// SPDX-License-Identifier: BSD-2-Clause /* * Copyright (c) 2015, Linaro Limited * All rights reserved. */ #include #include #include #include #include #include "ta_aes_perf.h" #include "ta_aes_perf_priv.h" #define CHECK(res, name, action) do { \ if ((res) != TEE_SUCCESS) { \ DMSG(name ": 0x%08x", (res)); \ action \ } \ } while(0) #define TAG_LEN 128 static uint8_t iv[] = { 0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xAB, 0xAC, 0xAD, 0xAE, 0xAF }; static int use_iv; static TEE_OperationHandle crypto_op = NULL; static uint32_t algo; static bool is_inbuf_a_secure_memref(TEE_Param *param) { TEE_Result res = TEE_ERROR_GENERIC; /* * Check secure attribute for the referenced buffer * Trust core on validity of the memref size: test only 1st byte * instead of the overall buffer, and if it's not secure, assume * the buffer is nonsecure. */ res = TEE_CheckMemoryAccessRights(TEE_MEMORY_ACCESS_ANY_OWNER | TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_SECURE, param->memref.buffer, 1); return (res == TEE_SUCCESS); } static bool is_outbuf_a_secure_memref(TEE_Param *param) { TEE_Result res = TEE_ERROR_GENERIC; /* * Check secure attribute for the referenced buffer * Trust core on validity of the memref size: test only 1st byte * instead of the overall buffer, and if it's not secure, assume * the buffer is nonsecure. */ res = TEE_CheckMemoryAccessRights(TEE_MEMORY_ACCESS_ANY_OWNER | TEE_MEMORY_ACCESS_WRITE | TEE_MEMORY_ACCESS_SECURE, param->memref.buffer, 1); return (res == TEE_SUCCESS); } #if defined(CFG_CACHE_API) static TEE_Result flush_memref_buffer(TEE_Param *param) { TEE_Result res = TEE_ERROR_GENERIC; res = TEE_CacheFlush(param->memref.buffer, param->memref.size); CHECK(res, "TEE_CacheFlush(in)", return res;); return res; } #else static __maybe_unused TEE_Result flush_memref_buffer(TEE_Param *param __unused) { return TEE_SUCCESS; } #endif /* CFG_CACHE_API */ TEE_Result cmd_process(uint32_t param_types, TEE_Param params[TEE_NUM_PARAMS], bool use_sdp) { TEE_Result res = TEE_ERROR_GENERIC; int n = 0; int unit = 0; void *in = NULL; void *out = NULL; uint32_t insz = 0; uint32_t outsz = 0; uint32_t exp_param_types = TEE_PARAM_TYPES(TEE_PARAM_TYPE_MEMREF_INOUT, TEE_PARAM_TYPE_MEMREF_INOUT, TEE_PARAM_TYPE_VALUE_INPUT, TEE_PARAM_TYPE_NONE); bool secure_in = false; bool secure_out = false; TEE_Result (*do_update)(TEE_OperationHandle, const void *, uint32_t, void *, uint32_t *) = NULL; if (param_types != exp_param_types) return TEE_ERROR_BAD_PARAMETERS; if (use_sdp) { /* * Whatever is expected as memory reference, it is mandatory * for SDP aware trusted applications of safely indentify all * memory reference parameters. Hence these tests must be part * of the performance test setup. */ secure_in = is_inbuf_a_secure_memref(¶ms[0]); secure_out = is_outbuf_a_secure_memref(¶ms[1]); /* * We could invalidate only the caches. We prefer to flush * them in case 2 sub-buffers are accessed by TAs from a single * allocated SDP memory buffer, and those are not cache-aligned. * Invalidating might cause data loss in cache lines. Hence * rather flush them all before accessing (in read or write). */ if (secure_in) { res = flush_memref_buffer(¶ms[0]); CHECK(res, "pre-flush in memref param", return res;); } if (secure_out) { res = flush_memref_buffer(¶ms[1]); CHECK(res, "pre-flush out memref param", return res;); } } in = params[0].memref.buffer; insz = params[0].memref.size; out = params[1].memref.buffer; outsz = params[1].memref.size; n = params[2].value.a; unit = params[2].value.b; if (!unit) unit = insz; if (algo == TEE_ALG_AES_GCM) do_update = TEE_AEUpdate; else do_update = TEE_CipherUpdate; while (n--) { uint32_t i = 0; for (i = 0; i < insz / unit; i++) { res = do_update(crypto_op, in, unit, out, &outsz); CHECK(res, "TEE_CipherUpdate/TEE_AEUpdate", return res;); in = (void *)((uintptr_t)in + unit); out = (void *)((uintptr_t)out + unit); } if (insz % unit) { res = do_update(crypto_op, in, insz % unit, out, &outsz); CHECK(res, "TEE_CipherUpdate/TEE_AEUpdate", return res;); } } if (secure_out) { /* intentionally flush output data from cache for SDP buffers */ res = flush_memref_buffer(¶ms[1]); CHECK(res, "post-flush out memref param", return res;); } return TEE_SUCCESS; } TEE_Result cmd_prepare_key(uint32_t param_types, TEE_Param params[4]) { TEE_Result res = TEE_ERROR_GENERIC; TEE_ObjectHandle hkey = TEE_HANDLE_NULL; TEE_ObjectHandle hkey2 = TEE_HANDLE_NULL; TEE_Attribute attr = { }; uint32_t mode = 0; uint32_t op_keysize = 0; uint32_t keysize = 0; const uint8_t *ivp = NULL; size_t ivlen = 0; static uint8_t aes_key[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F }; static uint8_t aes_key2[] = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F }; uint32_t exp_param_types = TEE_PARAM_TYPES(TEE_PARAM_TYPE_VALUE_INPUT, TEE_PARAM_TYPE_VALUE_INPUT, TEE_PARAM_TYPE_NONE, TEE_PARAM_TYPE_NONE); if (param_types != exp_param_types) return TEE_ERROR_BAD_PARAMETERS; mode = params[0].value.a ? TEE_MODE_DECRYPT : TEE_MODE_ENCRYPT; keysize = params[0].value.b; op_keysize = keysize; switch (params[1].value.a) { case TA_AES_ECB: algo = TEE_ALG_AES_ECB_NOPAD; use_iv = 0; break; case TA_AES_CBC: algo = TEE_ALG_AES_CBC_NOPAD; use_iv = 1; break; case TA_AES_CTR: algo = TEE_ALG_AES_CTR; use_iv = 1; break; case TA_AES_XTS: algo = TEE_ALG_AES_XTS; use_iv = 1; op_keysize *= 2; break; case TA_AES_GCM: algo = TEE_ALG_AES_GCM; use_iv = 1; break; default: return TEE_ERROR_BAD_PARAMETERS; } cmd_clean_res(); res = TEE_AllocateOperation(&crypto_op, algo, mode, op_keysize); CHECK(res, "TEE_AllocateOperation", return res;); res = TEE_AllocateTransientObject(TEE_TYPE_AES, keysize, &hkey); CHECK(res, "TEE_AllocateTransientObject", return res;); attr.attributeID = TEE_ATTR_SECRET_VALUE; attr.content.ref.buffer = aes_key; attr.content.ref.length = keysize / 8; res = TEE_PopulateTransientObject(hkey, &attr, 1); CHECK(res, "TEE_PopulateTransientObject", return res;); if (algo == TEE_ALG_AES_XTS) { res = TEE_AllocateTransientObject(TEE_TYPE_AES, keysize, &hkey2); CHECK(res, "TEE_AllocateTransientObject", return res;); attr.content.ref.buffer = aes_key2; res = TEE_PopulateTransientObject(hkey2, &attr, 1); CHECK(res, "TEE_PopulateTransientObject", return res;); res = TEE_SetOperationKey2(crypto_op, hkey, hkey2); CHECK(res, "TEE_SetOperationKey2", return res;); TEE_FreeTransientObject(hkey2); } else { res = TEE_SetOperationKey(crypto_op, hkey); CHECK(res, "TEE_SetOperationKey", return res;); } TEE_FreeTransientObject(hkey); if (use_iv) { ivp = iv; ivlen = sizeof(iv); } else { ivp = NULL; ivlen = 0; } if (algo == TEE_ALG_AES_GCM) { return TEE_AEInit(crypto_op, ivp, ivlen, TAG_LEN, 0, 0); } else { TEE_CipherInit(crypto_op, ivp, ivlen); return TEE_SUCCESS; } } void cmd_clean_res(void) { if (crypto_op) TEE_FreeOperation(crypto_op); }