULL\n", __FUNCTION__)); return; } if (dhdpcie_get_pcieirq(dhdp->bus, &irq)) { return; } set_irq_cpucore(irq, set); } #endif /* SET_PCIE_IRQ_CPU_CORE */ #if defined(DHD_HANG_SEND_UP_TEST) void dhd_make_hang_with_reason(struct net_device *dev, const char *string_num) { dhd_info_t *dhd = NULL; dhd_pub_t *dhdp = NULL; uint reason = HANG_REASON_MAX; char buf[WLC_IOCTL_SMLEN] = {0, }; uint32 fw_test_code = 0; dhd = DHD_DEV_INFO(dev); if (dhd) { dhdp = &dhd->pub; } if (!dhd || !dhdp) { return; } reason = (uint) bcm_strtoul(string_num, NULL, 0); DHD_ERROR(("Enter %s, reason=0x%x\n", __FUNCTION__, reason)); if (reason == 0) { if (dhdp->req_hang_type) { DHD_ERROR(("%s, Clear HANG test request 0x%x\n", __FUNCTION__, dhdp->req_hang_type)); dhdp->req_hang_type = 0; return; } else { DHD_ERROR(("%s, No requested HANG test\n", __FUNCTION__)); return; } } else if ((reason <= HANG_REASON_MASK) || (reason >= HANG_REASON_MAX)) { DHD_ERROR(("Invalid HANG request, reason 0x%x\n", reason)); return; } if (dhdp->req_hang_type != 0) { DHD_ERROR(("Already HANG requested for test\n")); return; } switch (reason) { case HANG_REASON_IOCTL_RESP_TIMEOUT: DHD_ERROR(("Make HANG!!!: IOCTL response timeout(0x%x)\n", reason)); dhdp->req_hang_type = reason; fw_test_code = 102; /* resumed on timeour */ bcm_mkiovar("bus:disconnect", (void *)&fw_test_code, 4, buf, sizeof(buf)); dhd_wl_ioctl_cmd(dhdp, WLC_SET_VAR, buf, sizeof(buf), TRUE, 0); break; case HANG_REASON_DONGLE_TRAP: DHD_ERROR(("Make HANG!!!: Dongle trap (0x%x)\n", reason)); dhdp->req_hang_type = reason; fw_test_code = 99; /* dongle trap */ bcm_mkiovar("bus:disconnect", (void *)&fw_test_code, 4, buf, sizeof(buf)); dhd_wl_ioctl_cmd(dhdp, WLC_SET_VAR, buf, sizeof(buf), TRUE, 0); break; case HANG_REASON_D3_ACK_TIMEOUT: DHD_ERROR(("Make HANG!!!: D3 ACK timeout (0x%x)\n", reason)); dhdp->req_hang_type = reason; break; case HANG_REASON_BUS_DOWN: DHD_ERROR(("Make HANG!!!: BUS down(0x%x)\n", reason)); dhdp->req_hang_type = reason; break; case HANG_REASON_PCIE_LINK_DOWN: case HANG_REASON_MSGBUF_LIVELOCK: dhdp->req_hang_type = 0; DHD_ERROR(("Does not support requested HANG(0x%x)\n", reason)); break; case HANG_REASON_IFACE_OP_FAILURE: DHD_ERROR(("Make HANG!!!: P2P inrerface delete failure(0x%x)\n", reason)); dhdp->req_hang_type = reason; break; case HANG_REASON_HT_AVAIL_ERROR: dhdp->req_hang_type = 0; DHD_ERROR(("PCIe does not support requested HANG(0x%x)\n", reason)); break; case HANG_REASON_PCIE_RC_LINK_UP_FAIL: DHD_ERROR(("Make HANG!!!:Link Up(0x%x)\n", reason)); dhdp->req_hang_type = reason; break; default: dhdp->req_hang_type = 0; DHD_ERROR(("Unknown HANG request (0x%x)\n", reason)); break; } } #endif /* DHD_HANG_SEND_UP_TEST */ #ifdef DHD_WAKE_STATUS wake_counts_t* dhd_get_wakecount(dhd_pub_t *dhdp) { #ifdef BCMDBUS return NULL; #else return dhd_bus_get_wakecount(dhdp); #endif /* BCMDBUS */ } #endif /* DHD_WAKE_STATUS */ #ifdef BCM_ASLR_HEAP uint32 dhd_get_random_number(void) { uint32 rand = 0; get_random_bytes_arch(&rand, sizeof(rand)); return rand; } #endif /* BCM_ASLR_HEAP */ #ifdef DHD_PKT_LOGGING void dhd_pktlog_dump(void *handle, void *event_info, u8 event) { dhd_info_t *dhd = handle; if (!dhd) { DHD_ERROR(("%s: dhd is NULL\n", __FUNCTION__)); return; } if (dhd_pktlog_write_file(&dhd->pub)) { DHD_ERROR(("%s: writing pktlog dump to the file failed\n", __FUNCTION__)); return; } } void dhd_schedule_pktlog_dump(dhd_pub_t *dhdp) { dhd_deferred_schedule_work(dhdp->info->dhd_deferred_wq, (void*)NULL, DHD_WQ_WORK_PKTLOG_DUMP, dhd_pktlog_dump, DHD_WQ_WORK_PRIORITY_HIGH); } #endif /* DHD_PKT_LOGGING */ void *dhd_get_pub(struct net_device *dev) { dhd_info_t *dhdinfo = *(dhd_info_t **)netdev_priv(dev); if (dhdinfo) return (void *)&dhdinfo->pub; else { printf("%s: null dhdinfo\n", __FUNCTION__); return NULL; } } bool dhd_os_wd_timer_enabled(void *bus) { dhd_pub_t *pub = bus; dhd_info_t *dhd = (dhd_info_t *)pub->info; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (!dhd) { DHD_ERROR(("%s: dhd NULL\n", __FUNCTION__)); return FALSE; } return dhd->wd_timer_valid; }