
Rockchip Blutooth DeviceIo Introduction

ID: RK-SM-YF-343

Release Version: V2.0.1

Release Date: 2020-07-12

Security Level: □Top-Secret □Secret □Internal ■Public

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES
NOT PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH
RESPECT TO THE ACCURACY, RELIABILITY, COMPLETENESS,MERCHANTABILITY, FITNESS FOR
ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION
AND CONTENT IN THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS
DOCUMENT MAY BE UPDATED OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE
UPGRADES OF THE PRODUCT OR ANY OTHER REASONS.

Trademark Statement

"Rockchip", "瑞芯微", "瑞芯" shall be Rockchip’s registered trademarks and owned by Rockchip. All the other
trademarks or registered trademarks mentioned in this document shall be owned by their respective owners.

All rights reserved. ©2020. Fuzhou Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in
any form in whole or in part without the written approval of Rockchip.

Rockchip Electronics Co., Ltd.

No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590

Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Preface

Overview

This document mainly introduce the Bluetooth interface in the Rockchip DeviceIo library. Different Bluetooth
chip modules correspond to different DeviceIo libraries, and the Correspondence are as follows:

libDeviceIo_bluez.so: based on BlueZ protocol stack, it is mainly suitable for Realtek's Bluetooth modules, such
as: RTL8723DS.

libDeviceIo_broadcom.so: based on BSA protocol stack, it is mainly suitable for AMPAK's Bluetooth modules
such as AP6255.

libDeviceIo_cypress.so: based on BSA protocol stack, it is mainly suitable for AzureWave's Bluetooth modules,
such as: AW-CM256.

After users configure the Bluetooth chip model of the SDK, deviceio compilation script will automatically select
the libDeviceIo library according to the selected chip model. Please refer to the "WIFI/BT configuration" chapter
in "Rockchip_Developer_Guide_Network_Config_CN" for the Bluetooth chip configuration of SDK. The
interfaces of the DeviceIo library based on different protocol stacks have been integrated as much as possible, but
there are still some differences in some interfaces. These differences will be described in details when a specific
interface is introduced.

Terms Interpret

BLUEZ DEVICEIO: deviceIo library based on BlueZ protocol stack, corresponding to libDeviceIo_bluez.so.

BSA DEVICEIO: deviceIo library based on BSA protocol stack, corresponding to libDeviceIo_broadcom.so and
libDeviceIo_cypress.so

BLUEZ only: the interface or document only supports BLUEZ DEVICEIO.

BSA only: The interface or document only supports BSA DEVICEIO.

Intended Audience

This document (this guide) is mainly intended for:

Technical support engineers

Software development engineers

Revision History

Date
Document
Version

Library
Version

Author Revision History

2019-
3-27

V1.0.0
V1.0.x /
V1.1.x

Francis
Fan

Initial version (BLUEZ only)

2019-
4-16

V1.1.0 V1.2.0
Francis
Fan

Add BLE network configuration Demo
Update BtSource interface
Add BSA library support
Update the format of the document

2019-
4-29

V1.2.0 V1.2.1
Francis
Fan

Fixed the issue that BSA branch deviceio_test failed
Fixed the BUG that BLUEZ fail to initialize and
causing program stuck
Update the method for A2DP SOURCE to get
playrole

2019-
5-27

V1.3.0 V1.2.2
Francis
Fan

Add A2DP SOURCE reverse control event notice
Add HFP HF interface support
Add Bluetooth class setting interface
Add Bluetooth automatic reconnection attribute
setting interface
Add A2DP SINK volume reverse control（BSA
only）

2019-
6-4

V1.4.0 V1.2.3
Francis
Fan

Bluez: realize A2DP SINK volume forward and
reverse control
Bluez: cancel SPP and A2DP SINK relationship
Bluez: rk_bt_enable_reconnec save attributes
to the file, the attribute setting still takes effect after
the device restarts
Bluez: fix A2DP SOURCE reverse control
function initialization probability failure issue
Bluez: fix rk_bt_sink_set_visibilit
BSA: fix A2DP SOURCE automatic reconnection
failure
BSA: fix rk_bt_hfp_hangup api
Remove the rk_bt_sink_set_auto_reconnect interface

Date
Document
Version

Library
Version

Author Revision History

2019-
6-24

V1.5.0 V1.2.4 CTF

Add HFP HF alsa control demo
Add hfp disconnect api: rk_bt_hfp_disconnect
Fixed the bug that it cannot receive PICKUP,
HANGUP events when answer and refuse calls on
mobile phone
Bsa: add HFP HF to enable CVSD (8K sampling)
interface
Bsa: fix cypress bsa corresponding pop up prompt
problem
Bsa: update broadcom bsa version
(rockchip_20190617)
Bsa: fix the bug that unable to recognize some
Bluetooth speaker device types when Bluetooth
scanning
Bsa: fix battery power report BUG

Date
Document
Version

Library
Version

Author Revision History

2019-
10-30

V1.6.0 V1.3.0 CTF

Bluez: Bluetooth anti-initialization is implemented.
Bluez: fix to obtain the name and Bluetooth Mac
address interface of the local device
Bluez: add pbap profile support
Bluez: support hfp 8K and 16K sampling rate
adaptation
Bluez: add sink to play underrun report
Bsa: add setting sink to play device node interface
Bsa: add ble visibility setting interface
Bsa: add ble disconnection interface actively
Bsa: support setting Bluetooth address during
Bluetooth initialization
add Bluetooth start status report
add Bluetooth pairing status report
add start Bluetooth scanning, stop Bluetooth scanning
interface
Add an interface to get whether Bluetooth is in
scanning status
Add an interface to print the list of currently scanned
devices
Add an interface to actively pair with a specified
device, cancel pairing with a specified device
Add getting the current paired device list,
and release the acquired paired device list interface
Add printing the current paired device list interface
Add setting the local device name interface
Add songs information report
Add songs playback progress report
Add avdtp (a2dp sink) status report
sink add actively connecting and disconnecting with a
specified device interface
Add getting the current playback status interface
Add getting the currently connected remote device
Whether to support reporting the playback progress
interface actively
Support to print the log to syslog

2019-
11-16

V1.7.0 V1.3.1 CTF
The source callback adds the address and name
parameters of the connected device

2019-
12-12

V1.8.0 V1.3.2 CTF
bluez: implement ble client function
bluez: implement obex file transfer function

Date
Document
Version

Library
Version

Author Revision History

2020-
03-17

V1.9.0 V1.3.4 CTF

bluez: add type filter for scanning interface
(LE or BR/EDR or both)
bluez: add interface for getting scanning device list
bluez: add automatically connect back to the last
connected sink device at first scanning after starting
bt source
bluez: fix the BUG that connection device failure
during scanning
bluez: optimize init and deinit execution time
bluez: fix the BUG that thread synchronization in qt
non-main mianloop thread start Bluetooth
bluez: add source disconnect failure,
automatic return event report
bluez: add source disconnect current connection
interface
bluez: add getting the connection status of the
specified device
bluez: fix the problem of ble initial memory cross-
border
bsa: add setting bsa_server.sh path interface
ble status callback with remote device address and
name

2020-
07-08

V2.0.0 V1.3.5 CTF

Fix some bluez and bsa bugs. Please see Rk_system.h
V1.3.5 for details.
Add setting ble broadcast interval interface.
Add hfp calling the specified phone number interface.
rk_ble_client_write adding write data length
parameters
support ble MTU reporting
ble client add getting ble device broadcast api
bluez: add obex status callback
bluez: add setting ble address interface
bluez: ble feature value adding
write-without-response attribute
bsa: add rk_bt_source_disconnect interface
bsa: support LE BR/EDR filter scan
bsa: add source reconnect the last connected sink
device automatically at first scanning
bsa: support ble client function
bsa: add interface to read remote connection device
name
bsa: add interface to get list of current scanning
devices

2020-
07-12

V2.0.1 V1.3.5
Ruby
Zhang

Update the format of the document

Contents

Rockchip Blutooth DeviceIo Introduction
1. Bluetooth Basic Interface (RkBtBase.h)
2. BLE Interface Introduction (RkBle.h)
3. BLE CLIENT Interface Introduction (RkBtSpp.h)
4. SPP Interface Introduction (RkBtSpp.h)
5. A2DP SINK Interface Introduction (RkBtSink.h)
6. A2DP SOURCE Interface Introduction (RkBtSource.h)
7. HFP-HF Interface Introduction (RkBtHfp.h)
8. OBEX Interface Introduction (RkBtObex.h BLUEZ only)
9. Demo Program Introduction

9.1 Build
9.2 Basic Interface Demo Program

9.2.1 Interface Introduction
9.2.1.1 Basic Interface Test Introduction to Bluetooth Service
9.2.1.2 BLE Interface Testing Introduction
9.2.1.3 BLE CLIENT Interface Test Introduction
9.2.1.4 A2DP SINK Interface Test Introduction
9.2.1.5 A2DP SOURCE Interface Test Introduction
9.2.1.6 SPP Interface Testing Introduction
9.2.1.7 HFP Interface Test Introduction
9.2.1.8 OBEX Interface Test Introduction

9.2.2 Test Steps
9.3 BLE Network Configuration Demo Program

1. Bluetooth Basic Interface (RkBtBase.h)

RkBtContent structure

RkBtContent structure

RkBtScanedDevice structure

typedef struct {

 Ble_Uuid_Type_t server_uuid; //BLE server uuid

 Ble_Uuid_Type_t chr_uuid[12]; //BLE CHR uuid, 12 at most

 uint8_t chr_cnt; //the number of CHR

 const char *ble_name; //the name of BLE, which may be different from the

name of bt_name

 uint8_t ble_addr[DEVICE_ADDR_LEN]; //BLE address, random address is

used by default(BLUEZ Only)

 uint8_t advData[256]; //Broadcast data

 uint8_t advDataLen; //the length of broadcast data

 uint8_t respData[256]; //Broadcast response data

 uint8_t respDataLen; //the length of broadcast response data

 /* Ways to generate broadcast data with the value of

BLE_ADVDATA_TYPE_USER/BLE_ADVDATA_TYPE_SYSTEM

 * BLE_ADVDATA_TYPE_USER: use data from advData and respData as BLE

broadcast

 * BLE_ADVDATA_TYPE_SYSTEM: system's broadcast data by default.

 * Broadcast packages: flag(0x1a)，128bit Server UUID;

 * Broadcast response packages: bluetooth's name

 */

 uint8_t advDataType;

 //AdvDataKgContent adv_kg;

 char le_random_addr[6]; //random address, generated by system by

default, users do not need to fill in.

 /* BLE data receiving callback function, uuid represents the current CHR

UUID, data: data pointer, len: data's length */

 void (*cb_ble_recv_fun)(const char *uuid, unsigned char *data, int len);

 /* BLE data request callback function. When this function is used on the

receiver side, it will trigger the function to fill data */

 void (*cb_ble_request_data)(const char *uuid);

} RkBleContent;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

typedef struct {

 RkBleContent ble_content; //BLE parameter configuration

 const char *bt_name; //Bluetooth's name

 const char *bt_addr; //Bluetooth address (Bsa only, use the bt mac

address fixed inside the chip by default)

} RkBtContent;

1

2

3

4

5

af://n119

RK_BT_STATE introduction

RK_BT_BOND_STATE introduction

RK_BT_SCAN_TYPE introduction

RK_BT_DISCOVERY_STATE introduction

RK_BT_PLAYROLE_TYPE introduction

typedef struct scaned_dev {

 char *remote_address; //remote device address

 char *remote_name; //remote device name

 unsigned int cod; //class of device

 bool is_connected; //whether the remote device is connected

currently(sink, source, hfp)

 truct paired_dev *next; //point to next device

} RkBtScanedDevice;

1

2

3

4

5

6

7

typedef enum {

 RK_BT_STATE_OFF, //closed

 RK_BT_STATE_ON, //turned off

 RK_BT_STATE_TURNING_ON, //is turnning on

 RK_BT_STATE_TURNING_OFF, //is trunning off

} RK_BT_STATE;

1

2

3

4

5

6

typedef enum {

 RK_BT_BOND_STATE_NONE, //pairing failed or unpaired

 RK_BT_BOND_STATE_BONDING, //is pairing

 RK_BT_BOND_STATE_BONDED, //paired successfully

} RK_BT_BOND_STATE;

1

2

3

4

5

typedef enum {

 SCAN_TYPE_AUTO, //LE and BR/EDR, scan all types of devices

 SCAN_TYPE_BREDR, //scan BR/EDR type devices only

 SCAN_TYPE_LE //scan LE type devices only

} RK_BT_SCAN_TYPE;

1

2

3

4

5

typedef enum {

 RK_BT_DISC_STARTED, //start scanning successfully

 RK_BT_DISC_STOPPED_AUTO, //scan completed, automatically stop scanning

 RK_BT_DISC_START_FAILED, //start scanning failed

 RK_BT_DISC_STOPPED_BY_USER, //interrupt scanning by

rk_bt_cancel_discovery,

} RK_BT_DISCOVERY_STATE;

1

2

3

4

5

6

typedef enum {

 PLAYROLE_TYPE_UNKNOWN, //unknown device

 PLAYROLE_TYPE_SOURCE, //a2dp Source device

 PLAYROLE_TYPE_SINK, //a2dp Sink device

} RK_BT_PLAYROLE_TYPE;

1

2

3

4

5

typedef void (*RK_BT_STATE_CALLBACK)(RK_BT_STATE state)``typedef void

(*RK_BT_STATE_CALLBACK)(RK_BT_STATE state)

Bluetooth status callback

typedef void (*RK_BT_BOND_CALLBACK)(const char *bd_addr, const char *name,

RK_BT_BOND_STATE state)

Bluetooth pairing status callback, bd_addr: address of current bound device, name: name of current paired
device

typedef void (*RK_BT_DISCOVERY_CALLBACK)(RK_BT_DISCOVERY_STATE state)

Bluetooth scanning status callback, if rk_bt_start_discovery is used to scan the surrounding Bluetooth
devices, you need to register this callback

typedef void (*RK_BT_DEV_FOUND_CALLBACK)(const char *address, const char *name,

unsigned int bt_class, int rssi)

Bluetooth device scan callback. If you use rk_bt_start_discovery to scan the surrounding Bluetooth devices,
you need to register this callback. Bluez triggers this callback every time it scans a device; after bsa scan, it
will trigger the callback in turn according to the number of devices scanned.

typedef void (*RK_BT_NAME_CHANGE_CALLBACK)(const char *bd_addr, const char

*name)

Remote device name update callback

typedef void (*RK_BT_MTU_CALLBACK)(const char *bd_addr, unsigned int mtu)

ble MTU callback, shared with ble and ble client, after successful MTU negotiation, the callback is
triggered

void rk_bt_register_state_callback(RK_BT_STATE_CALLBACK cb)

Register the callback function to get the Bluetooth start status

void rk_bt_register_bond_callback(RK_BT_BOND_CALLBACK cb)

Register callback function to get Bluetooth pairing status

void rk_bt_register_discovery_callback(RK_BT_DISCOVERY_CALLBACK cb)

Register the callback function to get the Bluetooth scanning status

void rk_bt_register_dev_found_callback(RK_BT_DEV_FOUND_CALLBACK cb)

Register the callback function of the discovered device

void rk_bt_register_name_change_callback(RK_BT_NAME_CHANGE_CALLBACK cb)

Registered device name update callback function

int rk_bt_init(RkBtContent *p_bt_content)

To initialize Bluetooth service, this interface should be called to initialize Bluetooth basic services before
calling other Bluetooth interfaces.

int rk_bt_deinit(void)

To de-initialize Bluetooth service.

int rk_bt_is_connected(void)

To get whether there is a service connected to Bluetooth currently. Any one of SPP/BLE/SINK/SOURCE
services is connected, it will return 1; otherwise return 0.

int rk_bt_set_class(int value)

Set the type of Bluetooth device. value: the type's value. For example, 0x240404 means:

Major Device Class: Audio/Video

Minor Device Class: Wearable headset device

Service Class: Audio (Speaker, Microphone, Headset service), Rendering (Printing, Speaker)

int rk_bt_enable_reconnect(int value)

To enables/disables the auto reconnect function of HFP/A2DP SINK. value: 0 means disable the auto
reconnect function, 1 means enable the auto reconnect function.

void rk_bt_start_discovery(unsigned int mseconds, RK_BT_SCAN_TYPE scan_type)

Start Bluetooth scanning, mseconds: scan duration, in milliseconds; scan_type: scan type, see the
description of RK_BT_SCAN_TYPE for details, only bluez supports scan type filtering, bsa only supports
full type scan.

void rk_bt_cancel_discovery()

Stop Bluetooth scanning and cancel the scanning operation initiated by rk_bt_start_discovery

bool rk_bt_is_discovering()

Whether Bluetooth is in the state of scanning the surrounding devices, returning true if the device is being
scanned, otherwise false

void rk_bt_display_devices()

Print a list of currently scanned devices

int rk_bt_pair_by_addr(char *addr)

Pair with the device specified by addr actively; addr: device address, such as: 94:87:E0:B6:6D:AE

int rk_bt_unpair_by_addr(char *addr)

Cancel pairing with the device specified by addr. After canceling the pairing, all records of the device will
be deleted; addr: device address

int rk_bt_set_device_name(char *name)

Set the local device name, name: the device name you want to set

int rk_bt_get_device_name(char *name, int len)

Get the local device name, name: used to store the obtained device name, len: the length of the device name

int rk_bt_get_device_addr(char *addr, int len)

Get the local device's Bluetooth mac address, addr: used to store the obtained mac address, len: the length
of mac address

void rk_bt_display_paired_devices()

Print the currently paired device list

int rk_bt_get_paired_devices(RkBtScanedDevice**dev_list,int *count)

Get the currently paired device list, dev_list: used to store the paired device list, count: the number of paired
devices

int rk_bt_free_paired_devices(RkBtScanedDevice*dev_list)

Free the memory allocated by rk_bt_get_paired_devices to store the device list

int rk_bt_get_scaned_devices(RkBtScanedDevice**dev_list,int *count)

Get the currently scanned device list, dev_list: used to store the scanned device list, count: the number of
scanned devices

int rk_bt_free_scaned_devices(RkBtScanedDevice*dev_list)

Free the memory allocated by rk_bt_get_scaned_devices to store the device list

void rk_bt_set_bsa_server_path(char *path)

Set the bsa_server.sh path, is /usr/bin/bsa_server.sh (BSA only) by default

bool rk_bt_get_connected_properties(char *addr)

Get the connection status of the device specified by addr, addr: device address, return true if connected,
otherwise true false (BLUEZ only)

int rk_bt_set_visibility(const int visiable, const int connectal)

Set visible/connectable properties. visiable: 0 means invisible, 1 means visible. connectal: 0 means not
connectable, 1 means connectable. Only applicable to BR/EDR devices

RK_BT_PLAYROLE_TYPE rk_bt_get_playrole_by_addr(char *addr)

Get the playrole of the device specified by addr, see the description of RK_BT_PLAYROLE_TYPE for
details.

int rk_bt_read_remote_device_name(char *addr, int transport)

Read the name of the device specified by addr, transport specifies the device type, unknown device:
RK_BT_TRANSPORT_UNKNOWN, BR/EDR device: RK_BT_TRANSPORT_BR_EDR, LE device:
RK_BT_TRANSPORT_LE. This interface needs to be used matched with
rk_bt_register_name_change_callback. Reading successfully will trigger
RK_BT_NAME_CHANGE_CALLBACK callback (BSA only)

2. BLE Interface Introduction (RkBle.h)

RK_BLE_STATE introduction

typedef void (*RK_BLE_STATE_CALLBACK)(const char *bd_addr, const char *name,

RK_BLE_STATE state)

BLE state callback function. bd_addr: remote device address, name: remote device name.

typedef void (*RK_BLE_RECV_CALLBACK)(const char *uuid, char *data, int len)

BLE receiving callback function. uuid: CHR UUID, data: data pointer, len: data's length

int rk_ble_register_status_callback(RK_BLE_STATE_CALLBACK cb)

This interface is used to register a callback function to get BLE connection status.

int rk_ble_register_recv_callback(RK_BLE_RECV_CALLBACK cb)

This interface is used to register a callback function to receive BLE data. There are two ways to register the
receiving callback function: one is specified by the RkBtContent parameter of the rk_bt_init () interface; the
other is to call this interface for registration. For BLUEZ DEVICEIO, both of the two methods are
available, but for BSA DEVICEIO, you can only use this interface to register the receiving callback
function.

void rk_ble_register_mtu_callback(RK_BT_MTU_CALLBACK cb)

This interface is used to register mtu callback. After mtu negotiation is successful,
RK_BT_MTU_CALLBACK callback is triggered to report the negotiated mtu value

typedef enum {

 RK_BLE_STATE_IDLE = 0, //idle state

 RK_BLE_STATE_CONNECT, //successful connection

 RK_BLE_STATE_DISCONNECT //disconnected

} RK_BLE_STATE;

1

2

3

4

5

af://n261

int rk_ble_start(RkBleContent *ble_content)

To enable BLE broadcast. ble_content: should be consistent with the p_bt_content->ble_content in the
rk_bt_init(RkBtContent *p_bt_content).

int rk_ble_stop(void)

Stop BLE broadcast. After this function is executed, BLE becomes invisible and disconnected.

int rk_ble_get_state(RK_BLE_STATE *p_state)

Get the current connection status of BLE actively.

rk_ble_write(const char *uuid, char *data, int len)

Send data to the other side.

uuid: the CHR object of the written data

data: the pointer of the written data

len: the length of the written data. You should pay attention to that: the length is limited by the MTU
connected to BLE, and it will be cut off when over the MTU.

The current MTU's value is set to 134 Bytes by default to maintain a good compatibility

int rk_bt_ble_set_visibility(const int visiable, const int connect)

Set ble visible/connectable characteristics. visible: 0 means invisible, 1 means visible. connect: 0 means not
connectable, 1 means connectable. This interface is only applicable to bsa (BSA only)

int rk_ble_disconnect(void)

Disconnect the current ble connection actively

int rk_ble_set_address(char *address)

Set the ble address, you can also use ble_addr parameter setting in rk_bt_init, the default random address is
not set (BLUEZ Only)

int rk_ble_set_adv_interval(unsigned short adv_int_min, unsigned short

adv_int_max)

Set the ble broadcast interval, adv_int_min minimum broadcast interval, adv_int_max maximum broadcast
interval, minimum value is 32 (32 * 0.625ms = 20ms), is 30ms when not set bsa default interval, bluez is
100ms by default.

3. BLE CLIENT Interface Introduction (RkBtSpp.h)

RK_BT_SPP_STATE introduction

RK_BLE_CLIENT_SERVICE_INFO introduction

typedef enum {

 RK_BT_SPP_STATE_IDLE = 0, //idle state

 RK_BT_SPP_STATE_CONNECT, //successful connection

 RK_BT_SPP_STATE_DISCONNECT //disconnected state

} RK_BT_SPP_STATE;

1

2

3

4

5

typedef struct {

 int service_cnt; //number of services

included in the connected remote device

1

2

af://n310

Note: the path indicates the relationship between service, characteristic, and descriptor. It is used to traversal
search, application layer does not need to care the parameter, which is only used in bluez.

typedef void (*RK_BLE_CLIENT_STATE_CALLBACK)(const char *bd_addr, const char

*name, RK_BLE_CLIENT_STATE state)

ble client status callback function, bd_addr: remote device address, name: remote device name.

typedef void (*RK_BLE_CLIENT_RECV_CALLBACK)(const char *uuid, char *data, int

len)

ble client data reception callback function. uuid: CHR UUID, data: data pointer, len: data length.

void rk_ble_client_register_state_callback(RK_BLE_CLIENT_STATE_CALLBACK cb)

Register ble client status callback function

int rk_ble_client_register_recv_callback(RK_BLE_CLIENT_RECV_CALLBACK cb)

Register ble client data reception callback function

int rk_ble_client_open(void)

Initialize ble client

void rk_ble_client_close(void)

 RK_BLE_CLIENT_SERVICE service[SERVICE_COUNT_MAX]; //detailed information

for each service

} RK_BLE_CLIENT_SERVICE_INFO;

typedef struct {

 char describe[DESCRIBE_BUG_LEN]; //uuid description

 char path[PATH_BUF_LEN];

 char uuid[UUID_BUF_LEN]; //service uuid

 int chrc_cnt; //the number of characteristics

included in the service

 RK_BLE_CLIENT_CHRC chrc[CHRC_COUNT_MAX]; //detailed information for each

characteristic

} RK_BLE_CLIENT_SERVICE;

typedef struct {

 char describe[DESCRIBE_BUG_LEN]; //uuid description

 char path[PATH_BUF_LEN];

 char uuid[UUID_BUF_LEN]; //characteristic uuid

 unsigned int props; //characteristic attributes

 unsigned int ext_props; //characteristic extended

attributes

 unsigned int perm; //characteristic permission

 bool notifying; //whether characteristic open

notification(BLUEZ only)

 int desc_cnt; //the number of descriptors

contained in this characteristic

 RK_BLE_CLIENT_DESC desc[DESC_COUNT_MAX]; //detailed information for each

descriptor

} RK_BLE_CLIENT_CHRC;

typedef struct {

 char describe[DESCRIBE_BUG_LEN]; //uuid description

 char path[PATH_BUF_LEN];

 char uuid[UUID_BUF_LEN]; //descriptor uuid

} RK_BLE_CLIENT_DESC;

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Deinitialize ble client

RK_BLE_CLIENT_STATE rk_ble_client_get_state()

Get ble client status actively

int rk_ble_client_get_service_info(char *address, RK_BLE_CLIENT_SERVICE_INFO

*info)

Get the specified information of the device by address, including service uuid, characteristic uuid,
permission, Properties, descriptor uuid, etc. Please refer to the RK_BLE_CLIENT_SERVICE_INFO
structure for details.

int rk_ble_client_write(const char *uuid, char *data, int data_len)

Send data to the specify uuid of the opposite side, data: data pointer, len: data length.

int rk_ble_client_read(const char *uuid)

Read the specified uuid data from the opposite side, and it will trigger the
RK_BLE_CLIENT_RECV_CALLBACK callback when read successfully.

int rk_ble_client_connect(char *address)

Connect to the device with the specified address

int rk_ble_client_disconnect(char *address)

Disconnect from the device with the specified address

bool rk_ble_client_is_notifying(const char *uuid)

Search whether the specified uuid has enabled notification, and returns true (BLUEZ only) when it is
enable.

int rk_ble_client_notify(const char *uuid, bool enable)

Set the notification with specified uuid. The uuid must support notifications or indications. It is turned on
when enable = true and turned off when enable = false. When the remote device (server) writes the uuid, it
will trigger the RK_BLE_CLIENT_RECV_CALLBACK callback to report the modified value
automatically.

int rk_ble_client_get_eir_data(char *address, char *eir_data, int len)

Get the broadcast data of the remote device specified by address, eir_data: the obtained broadcast data, len:
the length of the broadcast data

int rk_ble_client_default_data_length()

Force to specify the length of hci writing data to be 27 bytes, which is customized for specific customers.
Generally, this API is not used (BSA only)

4. SPP Interface Introduction (RkBtSpp.h)

RK_BT_SPP_STATE introduction

typedef void (*RK_BT_SPP_STATUS_CALLBACK)(RK_BT_SPP_STATE status)

typedef enum {

 RK_BT_SPP_STATE_IDLE = 0, //idle state

 RK_BT_SPP_STATE_CONNECT, //successful connection

 RK_BT_SPP_STATE_DISCONNECT //disconnected state

} RK_BT_SPP_STATE;

1

2

3

4

5

af://n369

State callback function.

typedef void (*RK_BT_SPP_RECV_CALLBACK)(char *data, int len)

Reception callback function. data: data pointer, len: data length.

int rk_bt_spp_register_status_cb(RK_BT_SPP_STATUS_CALLBACK cb)

Registration status callback function.

int rk_bt_spp_register_recv_cb(RK_BT_SPP_RECV_CALLBACK cb)

Registration reception callback function.

int rk_bt_spp_open(void)

Turn on SPP, the device is in the connectable state.

int rk_bt_spp_close(void)

Close SPP。

int rk_bt_spp_get_state(RK_BT_SPP_STATE *pState)

Get the current SPP connection status actively

int rk_bt_spp_write(char *data, int len)

Send data. data: data pointer, len: data length.

5. A2DP SINK Interface Introduction (RkBtSink.h)

BtTrackInfo structure

RK_BT_SINK_STATE introduction

typedef struct btmg_track_info_t {

 char title[256]; //title

 char artist[256]; //artist

 char album[256]; //album

 char track_num[64]; //track the number of the song in the

album

 char num_tracks[64]; //total number of the album

 char genre[256]; //genres

 char playing_time[256]; //total time of playing

} btmg_track_info_t;

typedef struct btmg_track_info_t BtTrackInfo;

1

2

3

4

5

6

7

8

9

10

11

typedef enum {

 RK_BT_SINK_STATE_IDLE = 0, //idle sate

 RK_BT_SINK_STATE_CONNECT, //connected state

 RK_BT_SINK_STATE_DISCONNECT //disconnected

 RK_BT_SINK_STATE_PLAY , //avrcp playing state

 RK_BT_SINK_STATE_PAUSE, //avrcp pause state

 RK_BT_SINK_STATE_STOP, //avrcp stop state

 RK_BT_A2DP_SINK_STARTED, //avdtp playing state

 RK_BT_A2DP_SINK_SUSPENDED, //avdtp pause state

 RK_BT_A2DP_SINK_STOPPED, //avdtp stop state

} RK_BT_SINK_STATE;

1

2

3

4

5

6

7

8

9

10

11

af://n399

The avdtp state is mainly used for reporting a2dp sink state during WeChat calls and WeChat voices, because the
avrcp status change will not be triggered at this time.

typedef int (*RK_BT_SINK_CALLBACK)(RK_BT_SINK_STATE state)

Status callback function.

typedef void (*RK_BT_SINK_VOLUME_CALLBACK)(int volume)

Volume change callback function. Which is called when the volume of the mobile phone changes. volume:
the new volume value. Note: Due to the different implementations of AVRCP version and different mobile
phone manufacturers, some mobile phones are not compatible with this function, iPhone series phones
support this interface well.

typedef void (*RK_BT_AVRCP_TRACK_CHANGE_CB)(const char *bd_addr, BtTrackInfo

track_info)

Song information callback function, which will be triggered when the playing song changes. bd_addr:
remote device address, track_info: song information

typedef void (*RK_BT_AVRCP_PLAY_POSITION_CB)(const char *bd_addr, int song_len,

int song_pos)

Song playback progress callback, when the remote device supports position change, it will automatically
report the playback progress and trigger this function. bd_addr: remote device address, song_len: total song
length, song_pos: current playback progress

typedef void (*RK_BT_SINK_UNDERRUN_CB)(void)

Playback underrun status callback, which will be triggered automatically when playing underrun, this
interface is only applicable to bluez (Bluez only).

int rk_bt_sink_register_callback(RK_BT_SINK_CALLBACK cb)

Register a status callback function.

int rk_bt_sink_register_volume_callback(RK_BT_SINK_VOLUME_CALLBACK cb)

Register the volume change callback function.

int rk_bt_sink_register_track_callback(RK_BT_AVRCP_TRACK_CHANGE_CB cb)

Register the song information callback function

int rk_bt_sink_register_position_callback(RK_BT_AVRCP_PLAY_POSITION_CB cb)

Register the song playback progress callback

void rk_bt_sink_register_underurn_callback(RK_BT_SINK_UNDERRUN_CB cb)

Register the underrun callback function, which is only applicable to bluez (Bluez only)

int rk_bt_sink_open()

To enable A2DP SINK service. If A2DP SINK is required to coexist with HFP, please refer to
rk_bt_hfp_sink_open interface in the chapter of "HFP-HF Interface Introduction"

int rk_bt_sink_close(void)

Close A2DP Sink function.

int rk_bt_sink_get_state(RK_BT_SINK_STATE *p_state)

To get A2DP Sink connection status actively.

int rk_bt_sink_play(void)

Reverse control: play.

int rk_bt_sink_pause(void)

Reverse control: pause

int rk_bt_sink_prev(void)

Reverse control: previous

int rk_bt_sink_next(void)

Reverse control: next

int rk_bt_sink_stop(void)

Reverse control: stop playing

i nt rk_bt_sink_volume_up(void)

Reverse control: increase the volume. Volume range [0, 127], each time the interface is called, the volume
increases by 8.

Note: Due to the different implementations of AVRCP version and different mobile phone manufacturers,
some mobile phones are not compatible with this function. iPhone series phones support this interface well.

i nt rk_bt_sink_volume_down(void)

Reverse control: reduce the volume . Volume range [0, 127], each time the interface is called, the volume
reduce by 8.

Note: Due to the different implementations of AVRCP version and different mobile phone manufacturers,
some mobile phones are not compatible with this function. iPhone series phones support this interface well.

int rk_bt_sink_set_volume(int volume)

Reverse control: Set the volume of A2DP SOURCE. The volume range [0, 127]. If it exceeds the value
range, the interface will correct automatically .

Note: Due to the different implementations of AVRCP version and different mobile phone manufacturers, some
mobile phones are not compatible with this function. iPhone series phones support this interface well.

int rk_bt_sink_disconnect()

Disconnect A2DP Sink.

int rk_bt_sink_connect_by_addr(char *addr)

Connect to the device specified by addr actively; addr: device address, like "94:87:E0:B6:6D:AE"

int rk_bt_sink_disconnect_by_addr(char *addr)

Disconnect the device specified by addr actively; addr: device address, like "94:87:E0:B6:6D:AE"

int rk_bt_sink_get_default_dev_addr(char *addr, int len)

Get the address of the currently connected remote device (BLUEZ only)

int rk_bt_sink_get_play_status()

Get the playback status of the currently connected remote device. When the remote device does not support
reporting the playback progress actively, you can get the playback progress through this interface. Calling
this interface will trigger the RK_BT_AVRCP_PLAY_POSITION_CB callback.

bool rk_bt_sink_get_poschange()

Whether the currently connected remote device supports reporting the progress of the playback actively; if
it does, returns true, otherwise returns false.

void rk_bt_sink_set_alsa_device(char *alsa_dev)

To set the Bluetooth playback device node, it must be called after rk_bt_sink_open. Use "default" by
default, this interface is only applicable to bsa (BSA only)

The bluez playback device node is located in external/bluez-alsa/utils/aplay.c, which can be modified by
yourselves.

6. A2DP SOURCE Interface Introduction (RkBtSource.h)

BtDeviceInfo introduction

The above structure is used to save the scanned device information. name: device's name. address: device's
address. rssi_valid: indicates whether rssi is valid. rssi: signal strength. playrole: device role, values: "Audio
Sink", "Audio Source", "Unknown".

BtScanParam introduction

This structure is used to save the list of devices scanned in the rk_bt_source_scan (BtScanParam * data) interface.
mseconds: scan time. item_cnt: the number of scanned devices. devices: device's information.
BT_SOURCE_SCAN_DEVICES_CNT value is 30, which means that the interface scans up to 30 devices.

RK_BT_SOURCE_EVENT introduction

RK_BT_SOURCE_STATUS introduction

typedef struct _bt_device_info {

 char name[128]; // bt name

 char address[17]; // bt address

 bool rssi_valid;

 int rssi;

 char playrole[12]; // audio Sink? audio Source? unknown?

} BtDeviceInfo;

1

2

3

4

5

6

7

typedef struct _bt_scan_parameter {

 unsigned short mseconds;

 unsigned char item_cnt;

 BtDeviceInfo devices[BT_SOURCE_SCAN_DEVICES_CNT];

} BtScanParam;

1

2

3

4

5

typedef enum {

 BT_SOURCE_EVENT_CONNECT_FAILED, //fail to connect A2DP Sink device

 BT_SOURCE_EVENT_CONNECTED, //connect to A2DP Sink device

successfully

 BT_SOURCE_EVENT_DISCONNECT_FAILED, //fail to diconnect(BLUEZ only)

 BT_SOURCE_EVENT_DISCONNECTED, //disconnect

 /* reverse control event on the Sink side*/

 BT_SOURCE_EVENT_RC_PLAY, //play

 BT_SOURCE_EVENT_RC_STOP, //stop

 BT_SOURCE_EVENT_RC_PAUSE, //pause

 BT_SOURCE_EVENT_RC_FORWARD, //Previous

 BT_SOURCE_EVENT_RC_BACKWARD, //next

 BT_SOURCE_EVENT_RC_VOL_UP, //volume+

 BT_SOURCE_EVENT_RC_VOL_DOWN, //volume-

 BT_SOURCE_EVENT_AUTO_RECONNECTING, //is reconnecting(BLUEZ only)

} RK_BT_SOURCE_EVENT;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

typedef enum {

 BT_SOURCE_STATUS_CONNECTED, //connected state

 BT_SOURCE_STATUS_DISCONNECTED, //disconnected state

} RK_BT_SOURCE_STATUS;

1

2

3

4

af://n499

typedef void (*RK_BT_SOURCE_CALLBACK)(void *userdata, const char *bd_addr,

const char *name, const RK_BT_SOURCE_EVENT event)

Status callback function. userdata: user pointer, bd_addr: address of the connected remote device, name:
name of the connected remote device, event: connection event. It is recommended to register the status
callback function before the rk_bt_source_open interface to avoid state events losing.

int rk_bt_source_register_status_cb(void *userdata, RK_BT_SOURCE_CALLBACK cb)

Registration status callback function.

int rk_bt_source_auto_connect_start(void *userdata, RK_BT_SOURCE_CALLBACK cb)

Scans nearby Audio Sink devices, and connects to the device with strongest rssi automatically. userdata:
user pointer, cb: status callback function. The time for the interface automatically scans is 10 seconds. If no
Audio Sink device is scanned within 10 seconds, the interface will not do any operation. If an Audio Sink
device is scanned, the basic information of the device will be printed. If the Audio Sink device cannot be
scanned, it will print "=== Cannot find audio Sink devices. ==="; if the signal strength of the scanned
device is too low, the connection will fail and print “=== BT SOURCE RSSI is too weak !!! ===”.

int rk_bt_source_auto_connect_stop(void)

Turn off automatic scan.

int rk_bt_source_open(void)

Open A2DP Source function。

int rk_bt_source_close(void)

Close A2DP Source function。

int rk_bt_source_get_device_name(char *name, int len)

Get local device name. name: the buffer to store the name, len: size of the name space

int rk_bt_source_get_device_addr(char *addr, int len)

Get the local device address. addr: the buffer to store the address, len: the size of the addr space.

int rk_bt_source_get_status(RK_BT_SOURCE_STATUS *pstatus, char *name, int

name_len, char *addr, int addr_len)

Get A2DP source connection status. pstatus: a pointer to store the current status value. If it is in the
connected status, name stores the name of the device on the other side(A2DP Sink), name_len: is the name's
length, addr: stores the address of the device on the other side(A2DP Sink), and addr_len is the length of
addr. Both the name and addr parameters can be empty.

int rk_bt_source_scan(BtScanParam *data)

To scan device. The scanning parameters are specified by data , and the scanned results are also stored in
data . For details, please see the introduction of BtScanParam.

int rk_bt_source_connect_by_addr(char *address)

Connect to the device specified by address automatically.

int rk_bt_source_disconnect_by_addr(char *address)

Disconnect to the device specified by address .

int rk_bt_source_disconnect()

Disconnect.

int rk_bt_source_remove(char *address)

Delete the connected device. It will not connect automatically after deletion.

int rk_bt_source_resume(void)

Go on playing (BSA only)

int rk_bt_source_stop(void)

Stop playing (BSA only)

int rk_bt_source_pause(void)

Pause to play (BSA only)

int rk_bt_source_vol_up(void)

increase volume (BSA only)

int rk_bt_source_vol_down(void)

Decrease volume (BSA only)

7. HFP-HF Interface Introduction (RkBtHfp.h)

RK_BT_HFP_EVENT Introduction

RK_BT_SCO_CODEC_TYPE Introduction

typedef int (*RK_BT_HFP_CALLBACK)(RK_BT_HFP_EVENT event, void *data)

HFP status callback function. event: refer to the introduction of RK_BT_HFP_EVENT above. data: when
event is RK_BT_HFP_VOLUME_EVT , *((int *)data) is the volume value displayed on the current AG
(mobile phone).Note: the actual call volume still needs to be handled accordingly on the board.

void rk_bt_hfp_register_callback(RK_BT_HFP_CALLBACK cb)

Register a HFP callback function, which is recommended to be called before rk_bt_hfp_sink_open to
avoid losing state events.

int rk_bt_hfp_sink_open(void)

Turn on HFP-HF and A2DP SINK functions at the same time. BSA DEVICEIO can call this interface, or
call the A2DP Sink open and HFP open interfaces separately to realize the coexistence of HFP-HF and
A2DP SINK. But BLUEZ DEVICEIO can only realize the coexistence of HFP-HF and A2DP SINK
through this interface.

typedef enum {

 RK_BT_HFP_CONNECT_EVT, // HFP connected successfully

 RK_BT_HFP_DISCONNECT_EVT, // HFP disconnected

 RK_BT_HFP_RING_EVT, // received ringing signal from AG (mobile

phone)

 RK_BT_HFP_AUDIO_OPEN_EVT, // connected

 RK_BT_HFP_PICKUP_EVT, // answer the phone actively

 RK_BT_HFP_HANGUP_EVT, // hangup the phone actively

 RK_BT_HFP_VOLUME_EVT, // AG (Mobile phone) Volume Change

} RK_BT_HFP_EVENT;

1

2

3

4

5

6

7

8

9

typedef enum {

 BT_SCO_CODEC_CVSD, // CVSD(8K sampling), Bluetooth

required to support

 BT_SCO_CODEC_MSBC, // mSBC（16K sampling）, Optional

support

} RK_BT_SCO_CODEC_TYPE;

1

2

3

4

af://n576

For A2DP SINK and HFP-HF, the registration of callback functions and the functional interface are still
separate. It is best to call rk_bt_hfp_register_callback and rk_bt_sink_register_callback
before rk_bt_hfp_sink_open to avoid losing events. For BLUEZ DEVICEIO, before calling
rk_bt_hfp_sink_open interface, you cannot call rk_bt_hfp_open and rk_bt_sink_open
functions, otherwise the interface returns -1. The reference code is as follows:

int rk_bt_hfp_open(void)

Turn on HFP service.

BLUEZ DEVICEIO: this interface is mutually exclusive with rk_bt_sink_open . Calling this interface
will automatically exit A2DP protocol related services, and then start HFP service. If A2DP SINK and HFP
need to coexist, please refer to rk_bt_hfp_sink_open .

BSA DEVICEIO: there is no mutual exclusion between this interface and rk_bt_sink_open

int rk_bt_hfp_close(void)

Turn off HFP service。

int rk_bt_hfp_pickup(void)

Answer the phone actively

int rk_bt_hfp_hangup(void)

Hang up actively.

int rk_bt_hfp_redial(void)

Recall the last dialed phone number in the call list. Note: it is "call out" phone number, not the most recent
phone number in the call list. For example, in the following case, calling rk_bt_hfp_redial interface
will call back rockchip-003.

<1> rockchip-001 [Call in]

<2> rockchip-002 [Call in]

<3> rockchip-003 [Call out]

int rk_bt_hfp_dial_number(char *number)

Dial the phone number specified by "number"

int rk_bt_hfp_report_battery(int value)

Report the battery level. value: battery power value, the value range is [0, 9].

int rk_bt_hfp_set_volume(int volume)

Set the speaker volume of AG (mobile phone). volume: volume value, range is [0, 15]. When AG device is
a mobile phone, after calling this interface, the volume progress bar of the Bluetooth call on the mobile
phone will change accordingly. However, the actual call volume still needs to be set on the board.

void rk_bt_hfp_enable_cvsd(void)

/*opens A2DP SINK and HFP HF functions in coexistence mode */

rk_bt_sink_register_callback(bt_sink_callback);

rk_bt_hfp_register_callback(bt_hfp_hp_callback);

rk_bt_hfp_sink_open();

1

2

3

4

/* close the operation */

rk_bt_hfp_close(); //close HFP HF

rk_bt_sink_close(); //close A2DP SINK

1

2

3

hfp codec is forced to use CVSD (8K sampling rate), AG (mobile phone) and HF (headphone) will no
longer negotiate SCO codec type, at this time the SCO codec type must be forced to
BT_SCO_CODEC_CVSD. This interface is only applicable to bsa (BSA only).

Bluez supports 8K and 16K sample rate adaptation. SCO codec type is negotiated and determined by AG
(mobile phone) and HF (headphone). It does not support forcing to use of CVSD.

void rk_bt_hfp_disable_cvsd(void)

It is forbidden to force the use of CVSD (8K sampling rate) by hfp codec. The type of SCO codec is
determined through negotiation between AG (mobile phone) and HF (headphone). The result of the
negotiation is notified to the application layer through the callback event RK_BT_HFP_BCS_EVT. This
interface is only applicable to bsa (BSA only).

int rk_bt_hfp_disconnect(void)

Disconnect current connection

8. OBEX Interface Introduction (RkBtObex.h BLUEZ only)

RK_BT_OBEX_STATE introduction

typedef void (*RK_BT_OBEX_STATE_CALLBACK)(const char *bd_addr, RK_BT_OBEX_STATE

state);

obex status callback, bd_addr: address of the connected remote device

void rk_bt_obex_register_status_cb(RK_BT_OBEX_STATE_CALLBACK cb)

Register obex status callback

int rk_bt_obex_init(char *path)

Start obexd process, only needs to call this interface to realize Bluetooth file transfer function, path: file
storage path

int rk_bt_obex_deinit()

Close the obexd process and use it with rk_bt_obex_init

int rk_bt_obex_pbap_init()

To initialize the Bluetooth phone book, you must call rk_bt_obex_init to start obexd before calling this
interface

int rk_bt_obex_pbap_deinit()

To de-initialize the Bluetooth phone book, after calling this interface, you must call rk_bt_obex_deinit to
close obexd

int rk_bt_obex_pbap_connect(char *btaddr)

Open the pbap service, and connect with the device specified by btaddr actively.

typedef enum {

 RK_BT_OBEX_CONNECT_FAILED, //connection failed

 RK_BT_OBEX_CONNECTED, //connection succeeded

 RK_BT_OBEX_DISCONNECT_FAILED, //disconnection failed

 RK_BT_OBEX_DISCONNECTED, //disconnection succeeded

 RK_BT_OBEX_TRANSFER_ACTIVE, //start transferring

 RK_BT_OBEX_TRANSFER_COMPLETE, //complete transfer

} RK_BT_OBEX_STATE;

1

2

3

4

5

6

7

8

af://n638

int rk_bt_obex_pbap_get_vcf(char *dir_name, char *dir_file)

Obtain information about the object type specified by dir_name and store it in the file specified by dir_file

pbab defines six object types:

"pb": contact phone book

"ich": call history

"och": dial history

"mch": history of missed calls

"cch": combined history records, that is, all calls, outgoing and missed records

"spd": speed dial, for example, you can specify button 1 as a contact's speed dial button

"fav": favorites

int rk_bt_obex_pbap_disconnect(char *btaddr)

Disconnect with device specified by btaddr actively

9. Demo Program Introduction

The sample program is stored in: external/deviceio /test. The bluetooth-related test cases are implemented in
bt_test.cpp, which cover all the above interfaces. The function call is in DeviceIOTest.cpp.

9.1 Build

1. Execute make deviceio-dirclean && make deviceio -j4 in the SDK root directory, and the
following log will be displayed when building is successful (note: only part of log is showed below, rk-
xxxx corresponds to the specific project root directory)

2. Run ./build.sh to generate new firmware, and then flash the new firmware to device.

9.2 Basic Interface Demo Program

 -- Installing: /home/rk-

xxxx/buildroot/output/target/usr/lib/librkmediaplayer.so

 -- Installing: /home/rk-

xxxx/buildroot/output/target/usr/lib/libDeviceIo.so

 -- Installing: /home/rk-

xxxx/buildroot/output/target/usr/include/DeviceIo/Rk_battery.h

 -- Installing: /home/rk-

xxxx/buildroot/output/target/usr/include/DeviceIo/RK_timer.h

 -- Installing: /home/rk-

xxxx/buildroot/output/target/usr/include/DeviceIo/Rk_wake_lock.h

 -- Installing: /home/rk-xxxx/buildroot/output/target/usr/bin/deviceio_test

1

2

3

4

5

6

af://n679
af://n681
af://n689

9.2.1 Interface Introduction

9.2.1.1 Basic Interface Test Introduction to Bluetooth Service

void bt_test_bluetooth_init(void *data)

To initialize Bluetooth test. This interface is called before execute Bluetooth test. To register BLE receiving
and data request callback functions, please refer to bt_server_open in the DeviceIOTest.cpp test menu.

Note: BLE reading data is achieved by registering callback functions. When BLE connection receives data,
it will call the receiving callback function actively. For details, please refer to introduction of
RkBtContent structure and rk_ble_register_recv_callback function.

void bt_test_bluetooth_deinit(char *data)

Bluetooth de-initialization test, de-initialize all Bluetooth profiles.

bt_test_set_class(void *data)

Set the type of Bluetooth device. The current test value is 0x240404.

bt_test_enable_reconnect(void *data)

Enable A2DP SINK and HFP auto reconnect function. It is recommended to call immediately after
bt_test_bluetooth_init .

bt_test_disable_reconnect(void *data)

Disable the A2DP SINK and HFP auto-reconnect function. It is recommended to call immediately after
bt_test_bluetooth_init .

On the phone side:

void bt_test_get_device_name(char *data)

Get local device name

void bt_test_get_device_addr(char *data)

Get local device address

void bt_test_set_device_name(char *data)

Set local device name

void bt_test_pair_by_addr(char *data)

Pair with the device at the specified address, data: " 94:87:E0:B6:6D:AE "

void bt_test_unpair_by_addr(char *data)

Unpair with the device at the specified address, data: " 94:87:E0:B6:6D:AE "

void bt_test_get_paired_devices(char *data)

Get a list of currently paired devices

void bt_test_free_paired_devices(char *data)

Release the memory requested in bt_test_get_paired_devices to store paired device information

void bt_test_get_scaned_devices(char *data)

Get a list of scanning devices

void bt_test_start_discovery(char *data)

Scan surrounding devices, including BR/EDR and LE devices

void bt_test_start_discovery_bredr(char *data)

af://n690
af://n691

Scan the surrounding BR/EDR devices

void bt_test_start_discovery_le(char *data)

Scan the surrounding LE devices

void bt_test_cancel_discovery(char *data)

Cancel scan operation

void bt_test_is_discovering(char *data)

Whether is scanning the surrounding devices

void bt_test_display_devices(char *data)

Print the scanned information of surrounding devices

void bt_test_display_paired_devices(char *data)

Print the currently paired device information

9.2.1.2 BLE Interface Testing Introduction

1. Install a third-party BLE test APK on your phone, such as nrfconnnect.
2. Choose the bt_test_ble_start function.
3. Scans Bluetooth and connects to "ROCKCHIP_AUDIO BLE" on the phone.
4. After the connection is successful, the device will call back the ble_status_callback_test function

in bt_test.cpp and print "+++++ RK_BLE_STATE_CONNECT +++++".
5. Execute the following functions to do specific functional tests.

void bt_test_ble_start(void *data)

To enable BLE. After the device is connected passively, it will receive "Hello RockChip" and responds with
"My name is rockchip".

void bt_test_ble_write(void *data)

Test BLE write function and send 134 strings with '0'-'9'.

void bt_test_ble_get_status(void *data)

Test BLE status interface.

void bt_test_ble_stop(void *data)

Disabled BLE.

void bt_test_ble_disconnect(char *data)

Disconnect.

9.2.1.3 BLE CLIENT Interface Test Introduction

1. Select bt_test_sink_open function, start ble client
2. Select bt_test_start_discovery or bt_test_start_discovery_le to start scanning the device
3. Enter "60 input xx:xx:xx:xx:xx:xx" and call bt_test_ble_client_connect to connect to the ble server device

at the specified address
4. After the connection is successful, the callback ble_client_test_state_callback will be triggered, printing

"+++++ RK_BLE_CLIENT_STATE_IDLE +++++"
5. Enter "61 input xx:xx:xx:xx:xx:xx", call bt_test_ble_client_disconnect to disconnect the ble server device at

the specified address, and successfully disconnect, will print "+++++
RK_BLE_CLIENT_STATE_DISCONNECT ++++ +"

af://n757
af://n785

6. Enter "63 input xx:xx:xx:xx:xx:xx" and call bt_test_ble_client_get_service_info to get the service uuid,
characteristic uuid, permission, properties, descriptor uuid and other information of the connected device

7. Enter "64 input uuid", such as "56 input 00009999-0000-1000-8000-00805F9B34FB" to read the data of
9999 uuid through bt_test_ble_client_read. Successful reading will trigger
bt_test_ble_client_recv_data_callback to print the read value

8. Enter "65 input uuid", such as "57 input 00009999-0000-1000-8000-00805F9B34FB" and write 9999 uuid
via bt_test_ble_client_write

9. Select 59, 68 to turn on or off the notification of the specified uuid

9.2.1.4 A2DP SINK Interface Test Introduction

1. Select the bt_test_sink_open function.
2. Use the mobile phone Bluetooth to scan and connect to "ROCKCHIP_AUDIO".
3. After the connection is successful, the device will call back the bt_sink_callback function in bt_test.cpp and

print "++++++++++++ BT SINK EVENT: connect success ++++++++++".
4. Turn on music player of the phone, and make sure it is ready to play songs.
5. Execute the following functions to test specific functions:

void bt_test_sink_open(void *data)

Turn on A2DP Sink mode.

void bt_test_sink_visibility00(void *data)

Set A2DP Sink to be invisible and unreachable.

void bt_test_sink_visibility01(void *data)

Set the A2DP Sink to be invisible and connectable.

void bt_test_sink_visibility10(void *data)

Set the A2DP Sink to be visible and disconnectable.

void bt_test_sink_visibility11(void *data)

Set A2DP Sink visible and connectable.

void bt_test_sink_music_play(void *data)

Control the device to play in reverse.

void bt_test_sink_music_pause(void *data)

Control the device to pause in reverse.

void bt_test_sink_music_next(void *data)

Control the device to play the next song in reverse

void bt_test_sink_music_previous(void *data)

Control the device to play the previous song in reverse.

void bt_test_sink_music_stop(void *data)

Control the device to stop playing in reverse.

void bt_test_sink_reconnect_enable(void *data)

Enable A2DP Sink auto-connect function.

void bt_test_sink_reconnect_disenable(void *data)

Disable the A2DP Sink auto-connect function.

void bt_test_sink_disconnect(void *data)

af://n805

Disconnected A2DP Sink。

void bt_test_sink_close(void *data)

Close A2DP Sink service。

void bt_test_sink_status(void *data)

Query A2DP Sink connection status.

void bt_test_sink_set_volume(char *data)

Set volume test

void bt_test_sink_connect_by_addr(char *data)

Connect to the device with the specified address, data: " 94:87:E0:B6:6D:AE "

void bt_test_sink_disconnect_by_addr(char *data)

Disconnect the device with the specified address, data: " 94:87:E0:B6:6D:AE "

void bt_test_sink_get_play_status(char *data)

Get the playback status, it will trigger the "play position change" callback

void bt_test_sink_get_poschange(char *data)

Whether the currently connected device supports reporting of playback progress

9.2.1.5 A2DP SOURCE Interface Test Introduction

1. Select bt_test_source_open function, start source function
2. Select bt_test_start_discovery or bt_test_start_discovery_bredr to start scanning the

surrounding Bluetooth devices
3. Select bt_test_source_connect_by_addr to connect to the addr specified Bluetooth device (27 input

xx:xx:xx:xx:xx:xx). After the connection is successful, the device will call back the
bt_test_source_status_callback function in bt_test.cpp and print "+++++++++" +++ BT
SOURCE EVENT: connect sucess ++++++++++".

4. At this time, music will be broadcast from the connected A2DP Sink device.
5. Execute the following functions to do detailed functional tests.

void bt_test_source_open(char *data)

Open source function

void bt_test_source_close(char *data)

Close source function

void bt_test_source_connect_status(char *data)

Get A2DP Source connection status.

void bt_test_source_connect_by_addr(char *data)

Connect to the device with specified addr.

bt_test_source_disconnect

Disconnect.

bt_test_source_disconnect_by_addr

Disconnect the device specified by addr

af://n878

9.2.1.6 SPP Interface Testing Introduction

1. Install a third-party SPP test APK on the phone, such as "Serial Bluetooth Terminal".
2. Select the bt_test_spp_open function.
3. Scan Bluetooth and connects to "ROCKCHIP_AUDIO" on the phone.
4. Open the third-party SPP test APK and connect the device by SPP. After the device is connected

successfully, the device will call back the _btspp_status_callback function in bt_test.cpp and print
"+++++++ RK_BT_SPP_EVENT_CONNECT +++++".

5. Execute the following functions for detailed functional tests.

void bt_test_spp_open(void *data)

Open SPP

void bt_test_spp_write(void *data)

Test SPP writing function, send “This is a message from rockchip board!” string to the other side

void bt_test_spp_close(void *data)

Close SPP

void bt_test_spp_status(void *data)

Query SPP connection status

9.2.1.7 HFP Interface Test Introduction

1. Select bt_test_hfp_sink_open or bt_test_hfp_hp_open function.
2. Scans Bluetooth and connects to "ROCKCHIP_AUDIO" on the mobile phone. Note: If you have already

connected the mobile phone before testing SINK function, you should ignore the device at the mobile
phone, then scan and connect again.

3. After the device is successfully connected, the device will call back the bt_test_hfp_hp_cb function in
bt_test.cpp and print "+++++ BT HFP HP CONNECT +++++". If the phone is called, it will print "+++++
BT HFP HP RING +++++" , and "+++++ BT HFP AUDIO OPEN +++++" when the phone is connected.
For other status printing, please read the source code of bt_test_hfp_hp_cb function in bt_test.cpp
directly. Note: If the bt_test_hfp_sink_open interface is called, when the device is successfully
connected, the connection status of A2DP SINK will also be printed, such as "++++++++++++ BT SINK
EVENT: connect success +++++++ +++ ".

4. Execute the following functions for detailed functional tests.

bt_test_hfp_sink_open

Open HFP HF and A2DP SINK in coexist mode.

bt_test_hfp_hp_open

Open HFP HF function only.

bt_test_hfp_hp_accept

Answer the phone actively.

bt_test_hfp_hp_hungup

Hang up actively。

bt_test_hfp_hp_redail

To re-dial.

void bt_test_hfp_hp_dial_number(char *data)

Dial the specified phone number

af://n909
af://n934

bt_test_hfp_hp_report_battery

Battery power status is reported per second from 0 to 9, At this time, you will see the icon change from
empty to full on the phone. Note: Some phones do not support Bluetooth power icon display.

bt_test_hfp_hp_set_volume

Set the Bluetooth call volume per second from 1 to 15, . At this time, you will see the Bluetooth call
volume progress bar change process on the mobile phone.

Note: Some mobile phones do not support display the progress bar change dynamically. Actively increasing
or decreasing volume to trigger progress bar display. At this time, you will see that the device has set the
volume of mobile phone successfully . For example, if the original volume is 0. After running the interface,
press the mobile phone volume '+' button and you will find that the volume is full.

bt_test_hfp_hp_close

Close HFP service.

bt_test_hfp_open_audio_diplex

Open the hfp audio channel, which is called in the callback event RK_BT_HFP_AUDIO_OPEN_EVT.

bt_test_hfp_close_audio_diplex

Close the hfp audio channel and which is called in the callback event
RK_BT_HFP_AUDIO_CLOSE_EVT.

9.2.1.8 OBEX Interface Test Introduction

Execute the following functions for detailed functional tests:

bt_test_obex_init

Open obexd process and execute this function to test the file transfer

bt_test_obex_deinit

Close the obexd process

bt_test_obex_pbap_init

Execute bt_test_obex_init fore test the Bluetooth phone book

bt_test_obex_pbap_deinit

Deinitialize the Bluetooth phone book, and then execute bt_test_obex_deinit

bt_test_obex_pbap_connect

Open the pbap service and connect to the specified device

bt_test_obex_pbap_get_pb_vcf

Get the contact phone book, the result is stored in /data/pb.vcf

bt_test_obex_pbap_get_ich_vcf

Get call history, the results are stored in /data/ich.vcf

bt_test_obex_pbap_get_och_vcf

Get outgoing history record, the result is stored in /data/och.vcf

bt_test_obex_pbap_get_mch_vcf

Get the history of missed calls, the results are stored in /data/mch.vcf

bt_test_obex_pbap_disconnect

Turn off the pbap service, and disconnect

af://n979

bt_test_obex_close

Close obex service

9.2.2 Test Steps

1. Execute the test program command: DeviceIOTest bluetooth to display the following interface:

deviceio_test bluetooth

version:V1.3.5

Please Input Your Test Command Index

01. bt_server_open

02. bt_test_set_class

03. bt_test_get_device_name

04. bt_test_get_device_addr

05. bt_test_set_device_name

06. bt_test_enable_reconnect

07. bt_test_disable_reconnect

08. bt_test_start_discovery

09. bt_test_start_discovery_le

10. bt_test_start_discovery_bredr

11. bt_test_cancel_discovery

12. bt_test_is_discovering

13. bt_test_display_devices

14. bt_test_read_remote_device_name

15. bt_test_get_scaned_devices

16. bt_test_display_paired_devices

17. bt_test_get_paired_devices

18. bt_test_free_paired_devices

19. bt_test_pair_by_addr

20. bt_test_unpair_by_addr

21. bt_test_get_connected_properties

22. bt_test_source_auto_start

23. bt_test_source_connect_status

24. bt_test_source_auto_stop

25. bt_test_source_open

26. bt_test_source_close

27. bt_test_source_connect_by_addr

28. bt_test_source_disconnect

29. bt_test_source_disconnect_by_addr

30. bt_test_source_remove_by_addr

31. bt_test_sink_open

32. bt_test_sink_visibility00

33. bt_test_sink_visibility01

34. bt_test_sink_visibility10

35. bt_test_sink_visibility11

36. bt_test_ble_visibility00

37. bt_test_ble_visibility11

38. bt_test_sink_status

39. bt_test_sink_music_play

40. bt_test_sink_music_pause

41. bt_test_sink_music_next

42. bt_test_sink_music_previous

43. bt_test_sink_music_stop

44. bt_test_sink_set_volume

45. bt_test_sink_connect_by_addr

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

af://n1015

2. Select the corresponding test program number. Firstly, select 01 to initialize the Bluetooth basic service.
Such as testing BT Source function。

46. bt_test_sink_disconnect_by_addr

47. bt_test_sink_get_play_status

48. bt_test_sink_get_poschange

49. bt_test_sink_disconnect

50. bt_test_sink_close

51. bt_test_ble_start

52. bt_test_ble_set_address

53. bt_test_ble_set_adv_interval

54. bt_test_ble_write

55. bt_test_ble_disconnect

56. bt_test_ble_stop

57. bt_test_ble_get_status

58. bt_test_ble_client_open

59. bt_test_ble_client_close

60. bt_test_ble_client_connect

61. bt_test_ble_client_disconnect

62. bt_test_ble_client_get_status

63. bt_test_ble_client_get_service_info

64. bt_test_ble_client_read

65. bt_test_ble_client_write

66. bt_test_ble_client_is_notify

67. bt_test_ble_client_notify_on

68. bt_test_ble_client_notify_off

69. bt_test_ble_client_get_eir_data

70. bt_test_spp_open

71. bt_test_spp_write

72. bt_test_spp_close

73. bt_test_spp_status

74. bt_test_hfp_sink_open

75. bt_test_hfp_hp_open

76. bt_test_hfp_hp_accept

77. bt_test_hfp_hp_hungup

78. bt_test_hfp_hp_redail

79. bt_test_hfp_hp_dial_number

80. bt_test_hfp_hp_report_battery

81. bt_test_hfp_hp_set_volume

82. bt_test_hfp_hp_close

83. bt_test_hfp_hp_disconnect

84. bt_test_obex_init

85. bt_test_obex_pbap_init

86. bt_test_obex_pbap_connect

87. bt_test_obex_pbap_get_pb_vcf

88. bt_test_obex_pbap_get_ich_vcf

89. bt_test_obex_pbap_get_och_vcf

90. bt_test_obex_pbap_get_mch_vcf

91. bt_test_obex_pbap_disconnect

92. bt_test_obex_pbap_deinit

93. bt_test_obex_deinit

94. bt_server_close

Which would you like:

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

3. The test program needed to transfer the address or other parameters, input: number (space) input (space)
parameters, such as pairing with the specified address device

9.3 BLE Network Configuration Demo Program

Please refer to "Rockchip_Developer_Guide_Network_Config_CN".

Which would you like:01

#Note: enter the next round of selection interface until finish execution

Which would you like:25

#Note: open source function

Which would you like:8 input 15000

#Note: Start to scan the surrounding Bluetooth devices, scan time is 15s

Which would you like:27 input xx:xx:xx:xx:xx:xx

#Note: Start to connect with the device wtih the address xx:xx:xx:xx:xx:xx

1

2

3

4

5

6

7

8

Which would you like:19 input 94:87:E0:B6:6D:AE

#Note: start pairing with the device with the address of 94:87:E0:B6:6D:AE

1

2

af://n1028

	Rockchip Blutooth DeviceIo Introduction
	Bluetooth Basic Interface (RkBtBase.h)
	BLE Interface Introduction (RkBle.h)
	BLE CLIENT Interface Introduction (RkBtSpp.h)
	SPP Interface Introduction (RkBtSpp.h)
	A2DP SINK Interface Introduction (RkBtSink.h)
	A2DP SOURCE Interface Introduction (RkBtSource.h)
	HFP-HF Interface Introduction (RkBtHfp.h)
	OBEX Interface Introduction (RkBtObex.h BLUEZ only)
	Demo Program Introduction
	Build
	Basic Interface Demo Program
	Interface Introduction
	Basic Interface Test Introduction to Bluetooth Service
	BLE Interface Testing Introduction
	BLE CLIENT Interface Test Introduction
	A2DP SINK Interface Test Introduction
	A2DP SOURCE Interface Test Introduction
	SPP Interface Testing Introduction
	HFP Interface Test Introduction
	OBEX Interface Test Introduction

	Test Steps

	BLE Network Configuration Demo Program

