/* SPDX-License-Identifier: GPL-2.0 */ /****************************************************************************** * * Copyright(c) 2007 - 2017 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * *****************************************************************************/ #define _HAL_INIT_C_ #include #include "hal_com_h2c.h" #include "hal8188f_fw.h" #if 0 /* FW tx packet write */ #define FW_DOWNLOAD_SIZE_8188F 8192 #endif static void _FWDownloadEnable( PADAPTER padapter, BOOLEAN enable ) { u8 tmp, count = 0; if (enable) { /* 8051 enable */ tmp = rtw_read8(padapter, REG_SYS_FUNC_EN + 1); rtw_write8(padapter, REG_SYS_FUNC_EN + 1, tmp | 0x04); tmp = rtw_read8(padapter, REG_MCUFWDL); rtw_write8(padapter, REG_MCUFWDL, tmp | 0x01); do { tmp = rtw_read8(padapter, REG_MCUFWDL); if (tmp & 0x01) break; rtw_write8(padapter, REG_MCUFWDL, tmp | 0x01); rtw_msleep_os(1); } while (count++ < 100); if (count > 0) RTW_INFO("%s: !!!!!!!!Write 0x80 Fail!: count = %d\n", __func__, count); /* 8051 reset */ tmp = rtw_read8(padapter, REG_MCUFWDL + 2); rtw_write8(padapter, REG_MCUFWDL + 2, tmp & 0xf7); } else { /* MCU firmware download disable. */ tmp = rtw_read8(padapter, REG_MCUFWDL); rtw_write8(padapter, REG_MCUFWDL, tmp & 0xfe); } } static int _BlockWrite( PADAPTER padapter, void *buffer, u32 buffSize ) { int ret = _SUCCESS; u32 blockSize_p1 = 4; /* (Default) Phase #1 : PCI muse use 4-byte write to download FW */ u32 blockSize_p2 = 8; /* Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */ u32 blockSize_p3 = 1; /* Phase #3 : Use 1-byte, the remnant of FW image. */ u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0; u32 remainSize_p1 = 0, remainSize_p2 = 0; u8 *bufferPtr = (u8 *)buffer; u32 i = 0, offset = 0; #ifdef CONFIG_PCI_HCI u8 remainFW[4] = {0, 0, 0, 0}; u8 *p = NULL; #endif #ifdef CONFIG_USB_HCI blockSize_p1 = 196; /* the same as 8188e */ #endif /*printk("====>%s %d\n", __func__, __LINE__); */ /*3 Phase #1 */ blockCount_p1 = buffSize / blockSize_p1; remainSize_p1 = buffSize % blockSize_p1; for (i = 0; i < blockCount_p1; i++) { #ifdef CONFIG_USB_HCI ret = rtw_writeN(padapter, (FW_8188F_START_ADDRESS + i * blockSize_p1), blockSize_p1, (bufferPtr + i * blockSize_p1)); #else ret = rtw_write32(padapter, (FW_8188F_START_ADDRESS + i * blockSize_p1), le32_to_cpu(*((u32 *)(bufferPtr + i * blockSize_p1)))); #endif if (ret == _FAIL) { printk("====>%s %d i:%d\n", __func__, __LINE__, i); goto exit; } } #ifdef CONFIG_PCI_HCI p = (u8 *)((u32 *)(bufferPtr + blockCount_p1 * blockSize_p1)); if (remainSize_p1) { switch (remainSize_p1) { case 0: break; case 3: remainFW[2] = *(p + 2); case 2: remainFW[1] = *(p + 1); case 1: remainFW[0] = *(p); ret = rtw_write32(padapter, (FW_8188F_START_ADDRESS + blockCount_p1 * blockSize_p1), le32_to_cpu(*(u32 *)remainFW)); } return ret; } #endif /*3 Phase #2 */ if (remainSize_p1) { offset = blockCount_p1 * blockSize_p1; blockCount_p2 = remainSize_p1 / blockSize_p2; remainSize_p2 = remainSize_p1 % blockSize_p2; #ifdef CONFIG_USB_HCI for (i = 0; i < blockCount_p2; i++) { ret = rtw_writeN(padapter, (FW_8188F_START_ADDRESS + offset + i * blockSize_p2), blockSize_p2, (bufferPtr + offset + i * blockSize_p2)); if (ret == _FAIL) goto exit; } #endif } /*3 Phase #3 */ if (remainSize_p2) { offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2); blockCount_p3 = remainSize_p2 / blockSize_p3; for (i = 0; i < blockCount_p3; i++) { ret = rtw_write8(padapter, (FW_8188F_START_ADDRESS + offset + i), *(bufferPtr + offset + i)); if (ret == _FAIL) { printk("====>%s %d i:%d\n", __func__, __LINE__, i); goto exit; } } } exit: return ret; } static int _PageWrite( PADAPTER padapter, u32 page, void *buffer, u32 size ) { u8 value8; u8 u8Page = (u8)(page & 0x07); value8 = (rtw_read8(padapter, REG_MCUFWDL + 2) & 0xF8) | u8Page; rtw_write8(padapter, REG_MCUFWDL + 2, value8); return _BlockWrite(padapter, buffer, size); } #ifdef CONFIG_PCI_HCI static void _FillDummy( u8 *pFwBuf, u32 *pFwLen ) { u32 FwLen = *pFwLen; u8 remain = (u8)(FwLen % 4); remain = (remain == 0) ? 0 : (4 - remain); while (remain > 0) { pFwBuf[FwLen] = 0; FwLen++; remain--; } *pFwLen = FwLen; } #endif static int _WriteFW( PADAPTER padapter, void *buffer, u32 size ) { /* Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */ int ret = _SUCCESS; u32 pageNums, remainSize; u32 page, offset; u8 *bufferPtr = (u8 *)buffer; #ifdef CONFIG_PCI_HCI /* 20100120 Joseph: Add for 88CE normal chip. */ /* Fill in zero to make firmware image to dword alignment. */ _FillDummy(bufferPtr, &size); #endif pageNums = size / MAX_DLFW_PAGE_SIZE; /*RT_ASSERT((pageNums <= 4), ("Page numbers should not greater then 4\n")); */ remainSize = size % MAX_DLFW_PAGE_SIZE; for (page = 0; page < pageNums; page++) { offset = page * MAX_DLFW_PAGE_SIZE; ret = _PageWrite(padapter, page, bufferPtr + offset, MAX_DLFW_PAGE_SIZE); if (ret == _FAIL) { printk("====>%s %d\n", __func__, __LINE__); goto exit; } } if (remainSize) { offset = pageNums * MAX_DLFW_PAGE_SIZE; page = pageNums; ret = _PageWrite(padapter, page, bufferPtr + offset, remainSize); if (ret == _FAIL) { printk("====>%s %d\n", __func__, __LINE__); goto exit; } } exit: return ret; } void _8051Reset8188(PADAPTER padapter) { u8 cpu_rst; u8 io_rst; #if 0 io_rst = rtw_read8(padapter, REG_RSV_CTRL); rtw_write8(padapter, REG_RSV_CTRL, io_rst & (~BIT1)); #endif /* Reset 8051(WLMCU) IO wrapper */ /* 0x1c[8] = 0 */ /* Suggested by Isaac@SD1 and Gimmy@SD1, coding by Lucas@20130624 */ io_rst = rtw_read8(padapter, REG_RSV_CTRL + 1); io_rst &= ~BIT(0); rtw_write8(padapter, REG_RSV_CTRL + 1, io_rst); cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN + 1); cpu_rst &= ~BIT(2); rtw_write8(padapter, REG_SYS_FUNC_EN + 1, cpu_rst); #if 0 io_rst = rtw_read8(padapter, REG_RSV_CTRL); rtw_write8(padapter, REG_RSV_CTRL, io_rst & (~BIT1)); #endif /* Enable 8051 IO wrapper */ /* 0x1c[8] = 1 */ io_rst = rtw_read8(padapter, REG_RSV_CTRL + 1); io_rst |= BIT(0); rtw_write8(padapter, REG_RSV_CTRL + 1, io_rst); cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN + 1); cpu_rst |= BIT(2); rtw_write8(padapter, REG_SYS_FUNC_EN + 1, cpu_rst); RTW_INFO("%s: Finish\n", __func__); } static s32 polling_fwdl_chksum(_adapter *adapter, u32 min_cnt, u32 timeout_ms) { s32 ret = _FAIL; u32 value32; systime start = rtw_get_current_time(); u32 cnt = 0; /* polling CheckSum report */ do { cnt++; value32 = rtw_read32(adapter, REG_MCUFWDL); if (value32 & FWDL_ChkSum_rpt || RTW_CANNOT_IO(adapter)) break; rtw_yield_os(); } while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt); if (!(value32 & FWDL_ChkSum_rpt)) goto exit; if (rtw_fwdl_test_trigger_chksum_fail()) goto exit; ret = _SUCCESS; exit: RTW_INFO("%s: Checksum report %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __func__ , (ret == _SUCCESS) ? "OK" : "Fail", cnt, rtw_get_passing_time_ms(start), value32); return ret; } static s32 _FWFreeToGo(_adapter *adapter, u32 min_cnt, u32 timeout_ms) { s32 ret = _FAIL; u32 value32; systime start = rtw_get_current_time(); u32 cnt = 0; u32 value_to_check = 0; u32 value_expected = (MCUFWDL_RDY | FWDL_ChkSum_rpt | WINTINI_RDY | RAM_DL_SEL); value32 = rtw_read32(adapter, REG_MCUFWDL); value32 |= MCUFWDL_RDY; value32 &= ~WINTINI_RDY; rtw_write32(adapter, REG_MCUFWDL, value32); _8051Reset8188(adapter); /* polling for FW ready */ do { cnt++; value32 = rtw_read32(adapter, REG_MCUFWDL); value_to_check = value32 & value_expected; if ((value_to_check == value_expected) || RTW_CANNOT_IO(adapter)) break; rtw_yield_os(); } while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt); if (value_to_check != value_expected) goto exit; if (rtw_fwdl_test_trigger_wintint_rdy_fail()) goto exit; ret = _SUCCESS; exit: RTW_INFO("%s: Polling FW ready %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __func__ , (ret == _SUCCESS) ? "OK" : "Fail", cnt, rtw_get_passing_time_ms(start), value32); return ret; } #define IS_FW_81xxC(padapter) (((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0) void rtl8188f_FirmwareSelfReset(PADAPTER padapter) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); u8 u1bTmp; u8 Delay = 100; if (!(IS_FW_81xxC(padapter) && ((pHalData->firmware_version < 0x21) || (pHalData->firmware_version == 0x21 && pHalData->firmware_sub_version < 0x01)))) { /* after 88C Fw v33.1 */ /*0x1cf=0x20. Inform 8051 to reset. 2009.12.25. tynli_test */ rtw_write8(padapter, REG_HMETFR + 3, 0x20); u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN + 1); while (u1bTmp & BIT2) { Delay--; if (Delay == 0) break; rtw_udelay_os(50); u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN + 1); } if (Delay == 0) { /*force firmware reset */ u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN + 1); rtw_write8(padapter, REG_SYS_FUNC_EN + 1, u1bTmp & (~BIT2)); } } } #ifdef CONFIG_FILE_FWIMG extern char *rtw_fw_file_path; extern char *rtw_fw_wow_file_path; #ifdef CONFIG_MP_INCLUDED extern char *rtw_fw_mp_bt_file_path; #endif /* CONFIG_MP_INCLUDED */ u8 FwBuffer[FW_8188F_SIZE]; #endif /* CONFIG_FILE_FWIMG */ #ifdef CONFIG_MP_INCLUDED int _WriteBTFWtoTxPktBuf8188F( PADAPTER Adapter, void *buffer, u32 FwBufLen, u8 times ) { int rtStatus = _SUCCESS; /*u32 value32; */ /*u8 numHQ, numLQ, numPubQ;//, txpktbuf_bndy; */ HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); /*PMGNT_INFO pMgntInfo = &(Adapter->MgntInfo); */ u8 BcnValidReg; u8 count = 0, DLBcnCount = 0; u8 *FwbufferPtr = (u8 *)buffer; /*PRT_TCB pTcb, ptempTcb; */ /*PRT_TX_LOCAL_BUFFER pBuf; */ u8 *ReservedPagePacket = NULL; u8 *pGenBufReservedPagePacket = NULL; u32 TotalPktLen, txpktbuf_bndy; /*u8 tmpReg422; */ /*u8 u1bTmp; */ u8 *pframe; struct xmit_priv *pxmitpriv = &(Adapter->xmitpriv); struct xmit_frame *pmgntframe; struct pkt_attrib *pattrib; u8 txdesc_offset = TXDESC_OFFSET; u8 val8; #ifdef CONFIG_PCI_HCI u8 u1bTmp; #endif #if 1/*#ifdef CONFIG_PCI_HCI */ TotalPktLen = FwBufLen; #else TotalPktLen = FwBufLen + pHalData->HWDescHeadLength; #endif if ((TotalPktLen + TXDESC_OFFSET) > MAX_CMDBUF_SZ) { RTW_INFO(" WARNING %s => Total packet len = %d > MAX_CMDBUF_SZ:%d\n" , __func__, (TotalPktLen + TXDESC_OFFSET), MAX_CMDBUF_SZ); return _FAIL; } pGenBufReservedPagePacket = rtw_zmalloc(TotalPktLen);/*GetGenTempBuffer (Adapter, TotalPktLen); */ if (!pGenBufReservedPagePacket) return _FAIL; ReservedPagePacket = (u8 *)pGenBufReservedPagePacket; _rtw_memset(ReservedPagePacket, 0, TotalPktLen); #if 1/*#ifdef CONFIG_PCI_HCI*/ _rtw_memcpy(ReservedPagePacket, FwbufferPtr, FwBufLen); #else PlatformMoveMemory(ReservedPagePacket + Adapter->HWDescHeadLength , FwbufferPtr, FwBufLen); #endif /*--------------------------------------------------------- */ /* 1. Pause BCN */ /*--------------------------------------------------------- */ /*Set REG_CR bit 8. DMA beacon by SW. */ #ifdef CONFIG_PCI_HCI u1bTmp = PlatformEFIORead1Byte(Adapter, REG_CR + 1); PlatformEFIOWrite1Byte(Adapter, REG_CR + 1, (u1bTmp | BIT0)); #else /* Remove for temparaily because of the code on v2002 is not sync to MERGE_TMEP for USB/SDIO. */ /* De not remove this part on MERGE_TEMP. by tynli. */ #endif /* Disable Hw protection for a time which revserd for Hw sending beacon. */ /* Fix download reserved page packet fail that access collision with the protection time. */ /* 2010.05.11. Added by tynli. */ val8 = rtw_read8(Adapter, REG_BCN_CTRL); val8 &= ~EN_BCN_FUNCTION; val8 |= DIS_TSF_UDT; rtw_write8(Adapter, REG_BCN_CTRL, val8); #if 0/*#ifdef CONFIG_PCI_HCI*/ tmpReg422 = PlatformEFIORead1Byte(Adapter, REG_FWHW_TXQ_CTRL + 2); if (tmpReg422 & BIT6) bRecover = TRUE; PlatformEFIOWrite1Byte(Adapter, REG_FWHW_TXQ_CTRL + 2, tmpReg422 & (~BIT6)); #else /* Set FWHW_TXQ_CTRL 0x422[6]=0 to tell Hw the packet is not a real beacon frame. */ PlatformEFIOWrite1Byte(Adapter, REG_FWHW_TXQ_CTRL + 2, PlatformEFIORead1Byte(Adapter, REG_FWHW_TXQ_CTRL + 2) & (~BIT6)); #endif /*--------------------------------------------------------- */ /* 2. Adjust LLT table to an even boundary. */ /*--------------------------------------------------------- */ #if 0/*#ifdef CONFIG_SDIO_HCI*/ txpktbuf_bndy = 10; /* rsvd page start address should be an even value. */ rtStatus = InitLLTTable8188FS(Adapter, txpktbuf_bndy); if (RT_STATUS_SUCCESS != rtStatus) { RTW_INFO("_CheckWLANFwPatchBTFwReady_8188F(): Failed to init LLT!\n"); return RT_STATUS_FAILURE; } /* Init Tx boundary. */ PlatformEFIOWrite1Byte(Adapter, REG_DWBCN0_CTRL_8188F + 1, (u8)txpktbuf_bndy); #endif /*--------------------------------------------------------- */ /* 3. Write Fw to Tx packet buffer by reseverd page. */ /*--------------------------------------------------------- */ do { /* download rsvd page. */ /* Clear beacon valid check bit. */ BcnValidReg = PlatformEFIORead1Byte(Adapter, REG_TDECTRL + 2); PlatformEFIOWrite1Byte(Adapter, REG_TDECTRL + 2, BcnValidReg & (~BIT(0))); /*BT patch is big, we should set 0x209 < 0x40 suggested from Gimmy */ PlatformEFIOWrite1Byte(Adapter, REG_TDECTRL + 1, (0x90 - 0x20 * (times - 1))); RTW_INFO("0x209:0x%x\n", PlatformEFIORead1Byte(Adapter, REG_TDECTRL + 1)); #if 0 /* Acquice TX spin lock before GetFwBuf and send the packet to prevent system deadlock. */ /* Advertised by Roger. Added by tynli. 2010.02.22. */ PlatformAcquireSpinLock(Adapter, RT_TX_SPINLOCK); if (MgntGetFWBuffer(Adapter, &pTcb, &pBuf)) { PlatformMoveMemory(pBuf->Buffer.VirtualAddress, ReservedPagePacket, TotalPktLen); CmdSendPacket(Adapter, pTcb, pBuf, TotalPktLen, DESC_PACKET_TYPE_NORMAL, FALSE); } else dbgdump("SetFwRsvdPagePkt(): MgntGetFWBuffer FAIL!!!!!!!!.\n"); PlatformReleaseSpinLock(Adapter, RT_TX_SPINLOCK); #else /*--------------------------------------------------------- tx reserved_page_packet ----------------------------------------------------------*/ pmgntframe = rtw_alloc_cmdxmitframe(pxmitpriv); if (pmgntframe == NULL) { rtStatus = _FAIL; goto exit; } /*update attribute */ pattrib = &pmgntframe->attrib; update_mgntframe_attrib(Adapter, pattrib); pattrib->qsel = QSLT_BEACON; pattrib->pktlen = pattrib->last_txcmdsz = FwBufLen; /*_rtw_memset(pmgntframe->buf_addr, 0, TotalPktLen+txdesc_size); */ /*pmgntframe->buf_addr = ReservedPagePacket; */ _rtw_memcpy((u8 *)(pmgntframe->buf_addr + txdesc_offset), ReservedPagePacket, FwBufLen); RTW_INFO("[%d]===>TotalPktLen + TXDESC_OFFSET TotalPacketLen:%d\n", DLBcnCount, (FwBufLen + txdesc_offset)); #ifdef CONFIG_PCI_HCI dump_mgntframe(Adapter, pmgntframe); #else dump_mgntframe_and_wait(Adapter, pmgntframe, 100); #endif #endif #if 1 /* check rsvd page download OK. */ BcnValidReg = PlatformEFIORead1Byte(Adapter, REG_TDECTRL + 2); while (!(BcnValidReg & BIT(0)) && count < 200) { count++; /*PlatformSleepUs(10); */ rtw_msleep_os(1); BcnValidReg = PlatformEFIORead1Byte(Adapter, REG_TDECTRL + 2); } DLBcnCount++; /*RTW_INFO("##0x208:%08x,0x210=%08x\n",PlatformEFIORead4Byte(Adapter, REG_TDECTRL),PlatformEFIORead4Byte(Adapter, 0x210)); */ PlatformEFIOWrite1Byte(Adapter, REG_TDECTRL + 2, BcnValidReg); } while ((!(BcnValidReg & BIT(0))) && DLBcnCount < 5); #endif if (DLBcnCount >= 5) { RTW_INFO(" check rsvd page download OK DLBcnCount =%d\n", DLBcnCount); rtStatus = _FAIL; goto exit; } if (!(BcnValidReg & BIT(0))) { RTW_INFO("_WriteFWtoTxPktBuf(): 1 Download RSVD page failed!\n"); rtStatus = _FAIL; goto exit; } /*--------------------------------------------------------- */ /* 4. Set Tx boundary to the initial value */ /*--------------------------------------------------------- */ /*--------------------------------------------------------- */ /* 5. Reset beacon setting to the initial value. */ /* After _CheckWLANFwPatchBTFwReady(). */ /*--------------------------------------------------------- */ exit: if (pGenBufReservedPagePacket) { RTW_INFO("_WriteBTFWtoTxPktBuf8188F => rtw_mfree pGenBufReservedPagePacket!\n"); rtw_mfree((u8 *)pGenBufReservedPagePacket, TotalPktLen); } return rtStatus; } /* */ /* Description: Determine the contents of H2C BT_FW_PATCH Command sent to FW. */ /* 2011.10.20 by tynli */ /* */ void SetFwBTFwPatchCmd( PADAPTER Adapter, u16 FwSize ) { u8 u1BTFwPatchParm[H2C_BT_FW_PATCH_LEN] = {0}; u8 addr0 = 0; u8 addr1 = 0xa0; u8 addr2 = 0x10; u8 addr3 = 0x80; SET_8188F_H2CCMD_BT_FW_PATCH_SIZE(u1BTFwPatchParm, FwSize); SET_8188F_H2CCMD_BT_FW_PATCH_ADDR0(u1BTFwPatchParm, addr0); SET_8188F_H2CCMD_BT_FW_PATCH_ADDR1(u1BTFwPatchParm, addr1); SET_8188F_H2CCMD_BT_FW_PATCH_ADDR2(u1BTFwPatchParm, addr2); SET_8188F_H2CCMD_BT_FW_PATCH_ADDR3(u1BTFwPatchParm, addr3); FillH2CCmd8188F(Adapter, H2C_8188F_BT_FW_PATCH, H2C_BT_FW_PATCH_LEN, u1BTFwPatchParm); } void SetFwBTPwrCmd( PADAPTER Adapter, u8 PwrIdx ) { u8 u1BTPwrIdxParm[H2C_FORCE_BT_TXPWR_LEN] = {0}; SET_8188F_H2CCMD_BT_PWR_IDX(u1BTPwrIdxParm, PwrIdx); FillH2CCmd8188F(Adapter, H2C_8188F_FORCE_BT_TXPWR, H2C_FORCE_BT_TXPWR_LEN, u1BTPwrIdxParm); } /* */ /* Description: WLAN Fw will write BT Fw to BT XRAM and signal driver. */ /* */ /* 2011.10.20. by tynli. */ /* */ int _CheckWLANFwPatchBTFwReady( PADAPTER Adapter, BOOLEAN bRecover ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u32 count = 0; u8 u1bTmp; int ret = _FAIL; /*--------------------------------------------------------- */ /* Check if BT FW patch procedure is ready. */ /*--------------------------------------------------------- */ do { u1bTmp = PlatformEFIORead1Byte(Adapter, REG_HMEBOX_DBG_0_8188F); if ((u1bTmp & BIT6) || (u1bTmp & BIT7)) { ret = _SUCCESS; break; } count++; rtw_msleep_os(50); /* 50ms */ } while (!((u1bTmp & BIT6) || (u1bTmp & BIT7)) && count < 50); /*--------------------------------------------------------- */ /* Reset beacon setting to the initial value. */ /*--------------------------------------------------------- */ #if 0/*#ifdef CONFIG_PCI_HCI*/ if (LLT_table_init(Adapter, FALSE, 0) == RT_STATUS_FAILURE) { dbgdump("Init self define for BT Fw patch LLT table fail.\n"); /*return RT_STATUS_FAILURE; */ } #endif u1bTmp = rtw_read8(Adapter, REG_BCN_CTRL); u1bTmp |= EN_BCN_FUNCTION; u1bTmp &= ~DIS_TSF_UDT; rtw_write8(Adapter, REG_BCN_CTRL, u1bTmp); /* To make sure that if there exists an adapter which would like to send beacon. */ /* If exists, the origianl value of 0x422[6] will be 1, we should check this to */ /* prevent from setting 0x422[6] to 0 after download reserved page, or it will cause */ /* the beacon cannot be sent by HW. */ /* 2010.06.23. Added by tynli. */ if (bRecover) { u1bTmp = PlatformEFIORead1Byte(Adapter, REG_FWHW_TXQ_CTRL + 2); PlatformEFIOWrite1Byte(Adapter, REG_FWHW_TXQ_CTRL + 2, (u1bTmp | BIT6)); } /* Clear CR[8] or beacon packet will not be send to TxBuf anymore. */ u1bTmp = PlatformEFIORead1Byte(Adapter, REG_CR_8188F + 1); PlatformEFIOWrite1Byte(Adapter, REG_CR_8188F + 1, (u1bTmp & (~BIT0))); return ret; } int ReservedPage_Compare(PADAPTER Adapter, PRT_MP_FIRMWARE pFirmware, u32 BTPatchSize) { u8 temp, ret, lastBTsz; u32 u1bTmp = 0, address_start = 0, count = 0, i = 0; u8 *myBTFwBuffer = NULL; myBTFwBuffer = rtw_zmalloc(BTPatchSize); if (myBTFwBuffer == NULL) { RTW_INFO("%s can't be executed due to the failed malloc.\n", __func__); Adapter->mppriv.bTxBufCkFail = _TRUE; return _FALSE; } temp = rtw_read8(Adapter, 0x209); address_start = (temp * 128) / 8; rtw_write32(Adapter, 0x140, 0x00000000); rtw_write32(Adapter, 0x144, 0x00000000); rtw_write32(Adapter, 0x148, 0x00000000); rtw_write8(Adapter, 0x106, 0x69); for (i = 0; i < (BTPatchSize / 8); i++) { rtw_write32(Adapter, 0x140, address_start + 5 + i); /*polling until reg 0x140[23]=1; */ do { u1bTmp = rtw_read32(Adapter, 0x140); if (u1bTmp & BIT(23)) { ret = _SUCCESS; break; } count++; RTW_INFO("0x140=%x, wait for 10 ms (%d) times.\n", u1bTmp, count); rtw_msleep_os(10); /* 10ms */ } while (!(u1bTmp & BIT(23)) && count < 50); myBTFwBuffer[i * 8 + 0] = rtw_read8(Adapter, 0x144); myBTFwBuffer[i * 8 + 1] = rtw_read8(Adapter, 0x145); myBTFwBuffer[i * 8 + 2] = rtw_read8(Adapter, 0x146); myBTFwBuffer[i * 8 + 3] = rtw_read8(Adapter, 0x147); myBTFwBuffer[i * 8 + 4] = rtw_read8(Adapter, 0x148); myBTFwBuffer[i * 8 + 5] = rtw_read8(Adapter, 0x149); myBTFwBuffer[i * 8 + 6] = rtw_read8(Adapter, 0x14a); myBTFwBuffer[i * 8 + 7] = rtw_read8(Adapter, 0x14b); } rtw_write32(Adapter, 0x140, address_start + 5 + BTPatchSize / 8); lastBTsz = BTPatchSize % 8; /*polling until reg 0x140[23]=1; */ u1bTmp = 0; count = 0; do { u1bTmp = rtw_read32(Adapter, 0x140); if (u1bTmp & BIT(23)) { ret = _SUCCESS; break; } count++; RTW_INFO("0x140=%x, wait for 10 ms (%d) times.\n", u1bTmp, count); rtw_msleep_os(10); /* 10ms */ } while (!(u1bTmp & BIT(23)) && count < 50); for (i = 0; i < lastBTsz; i++) myBTFwBuffer[(BTPatchSize / 8) * 8 + i] = rtw_read8(Adapter, (0x144 + i)); for (i = 0; i < BTPatchSize; i++) { if (myBTFwBuffer[i] != pFirmware->szFwBuffer[i]) { RTW_INFO(" In direct myBTFwBuffer[%d]=%x , pFirmware->szFwBuffer=%x\n", i, myBTFwBuffer[i], pFirmware->szFwBuffer[i]); Adapter->mppriv.bTxBufCkFail = _TRUE; break; } } if (myBTFwBuffer != NULL) rtw_mfree(myBTFwBuffer, BTPatchSize); return _TRUE; } #ifdef CONFIG_BT_COEXIST /* As the size of bt firmware is more than 16k which is too big for some platforms, we divide it * into four parts to transfer. The last parameter of _WriteBTFWtoTxPktBuf8188F is used to indicate * the location of every part. We call the first 4096 byte of bt firmware as part 1, the second 4096 * part as part 2, the third 4096 part as part 3, the remain as part 4. First we transform the part * 4 and set the register 0x209 to 0x90, then the 32 bytes description are added to the head of part * 4, and those bytes are putted at the location 0x90. Second we transform the part 3 and set the * register 0x209 to 0x70. The 32 bytes description and part 3(4196 bytes) are putted at the location * 0x70. It can contain 4196 bytes between 0x70 and 0x90. So the last 32 bytes os part 3 will cover the * 32 bytes description of part4. Using this method, we can put the whole bt firmware to 0x30 and only * has 32 bytes descrption at the head of part 1. */ s32 FirmwareDownloadBT(PADAPTER padapter, PRT_MP_FIRMWARE pFirmware) { s32 rtStatus; u8 *pBTFirmwareBuf; u32 BTFirmwareLen; u8 download_time; s8 i; u8 RegFwHwTxQCtrl = 0; BOOLEAN bRecover = _FALSE; rtStatus = _SUCCESS; pBTFirmwareBuf = NULL; BTFirmwareLen = 0; /* */ /* Patch BT Fw. Download BT RAM code to Tx packet buffer. */ /* */ if (padapter->bBTFWReady) { RTW_INFO("%s: BT Firmware is ready!!\n", __func__); return _FAIL; } #ifdef CONFIG_FILE_FWIMG if (rtw_is_file_readable(rtw_fw_mp_bt_file_path) == _TRUE) { RTW_INFO("%s: acquire MP BT FW from file:%s\n", __func__, rtw_fw_mp_bt_file_path); rtStatus = rtw_retrieve_from_file(rtw_fw_mp_bt_file_path, FwBuffer, FW_8188F_SIZE); BTFirmwareLen = rtStatus >= 0 ? rtStatus : 0; pBTFirmwareBuf = FwBuffer; } else #endif /* CONFIG_FILE_FWIMG */ { #ifdef CONFIG_EMBEDDED_FWIMG RTW_INFO("%s: Download MP BT FW from header\n", __func__); pBTFirmwareBuf = (u8 *)Rtl8188FFwBTImgArray; BTFirmwareLen = Rtl8188FFwBTImgArrayLength; pFirmware->szFwBuffer = pBTFirmwareBuf; pFirmware->ulFwLength = BTFirmwareLen; #endif /* CONFIG_EMBEDDED_FWIMG */ } RTW_INFO("%s: MP BT Firmware size=%d\n", __func__, BTFirmwareLen); /* for h2c cam here should be set to true */ GET_HAL_DATA(padapter)->bFWReady = _TRUE; download_time = (BTFirmwareLen + 4095) / 4096; RTW_INFO("%s: download_time is %d\n", __func__, download_time); RegFwHwTxQCtrl = rtw_read8(padapter, REG_FWHW_TXQ_CTRL + 2); if (RegFwHwTxQCtrl & BIT(6)) bRecover = _TRUE; /* Download BT patch Fw. */ for (i = (download_time - 1); i >= 0; i--) { if (i == (download_time - 1)) { rtStatus = _WriteBTFWtoTxPktBuf8188F(padapter, pBTFirmwareBuf + (4096 * i), (BTFirmwareLen - (4096 * i)), 1); RTW_INFO("%s: start %d, len %d, time 1\n", __func__, 4096 * i, BTFirmwareLen - (4096 * i)); } else { rtStatus = _WriteBTFWtoTxPktBuf8188F(padapter, pBTFirmwareBuf + (4096 * i), 4096, (download_time - i)); RTW_INFO("%s: start %d, len 4096, time %d\n", __func__, 4096 * i, download_time - i); } if (rtStatus != _SUCCESS) { RTW_INFO("%s: BT Firmware download to Tx packet buffer fail!\n", __func__); padapter->bBTFWReady = _FALSE; return rtStatus; } } ReservedPage_Compare(padapter, pFirmware, BTFirmwareLen); padapter->bBTFWReady = _TRUE; SetFwBTFwPatchCmd(padapter, (u16)BTFirmwareLen); rtStatus = _CheckWLANFwPatchBTFwReady(padapter, bRecover); RTW_INFO("<===%s: return %s!\n", __func__, rtStatus == _SUCCESS ? "SUCCESS" : "FAIL"); return rtStatus; } #endif /* CONFIG_BT_COEXIST */ #endif /* CONFIG_MP_INCLUDED */ #if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI) void rtl8188f_cal_txdesc_chksum(struct tx_desc *ptxdesc) { u16 *usPtr = (u16 *)ptxdesc; u32 count; u32 index; u16 checksum = 0; /* Clear first */ ptxdesc->txdw7 &= cpu_to_le32(0xffff0000); /* checksume is always calculated by first 32 bytes, */ /* and it doesn't depend on TX DESC length. */ /* Thomas,Lucas@SD4,20130515 */ count = 16; for (index = 0; index < count; index++) checksum ^= le16_to_cpu(*(usPtr + index)); ptxdesc->txdw7 |= cpu_to_le32(checksum & 0x0000ffff); } #endif #if 0 /* FW tx packet write */ u8 send_fw_packet(PADAPTER padapter, u8 *pRam_code, u32 length) { struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(padapter); struct xmit_buf xmit_buf_tmp; struct submit_ctx sctx_tmp; u8 *pTx_data_buffer = NULL; u8 *pTmp_buffer = NULL; u32 modify_ram_size; u32 tmp_size, tmp_value; u8 value8; u32 i, counter; u8 bRet; u32 dwDataLength, writeLength; /* Due to SDIO can not send 32K packet */ if (FW_DOWNLOAD_SIZE_8188F == length) length--; modify_ram_size = length << 2; pTx_data_buffer = rtw_zmalloc(modify_ram_size); if (NULL == pTx_data_buffer) { RTW_INFO("Allocate buffer fail!!\n"); return _FALSE; } _rtw_memset(pTx_data_buffer, 0, modify_ram_size); /* Transfer to new format */ tmp_size = length >> 1; for (i = 0; i <= tmp_size; i++) { *(pTx_data_buffer + i * 8) = *(pRam_code + i * 2); *(pTx_data_buffer + i * 8 + 1) = *(pRam_code + i * 2 + 1); } /* Gen TX_DESC */ _rtw_memset(pTx_data_buffer, 0, TXDESC_SIZE); pTmp_buffer = pTx_data_buffer; #if 0 pTmp_buffer->qsel = BcnQsel; pTmp_buffer->txpktsize = modify_ram_size - TXDESC_SIZE; pTmp_buffer->offset = TXDESC_SIZE; #else SET_TX_DESC_QUEUE_SEL_8188F(pTmp_buffer, QSLT_BEACON); SET_TX_DESC_PKT_SIZE_8188F(pTmp_buffer, modify_ram_size - TXDESC_SIZE); SET_TX_DESC_OFFSET_8188F(pTmp_buffer, TXDESC_SIZE); #endif rtl8188f_cal_txdesc_chksum((struct tx_desc *)pTmp_buffer); /* Send packet */ #if 0 dwDataLength = modify_ram_size; overlap.Offset = 0; overlap.OffsetHigh = 0; overlap.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL); bRet = WriteFile(HalVari.hFile_Queue[TX_BCNQ]->handle, pTx_data_buffer, dwDataLength, &writeLength, &overlap); if (WaitForSingleObject(overlap.hEvent, INFINITE) == WAIT_OBJECT_0) { GetOverlappedResult(HalVari.hFile_Queue[TX_BCNQ]->handle, &overlap, &writeLength, FALSE); if (writeLength != dwDataLength) { TCHAR editbuf[100]; sprintf(editbuf, "DL FW Length Err: Write length error:bRet %d writeLength %ld dwDataLength %ld, Error Code:%ld", bRet, writeLength, dwDataLength, GetLastError()); AfxMessageBox(editbuf, MB_OK | MB_ICONERROR); return FALSE; } } CloseHandle(overlap.hEvent); #else xmit_buf_tmp.pdata = pTx_data_buffer; xmit_buf_tmp.len = modify_ram_size; rtw_sctx_init(&sctx_tmp, 10); xmit_buf_tmp.sctx = &sctx_tmp; if (rtw_write_port(padapter, pdvobjpriv->Queue2Pipe[BCN_QUEUE_INX], xmit_buf_tmp.len, (u8 *)&xmit_buf_tmp) == _FAIL) { RTW_INFO("rtw_write_port fail\n"); return _FAIL; } #endif /* check if DMA is OK */ counter = 100; do { if (0 == counter) { RTW_INFO("DMA time out!!\n"); return _FALSE; } value8 = rtw_read8(padapter, REG_DWBCN0_CTRL_8188F + 2); counter--; } while (0 == (value8 & BIT(0))); rtw_write8(padapter, REG_DWBCN0_CTRL_8188F + 2, value8); /* Modify ram code by IO method */ tmp_value = rtw_read8(padapter, REG_MCUFWDL + 1); /* Disable DMA */ rtw_write8(padapter, REG_MCUFWDL + 1, (u8)tmp_value & ~(BIT(5))); tmp_value = (tmp_value >> 6) << 1; /* Set page start address */ rtw_write8(padapter, REG_MCUFWDL + 2, (rtw_read8(padapter, REG_MCUFWDL + 2) & 0xF8) | tmp_value); tmp_size = TXDESC_SIZE >> 2; /* 10bytes */ #if 0 IO_Func.WriteRegister(0x1000, (u16)tmp_size, pRam_code); #else _BlockWrite(padapter, pRam_code, tmp_size); #endif if (pTmp_buffer != NULL) rtw_mfree((u8 *)pTmp_buffer, modify_ram_size); return _TRUE; } #endif /* */ /* Description: */ /* Download 8192C firmware code. */ /* */ /* */ s32 rtl8188f_FirmwareDownload(PADAPTER padapter, BOOLEAN bUsedWoWLANFw) { s32 rtStatus = _SUCCESS; u8 write_fw = 0; systime fwdl_start_time; PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); u8 *FwImage; u32 FwImageLen; u8 *pFwImageFileName; #ifdef CONFIG_WOWLAN u8 *FwImageWoWLAN; u32 FwImageWoWLANLen; #endif u8 *pucMappedFile = NULL; PRT_FIRMWARE_8188F pFirmware = NULL; PRT_8188F_FIRMWARE_HDR pFwHdr = NULL; u8 *pFirmwareBuf; u32 FirmwareLen; #ifdef CONFIG_FILE_FWIMG u8 *fwfilepath; #endif /* CONFIG_FILE_FWIMG */ u8 value8; struct dvobj_priv *psdpriv = padapter->dvobj; struct debug_priv *pdbgpriv = &psdpriv->drv_dbg; struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter); pFirmware = (PRT_FIRMWARE_8188F)rtw_zmalloc(sizeof(RT_FIRMWARE_8188F)); if (!pFirmware) { rtStatus = _FAIL; goto exit; } { u8 tmp_ps = 0, tmp_rf = 0; tmp_ps = rtw_read8(padapter, 0xa3); tmp_ps &= 0xf8; tmp_ps |= 0x02; /*1. write 0xA3[:2:0] = 3b'010 */ rtw_write8(padapter, 0xa3, tmp_ps); /*2. read power_state = 0xA0[1:0] */ tmp_ps = rtw_read8(padapter, 0xa0); tmp_ps &= 0x03; if (tmp_ps != 0x01) { RTW_INFO(FUNC_ADPT_FMT" tmp_ps=%x\n", FUNC_ADPT_ARG(padapter), tmp_ps); pdbgpriv->dbg_downloadfw_pwr_state_cnt++; } } #ifdef CONFIG_BT_COEXIST rtw_btcoex_PreLoadFirmware(padapter); #endif #ifdef CONFIG_FILE_FWIMG #ifdef CONFIG_WOWLAN if (bUsedWoWLANFw) fwfilepath = rtw_fw_wow_file_path; else #endif /* CONFIG_WOWLAN */ { fwfilepath = rtw_fw_file_path; } #endif /* CONFIG_FILE_FWIMG */ #ifdef CONFIG_FILE_FWIMG if (rtw_is_file_readable(fwfilepath) == _TRUE) { RTW_INFO("%s acquire FW from file:%s\n", __func__, fwfilepath); pFirmware->eFWSource = FW_SOURCE_IMG_FILE; } else #endif /* CONFIG_FILE_FWIMG */ { #ifdef CONFIG_EMBEDDED_FWIMG pFirmware->eFWSource = FW_SOURCE_HEADER_FILE; #else /* !CONFIG_EMBEDDED_FWIMG */ pFirmware->eFWSource = FW_SOURCE_IMG_FILE; /* We should decided by Reg. */ #endif /* !CONFIG_EMBEDDED_FWIMG */ } switch (pFirmware->eFWSource) { case FW_SOURCE_IMG_FILE: #ifdef CONFIG_FILE_FWIMG rtStatus = rtw_retrieve_from_file(fwfilepath, FwBuffer, FW_8188F_SIZE); pFirmware->ulFwLength = rtStatus >= 0 ? rtStatus : 0; pFirmware->szFwBuffer = FwBuffer; #endif /* CONFIG_FILE_FWIMG */ break; case FW_SOURCE_HEADER_FILE: if (bUsedWoWLANFw) { #ifdef CONFIG_WOWLAN if (pwrpriv->wowlan_mode) { pFirmware->szFwBuffer = array_mp_8188f_fw_wowlan; pFirmware->ulFwLength = array_length_mp_8188f_fw_wowlan; RTW_INFO(" ===> %s fw: %s, size: %d\n", __func__, "WoWLAN", pFirmware->ulFwLength); } #endif /* CONFIG_WOWLAN */ #ifdef CONFIG_AP_WOWLAN if (pwrpriv->wowlan_ap_mode) { pFirmware->szFwBuffer = array_mp_8188f_fw_ap; pFirmware->ulFwLength = array_length_mp_8188f_fw_ap; RTW_INFO(" ===> %s fw: %s, size: %d\n", __func__, "AP_WoWLAN", pFirmware->ulFwLength); } #endif /* CONFIG_AP_WOWLAN */ } else { /* CONFIG_FW_WoWLAN functions of NIC is included in WoWLAN */ /* functions of NIC is separated from WoWLAN starting from V0200 */ pFirmware->szFwBuffer = array_mp_8188f_fw_nic; pFirmware->ulFwLength = array_length_mp_8188f_fw_nic; RTW_INFO("%s fw: %s, size: %d\n", __func__ /*, "FW_WoWLAN" */ , "FW_NIC" , pFirmware->ulFwLength); } break; } if ((pFirmware->ulFwLength - 32) > FW_8188F_SIZE) { rtStatus = _FAIL; RTW_ERR("Firmware size:%u exceed %u\n", pFirmware->ulFwLength, FW_8188F_SIZE); goto exit; } pFirmwareBuf = pFirmware->szFwBuffer; FirmwareLen = pFirmware->ulFwLength; /* To Check Fw header. Added by tynli. 2009.12.04. */ pFwHdr = (PRT_8188F_FIRMWARE_HDR)pFirmwareBuf; pHalData->firmware_version = le16_to_cpu(pFwHdr->Version); pHalData->firmware_sub_version = le16_to_cpu(pFwHdr->Subversion); pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->Signature); RTW_INFO("%s: fw_ver=%x fw_subver=%04x sig=0x%x, Month=%02x, Date=%02x, Hour=%02x, Minute=%02x\n", __func__, pHalData->firmware_version, pHalData->firmware_sub_version, pHalData->FirmwareSignature , pFwHdr->Month, pFwHdr->Date, pFwHdr->Hour, pFwHdr->Minute); if (IS_FW_HEADER_EXIST_8188F(pFwHdr)) { RTW_INFO("%s(): Shift for fw header!\n", __func__); /* Shift 32 bytes for FW header */ pFirmwareBuf = pFirmwareBuf + 32; FirmwareLen = FirmwareLen - 32; } fwdl_start_time = rtw_get_current_time(); #if 1 RTW_INFO("%s by IO write!\n", __func__); /* * Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, * or it will cause download Fw fail. 2010.02.01. by tynli. */ if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) { rtw_write8(padapter, REG_MCUFWDL, 0x00); _8051Reset8188(padapter); } _FWDownloadEnable(padapter, _TRUE); while (!RTW_CANNOT_IO(padapter) && (write_fw++ < 3 || rtw_get_passing_time_ms(fwdl_start_time) < 500)) { /* reset FWDL chksum */ rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL) | FWDL_ChkSum_rpt); rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen); if (rtStatus != _SUCCESS) continue; rtStatus = polling_fwdl_chksum(padapter, 5, 50); if (rtStatus == _SUCCESS) break; } #else RTW_INFO("%s by Tx pkt write!\n", __func__); if ((rtw_read8(padapter, REG_MCUFWDL) & MCUFWDL_RDY) == 0) { /* DLFW use HIQ only */ value32 = 0xFF | BIT(31); rtw_write32(padapter, REG_RQPN, value32); /* Set beacon boundary to TXFIFO header */ rtw_write8(padapter, REG_BCNQ_BDNY, 0); rtw_write16(padapter, REG_DWBCN0_CTRL_8188F + 1, BIT(8)); /* SDIO need read this register before send packet */ rtw_read32(padapter, 0x10250020); _FWDownloadEnable(padapter, _TRUE); /* Get original check sum */ new_chk_sum = *(pFirmwareBuf + FirmwareLen - 2) | ((u16) *(pFirmwareBuf + FirmwareLen - 1) << 8); /* Send ram code flow */ dma_iram_sel = 0; mem_offset = 0; pkt_size_tmp = FirmwareLen; while (0 != pkt_size_tmp) { if (pkt_size_tmp >= FW_DOWNLOAD_SIZE_8188F) { send_pkt_size = FW_DOWNLOAD_SIZE_8188F; /* Modify check sum value */ new_chk_sum = (u16)(new_chk_sum ^ (((send_pkt_size - 1) << 2) - TXDESC_SIZE)); } else { send_pkt_size = pkt_size_tmp; new_chk_sum = (u16)(new_chk_sum ^ ((send_pkt_size << 2) - TXDESC_SIZE)); } if (send_pkt_size == pkt_size_tmp) { /* last partition packet, write new check sum to ram code file */ *(pFirmwareBuf + FirmwareLen - 2) = new_chk_sum & 0xFF; *(pFirmwareBuf + FirmwareLen - 1) = (new_chk_sum & 0xFF00) >> 8; } /* IRAM select */ rtw_write8(padapter, REG_MCUFWDL + 1, (rtw_read8(padapter, REG_MCUFWDL + 1) & 0x3F) | (dma_iram_sel << 6)); /* Enable DMA */ rtw_write8(padapter, REG_MCUFWDL + 1, rtw_read8(padapter, REG_MCUFWDL + 1) | BIT(5)); if (_FALSE == send_fw_packet(padapter, pFirmwareBuf + mem_offset, send_pkt_size)) { RTW_INFO("%s: Send FW fail !\n", __func__); rtStatus = _FAIL; goto DLFW_FAIL; } dma_iram_sel++; mem_offset += send_pkt_size; pkt_size_tmp -= send_pkt_size; } } else { RTW_INFO("%s: Download FW fail since MCUFWDL_RDY is not set!\n", __func__); rtStatus = _FAIL; goto DLFW_FAIL; } #endif _FWDownloadEnable(padapter, _FALSE); rtStatus = _FWFreeToGo(padapter, 10, 200); if (_SUCCESS != rtStatus) goto DLFW_FAIL; RTW_INFO("%s: DLFW OK !\n", __func__); DLFW_FAIL: if (rtStatus == _FAIL) { /* Disable FWDL_EN */ value8 = rtw_read8(padapter, REG_MCUFWDL); value8 = (value8 & ~(BIT(0)) & ~(BIT(1))); rtw_write8(padapter, REG_MCUFWDL, value8); } RTW_INFO("%s %s. write_fw:%u, %dms\n" , __func__, (rtStatus == _SUCCESS) ? "success" : "fail" , write_fw , rtw_get_passing_time_ms(fwdl_start_time) ); exit: if (pFirmware) rtw_mfree((u8 *)pFirmware, sizeof(RT_FIRMWARE_8188F)); rtl8188f_InitializeFirmwareVars(padapter); RTW_INFO(" <=== %s()\n", __func__); return rtStatus; } void rtl8188f_InitializeFirmwareVars(PADAPTER padapter) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); /* Init Fw LPS related. */ adapter_to_pwrctl(padapter)->bFwCurrentInPSMode = _FALSE; /*Init H2C cmd. */ rtw_write8(padapter, REG_HMETFR, 0x0f); /* Init H2C counter. by tynli. 2009.12.09. */ pHalData->LastHMEBoxNum = 0; /*pHalData->H2CQueueHead = 0; */ /*pHalData->H2CQueueTail = 0; */ /*pHalData->H2CStopInsertQueue = _FALSE; */ } /*=========================================================== */ /* Efuse related code */ /*=========================================================== */ static u8 hal_EfuseSwitchToBank( PADAPTER padapter, u8 bank, u8 bPseudoTest) { u8 bRet = _FALSE; u32 value32 = 0; #ifdef HAL_EFUSE_MEMORY PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal; #endif RTW_INFO("%s: Efuse switch bank to %d\n", __func__, bank); if (bPseudoTest) { #ifdef HAL_EFUSE_MEMORY pEfuseHal->fakeEfuseBank = bank; #else fakeEfuseBank = bank; #endif bRet = _TRUE; } else { value32 = rtw_read32(padapter, EFUSE_TEST); bRet = _TRUE; switch (bank) { case 0: value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0); break; case 1: value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0); break; case 2: value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1); break; case 3: value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2); break; default: value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0); bRet = _FALSE; break; } rtw_write32(padapter, EFUSE_TEST, value32); } return bRet; } static void Hal_GetEfuseDefinition( PADAPTER padapter, u8 efuseType, u8 type, void *pOut, u8 bPseudoTest) { switch (type) { case TYPE_EFUSE_MAX_SECTION: { u8 *pMax_section; pMax_section = (u8 *)pOut; if (efuseType == EFUSE_WIFI) *pMax_section = EFUSE_MAX_SECTION_8188F; else *pMax_section = EFUSE_BT_MAX_SECTION; } break; case TYPE_EFUSE_REAL_CONTENT_LEN: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; if (efuseType == EFUSE_WIFI) *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8188F; else *pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN; } break; case TYPE_AVAILABLE_EFUSE_BYTES_BANK: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; if (efuseType == EFUSE_WIFI) *pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8188F - EFUSE_OOB_PROTECT_BYTES); else *pu2Tmp = (EFUSE_BT_REAL_BANK_CONTENT_LEN - EFUSE_PROTECT_BYTES_BANK); } break; case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; if (efuseType == EFUSE_WIFI) *pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8188F - EFUSE_OOB_PROTECT_BYTES); else *pu2Tmp = (EFUSE_BT_REAL_CONTENT_LEN - (EFUSE_PROTECT_BYTES_BANK * 3)); } break; case TYPE_EFUSE_MAP_LEN: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; if (efuseType == EFUSE_WIFI) *pu2Tmp = EFUSE_MAP_LEN_8188F; else *pu2Tmp = EFUSE_BT_MAP_LEN; } break; case TYPE_EFUSE_PROTECT_BYTES_BANK: { u8 *pu1Tmp; pu1Tmp = (u8 *)pOut; if (efuseType == EFUSE_WIFI) *pu1Tmp = EFUSE_OOB_PROTECT_BYTES; else *pu1Tmp = EFUSE_PROTECT_BYTES_BANK; } break; case TYPE_EFUSE_CONTENT_LEN_BANK: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; if (efuseType == EFUSE_WIFI) *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8188F; else *pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN; } break; default: { u8 *pu1Tmp; pu1Tmp = (u8 *)pOut; *pu1Tmp = 0; } break; } } #define VOLTAGE_V25 0x03 #define LDOE25_SHIFT 28 /*================================================================= */ /* The following is for compile ok */ /* That should be merged with the original in the future */ /*================================================================= */ #define EFUSE_ACCESS_ON_8188 0x69 /* For RTL8188 only. */ #define EFUSE_ACCESS_OFF_8188 0x00 /* For RTL8188 only. */ #define REG_EFUSE_ACCESS_8188 0x00CF /* Efuse access protection for RTL8188 */ /*================================================================= */ static void Hal_BT_EfusePowerSwitch( PADAPTER padapter, u8 bWrite, u8 PwrState) { u8 tempval; if (PwrState == _TRUE) { /* enable BT power cut */ /* 0x6A[14] = 1 */ tempval = rtw_read8(padapter, 0x6B); tempval |= BIT(6); rtw_write8(padapter, 0x6B, tempval); /* Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */ /* So don't write 0x6A[14]=1 and 0x6A[15]=0 together! */ rtw_usleep_os(100); /* disable BT output isolation */ /* 0x6A[15] = 0 */ tempval = rtw_read8(padapter, 0x6B); tempval &= ~BIT(7); rtw_write8(padapter, 0x6B, tempval); } else { /* enable BT output isolation */ /* 0x6A[15] = 1 */ tempval = rtw_read8(padapter, 0x6B); tempval |= BIT(7); rtw_write8(padapter, 0x6B, tempval); /* Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */ /* So don't write 0x6A[14]=1 and 0x6A[15]=0 together! */ /* disable BT power cut */ /* 0x6A[14] = 1 */ tempval = rtw_read8(padapter, 0x6B); tempval &= ~BIT(6); rtw_write8(padapter, 0x6B, tempval); } } static void Hal_EfusePowerSwitch( PADAPTER padapter, u8 bWrite, u8 PwrState) { u8 tempval; u16 tmpV16; if (PwrState == _TRUE) { #ifdef CONFIG_SDIO_HCI /* To avoid cannot access efuse regsiters after disable/enable several times during DTM test. */ /* Suggested by SD1 IsaacHsu. 2013.07.08, added by tynli. */ tempval = rtw_read8(padapter, SDIO_LOCAL_BASE | SDIO_REG_HSUS_CTRL); if (tempval & BIT(0)) { /* SDIO local register is suspend */ u8 count = 0; tempval &= ~BIT(0); rtw_write8(padapter, SDIO_LOCAL_BASE | SDIO_REG_HSUS_CTRL, tempval); /* check 0x86[1:0]=10'2h, wait power state to leave suspend */ do { tempval = rtw_read8(padapter, SDIO_LOCAL_BASE | SDIO_REG_HSUS_CTRL); tempval &= 0x3; if (tempval == 0x02) break; count++; if (count >= 100) break; rtw_mdelay_os(10); } while (1); if (count >= 100) { RTW_INFO(FUNC_ADPT_FMT ": Leave SDIO local register suspend fail! Local 0x86=%#X\n", FUNC_ADPT_ARG(padapter), tempval); } else { RTW_INFO(FUNC_ADPT_FMT ": Leave SDIO local register suspend OK! Local 0x86=%#X\n", FUNC_ADPT_ARG(padapter), tempval); } } #endif /* CONFIG_SDIO_HCI */ rtw_write8(padapter, REG_EFUSE_ACCESS_8188, EFUSE_ACCESS_ON_8188); /* Reset: 0x0000h[28], default valid */ tmpV16 = rtw_read16(padapter, REG_SYS_FUNC_EN); if (!(tmpV16 & FEN_ELDR)) { tmpV16 |= FEN_ELDR; rtw_write16(padapter, REG_SYS_FUNC_EN, tmpV16); } /* Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */ tmpV16 = rtw_read16(padapter, REG_SYS_CLKR); if ((!(tmpV16 & LOADER_CLK_EN)) || (!(tmpV16 & ANA8M))) { tmpV16 |= (LOADER_CLK_EN | ANA8M); rtw_write16(padapter, REG_SYS_CLKR, tmpV16); } if (bWrite == _TRUE) { /* Enable LDO 2.5V before read/write action */ tempval = rtw_read8(padapter, EFUSE_TEST + 3); rtw_write8(padapter, EFUSE_TEST + 3, (tempval | 0x80)); } } else { rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF); if (bWrite == _TRUE) { /* Disable LDO 2.5V after read/write action */ tempval = rtw_read8(padapter, EFUSE_TEST + 3); rtw_write8(padapter, EFUSE_TEST + 3, (tempval & 0x7F)); } } } static void hal_ReadEFuse_WiFi( PADAPTER padapter, u16 _offset, u16 _size_byte, u8 *pbuf, u8 bPseudoTest) { #ifdef HAL_EFUSE_MEMORY PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal; #endif u8 *efuseTbl = NULL; u16 eFuse_Addr = 0; u8 offset, wden; u8 efuseHeader, efuseExtHdr, efuseData; u16 i, total, used; u8 efuse_usage = 0; /*RTW_INFO("YJ: ====>%s():_offset=%d _size_byte=%d bPseudoTest=%d\n", __func__, _offset, _size_byte, bPseudoTest); */ /* */ /* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */ /* */ if ((_offset + _size_byte) > EFUSE_MAX_MAP_LEN) { RTW_INFO("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __func__, _offset, _size_byte); return; } efuseTbl = (u8 *)rtw_malloc(EFUSE_MAX_MAP_LEN); if (efuseTbl == NULL) { RTW_INFO("%s: alloc efuseTbl fail!\n", __func__); return; } /* 0xff will be efuse default value instead of 0x00. */ _rtw_memset(efuseTbl, 0xFF, EFUSE_MAX_MAP_LEN); #ifdef CONFIG_RTW_DEBUG if (0) { for (i = 0; i < 256; i++) /*ReadEFuseByte(padapter, i, &efuseTbl[i], _FALSE); */ efuse_OneByteRead(padapter, i, &efuseTbl[i], _FALSE); RTW_INFO("Efuse Content:\n"); for (i = 0; i < 256; i++) printk("%02X%s", efuseTbl[i], (((i + 1) % 16) == 0) ? "\n" : " "); } #endif /* switch bank back to bank 0 for later BT and wifi use. */ hal_EfuseSwitchToBank(padapter, 0, bPseudoTest); while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) { /*ReadEFuseByte(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest); */ efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest); if (efuseHeader == 0xFF) { RTW_INFO("%s: data end at address=%#x\n", __func__, eFuse_Addr - 1); break; } /*RTW_INFO("%s: efuse[0x%X]=0x%02X\n", __func__, eFuse_Addr-1, efuseHeader); */ /* Check PG header for section num. */ if (EXT_HEADER(efuseHeader)) { /*extended header */ offset = GET_HDR_OFFSET_2_0(efuseHeader); /*RTW_INFO("%s: extended header offset=0x%X\n", __func__, offset); */ /*ReadEFuseByte(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest); */ efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest); /*RTW_INFO("%s: efuse[0x%X]=0x%02X\n", __func__, eFuse_Addr-1, efuseExtHdr); */ if (ALL_WORDS_DISABLED(efuseExtHdr)) continue; offset |= ((efuseExtHdr & 0xF0) >> 1); wden = (efuseExtHdr & 0x0F); } else { offset = ((efuseHeader >> 4) & 0x0f); wden = (efuseHeader & 0x0f); } /*RTW_INFO("%s: Offset=%d Worden=0x%X\n", __func__, offset, wden); */ if (offset < EFUSE_MAX_SECTION_8188F) { u16 addr; /* Get word enable value from PG header */ /*RTW_INFO("%s: Offset=%d Worden=0x%X\n", __func__, offset, wden); */ addr = offset * PGPKT_DATA_SIZE; for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { /* Check word enable condition in the section */ if (!(wden & (0x01 << i))) { efuseData = 0; /*ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */ efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest); /*RTW_INFO("%s: efuse[%#X]=0x%02X\n", __func__, eFuse_Addr-1, efuseData); */ efuseTbl[addr] = efuseData; efuseData = 0; /*ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */ efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest); /*RTW_INFO("%s: efuse[%#X]=0x%02X\n", __func__, eFuse_Addr-1, efuseData); */ efuseTbl[addr + 1] = efuseData; } addr += 2; } } else { RTW_ERR("%s: offset(%d) is illegal!!\n", __func__, offset); eFuse_Addr += Efuse_CalculateWordCnts(wden) * 2; } } /* Copy from Efuse map to output pointer memory!!! */ for (i = 0; i < _size_byte; i++) pbuf[i] = efuseTbl[_offset + i]; /* Calculate Efuse utilization */ total = 0; EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest); used = eFuse_Addr - 1; if (total) efuse_usage = (u8)((used * 100) / total); else efuse_usage = 100; if (bPseudoTest) { #ifdef HAL_EFUSE_MEMORY pEfuseHal->fakeEfuseUsedBytes = used; #else fakeEfuseUsedBytes = used; #endif } else { rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&used); rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_USAGE, (u8 *)&efuse_usage); } if (efuseTbl) rtw_mfree(efuseTbl, EFUSE_MAX_MAP_LEN); } static void hal_ReadEFuse_BT( PADAPTER padapter, u16 _offset, u16 _size_byte, u8 *pbuf, u8 bPseudoTest ) { #ifdef HAL_EFUSE_MEMORY PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal; #endif u8 *efuseTbl; u8 bank; u16 eFuse_Addr; u8 efuseHeader, efuseExtHdr, efuseData; u8 offset, wden; u16 i, total, used; u8 efuse_usage; /* */ /* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */ /* */ if ((_offset + _size_byte) > EFUSE_BT_MAP_LEN) { RTW_INFO("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __func__, _offset, _size_byte); return; } efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN); if (efuseTbl == NULL) { RTW_INFO("%s: efuseTbl malloc fail!\n", __func__); return; } /* 0xff will be efuse default value instead of 0x00. */ _rtw_memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN); total = 0; EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &total, bPseudoTest); for (bank = 1; bank < 3; bank++) { /* 8188F Max bake 0~2 */ if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == _FALSE) { RTW_INFO("%s: hal_EfuseSwitchToBank Fail!!\n", __func__); goto exit; } eFuse_Addr = 0; while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) { /*ReadEFuseByte(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest); */ efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest); if (efuseHeader == 0xFF) break; RTW_INFO("%s: efuse[%#X]=0x%02x (header)\n", __func__, (((bank - 1) * EFUSE_REAL_CONTENT_LEN_8188F) + eFuse_Addr - 1), efuseHeader); /* Check PG header for section num. */ if (EXT_HEADER(efuseHeader)) { /*extended header */ offset = GET_HDR_OFFSET_2_0(efuseHeader); RTW_INFO("%s: extended header offset_2_0=0x%X\n", __func__, offset); /*ReadEFuseByte(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest); */ efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest); RTW_INFO("%s: efuse[%#X]=0x%02x (ext header)\n", __func__, (((bank - 1) * EFUSE_REAL_CONTENT_LEN_8188F) + eFuse_Addr - 1), efuseExtHdr); if (ALL_WORDS_DISABLED(efuseExtHdr)) continue; offset |= ((efuseExtHdr & 0xF0) >> 1); wden = (efuseExtHdr & 0x0F); } else { offset = ((efuseHeader >> 4) & 0x0f); wden = (efuseHeader & 0x0f); } if (offset < EFUSE_BT_MAX_SECTION) { u16 addr; /* Get word enable value from PG header */ RTW_INFO("%s: Offset=%d Worden=%#X\n", __func__, offset, wden); addr = offset * PGPKT_DATA_SIZE; for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { /* Check word enable condition in the section */ if (!(wden & (0x01 << i))) { efuseData = 0; /*ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */ efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest); RTW_INFO("%s: efuse[%#X]=0x%02X\n", __func__, eFuse_Addr - 1, efuseData); efuseTbl[addr] = efuseData; efuseData = 0; /*ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */ efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest); RTW_INFO("%s: efuse[%#X]=0x%02X\n", __func__, eFuse_Addr - 1, efuseData); efuseTbl[addr + 1] = efuseData; } addr += 2; } } else { RTW_INFO("%s: offset(%d) is illegal!!\n", __func__, offset); eFuse_Addr += Efuse_CalculateWordCnts(wden) * 2; } } if ((eFuse_Addr - 1) < total) { RTW_INFO("%s: bank(%d) data end at %#x\n", __func__, bank, eFuse_Addr - 1); break; } } /* switch bank back to bank 0 for later BT and wifi use. */ hal_EfuseSwitchToBank(padapter, 0, bPseudoTest); /* Copy from Efuse map to output pointer memory!!! */ for (i = 0; i < _size_byte; i++) pbuf[i] = efuseTbl[_offset + i]; /* */ /* Calculate Efuse utilization. */ /* */ EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest); used = (EFUSE_BT_REAL_BANK_CONTENT_LEN * (bank - 1)) + eFuse_Addr - 1; RTW_INFO("%s: bank(%d) data end at %#x ,used =%d\n", __func__, bank, eFuse_Addr - 1, used); efuse_usage = (u8)((used * 100) / total); if (bPseudoTest) { #ifdef HAL_EFUSE_MEMORY pEfuseHal->fakeBTEfuseUsedBytes = used; #else fakeBTEfuseUsedBytes = used; #endif } else { rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&used); rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_USAGE, (u8 *)&efuse_usage); } exit: if (efuseTbl) rtw_mfree(efuseTbl, EFUSE_BT_MAP_LEN); } static void Hal_ReadEFuse( PADAPTER padapter, u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf, u8 bPseudoTest) { if (efuseType == EFUSE_WIFI) hal_ReadEFuse_WiFi(padapter, _offset, _size_byte, pbuf, bPseudoTest); else hal_ReadEFuse_BT(padapter, _offset, _size_byte, pbuf, bPseudoTest); } static u16 hal_EfuseGetCurrentSize_WiFi( PADAPTER padapter, u8 bPseudoTest) { #ifdef HAL_EFUSE_MEMORY PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal; #endif u16 efuse_addr = 0; u16 start_addr = 0; /* for debug */ u8 hoffset = 0, hworden = 0; u8 efuse_data, word_cnts = 0; u32 count = 0; /* for debug */ if (bPseudoTest) { #ifdef HAL_EFUSE_MEMORY efuse_addr = (u16)pEfuseHal->fakeEfuseUsedBytes; #else efuse_addr = (u16)fakeEfuseUsedBytes; #endif } else rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr); start_addr = efuse_addr; RTW_INFO("%s: start_efuse_addr=0x%X\n", __func__, efuse_addr); /* switch bank back to bank 0 for later BT and wifi use. */ hal_EfuseSwitchToBank(padapter, 0, bPseudoTest); #if 0 /* for debug test */ efuse_OneByteRead(padapter, 0x1FF, &efuse_data, bPseudoTest); RTW_INFO(FUNC_ADPT_FMT ": efuse raw 0x1FF=0x%02X\n", FUNC_ADPT_ARG(padapter), efuse_data); efuse_data = 0xFF; #endif /* for debug test */ count = 0; while (AVAILABLE_EFUSE_ADDR(efuse_addr)) { #if 1 if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == _FALSE) { RTW_ERR("%s: efuse_OneByteRead Fail! addr=0x%X !!\n", __func__, efuse_addr); goto error; } #else ReadEFuseByte(padapter, efuse_addr, &efuse_data, bPseudoTest); #endif if (efuse_data == 0xFF) break; if ((start_addr != 0) && (efuse_addr == start_addr)) { count++; RTW_INFO(FUNC_ADPT_FMT ": [WARNING] efuse raw 0x%X=0x%02X not 0xFF!!(%d times)\n", FUNC_ADPT_ARG(padapter), efuse_addr, efuse_data, count); efuse_data = 0xFF; if (count < 4) { /* try again! */ if (count > 2) { /* try again form address 0 */ efuse_addr = 0; start_addr = 0; } continue; } goto error; } if (EXT_HEADER(efuse_data)) { hoffset = GET_HDR_OFFSET_2_0(efuse_data); efuse_addr++; efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest); if (ALL_WORDS_DISABLED(efuse_data)) continue; hoffset |= ((efuse_data & 0xF0) >> 1); hworden = efuse_data & 0x0F; } else { hoffset = (efuse_data >> 4) & 0x0F; hworden = efuse_data & 0x0F; } word_cnts = Efuse_CalculateWordCnts(hworden); efuse_addr += (word_cnts * 2) + 1; } if (bPseudoTest) { #ifdef HAL_EFUSE_MEMORY pEfuseHal->fakeEfuseUsedBytes = efuse_addr; #else fakeEfuseUsedBytes = efuse_addr; #endif } else rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr); goto exit; error: /* report max size to prevent write efuse */ EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_addr, bPseudoTest); exit: RTW_INFO("%s: CurrentSize=%d\n", __func__, efuse_addr); return efuse_addr; } static u16 hal_EfuseGetCurrentSize_BT( PADAPTER padapter, u8 bPseudoTest) { #ifdef HAL_EFUSE_MEMORY PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal; #endif u16 btusedbytes; u16 efuse_addr; u8 bank, startBank; u8 hoffset = 0, hworden = 0; u8 efuse_data, word_cnts = 0; u16 retU2 = 0; u8 bContinual = _TRUE; if (bPseudoTest) { #ifdef HAL_EFUSE_MEMORY btusedbytes = pEfuseHal->fakeBTEfuseUsedBytes; #else btusedbytes = fakeBTEfuseUsedBytes; #endif } else { btusedbytes = 0; rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&btusedbytes); } efuse_addr = (u16)((btusedbytes % EFUSE_BT_REAL_BANK_CONTENT_LEN)); startBank = (u8)(1 + (btusedbytes / EFUSE_BT_REAL_BANK_CONTENT_LEN)); RTW_INFO("%s: start from bank=%d addr=0x%X\n", __func__, startBank, efuse_addr); EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &retU2, bPseudoTest); for (bank = startBank; bank < 3; bank++) { if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == _FALSE) { RTW_ERR("%s: switch bank(%d) Fail!!\n", __func__, bank); /*bank = EFUSE_MAX_BANK; */ break; } /* only when bank is switched we have to reset the efuse_addr. */ if (bank != startBank) efuse_addr = 0; #if 1 while (AVAILABLE_EFUSE_ADDR(efuse_addr)) { if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == _FALSE) { RTW_ERR("%s: efuse_OneByteRead Fail! addr=0x%X !!\n", __func__, efuse_addr); /*bank = EFUSE_MAX_BANK; */ break; } RTW_INFO("%s: efuse_OneByteRead ! addr=0x%X !efuse_data=0x%X! bank =%d\n", __func__, efuse_addr, efuse_data, bank); if (efuse_data == 0xFF) break; if (EXT_HEADER(efuse_data)) { hoffset = GET_HDR_OFFSET_2_0(efuse_data); efuse_addr++; efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest); RTW_INFO("%s: efuse_OneByteRead EXT_HEADER ! addr=0x%X !efuse_data=0x%X! bank =%d\n", __func__, efuse_addr, efuse_data, bank); if (ALL_WORDS_DISABLED(efuse_data)) { efuse_addr++; continue; } /*hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); */ hoffset |= ((efuse_data & 0xF0) >> 1); hworden = efuse_data & 0x0F; } else { hoffset = (efuse_data >> 4) & 0x0F; hworden = efuse_data & 0x0F; } RTW_INFO(FUNC_ADPT_FMT": Offset=%d Worden=%#X\n", FUNC_ADPT_ARG(padapter), hoffset, hworden); word_cnts = Efuse_CalculateWordCnts(hworden); /*read next header */ efuse_addr += (word_cnts * 2) + 1; } #else while (bContinual && efuse_OneByteRead(padapter, efuse_addr , &efuse_data, bPseudoTest) && AVAILABLE_EFUSE_ADDR(efuse_addr)) { if (efuse_data != 0xFF) { if ((efuse_data & 0x1F) == 0x0F) { /*extended header */ hoffset = efuse_data; efuse_addr++; efuse_OneByteRead(padapter, efuse_addr , &efuse_data, bPseudoTest); if ((efuse_data & 0x0F) == 0x0F) { efuse_addr++; continue; } else { hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); hworden = efuse_data & 0x0F; } } else { hoffset = (efuse_data >> 4) & 0x0F; hworden = efuse_data & 0x0F; } word_cnts = Efuse_CalculateWordCnts(hworden); /*read next header */ efuse_addr = efuse_addr + (word_cnts * 2) + 1; } else bContinual = _FALSE; } #endif /* Check if we need to check next bank efuse */ if (efuse_addr < retU2) { /* don't need to check next bank. */ break; } } #if 0 retU2 = ((bank - 1) * EFUSE_BT_REAL_BANK_CONTENT_LEN) + efuse_addr; if (bPseudoTest) { #ifdef HAL_EFUSE_MEMORY pEfuseHal->fakeBTEfuseUsedBytes = retU2; #else fakeBTEfuseUsedBytes = retU2; #endif } else rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&retU2); #else retU2 = ((bank - 1) * EFUSE_BT_REAL_BANK_CONTENT_LEN) + efuse_addr; if (bPseudoTest) { pEfuseHal->fakeBTEfuseUsedBytes = retU2; /*RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->fakeBTEfuseUsedBytes)); */ } else { pEfuseHal->BTEfuseUsedBytes = retU2; /*RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->BTEfuseUsedBytes)); */ } #endif RTW_INFO("%s: CurrentSize=%d\n", __func__, retU2); return retU2; } static u16 Hal_EfuseGetCurrentSize( PADAPTER pAdapter, u8 efuseType, u8 bPseudoTest) { u16 ret = 0; if (efuseType == EFUSE_WIFI) ret = hal_EfuseGetCurrentSize_WiFi(pAdapter, bPseudoTest); else ret = hal_EfuseGetCurrentSize_BT(pAdapter, bPseudoTest); return ret; } static u8 Hal_EfuseWordEnableDataWrite( PADAPTER padapter, u16 efuse_addr, u8 word_en, u8 *data, u8 bPseudoTest) { u16 tmpaddr = 0; u16 start_addr = efuse_addr; u8 badworden = 0x0F; u8 tmpdata[PGPKT_DATA_SIZE]; /*RTW_INFO("%s: efuse_addr=%#x word_en=%#x\n", __func__, efuse_addr, word_en); */ _rtw_memset(tmpdata, 0xFF, PGPKT_DATA_SIZE); if (!(word_en & BIT(0))) { tmpaddr = start_addr; efuse_OneByteWrite(padapter, start_addr++, data[0], bPseudoTest); efuse_OneByteWrite(padapter, start_addr++, data[1], bPseudoTest); phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 0); efuse_OneByteRead(padapter, tmpaddr, &tmpdata[0], bPseudoTest); efuse_OneByteRead(padapter, tmpaddr + 1, &tmpdata[1], bPseudoTest); phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 1); if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) badworden &= (~BIT(0)); } if (!(word_en & BIT(1))) { tmpaddr = start_addr; efuse_OneByteWrite(padapter, start_addr++, data[2], bPseudoTest); efuse_OneByteWrite(padapter, start_addr++, data[3], bPseudoTest); phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 0); efuse_OneByteRead(padapter, tmpaddr, &tmpdata[2], bPseudoTest); efuse_OneByteRead(padapter, tmpaddr + 1, &tmpdata[3], bPseudoTest); phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 1); if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) badworden &= (~BIT(1)); } if (!(word_en & BIT(2))) { tmpaddr = start_addr; efuse_OneByteWrite(padapter, start_addr++, data[4], bPseudoTest); efuse_OneByteWrite(padapter, start_addr++, data[5], bPseudoTest); phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 0); efuse_OneByteRead(padapter, tmpaddr, &tmpdata[4], bPseudoTest); efuse_OneByteRead(padapter, tmpaddr + 1, &tmpdata[5], bPseudoTest); phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 1); if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) badworden &= (~BIT(2)); } if (!(word_en & BIT(3))) { tmpaddr = start_addr; efuse_OneByteWrite(padapter, start_addr++, data[6], bPseudoTest); efuse_OneByteWrite(padapter, start_addr++, data[7], bPseudoTest); phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 0); efuse_OneByteRead(padapter, tmpaddr, &tmpdata[6], bPseudoTest); efuse_OneByteRead(padapter, tmpaddr + 1, &tmpdata[7], bPseudoTest); phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 1); if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) badworden &= (~BIT(3)); } return badworden; } static s32 Hal_EfusePgPacketRead( PADAPTER padapter, u8 offset, u8 *data, u8 bPseudoTest) { u8 bDataEmpty = _TRUE; u8 efuse_data, word_cnts = 0; u16 efuse_addr = 0; u8 hoffset = 0, hworden = 0; u8 i; u8 max_section = 0; s32 ret; if (data == NULL) return _FALSE; EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, &max_section, bPseudoTest); if (offset > max_section) { RTW_INFO("%s: Packet offset(%d) is illegal(>%d)!\n", __func__, offset, max_section); return _FALSE; } _rtw_memset(data, 0xFF, PGPKT_DATA_SIZE); ret = _TRUE; /* */ /* Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */ /* Skip dummy parts to prevent unexpected data read from Efuse. */ /* By pass right now. 2009.02.19. */ /* */ while (AVAILABLE_EFUSE_ADDR(efuse_addr)) { if (efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest) == _FALSE) { ret = _FALSE; break; } if (efuse_data == 0xFF) break; if (EXT_HEADER(efuse_data)) { hoffset = GET_HDR_OFFSET_2_0(efuse_data); efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest); if (ALL_WORDS_DISABLED(efuse_data)) { RTW_INFO("%s: Error!! All words disabled!\n", __func__); continue; } hoffset |= ((efuse_data & 0xF0) >> 1); hworden = efuse_data & 0x0F; } else { hoffset = (efuse_data >> 4) & 0x0F; hworden = efuse_data & 0x0F; } if (hoffset == offset) { for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { /* Check word enable condition in the section */ if (!(hworden & (0x01 << i))) { /*ReadEFuseByte(padapter, efuse_addr++, &efuse_data, bPseudoTest); */ efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest); /*RTW_INFO("%s: efuse[%#X]=0x%02X\n", __func__, efuse_addr+tmpidx, efuse_data); */ data[i * 2] = efuse_data; /*ReadEFuseByte(padapter, efuse_addr++, &efuse_data, bPseudoTest); */ efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest); /*RTW_INFO("%s: efuse[%#X]=0x%02X\n", __func__, efuse_addr+tmpidx, efuse_data); */ data[(i * 2) + 1] = efuse_data; } } } else { word_cnts = Efuse_CalculateWordCnts(hworden); efuse_addr += word_cnts * 2; } } return ret; } static u8 hal_EfusePgCheckAvailableAddr( PADAPTER pAdapter, u8 efuseType, u8 bPseudoTest) { u16 max_available = 0; u16 current_size; EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &max_available, bPseudoTest); /*RTW_INFO("%s: max_available=%d\n", __func__, max_available); */ current_size = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest); if (current_size >= max_available) { RTW_INFO("%s: Error!! current_size(%d)>max_available(%d)\n", __func__, current_size, max_available); return _FALSE; } return _TRUE; } static void hal_EfuseConstructPGPkt( u8 offset, u8 word_en, u8 *pData, PPGPKT_STRUCT pTargetPkt) { _rtw_memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE); pTargetPkt->offset = offset; pTargetPkt->word_en = word_en; efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data); pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en); } #if 0 static u8 wordEnMatched( PPGPKT_STRUCT pTargetPkt, PPGPKT_STRUCT pCurPkt, u8 *pWden) { u8 match_word_en = 0x0F; /* default all words are disabled */ u8 i; /* check if the same words are enabled both target and current PG packet */ if (((pTargetPkt->word_en & BIT(0)) == 0) && ((pCurPkt->word_en & BIT(0)) == 0)) { match_word_en &= ~BIT(0); /* enable word 0 */ } if (((pTargetPkt->word_en & BIT(1)) == 0) && ((pCurPkt->word_en & BIT(1)) == 0)) { match_word_en &= ~BIT(1); /* enable word 1 */ } if (((pTargetPkt->word_en & BIT(2)) == 0) && ((pCurPkt->word_en & BIT(2)) == 0)) { match_word_en &= ~BIT(2); /* enable word 2 */ } if (((pTargetPkt->word_en & BIT(3)) == 0) && ((pCurPkt->word_en & BIT(3)) == 0)) { match_word_en &= ~BIT(3); /* enable word 3 */ } *pWden = match_word_en; if (match_word_en != 0xf) return _TRUE; else return _FALSE; } static u8 hal_EfuseCheckIfDatafollowed( PADAPTER pAdapter, u8 word_cnts, u16 startAddr, u8 bPseudoTest) { u8 bRet = _FALSE; u8 i, efuse_data; for (i = 0; i < (word_cnts * 2); i++) { if (efuse_OneByteRead(pAdapter, (startAddr + i) , &efuse_data, bPseudoTest) == _FALSE) { RTW_INFO("%s: efuse_OneByteRead FAIL!!\n", __func__); bRet = _TRUE; break; } if (efuse_data != 0xFF) { bRet = _TRUE; break; } } return bRet; } #endif static u8 hal_EfusePartialWriteCheck( PADAPTER padapter, u8 efuseType, u16 *pAddr, PPGPKT_STRUCT pTargetPkt, u8 bPseudoTest) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal; u8 bRet = _FALSE; u16 startAddr = 0, efuse_max_available_len = 0, efuse_max = 0; u8 efuse_data = 0; #if 0 u8 i, cur_header = 0; u8 new_wden = 0, matched_wden = 0, badworden = 0; PGPKT_STRUCT curPkt; #endif EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest); EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest); if (efuseType == EFUSE_WIFI) { if (bPseudoTest) { #ifdef HAL_EFUSE_MEMORY startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes; #else startAddr = (u16)fakeEfuseUsedBytes; #endif } else rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr); } else { if (bPseudoTest) { #ifdef HAL_EFUSE_MEMORY startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes; #else startAddr = (u16)fakeBTEfuseUsedBytes; #endif } else rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&startAddr); } startAddr %= efuse_max; RTW_INFO("%s: startAddr=%#X\n", __func__, startAddr); while (1) { if (startAddr >= efuse_max_available_len) { bRet = _FALSE; RTW_INFO("%s: startAddr(%d) >= efuse_max_available_len(%d)\n", __func__, startAddr, efuse_max_available_len); break; } if (efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) { #if 1 bRet = _FALSE; RTW_INFO("%s: Something Wrong! last bytes(%#X=0x%02X) is not 0xFF\n", __func__, startAddr, efuse_data); break; #else if (EXT_HEADER(efuse_data)) { cur_header = efuse_data; startAddr++; efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest); if (ALL_WORDS_DISABLED(efuse_data)) { RTW_INFO("%s: Error condition, all words disabled!", __func__); bRet = _FALSE; break; } else { curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); curPkt.word_en = efuse_data & 0x0F; } } else { cur_header = efuse_data; curPkt.offset = (cur_header >> 4) & 0x0F; curPkt.word_en = cur_header & 0x0F; } curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en); /* if same header is found but no data followed */ /* write some part of data followed by the header. */ if ((curPkt.offset == pTargetPkt->offset) && (hal_EfuseCheckIfDatafollowed(padapter, curPkt.word_cnts, startAddr + 1, bPseudoTest) == _FALSE) && wordEnMatched(pTargetPkt, &curPkt, &matched_wden) == _TRUE) { RTW_INFO("%s: Need to partial write data by the previous wrote header\n", __func__); /* Here to write partial data */ badworden = Efuse_WordEnableDataWrite(padapter, startAddr + 1, matched_wden, pTargetPkt->data, bPseudoTest); if (badworden != 0x0F) { u32 PgWriteSuccess = 0; /* if write fail on some words, write these bad words again */ if (efuseType == EFUSE_WIFI) PgWriteSuccess = Efuse_PgPacketWrite(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest); else PgWriteSuccess = Efuse_PgPacketWrite_BT(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest); if (!PgWriteSuccess) { bRet = _FALSE; /* write fail, return */ break; } } /* partial write ok, update the target packet for later use */ for (i = 0; i < 4; i++) { if ((matched_wden & (0x1 << i)) == 0) { /* this word has been written */ pTargetPkt->word_en |= (0x1 << i); /* disable the word */ } } pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en); } /* read from next header */ startAddr = startAddr + (curPkt.word_cnts * 2) + 1; #endif } else { /* not used header, 0xff */ *pAddr = startAddr; /*RTW_INFO("%s: Started from unused header offset=%d\n", __func__, startAddr)); */ bRet = _TRUE; break; } } return bRet; } BOOLEAN hal_EfuseFixHeaderProcess( PADAPTER pAdapter, u8 efuseType, PPGPKT_STRUCT pFixPkt, u16 *pAddr, BOOLEAN bPseudoTest ) { u8 originaldata[8], badworden=0; u16 efuse_addr=*pAddr; u32 PgWriteSuccess=0; _rtw_memset((void *)originaldata, 0xff, 8); if (Efuse_PgPacketRead(pAdapter, pFixPkt->offset, originaldata, bPseudoTest)) { badworden = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr+1, pFixPkt->word_en, originaldata, bPseudoTest); if (badworden != 0xf) { PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pFixPkt->offset, badworden, originaldata, bPseudoTest); if (!PgWriteSuccess) return FALSE; else efuse_addr = Hal_EfuseGetCurrentSize(pAdapter, efuseType, bPseudoTest); } else { efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) +1; } } else { efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) +1; } *pAddr = efuse_addr; return TRUE; } static u8 hal_EfusePgPacketWrite1ByteHeader( PADAPTER pAdapter, u8 efuseType, u16 *pAddr, PPGPKT_STRUCT pTargetPkt, u8 bPseudoTest) { u8 bRet = _FALSE; u8 pg_header = 0, tmp_header = 0; u16 efuse_addr = *pAddr; u8 repeatcnt = 0; /* RTW_INFO("%s\n", __FUNCTION__); */ pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en; efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); while (tmp_header == 0xFF || pg_header != tmp_header) { if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) { RTW_ERR("retry %d times fail!!\n", repeatcnt); return _FALSE; } efuse_OneByteWrite(pAdapter,efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(pAdapter,efuse_addr, &tmp_header, bPseudoTest); RTW_ERR("===>%s: Keep %d-th retrying,pg_header = 0x%X tmp_header = 0x%X\n", __FUNCTION__,repeatcnt, pg_header, tmp_header); } if (pg_header == tmp_header) bRet = _TRUE; else { PGPKT_STRUCT fixPkt; RTW_ERR(" pg_header(0x%X) != tmp_header(0x%X)\n", pg_header, tmp_header); RTW_ERR("Error condition for fixed PG packet, need to cover the existed data: (Addr, Data) = (0x%X, 0x%X)\n", efuse_addr, tmp_header); fixPkt.offset = (tmp_header>>4) & 0x0F; fixPkt.word_en = tmp_header & 0x0F; fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en); if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest)) return _FALSE; } *pAddr = efuse_addr; return _TRUE; } static u8 hal_EfusePgPacketWrite2ByteHeader( PADAPTER padapter, u8 efuseType, u16 *pAddr, PPGPKT_STRUCT pTargetPkt, u8 bPseudoTest) { u16 efuse_addr, efuse_max_available_len = 0; u8 pg_header = 0, tmp_header = 0, pg_header_temp = 0; u8 repeatcnt = 0; /* RTW_INFO("%s\n", __FUNCTION__); */ EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &efuse_max_available_len, bPseudoTest); efuse_addr = *pAddr; if (efuse_addr >= efuse_max_available_len) { RTW_INFO("%s: addr(%d) over avaliable(%d)!!\n", __FUNCTION__, efuse_addr, efuse_max_available_len); return _FALSE; } while (efuse_addr < efuse_max_available_len) { pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F; efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest); phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 0); efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest); phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 1); while (tmp_header == 0xFF || pg_header != tmp_header) { if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) { RTW_INFO("%s, Repeat over limit for pg_header!!\n", __FUNCTION__); return _FALSE; } efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest); } /*to write ext_header*/ if (tmp_header == pg_header) { efuse_addr++; pg_header_temp = pg_header; pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en; efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest); phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 0); efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest); phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 1); while (tmp_header == 0xFF || pg_header != tmp_header) { if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) { RTW_INFO("%s, Repeat over limit for ext_header!!\n", __FUNCTION__); return _FALSE; } efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest); } if ((tmp_header & 0x0F) == 0x0F) { if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) { RTW_INFO("Repeat over limit for word_en!!\n"); return _FALSE; } else { efuse_addr++; continue; } } else if (pg_header != tmp_header) { PGPKT_STRUCT fixPkt; RTW_ERR("Error, efuse_PgPacketWrite2ByteHeader(), offset PG fail, need to cover the existed data!!\n"); RTW_ERR("Error condition for offset PG fail, need to cover the existed data\n"); fixPkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1); fixPkt.word_en = tmp_header & 0x0F; fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en); if (!hal_EfuseFixHeaderProcess(padapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest)) return _FALSE; } else break; } else if ((tmp_header & 0x1F) == 0x0F) {/*wrong extended header*/ efuse_addr += 2; continue; } } *pAddr = efuse_addr; return _TRUE; } static u8 hal_EfusePgPacketWriteHeader( PADAPTER padapter, u8 efuseType, u16 *pAddr, PPGPKT_STRUCT pTargetPkt, u8 bPseudoTest) { u8 bRet = _FALSE; if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE) bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest); else bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest); return bRet; } static u8 hal_EfusePgPacketWriteData( PADAPTER pAdapter, u8 efuseType, u16 *pAddr, PPGPKT_STRUCT pTargetPkt, u8 bPseudoTest) { u16 efuse_addr; u8 badworden; u8 PgWriteSuccess = 0; efuse_addr = *pAddr; badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest); if (badworden == 0x0F) { RTW_INFO("%s: OK!!\n", __FUNCTION__); return _TRUE; } else { /* Reorganize other pg packet */ RTW_ERR ("Error, efuse_PgPacketWriteData(), wirte data fail!!\n"); RTW_ERR ("efuse_PgPacketWriteData Fail!!\n"); PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest); if (!PgWriteSuccess) return FALSE; else return TRUE; } return _TRUE; } static s32 Hal_EfusePgPacketWrite( PADAPTER padapter, u8 offset, u8 word_en, u8 *pData, u8 bPseudoTest) { PGPKT_STRUCT targetPkt; u16 startAddr = 0; u8 efuseType = EFUSE_WIFI; if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest)) return _FALSE; hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt); if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; return _TRUE; } static u8 Hal_EfusePgPacketWrite_BT( PADAPTER pAdapter, u8 offset, u8 word_en, u8 *pData, u8 bPseudoTest) { PGPKT_STRUCT targetPkt; u16 startAddr = 0; u8 efuseType = EFUSE_BT; if (!hal_EfusePgCheckAvailableAddr(pAdapter, efuseType, bPseudoTest)) return _FALSE; hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt); if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; return _TRUE; } static void rtl8188f_read_chip_version(PADAPTER padapter) { u32 value32; HAL_DATA_TYPE *pHalData; u8 tmpvdr; pHalData = GET_HAL_DATA(padapter); value32 = rtw_read32(padapter, REG_SYS_CFG); pHalData->version_id.ICType = CHIP_8188F; pHalData->version_id.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP); pHalData->version_id.RFType = RF_TYPE_1T1R; tmpvdr = (value32 & EXT_VENDOR_ID) >> EXT_VENDOR_ID_SHIFT; if (tmpvdr == 0x00) pHalData->version_id.VendorType = CHIP_VENDOR_TSMC; else if (tmpvdr == 0x01) pHalData->version_id.VendorType = CHIP_VENDOR_SMIC; else if (tmpvdr == 0x02) pHalData->version_id.VendorType = CHIP_VENDOR_UMC; pHalData->version_id.CUTVersion = (value32 & CHIP_VER_RTL_MASK) >> CHIP_VER_RTL_SHIFT; /* IC version (CUT) */ #if 0 /* For regulator mode. by tynli. 2011.01.14 */ pHalData->RegulatorMode = ((value32 & SPS_SEL) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR); #endif #if 0 value32 = rtw_read32(padapter, REG_GPIO_OUTSTS); pHalData->version_id.ROMVer = ((value32 & RF_RL_ID) >> 20); /* ROM code version. */ #endif #if 0 /* For multi-function consideration. Added by Roger, 2010.10.06. */ pHalData->MultiFunc = RT_MULTI_FUNC_NONE; value32 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL); pHalData->MultiFunc |= ((value32 & WL_FUNC_EN) ? RT_MULTI_FUNC_WIFI : 0); pHalData->MultiFunc |= ((value32 & BT_FUNC_EN) ? RT_MULTI_FUNC_BT : 0); pHalData->MultiFunc |= ((value32 & GPS_FUNC_EN) ? RT_MULTI_FUNC_GPS : 0); pHalData->PolarityCtl = ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT : RT_POLARITY_LOW_ACT); #endif rtw_hal_config_rftype(padapter); #if 0 /* mark for chage to use efuse */ if (IS_B_CUT(pHalData->version_id) || IS_C_CUT(pHalData->version_id)) { RTW_INFO(" IS_B/C_CUT SWR up 1 level !!!!!!!!!!!!!!!!!\n"); phy_set_mac_reg(padapter, 0x14, BIT23 | BIT22 | BIT21 | BIT20, 0x5); /* MAC reg 0x14[23:20] = 4b'0101 (SWR 1.220V) */ } else if (IS_D_CUT(pHalData->version_id)) RTW_INFO(" IS_D_CUT SKIP SWR !!!!!!!!!!!!!!!!!\n"); #endif /* mark for chage to use efuse */ #if 1 dump_chip_info(pHalData->version_id); #endif } void rtl8188f_InitBeaconParameters(PADAPTER padapter) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); u16 val16; u8 val8; val8 = DIS_TSF_UDT; val16 = val8 | (val8 << 8); /* port0 and port1 */ #ifdef CONFIG_BT_COEXIST /* Enable prot0 beacon function for PSTDMA */ val16 |= EN_BCN_FUNCTION; #endif rtw_write16(padapter, REG_BCN_CTRL, val16); /* TBTT setup time */ rtw_write8(padapter, REG_TBTT_PROHIBIT, TBTT_PROHIBIT_SETUP_TIME); /* TBTT hold time: 0x540[19:8] */ rtw_write8(padapter, REG_TBTT_PROHIBIT + 1, TBTT_PROHIBIT_HOLD_TIME_STOP_BCN & 0xFF); rtw_write8(padapter, REG_TBTT_PROHIBIT + 2, (rtw_read8(padapter, REG_TBTT_PROHIBIT + 2) & 0xF0) | (TBTT_PROHIBIT_HOLD_TIME_STOP_BCN >> 8)); /* Firmware will control REG_DRVERLYINT when power saving is enable, */ /* so don't set this register on STA mode. */ if (check_fwstate(&padapter->mlmepriv, WIFI_STATION_STATE) == _FALSE) rtw_write8(padapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8188F); /* 5ms */ rtw_write8(padapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8188F); /* 2ms */ /* Suggested by designer timchen. Change beacon AIFS to the largest number */ /* beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */ rtw_write16(padapter, REG_BCNTCFG, 0x4413); } void rtl8188f_InitBeaconMaxError(PADAPTER padapter, u8 InfraMode) { #ifdef CONFIG_ADHOC_WORKAROUND_SETTING rtw_write8(padapter, REG_BCN_MAX_ERR, 0xFF); #else /*rtw_write8(Adapter, REG_BCN_MAX_ERR, (InfraMode ? 0xFF : 0x10)); */ #endif } void _InitBurstPktLen_8188FS(PADAPTER Adapter) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); rtw_write8(Adapter, 0x4c7, rtw_read8(Adapter, 0x4c7) | BIT(7)); /*enable single pkt ampdu */ rtw_write8(Adapter, REG_RX_PKT_LIMIT_8188F, 0x18); /*for VHT packet length 11K */ rtw_write8(Adapter, REG_MAX_AGGR_NUM_8188F, 0x1F); rtw_write8(Adapter, REG_PIFS_8188F, 0x00); rtw_write8(Adapter, REG_FWHW_TXQ_CTRL_8188F, rtw_read8(Adapter, REG_FWHW_TXQ_CTRL) & (~BIT(7))); if (pHalData->AMPDUBurstMode) rtw_write8(Adapter, REG_AMPDU_BURST_MODE_8188F, 0x5F); rtw_write8(Adapter, REG_AMPDU_MAX_TIME_8188F, 0x70); /* ARFB table 9 for 11ac 5G 2SS */ rtw_write32(Adapter, REG_ARFR0_8188F, 0x00000010); if (IS_NORMAL_CHIP(pHalData->version_id)) rtw_write32(Adapter, REG_ARFR0_8188F + 4, 0xfffff000); else rtw_write32(Adapter, REG_ARFR0_8188F + 4, 0x3e0ff000); /* ARFB table 10 for 11ac 5G 1SS */ rtw_write32(Adapter, REG_ARFR1_8188F, 0x00000010); rtw_write32(Adapter, REG_ARFR1_8188F + 4, 0x003ff000); } static void _BeaconFunctionEnable(PADAPTER padapter, u8 Enable, u8 Linked) { rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB); rtw_write8(padapter, REG_RD_CTRL + 1, 0x6F); } static void rtl8188f_SetBeaconRelatedRegisters(PADAPTER padapter) { u8 val8; u32 value32; PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info; u32 bcn_ctrl_reg; /*reset TSF, enable update TSF, correcting TSF On Beacon */ /*REG_MBSSID_BCN_SPACE */ /*REG_BCNDMATIM */ /*REG_ATIMWND */ /*REG_TBTT_PROHIBIT */ /*REG_DRVERLYINT */ /*REG_BCN_MAX_ERR */ /*REG_BCNTCFG //(0x510) */ /*REG_DUAL_TSF_RST */ /*REG_BCN_CTRL //(0x550) */ bcn_ctrl_reg = REG_BCN_CTRL; #ifdef CONFIG_CONCURRENT_MODE if (padapter->hw_port == HW_PORT1) bcn_ctrl_reg = REG_BCN_CTRL_1; #endif /* */ /* ATIM window */ /* */ rtw_write16(padapter, REG_ATIMWND, 2); /* */ /* Beacon interval (in unit of TU). */ /* */ rtw_hal_set_hwreg(padapter, HW_VAR_BEACON_INTERVAL, (u8 *)&pmlmeinfo->bcn_interval); rtl8188f_InitBeaconParameters(padapter); rtw_write8(padapter, REG_SLOT, 0x09); /* */ /* Reset TSF Timer to zero, added by Roger. 2008.06.24 */ /* */ value32 = rtw_read32(padapter, REG_TCR); value32 &= ~TSFRST; rtw_write32(padapter, REG_TCR, value32); value32 |= TSFRST; rtw_write32(padapter, REG_TCR, value32); /* NOTE: Fix test chip's bug (about contention windows's randomness) */ if (check_fwstate(&padapter->mlmepriv, WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE | WIFI_AP_STATE | WIFI_MESH_STATE) == _TRUE) { rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50); rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50); } _BeaconFunctionEnable(padapter, _TRUE, _TRUE); ResumeTxBeacon(padapter); val8 = rtw_read8(padapter, bcn_ctrl_reg); val8 |= DIS_BCNQ_SUB; rtw_write8(padapter, bcn_ctrl_reg, val8); } void hal_notch_filter_8188f(_adapter *adapter, bool enable) { if (enable) { RTW_INFO("Enable notch filter\n"); rtw_write8(adapter, rOFDM0_RxDSP + 1, rtw_read8(adapter, rOFDM0_RxDSP + 1) | BIT1); } else { RTW_INFO("Disable notch filter\n"); rtw_write8(adapter, rOFDM0_RxDSP + 1, rtw_read8(adapter, rOFDM0_RxDSP + 1) & ~BIT1); } } u8 rtl8188f_MRateIdxToARFRId(PADAPTER padapter, u8 rate_idx) { u8 ret = 0; enum rf_type rftype = (enum rf_type)GET_RF_TYPE(padapter); switch (rate_idx) { case RATR_INX_WIRELESS_NGB: if (rftype == RF_1T1R) ret = 1; else ret = 0; break; case RATR_INX_WIRELESS_N: case RATR_INX_WIRELESS_NG: if (rftype == RF_1T1R) ret = 5; else ret = 4; break; case RATR_INX_WIRELESS_NB: if (rftype == RF_1T1R) ret = 3; else ret = 2; break; case RATR_INX_WIRELESS_GB: ret = 6; break; case RATR_INX_WIRELESS_G: ret = 7; break; case RATR_INX_WIRELESS_B: ret = 8; break; case RATR_INX_WIRELESS_MC: if (padapter->mlmeextpriv.cur_wireless_mode & WIRELESS_11BG_24N) ret = 6; else ret = 7; break; case RATR_INX_WIRELESS_AC_N: if (rftype == RF_1T1R) /* || padapter->MgntInfo.VHTHighestOperaRate <= MGN_VHT1SS_MCS9) */ ret = 10; else ret = 9; break; default: ret = 0; break; } return ret; } /* */ /* Description: In normal chip, we should send some packet to Hw which will be used by Fw */ /* in FW LPS mode. The function is to fill the Tx descriptor of this packets, then */ /* Fw can tell Hw to send these packet derectly. */ /* Added by tynli. 2009.10.15. */ /* */ /*type1:pspoll, type2:null */ void rtl8188f_fill_fake_txdesc( PADAPTER padapter, u8 *pDesc, u32 BufferLen, u8 IsPsPoll, u8 IsBTQosNull, u8 bDataFrame) { /* Clear all status */ _rtw_memset(pDesc, 0, TXDESC_SIZE); SET_TX_DESC_FIRST_SEG_8188F(pDesc, 1); /*bFirstSeg; */ SET_TX_DESC_LAST_SEG_8188F(pDesc, 1); /*bLastSeg; */ SET_TX_DESC_OFFSET_8188F(pDesc, 0x28); /* Offset = 32 */ SET_TX_DESC_PKT_SIZE_8188F(pDesc, BufferLen); /* Buffer size + command header */ SET_TX_DESC_QUEUE_SEL_8188F(pDesc, QSLT_MGNT); /* Fixed queue of Mgnt queue */ /* Set NAVUSEHDR to prevent Ps-poll AId filed to be changed to error vlaue by Hw. */ if (_TRUE == IsPsPoll) { /* Nothing */ SET_TX_DESC_NAV_USE_HDR_8188F(pDesc, 1); } else { SET_TX_DESC_HWSEQ_EN_8188F(pDesc, 1); /* Hw set sequence number */ SET_TX_DESC_HWSEQ_SEL_8188F(pDesc, 0); } if (_TRUE == IsBTQosNull) SET_TX_DESC_BT_INT_8188F(pDesc, 1); SET_TX_DESC_USE_RATE_8188F(pDesc, 1); /* use data rate which is set by Sw */ SET_TX_DESC_OWN_8188F((u8 *)pDesc, 1); SET_TX_DESC_TX_RATE_8188F(pDesc, DESC8188F_RATE1M); /* */ /* Encrypt the data frame if under security mode excepct null data. Suggested by CCW. */ /* */ if (_TRUE == bDataFrame) { u32 EncAlg; EncAlg = padapter->securitypriv.dot11PrivacyAlgrthm; switch (EncAlg) { case _NO_PRIVACY_: SET_TX_DESC_SEC_TYPE_8188F(pDesc, 0x0); break; case _WEP40_: case _WEP104_: case _TKIP_: SET_TX_DESC_SEC_TYPE_8188F(pDesc, 0x1); break; case _SMS4_: SET_TX_DESC_SEC_TYPE_8188F(pDesc, 0x2); break; case _AES_: SET_TX_DESC_SEC_TYPE_8188F(pDesc, 0x3); break; default: SET_TX_DESC_SEC_TYPE_8188F(pDesc, 0x0); break; } } #if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI) /* USB interface drop packet if the checksum of descriptor isn't correct. */ /* Using this checksum can let hardware recovery from packet bulk out error (e.g. Cancel URC, Bulk out error.). */ rtl8188f_cal_txdesc_chksum((struct tx_desc *)pDesc); #endif } void rtl8188f_InitAntenna_Selection(PADAPTER padapter) { #ifdef CONFIG_ANTENNA_DIVERSITY HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); if (pHalData->AntDivCfg == 0) return; /* LED(GPIO4) disable for AntDiv */ phy_set_mac_reg(padapter, 0x4C, BIT21, 0x0); #endif } void rtl8188f_CheckAntenna_Selection(PADAPTER padapter) { PHAL_DATA_TYPE pHalData; u8 val; pHalData = GET_HAL_DATA(padapter); val = rtw_read8(padapter, REG_LEDCFG2); /* Let 8051 take control antenna stetting */ if (!(val & BIT(7))) { val |= BIT(7); /* DPDT_SEL_EN, 0x4C[23] */ rtw_write8(padapter, REG_LEDCFG2, val); } } void rtl8188f_DeinitAntenna_Selection(PADAPTER padapter) { PHAL_DATA_TYPE pHalData; u8 val; pHalData = GET_HAL_DATA(padapter); val = rtw_read8(padapter, REG_LEDCFG2); /* Let 8051 take control antenna stetting */ val &= ~BIT(7); /* DPDT_SEL_EN, clear 0x4C[23] */ rtw_write8(padapter, REG_LEDCFG2, val); } void init_hal_spec_8188f(_adapter *adapter) { struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter); hal_spec->ic_name = "rtl8188f"; hal_spec->macid_num = 16; hal_spec->sec_cam_ent_num = 16; hal_spec->sec_cap = 0; hal_spec->macid_cap = MACID_DROP_INDIRECT; hal_spec->macid_txrpt = 0x8100; hal_spec->macid_txrpt_pgsz = 16; hal_spec->rfpath_num_2g = 1; hal_spec->rfpath_num_5g = 0; hal_spec->txgi_max = 63; hal_spec->txgi_pdbm = 2; hal_spec->max_tx_cnt = 1; hal_spec->tx_nss_num = 1; hal_spec->rx_nss_num = 1; hal_spec->band_cap = BAND_CAP_2G; hal_spec->bw_cap = BW_CAP_20M | BW_CAP_40M; hal_spec->port_num = 2; hal_spec->proto_cap = PROTO_CAP_11B | PROTO_CAP_11G | PROTO_CAP_11N; hal_spec->wl_func = 0 | WL_FUNC_P2P | WL_FUNC_MIRACAST | WL_FUNC_TDLS ; #if CONFIG_TX_AC_LIFETIME hal_spec->tx_aclt_unit_factor = 1; #endif hal_spec->pg_txpwr_saddr = 0x10; hal_spec->pg_txgi_diff_factor = 1; rtw_macid_ctl_init_sleep_reg(adapter_to_macidctl(adapter) , REG_MACID_SLEEP, 0, 0, 0); } void rtl8188f_init_default_value(PADAPTER padapter) { PHAL_DATA_TYPE pHalData; u8 i; pHalData = GET_HAL_DATA(padapter); /* init default value */ pHalData->fw_ractrl = _FALSE; if (!adapter_to_pwrctl(padapter)->bkeepfwalive) pHalData->LastHMEBoxNum = 0; /*init phydm default value */ pHalData->bIQKInitialized = _FALSE; #if defined(CONFIG_USB_HCI) || defined(CONFIG_PCI_HCI) pHalData->IntrMask[0] = (u32)( /* IMR_ROK | */ /* IMR_RDU | */ /* IMR_VODOK | */ /* IMR_VIDOK | */ /* IMR_BEDOK | */ /* IMR_BKDOK | */ /* IMR_MGNTDOK | */ /* IMR_HIGHDOK | */ /* IMR_CPWM | */ /* IMR_CPWM2 | */ /* IMR_C2HCMD | */ /* IMR_HISR1_IND_INT | */ /* IMR_ATIMEND | */ /* IMR_BCNDMAINT_E | */ /* IMR_HSISR_IND_ON_INT | */ /* IMR_BCNDOK0 | */ /* IMR_BCNDMAINT0 | */ /* IMR_TSF_BIT32_TOGGLE | */ /* IMR_TXBCN0OK | */ /* IMR_TXBCN0ERR | */ /* IMR_GTINT3 | */ /* IMR_GTINT4 | */ /* IMR_TXCCK | */ 0); pHalData->IntrMask[1] = (u32)( /* IMR_RXFOVW | */ /* IMR_TXFOVW | */ /* IMR_RXERR | */ /* IMR_TXERR | */ /* IMR_ATIMEND_E | */ /* IMR_BCNDOK1 | */ /* IMR_BCNDOK2 | */ /* IMR_BCNDOK3 | */ /* IMR_BCNDOK4 | */ /* IMR_BCNDOK5 | */ /* IMR_BCNDOK6 | */ /* IMR_BCNDOK7 | */ /* IMR_BCNDMAINT1 | */ /* IMR_BCNDMAINT2 | */ /* IMR_BCNDMAINT3 | */ /* IMR_BCNDMAINT4 | */ /* IMR_BCNDMAINT5 | */ /* IMR_BCNDMAINT6 | */ /* IMR_BCNDMAINT7 | */ 0); #endif /* init Efuse variables */ pHalData->EfuseUsedBytes = 0; pHalData->EfuseUsedPercentage = 0; #ifdef HAL_EFUSE_MEMORY pHalData->EfuseHal.fakeEfuseBank = 0; pHalData->EfuseHal.fakeEfuseUsedBytes = 0; _rtw_memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE); _rtw_memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN); _rtw_memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN); pHalData->EfuseHal.BTEfuseUsedBytes = 0; pHalData->EfuseHal.BTEfuseUsedPercentage = 0; _rtw_memset(pHalData->EfuseHal.BTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK * EFUSE_MAX_HW_SIZE); _rtw_memset(pHalData->EfuseHal.BTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN); _rtw_memset(pHalData->EfuseHal.BTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN); pHalData->EfuseHal.fakeBTEfuseUsedBytes = 0; _rtw_memset(pHalData->EfuseHal.fakeBTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK * EFUSE_MAX_HW_SIZE); _rtw_memset(pHalData->EfuseHal.fakeBTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN); _rtw_memset(pHalData->EfuseHal.fakeBTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN); #endif } u8 GetEEPROMSize8188F(PADAPTER padapter) { u8 size = 0; u32 cr; cr = rtw_read16(padapter, REG_9346CR); /* 6: EEPROM used is 93C46, 4: boot from E-Fuse. */ size = (cr & BOOT_FROM_EEPROM) ? 6 : 4; RTW_INFO("EEPROM type is %s\n", size == 4 ? "E-FUSE" : "93C46"); return size; } /*------------------------------------------------------------------------- */ /* */ /* LLT R/W/Init function */ /* */ /*------------------------------------------------------------------------- */ s32 rtl8188f_InitLLTTable(PADAPTER padapter) { systime start; u32 passing_time; u32 val32; s32 ret; ret = _FAIL; val32 = rtw_read32(padapter, REG_AUTO_LLT); val32 |= BIT_AUTO_INIT_LLT; rtw_write32(padapter, REG_AUTO_LLT, val32); start = rtw_get_current_time(); do { val32 = rtw_read32(padapter, REG_AUTO_LLT); if (!(val32 & BIT_AUTO_INIT_LLT)) { ret = _SUCCESS; break; } passing_time = rtw_get_passing_time_ms(start); if (passing_time > 1000) { RTW_INFO("%s: FAIL!! REG_AUTO_LLT(0x%X)=%08x\n", __func__, REG_AUTO_LLT, val32); break; } rtw_usleep_os(2); } while (1); return ret; } #if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI) void _DisableGPIO(PADAPTER padapter) { /* * j. GPIO_PIN_CTRL 0x44[31:0]=0x000 * k.Value = GPIO_PIN_CTRL[7:0] * l. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); write external PIN level * m. GPIO_MUXCFG 0x42 [15:0] = 0x0780 * n. LEDCFG 0x4C[15:0] = 0x8080 */ u8 value8; u16 value16; u32 value32; u32 u4bTmp; /*1. Disable GPIO[7:0] */ rtw_write16(padapter, REG_GPIO_PIN_CTRL + 2, 0x0000); value32 = rtw_read32(padapter, REG_GPIO_PIN_CTRL) & 0xFFFF00FF; u4bTmp = value32 & 0x000000FF; value32 |= ((u4bTmp << 8) | 0x00FF0000); rtw_write32(padapter, REG_GPIO_PIN_CTRL, value32); /*2. Disable GPIO[10:8] */ rtw_write8(padapter, REG_MAC_PINMUX_CFG, 0x00); value16 = rtw_read16(padapter, REG_GPIO_IO_SEL) & 0xFF0F; value8 = (u8)(value16 & 0x000F); value16 |= ((value8 << 4) | 0x0780); rtw_write16(padapter, REG_GPIO_IO_SEL, value16); /*3. Disable LED0 & 1 */ rtw_write16(padapter, REG_LEDCFG0, 0x8080); } /*end of _DisableGPIO() */ void _DisableRFAFEAndResetBB8188F(PADAPTER padapter) { /* * a. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue * b. RF path 0 offset 0x00 = 0x00 disable RF * c. APSD_CTRL 0x600[7:0] = 0x40 * d. SYS_FUNC_EN 0x02[7:0] = 0x16 reset BB state machine * e. SYS_FUNC_EN 0x02[7:0] = 0x14 reset BB state machine */ enum rf_path eRFPath = RF_PATH_A, value8 = 0; rtw_write8(padapter, REG_TXPAUSE, 0xFF); phy_set_rf_reg(padapter, eRFPath, 0x0, bMaskByte0, 0x0); value8 |= APSDOFF; rtw_write8(padapter, REG_APSD_CTRL, value8);/*0x40 */ /* Set BB reset at first */ value8 = 0; value8 |= (FEN_USBD | FEN_USBA | FEN_BB_GLB_RSTn); rtw_write8(padapter, REG_SYS_FUNC_EN, value8); /*0x16 */ /* Set global reset. */ value8 &= ~FEN_BB_GLB_RSTn; rtw_write8(padapter, REG_SYS_FUNC_EN, value8); /*0x14 */ /* 2010/08/12 MH We need to set BB/GLBAL reset to save power for SS mode. */ } void _DisableRFAFEAndResetBB(PADAPTER padapter) { _DisableRFAFEAndResetBB8188F(padapter); } void _ResetDigitalProcedure1_8188F(PADAPTER padapter, BOOLEAN bWithoutHWSM) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); if (IS_FW_81xxC(padapter) && (pHalData->firmware_version <= 0x20)) { #if 0 /* * f. SYS_FUNC_EN 0x03[7:0]=0x54 reset MAC register, DCORE * g. MCUFWDL 0x80[7:0]=0 reset MCU ready status */ u32 value32 = 0; rtw_write8(padapter, REG_SYS_FUNC_EN + 1, 0x54); rtw_write8(padapter, REG_MCUFWDL, 0); #else /* * f. MCUFWDL 0x80[7:0]=0 reset MCU ready status * g. SYS_FUNC_EN 0x02[10]= 0 reset MCU register, (8051 reset) * h. SYS_FUNC_EN 0x02[15-12]= 5 reset MAC register, DCORE * i. SYS_FUNC_EN 0x02[10]= 1 enable MCU register, (8051 enable) */ u16 valu16 = 0; rtw_write8(padapter, REG_MCUFWDL, 0); valu16 = rtw_read16(padapter, REG_SYS_FUNC_EN); rtw_write16(padapter, REG_SYS_FUNC_EN, (valu16 & (~FEN_CPUEN)));/*reset MCU ,8051 */ valu16 = rtw_read16(padapter, REG_SYS_FUNC_EN) & 0x0FFF; rtw_write16(padapter, REG_SYS_FUNC_EN, (valu16 | (FEN_HWPDN | FEN_ELDR))); /*reset MAC */ valu16 = rtw_read16(padapter, REG_SYS_FUNC_EN); rtw_write16(padapter, REG_SYS_FUNC_EN, (valu16 | FEN_CPUEN));/*enable MCU ,8051 */ #endif } else { u8 retry_cnts = 0; /* 2010/08/12 MH For USB SS, we can not stop 8051 when we are trying to */ /* enter IPS/HW&SW radio off. For S3/S4/S5/Disable, we can stop 8051 because */ /* we will init FW when power on again. */ /*if(!pDevice->RegUsbSS) */ { /* If we want to SS mode, we can not reset 8051. */ if (rtw_read8(padapter, REG_MCUFWDL) & BIT1) { /*IF fw in RAM code, do reset */ if (pHalData->bFWReady) { /* 2010/08/25 MH According to RD alfred's suggestion, we need to disable other */ /* HRCV INT to influence 8051 reset. */ rtw_write8(padapter, REG_FWIMR, 0x20); /* 2011/02/15 MH According to Alex's suggestion, close mask to prevent incorrect FW write operation. */ rtw_write8(padapter, REG_FTIMR, 0x00); rtw_write8(padapter, REG_FSIMR, 0x00); rtw_write8(padapter, REG_HMETFR + 3, 0x20); /*8051 reset by self */ while ((retry_cnts++ < 100) && (FEN_CPUEN & rtw_read16(padapter, REG_SYS_FUNC_EN))) { rtw_udelay_os(50);/*us */ /* 2010/08/25 For test only We keep on reset 5051 to prevent fail. */ /*rtw_write8(padapter, REG_HMETFR+3, 0x20);//8051 reset by self */ } /*RT_ASSERT((retry_cnts < 100), ("8051 reset failed!\n")); */ if (retry_cnts >= 100) { /* if 8051 reset fail we trigger GPIO 0 for LA */ /*rtw_write32( padapter, */ /* REG_GPIO_PIN_CTRL, */ /* 0x00010100); */ /* 2010/08/31 MH According to Filen's info, if 8051 reset fail, reset MAC directly. */ rtw_write8(padapter, REG_SYS_FUNC_EN + 1, 0x50); /*Reset MAC and Enable 8051 */ rtw_mdelay_os(10); } } } rtw_write8(padapter, REG_SYS_FUNC_EN + 1, 0x54); /*Reset MAC and Enable 8051 */ rtw_write8(padapter, REG_MCUFWDL, 0); } } /*if(pDevice->RegUsbSS) */ /*bWithoutHWSM = TRUE; // Sugest by Filen and Issau. */ if (bWithoutHWSM) { /*HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); */ /* * Without HW auto state machine * SYS_CLKR 0x08[15:0] = 0x30A3 disable MAC clock * h. AFE_PLL_CTRL 0x28[7:0] = 0x80 disable AFE PLL * i. AFE_XTAL_CTRL 0x24[15:0] = 0x880F gated AFE DIG_CLOCK * j. SYS_ISO_CTRL 0x00[7:0] = 0xF9 isolated digital to PON */ /*rtw_write16(padapter, REG_SYS_CLKR, 0x30A3); */ /*if(!pDevice->RegUsbSS) */ /* 2011/01/26 MH SD4 Scott suggest to fix UNC-B cut bug. */ rtw_write16(padapter, REG_SYS_CLKR, 0x70A3); /*modify to 0x70A3 by Scott. */ rtw_write8(padapter, REG_AFE_PLL_CTRL, 0x80); rtw_write16(padapter, REG_AFE_XTAL_CTRL, 0x880F); /*if(!pDevice->RegUsbSS) */ rtw_write8(padapter, REG_SYS_ISO_CTRL, 0xF9); } else { /* Disable all RF/BB power */ rtw_write8(padapter, REG_RF_CTRL, 0x00); } } void _ResetDigitalProcedure1(PADAPTER padapter, BOOLEAN bWithoutHWSM) { _ResetDigitalProcedure1_8188F(padapter, bWithoutHWSM); } void _ResetDigitalProcedure2(PADAPTER padapter) { /*HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); */ /* * k. SYS_FUNC_EN 0x03[7:0] = 0x44 disable ELDR runction * l. SYS_CLKR 0x08[15:0] = 0x3083 disable ELDR clock * m. SYS_ISO_CTRL 0x01[7:0] = 0x83 isolated ELDR to PON */ /*rtw_write8(padapter, REG_SYS_FUNC_EN+1, 0x44); //marked by Scott. */ /* 2011/01/26 MH SD4 Scott suggest to fix UNC-B cut bug. */ rtw_write16(padapter, REG_SYS_CLKR, 0x70a3); /*modify to 0x70a3 by Scott. */ rtw_write8(padapter, REG_SYS_ISO_CTRL + 1, 0x82); /*modify to 0x82 by Scott. */ } void _DisableAnalog(PADAPTER padapter, BOOLEAN bWithoutHWSM) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); u16 value16 = 0; u8 value8 = 0; if (bWithoutHWSM) { /* * n. LDOA15_CTRL 0x20[7:0] = 0x04 disable A15 power * o. LDOV12D_CTRL 0x21[7:0] = 0x54 disable digital core power * r. When driver call disable, the ASIC will turn off remaining clock automatically */ rtw_write8(padapter, REG_LDOA15_CTRL, 0x04); /*rtw_write8(padapter, REG_LDOV12D_CTRL, 0x54); */ value8 = rtw_read8(padapter, REG_LDOV12D_CTRL); value8 &= (~LDV12_EN); rtw_write8(padapter, REG_LDOV12D_CTRL, value8); } /* * h. SPS0_CTRL 0x11[7:0] = 0x23 enter PFM mode * i. APS_FSMCO 0x04[15:0] = 0x4802 set USB suspend */ value8 = 0x23; rtw_write8(padapter, REG_SPS0_CTRL, value8); if (bWithoutHWSM) { /*value16 |= (APDM_HOST | PFM_ALDN); */ /* 2010/08/31 According to Filen description, we need to use HW to shut down 8051 automatically. */ /* Because suspend operation need the asistance of 8051 to wait for 3ms. */ value16 |= (APDM_HOST | AFSM_HSUS | PFM_ALDN); } else value16 |= (APDM_HOST | AFSM_HSUS | PFM_ALDN); rtw_write16(padapter, REG_APS_FSMCO, value16);/*0x4802 */ rtw_write8(padapter, REG_RSV_CTRL, 0x0e); #if 0 /*tynli_test for suspend mode. */ if (!bWithoutHWSM) rtw_write8(padapter, 0xfe10, 0x19); #endif } /* HW Auto state machine */ s32 CardDisableHWSM(PADAPTER padapter, u8 resetMCU) { int rtStatus = _SUCCESS; if (RTW_CANNOT_RUN(padapter)) return rtStatus; /*==== RF Off Sequence ==== */ _DisableRFAFEAndResetBB(padapter); /* ==== Reset digital sequence ====== */ _ResetDigitalProcedure1(padapter, _FALSE); /* ==== Pull GPIO PIN to balance level and LED control ====== */ _DisableGPIO(padapter); /* ==== Disable analog sequence === */ _DisableAnalog(padapter, _FALSE); return rtStatus; } /* without HW Auto state machine */ s32 CardDisableWithoutHWSM(PADAPTER padapter) { s32 rtStatus = _SUCCESS; if (RTW_CANNOT_RUN(padapter)) return rtStatus; /*==== RF Off Sequence ==== */ _DisableRFAFEAndResetBB(padapter); /* ==== Reset digital sequence ====== */ _ResetDigitalProcedure1(padapter, _TRUE); /* ==== Pull GPIO PIN to balance level and LED control ====== */ _DisableGPIO(padapter); /* ==== Reset digital sequence ====== */ _ResetDigitalProcedure2(padapter); /* ==== Disable analog sequence === */ _DisableAnalog(padapter, _TRUE); return rtStatus; } #endif /* CONFIG_USB_HCI || CONFIG_SDIO_HCI || CONFIG_GSPI_HCI */ void Hal_InitPGData( PADAPTER padapter, u8 *PROMContent) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); u32 i; u16 value16; if (_FALSE == pHalData->bautoload_fail_flag) { /* autoload OK. */ /*if (IS_BOOT_FROM_EEPROM(padapter)) */ if (_TRUE == pHalData->EepromOrEfuse) { /* Read all Content from EEPROM or EFUSE. */ for (i = 0; i < HWSET_MAX_SIZE_8188F; i += 2) { /*value16 = EF2Byte(ReadEEprom(pAdapter, (u16) (i>>1))); */ /**((u16*)(&PROMContent[i])) = value16; */ } } else { /* Read EFUSE real map to shadow. */ EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE); _rtw_memcpy((void *)PROMContent, (void *)pHalData->efuse_eeprom_data, HWSET_MAX_SIZE_8188F); } } else { /*autoload fail */ /*pHalData->AutoloadFailFlag = _TRUE; */ /*update to default value 0xFF */ if (_FALSE == pHalData->EepromOrEfuse) EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE); _rtw_memcpy((void *)PROMContent, (void *)pHalData->efuse_eeprom_data, HWSET_MAX_SIZE_8188F); } #ifdef CONFIG_EFUSE_CONFIG_FILE if (check_phy_efuse_tx_power_info_valid(padapter) == _FALSE) { if (Hal_readPGDataFromConfigFile(padapter) != _SUCCESS) RTW_ERR("invalid phy efuse and read from file fail, will use driver default!!\n"); } #endif } void Hal_EfuseParseIDCode( PADAPTER padapter, u8 *hwinfo ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); u16 EEPROMId; /* Checl 0x8129 again for making sure autoload status!! */ EEPROMId = le16_to_cpu(*((u16 *)hwinfo)); if (EEPROMId != RTL_EEPROM_ID) { RTW_INFO("EEPROM ID(%#x) is invalid!!\n", EEPROMId); pHalData->bautoload_fail_flag = _TRUE; } else pHalData->bautoload_fail_flag = _FALSE; } void Hal_EfuseParseTxPowerInfo_8188F( PADAPTER padapter, u8 *PROMContent, BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); TxPowerInfo24G pwrInfo24G; hal_load_txpwr_info(padapter, &pwrInfo24G, NULL, PROMContent); /* 2010/10/19 MH Add Regulator recognize for CU. */ if (!AutoLoadFail) { pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8188F] & 0x7); /*bit0~2 */ if (PROMContent[EEPROM_RF_BOARD_OPTION_8188F] == 0xFF) pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION & 0x7); /*bit0~2 */ } else pHalData->EEPROMRegulatory = 0; } void Hal_EfuseParseEEPROMVer_8188F( PADAPTER padapter, u8 *hwinfo, BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); if (!AutoLoadFail) pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_8188F]; else pHalData->EEPROMVersion = 1; } #if 0 /* Do not need for rtl8188f */ void Hal_EfuseParseVoltage_8188F( PADAPTER pAdapter, u8 *hwinfo, BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); /*_rtw_memcpy(pEEPROM->adjuseVoltageVal, &hwinfo[EEPROM_Voltage_ADDR_8188F], 1); */ RTW_INFO("%s hwinfo[EEPROM_Voltage_ADDR_8188F] =%02x\n", __func__, hwinfo[EEPROM_Voltage_ADDR_8188F]); pHalData->adjuseVoltageVal = (hwinfo[EEPROM_Voltage_ADDR_8188F] & 0xf0) >> 4; RTW_INFO("%s pHalData->adjuseVoltageVal =%x\n", __func__, pHalData->adjuseVoltageVal); } #endif void Hal_EfuseParseChnlPlan_8188F( PADAPTER padapter, u8 *hwinfo, BOOLEAN AutoLoadFail ) { hal_com_config_channel_plan( padapter , hwinfo ? &hwinfo[EEPROM_COUNTRY_CODE_8188F] : NULL , hwinfo ? hwinfo[EEPROM_ChannelPlan_8188F] : 0xFF , padapter->registrypriv.alpha2 , padapter->registrypriv.channel_plan , RTW_CHPLAN_WORLD_NULL , AutoLoadFail ); } void Hal_EfuseParseCustomerID_8188F( PADAPTER padapter, u8 *hwinfo, BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); if (!AutoLoadFail) pHalData->EEPROMCustomerID = hwinfo[EEPROM_CustomID_8188F]; else pHalData->EEPROMCustomerID = 0; } void Hal_EfuseParsePowerSavingMode_8188F( PADAPTER padapter, u8 *hwinfo, BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter); u8 tmpvalue; if (AutoLoadFail) { pwrctl->bHWPowerdown = _FALSE; pwrctl->bSupportRemoteWakeup = _FALSE; } else { /* hw power down mode selection , 0:rf-off ; 1:power down */ if (padapter->registrypriv.hwpdn_mode == 2) pwrctl->bHWPowerdown = (hwinfo[EEPROM_FEATURE_OPTION_8188F] & BIT4); else pwrctl->bHWPowerdown = padapter->registrypriv.hwpdn_mode; /* decide hw if support remote wakeup function */ /* if hw supported, 8051 (SIE) will generate WeakUP signal( D+/D- toggle) when autoresume */ #ifdef CONFIG_USB_HCI pwrctl->bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0_8188FU] & BIT1) ? _TRUE : _FALSE; #endif /* CONFIG_USB_HCI */ RTW_INFO("%s...bHWPwrPindetect(%x)-bHWPowerdown(%x) ,bSupportRemoteWakeup(%x)\n" , __FUNCTION__, pwrctl->bHWPwrPindetect, pwrctl->bHWPowerdown, pwrctl->bSupportRemoteWakeup); RTW_INFO("### PS params=> power_mgnt(%x),usbss_enable(%x) ###\n" , padapter->registrypriv.power_mgnt, padapter->registrypriv.usbss_enable); } } void Hal_EfuseParseAntennaDiversity_8188F( PADAPTER pAdapter, u8 *hwinfo, BOOLEAN AutoLoadFail ) { #ifdef CONFIG_ANTENNA_DIVERSITY PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter); struct registry_priv *registry_par = &pAdapter->registrypriv; /* default:rtw_antdiv_cfg, 0:OFF, 1:ON, 2:By EFUSE */ if (registry_par->antdiv_cfg == 2) { if (0x01 == hwinfo[EEPROM_RF_ANTENNA_OPT_8188F]) pHalData->AntDivCfg = 1; else pHalData->AntDivCfg = 0; } else if (registry_par->antdiv_cfg == 1) pHalData->AntDivCfg = 1; else pHalData->AntDivCfg = 0; /* If TRxAntDivType is AUTO in advanced setting, use EFUSE value instead. */ /* default:rtw_antdiv_type */ if (registry_par->antdiv_type == 0) { #if 0 pHalData->TRxAntDivType = hwinfo[EEPROM_RFE_OPTION_8188F]; if (pHalData->TRxAntDivType == 0xFF) pHalData->TRxAntDivType = S0S1_SW_ANTDIV; else RTW_INFO("%s: efuse[0x%x]=0x%02x is unknown type\n", __func__, EEPROM_RFE_OPTION_8188F, pHalData->TRxAntDivType); #else /* 8188F only intrnal switch S0S1 */ pHalData->TRxAntDivType = S0S1_SW_ANTDIV; #endif } else { /* 8188F only intrnal switch S0S1 */ pHalData->TRxAntDivType = S0S1_SW_ANTDIV; } RTW_INFO("%s: AntDivCfg=%d, AntDivType=%d\n", __func__, pHalData->AntDivCfg, pHalData->TRxAntDivType); #endif } void Hal_EfuseParseXtal_8188F( PADAPTER pAdapter, u8 *hwinfo, BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); if (!AutoLoadFail) { pHalData->crystal_cap = hwinfo[EEPROM_XTAL_8188F]; if (pHalData->crystal_cap == 0xFF) pHalData->crystal_cap = EEPROM_Default_CrystalCap_8188F; /*what value should 8812 set? */ } else pHalData->crystal_cap = EEPROM_Default_CrystalCap_8188F; } void Hal_EfuseParseThermalMeter_8188F( PADAPTER padapter, u8 *PROMContent, u8 AutoLoadFail ) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); /* */ /* ThermalMeter from EEPROM */ /* */ if (_FALSE == AutoLoadFail) pHalData->eeprom_thermal_meter = PROMContent[EEPROM_THERMAL_METER_8188F]; else pHalData->eeprom_thermal_meter = EEPROM_Default_ThermalMeter_8188F; if ((pHalData->eeprom_thermal_meter == 0xff) || (_TRUE == AutoLoadFail)) { pHalData->odmpriv.rf_calibrate_info.is_apk_thermal_meter_ignore = _TRUE; pHalData->eeprom_thermal_meter = EEPROM_Default_ThermalMeter_8188F; } } void Hal_EfuseParseKFreeData_8188F( PADAPTER Adapter, u8 *PROMContent, BOOLEAN AutoloadFail) { #ifdef CONFIG_RF_POWER_TRIM #define THERMAL_K_MEAN_OFFSET_8188F 5 /* 8188F FT thermal K mean value has +5 offset, it's special case */ HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct kfree_data_t *kfree_data = &pHalData->kfree_data; u8 pg_pwrtrim = 0xFF, pg_therm = 0xFF; efuse_OneByteRead(Adapter, PPG_BB_GAIN_2G_TXA_OFFSET_8188F, &pg_pwrtrim, _FALSE); efuse_OneByteRead(Adapter, PPG_THERMAL_OFFSET_8188F ,&pg_therm ,_FALSE); if (pg_pwrtrim != 0xFF) { kfree_data->bb_gain[BB_GAIN_2G][RF_PATH_A] = KFREE_BB_GAIN_2G_TX_OFFSET(pg_pwrtrim & PPG_BB_GAIN_2G_TX_OFFSET_MASK); kfree_data->flag |= KFREE_FLAG_ON; } if (pg_therm != 0xFF) { kfree_data->thermal = KFREE_THERMAL_OFFSET(pg_therm & PPG_THERMAL_OFFSET_MASK) - THERMAL_K_MEAN_OFFSET_8188F; if (GET_PG_KFREE_THERMAL_K_ON_8188F(PROMContent)) kfree_data->flag |= KFREE_FLAG_THERMAL_K_ON; } if (kfree_data->flag & KFREE_FLAG_THERMAL_K_ON) pHalData->eeprom_thermal_meter -= kfree_data->thermal; RTW_INFO("kfree Pwr Trim flag:%u\n", kfree_data->flag); if (kfree_data->flag & KFREE_FLAG_ON) RTW_INFO("bb_gain:%d\n", kfree_data->bb_gain[BB_GAIN_2G][RF_PATH_A]); if (kfree_data->flag & KFREE_FLAG_THERMAL_K_ON) RTW_INFO("thermal:%d\n", kfree_data->thermal); #endif /*CONFIG_RF_POWER_TRIM */ } u8 BWMapping_8188F( PADAPTER Adapter, struct pkt_attrib *pattrib ) { u8 BWSettingOfDesc = 0; PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter); /*RTW_INFO("BWMapping pHalData->current_channel_bw %d, pattrib->bwmode %d\n",pHalData->current_channel_bw,pattrib->bwmode); */ if (pHalData->current_channel_bw == CHANNEL_WIDTH_80) { if (pattrib->bwmode == CHANNEL_WIDTH_80) BWSettingOfDesc = 2; else if (pattrib->bwmode == CHANNEL_WIDTH_40) BWSettingOfDesc = 1; else BWSettingOfDesc = 0; } else if (pHalData->current_channel_bw == CHANNEL_WIDTH_40) { if ((pattrib->bwmode == CHANNEL_WIDTH_40) || (pattrib->bwmode == CHANNEL_WIDTH_80)) BWSettingOfDesc = 1; else BWSettingOfDesc = 0; } else BWSettingOfDesc = 0; /*if(pTcb->bBTTxPacket) */ /* BWSettingOfDesc = 0; */ return BWSettingOfDesc; } u8 SCMapping_8188F(PADAPTER Adapter, struct pkt_attrib *pattrib) { u8 SCSettingOfDesc = 0; PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter); /*RTW_INFO("SCMapping: pHalData->current_channel_bw %d, pHalData->nCur80MhzPrimeSC %d, pHalData->nCur40MhzPrimeSC %d\n",pHalData->current_channel_bw,pHalData->nCur80MhzPrimeSC,pHalData->nCur40MhzPrimeSC); */ if (pHalData->current_channel_bw == CHANNEL_WIDTH_80) { if (pattrib->bwmode == CHANNEL_WIDTH_80) SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE; else if (pattrib->bwmode == CHANNEL_WIDTH_40) { if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) SCSettingOfDesc = VHT_DATA_SC_40_LOWER_OF_80MHZ; else if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) SCSettingOfDesc = VHT_DATA_SC_40_UPPER_OF_80MHZ; else RTW_INFO("SCMapping: DONOT CARE Mode Setting\n"); } else { if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)) SCSettingOfDesc = VHT_DATA_SC_20_LOWEST_OF_80MHZ; else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)) SCSettingOfDesc = VHT_DATA_SC_20_LOWER_OF_80MHZ; else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)) SCSettingOfDesc = VHT_DATA_SC_20_UPPER_OF_80MHZ; else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)) SCSettingOfDesc = VHT_DATA_SC_20_UPPERST_OF_80MHZ; else RTW_INFO("SCMapping: DONOT CARE Mode Setting\n"); } } else if (pHalData->current_channel_bw == CHANNEL_WIDTH_40) { /*RTW_INFO("SCMapping: HT Case: pHalData->current_channel_bw %d, pHalData->nCur40MhzPrimeSC %d\n",pHalData->current_channel_bw,pHalData->nCur40MhzPrimeSC); */ if (pattrib->bwmode == CHANNEL_WIDTH_40) SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE; else if (pattrib->bwmode == CHANNEL_WIDTH_20) { if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) SCSettingOfDesc = VHT_DATA_SC_20_UPPER_OF_80MHZ; else if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) SCSettingOfDesc = VHT_DATA_SC_20_LOWER_OF_80MHZ; else SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE; } } else SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE; return SCSettingOfDesc; } #if defined(CONFIG_CONCURRENT_MODE) void fill_txdesc_force_bmc_camid(struct pkt_attrib *pattrib, u8 *ptxdesc) { if ((pattrib->encrypt > 0) && (!pattrib->bswenc) && (pattrib->bmc_camid != INVALID_SEC_MAC_CAM_ID)) { SET_TX_DESC_EN_DESC_ID_8188F(ptxdesc, 1); SET_TX_DESC_MACID_8188F(ptxdesc, pattrib->bmc_camid); } } #endif static u8 fill_txdesc_sectype(struct pkt_attrib *pattrib) { u8 sectype = 0; if ((pattrib->encrypt > 0) && !pattrib->bswenc) { switch (pattrib->encrypt) { /* SEC_TYPE */ case _WEP40_: case _WEP104_: case _TKIP_: case _TKIP_WTMIC_: sectype = 1; break; #ifdef CONFIG_WAPI_SUPPORT case _SMS4_: sectype = 2; break; #endif case _AES_: sectype = 3; break; case _NO_PRIVACY_: default: break; } } return sectype; } static void fill_txdesc_vcs_8188f(PADAPTER padapter, struct pkt_attrib *pattrib, u8 *ptxdesc) { /*RTW_INFO("cvs_mode=%d\n", pattrib->vcs_mode); */ SET_TX_DESC_HW_RTS_ENABLE_8188F(ptxdesc, 0); switch (pattrib->vcs_mode) { case RTS_CTS: SET_TX_DESC_RTS_ENABLE_8188F(ptxdesc, 1); break; case CTS_TO_SELF: SET_TX_DESC_CTS2SELF_8188F(ptxdesc, 1); break; case NONE_VCS: default: break; } #if 1 /* TODO: */ /* Protection mode related */ if (pattrib->vcs_mode) { /* SET_TX_DESC_CCA_RTS_8188F(ptxdesc, pTcb->RTSCCA); */ SET_TX_DESC_RTS_RATE_8188F(ptxdesc, 8); /*TODO: Hardcode?, RTS Rate=24M (8) */ SET_TX_DESC_RTS_RATE_FB_LIMIT_8188F(ptxdesc, 0xF); /* TODO: PROTECTION_MODE ?? */ if (padapter->mlmeextpriv.mlmext_info.preamble_mode == PREAMBLE_SHORT) SET_TX_DESC_RTS_SHORT_8188F(ptxdesc, 1); /* Set RTS BW */ if (pattrib->ht_en) SET_TX_DESC_RTS_SC_8188F(ptxdesc, SCMapping_8188F(padapter, pattrib)); } #endif } static void fill_txdesc_phy_8188f(PADAPTER padapter, struct pkt_attrib *pattrib, u8 *ptxdesc) { /*RTW_INFO("bwmode=%d, ch_off=%d\n", pattrib->bwmode, pattrib->ch_offset); */ if (pattrib->ht_en) { SET_TX_DESC_DATA_BW_8188F(ptxdesc, BWMapping_8188F(padapter, pattrib)); SET_TX_DESC_DATA_SC_8188F(ptxdesc, SCMapping_8188F(padapter, pattrib)); } } static void rtl8188f_fill_default_txdesc( struct xmit_frame *pxmitframe, u8 *pbuf) { PADAPTER padapter; HAL_DATA_TYPE *pHalData; struct mlme_ext_priv *pmlmeext; struct mlme_ext_info *pmlmeinfo; struct pkt_attrib *pattrib; s32 bmcst; _rtw_memset(pbuf, 0, TXDESC_SIZE); padapter = pxmitframe->padapter; pHalData = GET_HAL_DATA(padapter); pmlmeext = &padapter->mlmeextpriv; pmlmeinfo = &(pmlmeext->mlmext_info); pattrib = &pxmitframe->attrib; bmcst = IS_MCAST(pattrib->ra); if (pxmitframe->frame_tag == DATA_FRAMETAG) { u8 drv_userate = 0; SET_TX_DESC_MACID_8188F(pbuf, pattrib->mac_id); SET_TX_DESC_RATE_ID_8188F(pbuf, pattrib->raid); SET_TX_DESC_QUEUE_SEL_8188F(pbuf, pattrib->qsel); SET_TX_DESC_SEQ_8188F(pbuf, pattrib->seqnum); SET_TX_DESC_SEC_TYPE_8188F(pbuf, fill_txdesc_sectype(pattrib)); #if defined(CONFIG_CONCURRENT_MODE) if (bmcst) fill_txdesc_force_bmc_camid(pattrib, pbuf); #endif fill_txdesc_vcs_8188f(padapter, pattrib, pbuf); #ifdef CONFIG_P2P if (!rtw_p2p_chk_state(&padapter->wdinfo, P2P_STATE_NONE)) { if (pattrib->icmp_pkt == 1 && padapter->registrypriv.wifi_spec == 1) drv_userate = 1; } #endif if ((pattrib->ether_type != 0x888e) && (pattrib->ether_type != 0x0806) && (pattrib->ether_type != 0x88B4) && (pattrib->dhcp_pkt != 1) && (drv_userate != 1) #ifdef CONFIG_AUTO_AP_MODE && (pattrib->pctrl != _TRUE) #endif ) { /* Non EAP & ARP & DHCP type data packet */ if (pattrib->ampdu_en == _TRUE) { SET_TX_DESC_AGG_ENABLE_8188F(pbuf, 1); SET_TX_DESC_MAX_AGG_NUM_8188F(pbuf, 0x1F); SET_TX_DESC_AMPDU_DENSITY_8188F(pbuf, pattrib->ampdu_spacing); } else SET_TX_DESC_AGG_BREAK_8188F(pbuf, 1); fill_txdesc_phy_8188f(padapter, pattrib, pbuf); SET_TX_DESC_DATA_RATE_FB_LIMIT_8188F(pbuf, 0x1F); if (pHalData->fw_ractrl == _FALSE) { SET_TX_DESC_USE_RATE_8188F(pbuf, 1); if (pHalData->INIDATA_RATE[pattrib->mac_id] & BIT(7)) SET_TX_DESC_DATA_SHORT_8188F(pbuf, 1); SET_TX_DESC_TX_RATE_8188F(pbuf, pHalData->INIDATA_RATE[pattrib->mac_id] & 0x7F); } if (bmcst) { SET_TX_DESC_USE_RATE_8188F(pbuf, 1); SET_TX_DESC_TX_RATE_8188F(pbuf, MRateToHwRate(pattrib->rate)); SET_TX_DESC_DISABLE_FB_8188F(pbuf, 1); } /* modify data rate by iwpriv */ if (padapter->fix_rate != 0xFF) { SET_TX_DESC_USE_RATE_8188F(pbuf, 1); if (padapter->fix_rate & BIT(7)) SET_TX_DESC_DATA_SHORT_8188F(pbuf, 1); SET_TX_DESC_TX_RATE_8188F(pbuf, padapter->fix_rate & 0x7F); if (!padapter->data_fb) SET_TX_DESC_DISABLE_FB_8188F(pbuf, 1); } if (pattrib->ldpc) SET_TX_DESC_DATA_LDPC_8188F(pbuf, 1); if (pattrib->stbc) SET_TX_DESC_DATA_STBC_8188F(pbuf, 1); #ifdef CONFIG_CMCC_TEST SET_TX_DESC_DATA_SHORT_8188F(pbuf, 1); /* use cck short premble */ #endif } else { /* EAP data packet and ARP packet. */ /* Use the 1M data rate to send the EAP/ARP packet. */ /* This will maybe make the handshake smooth. */ SET_TX_DESC_AGG_BREAK_8188F(pbuf, 1); SET_TX_DESC_USE_RATE_8188F(pbuf, 1); if (pmlmeinfo->preamble_mode == PREAMBLE_SHORT) SET_TX_DESC_DATA_SHORT_8188F(pbuf, 1); #ifdef CONFIG_IP_R_MONITOR if((pattrib->ether_type == ETH_P_ARP) && (IsSupportedTxOFDM(padapter->registrypriv.wireless_mode))) SET_TX_DESC_TX_RATE_8188F(pbuf, MRateToHwRate(IEEE80211_OFDM_RATE_6MB)); else #endif/*CONFIG_IP_R_MONITOR*/ SET_TX_DESC_TX_RATE_8188F(pbuf, MRateToHwRate(pmlmeext->tx_rate)); RTW_INFO(FUNC_ADPT_FMT ": SP Packet(0x%04X) rate=0x%x SeqNum = %d\n", FUNC_ADPT_ARG(padapter), pattrib->ether_type, MRateToHwRate(pmlmeext->tx_rate), pattrib->seqnum); } #if defined(CONFIG_USB_TX_AGGREGATION) || defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI) SET_TX_DESC_USB_TXAGG_NUM_8188F(pbuf, pxmitframe->agg_num); #endif #ifdef CONFIG_TDLS #ifdef CONFIG_XMIT_ACK /* CCX-TXRPT ack for xmit mgmt frames. */ if (pxmitframe->ack_report) { #ifdef DBG_CCX RTW_INFO("%s set spe_rpt\n", __func__); #endif SET_TX_DESC_SPE_RPT_8188F(pbuf, 1); SET_TX_DESC_SW_DEFINE_8188F(pbuf, (u8)(GET_PRIMARY_ADAPTER(padapter)->xmitpriv.seq_no)); } #endif /* CONFIG_XMIT_ACK */ #endif } else if (pxmitframe->frame_tag == MGNT_FRAMETAG) { SET_TX_DESC_MACID_8188F(pbuf, pattrib->mac_id); SET_TX_DESC_QUEUE_SEL_8188F(pbuf, pattrib->qsel); SET_TX_DESC_RATE_ID_8188F(pbuf, pattrib->raid); SET_TX_DESC_SEQ_8188F(pbuf, pattrib->seqnum); SET_TX_DESC_USE_RATE_8188F(pbuf, 1); SET_TX_DESC_MBSSID_8188F(pbuf, pattrib->mbssid & 0xF); SET_TX_DESC_RETRY_LIMIT_ENABLE_8188F(pbuf, 1); if (pattrib->retry_ctrl == _TRUE) { /* Nothing */ SET_TX_DESC_DATA_RETRY_LIMIT_8188F(pbuf, 6); } else { /* Nothing */ SET_TX_DESC_DATA_RETRY_LIMIT_8188F(pbuf, 12); } SET_TX_DESC_TX_RATE_8188F(pbuf, MRateToHwRate(pattrib->rate)); #ifdef CONFIG_XMIT_ACK /* CCX-TXRPT ack for xmit mgmt frames. */ if (pxmitframe->ack_report) { #ifdef DBG_CCX RTW_INFO("%s set spe_rpt\n", __func__); #endif SET_TX_DESC_SPE_RPT_8188F(pbuf, 1); SET_TX_DESC_SW_DEFINE_8188F(pbuf, (u8)(GET_PRIMARY_ADAPTER(padapter)->xmitpriv.seq_no)); } #endif /* CONFIG_XMIT_ACK */ } else if (pxmitframe->frame_tag == TXAGG_FRAMETAG) { } #ifdef CONFIG_MP_INCLUDED else if (pxmitframe->frame_tag == MP_FRAMETAG) { fill_txdesc_for_mp(padapter, pbuf); } #endif else { SET_TX_DESC_MACID_8188F(pbuf, pattrib->mac_id); SET_TX_DESC_RATE_ID_8188F(pbuf, pattrib->raid); SET_TX_DESC_QUEUE_SEL_8188F(pbuf, pattrib->qsel); SET_TX_DESC_SEQ_8188F(pbuf, pattrib->seqnum); SET_TX_DESC_USE_RATE_8188F(pbuf, 1); SET_TX_DESC_TX_RATE_8188F(pbuf, MRateToHwRate(pmlmeext->tx_rate)); } SET_TX_DESC_PKT_SIZE_8188F(pbuf, pattrib->last_txcmdsz); { u8 pkt_offset, offset; pkt_offset = 0; offset = TXDESC_SIZE; #ifdef CONFIG_USB_HCI pkt_offset = pxmitframe->pkt_offset; offset += (pxmitframe->pkt_offset >> 3); #endif /* CONFIG_USB_HCI */ #ifdef CONFIG_TX_EARLY_MODE if (pxmitframe->frame_tag == DATA_FRAMETAG) { pkt_offset = 1; offset += EARLY_MODE_INFO_SIZE; } #endif /* CONFIG_TX_EARLY_MODE */ SET_TX_DESC_PKT_OFFSET_8188F(pbuf, pkt_offset); SET_TX_DESC_OFFSET_8188F(pbuf, offset); } if (bmcst) SET_TX_DESC_BMC_8188F(pbuf, 1); /* 2009.11.05. tynli_test. Suggested by SD4 Filen for FW LPS. */ /* (1) The sequence number of each non-Qos frame / broadcast / multicast / */ /* mgnt frame should be controlled by Hw because Fw will also send null data */ /* which we cannot control when Fw LPS enable. */ /* --> default enable non-Qos data sequense number. 2010.06.23. by tynli. */ /* (2) Enable HW SEQ control for beacon packet, because we use Hw beacon. */ /* (3) Use HW Qos SEQ to control the seq num of Ext port non-Qos packets. */ /* 2010.06.23. Added by tynli. */ if (!pattrib->qos_en) SET_TX_DESC_HWSEQ_EN_8188F(pbuf, 1); #ifdef CONFIG_ANTENNA_DIVERSITY if (!bmcst && pattrib->psta) odm_set_tx_ant_by_tx_info(adapter_to_phydm(padapter), pbuf, pattrib->psta->cmn.mac_id); #endif } /* * Description: * * Parameters: * pxmitframe xmitframe * pbuf where to fill tx desc */ void rtl8188f_update_txdesc(struct xmit_frame *pxmitframe, u8 *pbuf) { rtl8188f_fill_default_txdesc(pxmitframe, pbuf); #if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI) rtl8188f_cal_txdesc_chksum((struct tx_desc *)pbuf); #endif } static void hw_var_set_monitor(PADAPTER Adapter, u8 variable, u8 *val) { u32 rcr_bits; u16 value_rxfltmap2; PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter); struct mlme_priv *pmlmepriv = &(Adapter->mlmepriv); if (*((u8 *)val) == _HW_STATE_MONITOR_) { #ifdef CONFIG_CUSTOMER_ALIBABA_GENERAL rcr_bits = RCR_AAP | RCR_APM | RCR_AM | RCR_AB | RCR_APWRMGT | RCR_ADF | RCR_AMF | RCR_APP_PHYST_RXFF; #else /* Receive all type */ rcr_bits = RCR_AAP | RCR_APM | RCR_AM | RCR_AB | RCR_APWRMGT | RCR_ADF | RCR_ACF | RCR_AMF | RCR_APP_PHYST_RXFF; /* Append FCS */ rcr_bits |= RCR_APPFCS; #endif #if 0 /* CRC and ICV packet will drop in recvbuf2recvframe() We no turn on it. */ rcr_bits |= (RCR_ACRC32 | RCR_AICV); #endif rtw_hal_get_hwreg(Adapter, HW_VAR_RCR, (u8 *)&pHalData->rcr_backup); rtw_hal_set_hwreg(Adapter, HW_VAR_RCR, (u8 *)&rcr_bits); /* Receive all data frames */ value_rxfltmap2 = 0xFFFF; rtw_write16(Adapter, REG_RXFLTMAP2, value_rxfltmap2); #if 0 /* tx pause */ rtw_write8(padapter, REG_TXPAUSE, 0xFF); #endif } else { /* do nothing */ } } static void hw_var_set_opmode(PADAPTER padapter, u8 variable, u8 *val) { u8 val8; u8 mode = *((u8 *)val); static u8 isMonitor = _FALSE; PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); if (isMonitor == _TRUE) { /* reset RCR from backup */ rtw_hal_set_hwreg(padapter, HW_VAR_RCR, (u8 *)&pHalData->rcr_backup); rtw_hal_rcr_set_chk_bssid(padapter, MLME_ACTION_NONE); isMonitor = _FALSE; } if (mode == _HW_STATE_MONITOR_) { isMonitor = _TRUE; /* set net_type */ Set_MSR(padapter, _HW_STATE_NOLINK_); hw_var_set_monitor(padapter, variable, val); return; } rtw_hal_set_hwreg(padapter, HW_VAR_MAC_ADDR, adapter_mac_addr(padapter)); /* set mac addr to mac register */ #ifdef CONFIG_CONCURRENT_MODE if (padapter->hw_port == HW_PORT1) { /* disable Port1 TSF update */ rtw_iface_disable_tsf_update(padapter); Set_MSR(padapter, mode); RTW_INFO("#### %s()-%d hw_port(%d) mode=%d ####\n", __func__, __LINE__, padapter->hw_port, mode); if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) { if (!rtw_mi_get_ap_num(padapter) && !rtw_mi_get_mesh_num(padapter)) { StopTxBeacon(padapter); #ifdef CONFIG_PCI_HCI UpdateInterruptMask8188FE(padapter, 0, 0, RT_BCN_INT_MASKS, 0); #else /* !CONFIG_PCI_HCI */ #ifdef CONFIG_INTERRUPT_BASED_TXBCN #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT rtw_write8(padapter, REG_DRVERLYINT, 0x05);/*restore early int time to 5ms */ UpdateInterruptMask8188FU(padapter, _TRUE, 0, IMR_BCNDMAINT0_8188F); #endif /* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */ #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR UpdateInterruptMask8188FU(padapter, _TRUE , 0, (IMR_TXBCN0ERR_8188F | IMR_TXBCN0OK_8188F)); #endif /* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */ #endif /* CONFIG_INTERRUPT_BASED_TXBCN */ #endif /* !CONFIG_PCI_HCI */ } /* disable atim wnd and disable beacon function */ rtw_write8(padapter, REG_BCN_CTRL_1, DIS_TSF_UDT | DIS_ATIM); } else if (mode == _HW_STATE_ADHOC_) { ResumeTxBeacon(padapter); rtw_write8(padapter, REG_BCN_CTRL_1, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB); } else if (mode == _HW_STATE_AP_) { #ifdef CONFIG_PCI_HCI UpdateInterruptMask8188FE(padapter, RT_BCN_INT_MASKS, 0, 0, 0); #else /* !CONFIG_PCI_HCI */ #ifdef CONFIG_INTERRUPT_BASED_TXBCN #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT UpdateInterruptMask8188FU(padapter, _TRUE, IMR_BCNDMAINT0_8188F, 0); #endif /* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */ #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR UpdateInterruptMask8188FU(padapter, _TRUE, (IMR_TXBCN0ERR_8188F | IMR_TXBCN0OK_8188F), 0); #endif /* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */ #endif /* CONFIG_INTERRUPT_BASED_TXBCN */ #endif /* !CONFIG_PCI_HCI */ rtw_write8(padapter, REG_BCN_CTRL_1, DIS_TSF_UDT | DIS_BCNQ_SUB); /* enable to rx data frame */ rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF); /* enable to rx ps-poll */ rtw_write16(padapter, REG_RXFLTMAP1, 0x0400); /* Beacon Control related register for first time */ rtw_write8(padapter, REG_BCNDMATIM, 0x02); /* 2ms */ /*rtw_write8(padapter, REG_BCN_MAX_ERR, 0xFF); */ rtw_write8(padapter, REG_ATIMWND_1, 0x0a); /* 10ms for port1 */ rtw_write16(padapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */ /* reset TSF2 */ rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(1)); /* enable BCN1 Function for if2 */ /* don't enable update TSF1 for if2 (due to TSF update when beacon/probe rsp are received) */ rtw_write8(padapter, REG_BCN_CTRL_1, (DIS_TSF_UDT | EN_BCN_FUNCTION | EN_TXBCN_RPT | DIS_BCNQ_SUB)); /*SW_BCN_SEL - Port1 */ /*rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2)|BIT4); */ rtw_hal_set_hwreg(padapter, HW_VAR_DL_BCN_SEL, NULL); /* select BCN on port 1 */ rtw_write8(padapter, REG_CCK_CHECK_8188F, (rtw_read8(padapter, REG_CCK_CHECK_8188F) | BIT_BCN_PORT_SEL)); if (!rtw_mi_buddy_check_mlmeinfo_state(padapter, WIFI_FW_ASSOC_SUCCESS)) { val8 = rtw_read8(padapter, REG_BCN_CTRL); val8 &= ~EN_BCN_FUNCTION; rtw_write8(padapter, REG_BCN_CTRL, val8); } /*BCN1 TSF will sync to BCN0 TSF with offset(0x518) if if1_sta linked */ /*rtw_write8(padapter, REG_BCN_CTRL_1, rtw_read8(padapter, REG_BCN_CTRL_1)|BIT(5)); */ /*rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(3)); */ /*dis BCN0 ATIM WND if if1 is station */ rtw_write8(padapter, REG_BCN_CTRL, rtw_read8(padapter, REG_BCN_CTRL) | DIS_ATIM); #ifdef CONFIG_TSF_RESET_OFFLOAD /* Reset TSF for STA+AP concurrent mode */ if (DEV_STA_LD_NUM(adapter_to_dvobj(padapter))) { if (rtw_hal_reset_tsf(padapter, HW_PORT1) == _FAIL) RTW_INFO("ERROR! %s()-%d: Reset port1 TSF fail\n", __func__, __LINE__); } #endif /* CONFIG_TSF_RESET_OFFLOAD */ } } else /*else for port0 */ #endif /* CONFIG_CONCURRENT_MODE */ { #ifdef CONFIG_MI_WITH_MBSSID_CAM /*For Port0 - MBSS CAM*/ hw_var_set_opmode_mbid(padapter, mode); #else /* disable Port0 TSF update */ rtw_iface_disable_tsf_update(padapter); /* set net_type */ Set_MSR(padapter, mode); RTW_INFO("#### %s() -%d hw_port(0) mode = %d ####\n", __func__, __LINE__, mode); if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) { #ifdef CONFIG_CONCURRENT_MODE if (!rtw_mi_get_ap_num(padapter) && !rtw_mi_get_mesh_num(padapter)) /* suspect code indent for conditional statements */ #endif /* CONFIG_CONCURRENT_MODE */ { StopTxBeacon(padapter); #ifdef CONFIG_PCI_HCI UpdateInterruptMask8188FE(padapter, 0, 0, RT_BCN_INT_MASKS, 0); #else /* !CONFIG_PCI_HCI */ #ifdef CONFIG_INTERRUPT_BASED_TXBCN #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT rtw_write8(padapter, REG_DRVERLYINT, 0x05); /* restore early int time to 5ms */ UpdateInterruptMask8812AU(padapter, _TRUE, 0, IMR_BCNDMAINT0_8188F); #endif /* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */ #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR UpdateInterruptMask8812AU(padapter, _TRUE , 0, (IMR_TXBCN0ERR_8188F | IMR_TXBCN0OK_8188F)); #endif /* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */ #endif /* CONFIG_INTERRUPT_BASED_TXBCN */ #endif /* !CONFIG_PCI_HCI */ } /* disable atim wnd */ rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_ATIM); /*rtw_write8(padapter,REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION); */ } else if (mode == _HW_STATE_ADHOC_) { ResumeTxBeacon(padapter); rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB); } else if (mode == _HW_STATE_AP_) { #ifdef CONFIG_PCI_HCI UpdateInterruptMask8188FE(padapter, RT_BCN_INT_MASKS, 0, 0, 0); #else /* !CONFIG_PCI_HCI */ #ifdef CONFIG_INTERRUPT_BASED_TXBCN #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT UpdateInterruptMask8188FU(padapter, _TRUE , IMR_BCNDMAINT0_8188F, 0); #endif /* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */ #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR UpdateInterruptMask8188FU(padapter, _TRUE , (IMR_TXBCN0ERR_8188F | IMR_TXBCN0OK_8188F), 0); #endif /* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */ #endif /* CONFIG_INTERRUPT_BASED_TXBCN */ #endif rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT | DIS_BCNQ_SUB); /*enable to rx data frame */ rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF); /*enable to rx ps-poll */ rtw_write16(padapter, REG_RXFLTMAP1, 0x0400); /*Beacon Control related register for first time */ rtw_write8(padapter, REG_BCNDMATIM, 0x02); /* 2ms */ /*rtw_write8(padapter, REG_BCN_MAX_ERR, 0xFF); */ rtw_write8(padapter, REG_ATIMWND, 0x0c); /* 12ms */ rtw_write16(padapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */ /*reset TSF */ rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0)); /*enable BCN0 Function for if1 */ /*don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */ rtw_write8(padapter, REG_BCN_CTRL, (DIS_TSF_UDT | EN_BCN_FUNCTION | EN_TXBCN_RPT | DIS_BCNQ_SUB)); /*SW_BCN_SEL - Port0 */ /*rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) & ~BIT4); */ rtw_hal_set_hwreg(padapter, HW_VAR_DL_BCN_SEL, NULL); /* select BCN on port 0 */ rtw_write8(padapter, REG_CCK_CHECK_8188F, (rtw_read8(padapter, REG_CCK_CHECK_8188F) & ~BIT_BCN_PORT_SEL)); #ifdef CONFIG_CONCURRENT_MODE if (!rtw_mi_buddy_check_mlmeinfo_state(padapter, WIFI_FW_ASSOC_SUCCESS)) { val8 = rtw_read8(padapter, REG_BCN_CTRL_1); val8 &= ~EN_BCN_FUNCTION; rtw_write8(padapter, REG_BCN_CTRL_1, val8); } #endif /* CONFIG_CONCURRENT_MODE */ /* dis BCN1 ATIM WND if if2 is station */ val8 = rtw_read8(padapter, REG_BCN_CTRL_1); val8 |= DIS_ATIM; rtw_write8(padapter, REG_BCN_CTRL_1, val8); #ifdef CONFIG_TSF_RESET_OFFLOAD /* Reset TSF for STA+AP concurrent mode */ if (DEV_STA_LD_NUM(adapter_to_dvobj(padapter))) { if (rtw_hal_reset_tsf(padapter, HW_PORT0) == _FAIL) RTW_INFO("ERROR! %s()-%d: Reset port0 TSF fail\n", __func__, __LINE__); } #endif /* CONFIG_TSF_RESET_OFFLOAD */ } #endif } } void CCX_FwC2HTxRpt_8188f(PADAPTER padapter, u8 *pdata, u8 len) { u8 seq_no; #define GET_8188F_C2H_TX_RPT_LIFE_TIME_OVER(_Header) LE_BITS_TO_1BYTE((_Header + 0), 6, 1) #define GET_8188F_C2H_TX_RPT_RETRY_OVER(_Header) LE_BITS_TO_1BYTE((_Header + 0), 7, 1) /*RTW_INFO("%s, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", __func__, */ /* *pdata, *(pdata+1), *(pdata+2), *(pdata+3), *(pdata+4), *(pdata+5), *(pdata+6), *(pdata+7)); */ seq_no = *(pdata + 6); #ifdef CONFIG_XMIT_ACK if (GET_8188F_C2H_TX_RPT_RETRY_OVER(pdata) | GET_8188F_C2H_TX_RPT_LIFE_TIME_OVER(pdata)) rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL); /* else if(seq_no != padapter->xmitpriv.seq_no) { RTW_INFO("tx_seq_no=%d, rpt_seq_no=%d\n", padapter->xmitpriv.seq_no, seq_no); rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL); } */ else rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_SUCCESS); #endif } static s32 c2h_handler_8188f(_adapter *adapter, u8 id, u8 seq, u8 plen, u8 *payload) { s32 ret = _SUCCESS; switch (id) { case C2H_CCX_TX_RPT: CCX_FwC2HTxRpt_8188f(adapter, payload, plen); break; default: ret = _FAIL; break; } return ret; } void rtl8188f_set_pll_ref_clk_sel(_adapter *adapter, u8 sel) { u8 value8; value8 = rtw_read8(adapter, REG_MAC_PLL_CTRL_EXT_8188F); if ((value8 & 0x0F) != (sel & 0x0F)) { u16 value16; u8 ori_bit_wlock_2c; value16 = rtw_read16(adapter, REG_RSV_CTRL_8188F); ori_bit_wlock_2c = (value16 & BIT8) ? 1 : 0; if (ori_bit_wlock_2c) { value16 &= ~BIT8; rtw_write16(adapter, REG_RSV_CTRL_8188F, value16); } RTW_PRINT("switch pll_ref_clk_sel from 0x%x to 0x%x\n" , (value8 & 0x0F), (sel & 0x0F)); value8 = (value8 & 0xF0) | (sel & 0x0F); rtw_write8(adapter, REG_MAC_PLL_CTRL_EXT_8188F, value8); if (ori_bit_wlock_2c) { value16 |= BIT8; rtw_write16(adapter, REG_RSV_CTRL_8188F, value16); } } } u8 SetHwReg8188F(PADAPTER padapter, u8 variable, u8 *val) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); u8 ret = _SUCCESS; u8 val8; u16 val16; u32 val32; switch (variable) { case HW_VAR_SET_OPMODE: hw_var_set_opmode(padapter, variable, val); break; case HW_VAR_BASIC_RATE: rtw_var_set_basic_rate(padapter, val); break; case HW_VAR_TXPAUSE: rtw_write8(padapter, REG_TXPAUSE, *val); break; case HW_VAR_SLOT_TIME: rtw_write8(padapter, REG_SLOT, *val); break; case HW_VAR_RESP_SIFS: #if 0 /* SIFS for OFDM Data ACK */ rtw_write8(padapter, REG_SIFS_CTX + 1, val[0]); /* SIFS for OFDM consecutive tx like CTS data! */ rtw_write8(padapter, REG_SIFS_TRX + 1, val[1]); rtw_write8(padapter, REG_SPEC_SIFS + 1, val[0]); rtw_write8(padapter, REG_MAC_SPEC_SIFS + 1, val[0]); /* 20100719 Joseph: Revise SIFS setting due to Hardware register definition change. */ rtw_write8(padapter, REG_R2T_SIFS + 1, val[0]); rtw_write8(padapter, REG_T2T_SIFS + 1, val[0]); #else /*SIFS_Timer = 0x0a0a0808; */ /*RESP_SIFS for CCK */ rtw_write8(padapter, REG_RESP_SIFS_CCK, val[0]); /* SIFS_T2T_CCK (0x08) */ rtw_write8(padapter, REG_RESP_SIFS_CCK + 1, val[1]); /*SIFS_R2T_CCK(0x08) */ /*RESP_SIFS for OFDM */ rtw_write8(padapter, REG_RESP_SIFS_OFDM, val[2]); /*SIFS_T2T_OFDM (0x0a) */ rtw_write8(padapter, REG_RESP_SIFS_OFDM + 1, val[3]); /*SIFS_R2T_OFDM(0x0a) */ #endif break; case HW_VAR_ACK_PREAMBLE: { u8 regTmp; u8 bShortPreamble = *val; /* Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */ /*regTmp = (pHalData->nCur40MhzPrimeSC)<<5; */ regTmp = 0; if (bShortPreamble) regTmp |= 0x80; rtw_write8(padapter, REG_RRSR + 2, regTmp); } break; case HW_VAR_CAM_INVALID_ALL: rtw_write32(padapter, REG_CAMCMD, BIT(31) | BIT(30)); break; case HW_VAR_AC_PARAM_VO: rtw_write32(padapter, REG_EDCA_VO_PARAM, *((u32 *)val)); break; case HW_VAR_AC_PARAM_VI: rtw_write32(padapter, REG_EDCA_VI_PARAM, *((u32 *)val)); break; case HW_VAR_AC_PARAM_BE: pHalData->ac_param_be = ((u32 *)(val))[0]; rtw_write32(padapter, REG_EDCA_BE_PARAM, *((u32 *)val)); break; case HW_VAR_AC_PARAM_BK: rtw_write32(padapter, REG_EDCA_BK_PARAM, *((u32 *)val)); break; case HW_VAR_ACM_CTRL: { u8 ctrl = *((u8 *)val); u8 hwctrl = 0; if (ctrl != 0) { hwctrl |= AcmHw_HwEn; if (ctrl & BIT(3)) /* BE */ hwctrl |= AcmHw_BeqEn; if (ctrl & BIT(2)) /* VI */ hwctrl |= AcmHw_ViqEn; if (ctrl & BIT(1)) /* VO */ hwctrl |= AcmHw_VoqEn; } RTW_INFO("[HW_VAR_ACM_CTRL] Write 0x%02X\n", hwctrl); rtw_write8(padapter, REG_ACMHWCTRL, hwctrl); } break; #ifdef CONFIG_80211N_HT case HW_VAR_AMPDU_FACTOR: { u32 AMPDULen = (*((u8 *)val)); if (AMPDULen < HT_AGG_SIZE_32K) AMPDULen = (0x2000 << (*((u8 *)val))) - 1; else AMPDULen = 0x7fff; rtw_write32(padapter, REG_AMPDU_MAX_LENGTH_8188F, AMPDULen); } break; #endif /* CONFIG_80211N_HT */ case HW_VAR_H2C_FW_PWRMODE: { u8 psmode = *val; /*if (psmode != PS_MODE_ACTIVE) { */ /* rtl8188f_set_lowpwr_lps_cmd(padapter, _TRUE); */ /*} else { */ /* rtl8188f_set_lowpwr_lps_cmd(padapter, _FALSE); */ /*} */ rtl8188f_set_FwPwrMode_cmd(padapter, psmode); } break; case HW_VAR_H2C_PS_TUNE_PARAM: rtl8188f_set_FwPsTuneParam_cmd(padapter); break; case HW_VAR_H2C_FW_JOINBSSRPT: rtl8188f_set_FwJoinBssRpt_cmd(padapter, *val); break; case HW_VAR_DL_RSVD_PAGE: #ifdef CONFIG_BT_COEXIST if (check_fwstate(&padapter->mlmepriv, WIFI_AP_STATE) == _TRUE) rtl8188f_download_BTCoex_AP_mode_rsvd_page(padapter); else #endif /* CONFIG_BT_COEXIST */ { rtl8188f_download_rsvd_page(padapter, RT_MEDIA_CONNECT); } break; #ifdef CONFIG_P2P case HW_VAR_H2C_FW_P2P_PS_OFFLOAD: rtl8188f_set_p2p_ps_offload_cmd(padapter, *val); break; #endif /*CONFIG_P2P */ case HW_VAR_EFUSE_USAGE: pHalData->EfuseUsedPercentage = *val; break; case HW_VAR_EFUSE_BYTES: pHalData->EfuseUsedBytes = *((u16 *)val); break; case HW_VAR_EFUSE_BT_USAGE: #ifdef HAL_EFUSE_MEMORY pHalData->EfuseHal.BTEfuseUsedPercentage = *val; #endif break; case HW_VAR_EFUSE_BT_BYTES: #ifdef HAL_EFUSE_MEMORY pHalData->EfuseHal.BTEfuseUsedBytes = *((u16 *)val); #else BTEfuseUsedBytes = *((u16 *)val); #endif break; case HW_VAR_FIFO_CLEARN_UP: { #define RW_RELEASE_EN BIT(18) #define RXDMA_IDLE BIT(17) struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter); u8 trycnt = 100; /* pause tx */ rtw_write8(padapter, REG_TXPAUSE, 0xff); /* keep sn */ padapter->xmitpriv.nqos_ssn = rtw_read16(padapter, REG_NQOS_SEQ); if (pwrpriv->bkeepfwalive != _TRUE) { /* RX DMA stop */ val32 = rtw_read32(padapter, REG_RXPKT_NUM); val32 |= RW_RELEASE_EN; rtw_write32(padapter, REG_RXPKT_NUM, val32); do { val32 = rtw_read32(padapter, REG_RXPKT_NUM); val32 &= RXDMA_IDLE; if (val32) break; RTW_INFO("%s: [HW_VAR_FIFO_CLEARN_UP] val=%x times:%d\n", __func__, val32, trycnt); } while (--trycnt); if (trycnt == 0) RTW_INFO("[HW_VAR_FIFO_CLEARN_UP] Stop RX DMA failed......\n"); /* RQPN Load 0 */ rtw_write16(padapter, REG_RQPN_NPQ, 0); rtw_write32(padapter, REG_RQPN, 0x80000000); rtw_mdelay_os(2); } } break; case HW_VAR_RESTORE_HW_SEQ: /* restore Sequence No. */ rtw_write8(padapter, 0x4dc, padapter->xmitpriv.nqos_ssn); break; #ifdef CONFIG_CONCURRENT_MODE case HW_VAR_CHECK_TXBUF: { u32 i; u8 RetryLimit = 0x01; u32 reg_200, reg_204; val16 = BIT_SRL(RetryLimit) | BIT_LRL(RetryLimit); rtw_write16(padapter, REG_RETRY_LIMIT, val16); for (i = 0; i < 200; i++) { /* polling 200x10=2000 msec */ reg_200 = rtw_read32(padapter, 0x200); reg_204 = rtw_read32(padapter, 0x204); if (reg_200 != reg_204) { /*RTW_INFO("packet in tx packet buffer - 0x204=%x, 0x200=%x (%d)\n", rtw_read32(padapter, 0x204), rtw_read32(padapter, 0x200), i); */ rtw_msleep_os(10); } else { RTW_INFO("[HW_VAR_CHECK_TXBUF] no packet in tx packet buffer (%d)\n", i); break; } } if (reg_200 != reg_204) RTW_INFO("packets in tx buffer - 0x204=%x, 0x200=%x\n", reg_204, reg_200); RetryLimit = RL_VAL_STA; val16 = BIT_SRL(RetryLimit) | BIT_LRL(RetryLimit); rtw_write16(padapter, REG_RETRY_LIMIT, val16); } break; #endif /* CONFIG_CONCURRENT_MODE */ case HW_VAR_NAV_UPPER: { u32 usNavUpper = *((u32 *)val); if (usNavUpper > HAL_NAV_UPPER_UNIT_8188F * 0xFF) { break; } /* The value of ((usNavUpper + HAL_NAV_UPPER_UNIT_8188F - 1) / HAL_NAV_UPPER_UNIT_8188F) */ /* is getting the upper integer. */ usNavUpper = (usNavUpper + HAL_NAV_UPPER_UNIT_8188F - 1) / HAL_NAV_UPPER_UNIT_8188F; rtw_write8(padapter, REG_NAV_UPPER, (u8)usNavUpper); } break; case HW_VAR_BCN_VALID: #ifdef CONFIG_CONCURRENT_MODE if (padapter->hw_port == HW_PORT1) { val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8188F + 2); val8 |= BIT(0); rtw_write8(padapter, REG_DWBCN1_CTRL_8188F + 2, val8); } else #endif /* CONFIG_CONCURRENT_MODE */ { /* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */ val8 = rtw_read8(padapter, REG_TDECTRL + 2); val8 |= BIT(0); rtw_write8(padapter, REG_TDECTRL + 2, val8); } break; case HW_VAR_DL_BCN_SEL: #ifdef CONFIG_CONCURRENT_MODE if (padapter->hw_port == HW_PORT1) { /* SW_BCN_SEL - Port1 */ val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8188F + 2); val8 |= BIT(4); rtw_write8(padapter, REG_DWBCN1_CTRL_8188F + 2, val8); } else #endif /* CONFIG_CONCURRENT_MODE */ { /* SW_BCN_SEL - Port0 */ val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8188F + 2); val8 &= ~BIT(4); rtw_write8(padapter, REG_DWBCN1_CTRL_8188F + 2, val8); } break; #ifdef CONFIG_GPIO_WAKEUP case HW_SET_GPIO_WL_CTRL: { u8 enable = *val; u8 value = rtw_read8(padapter, 0x4e); if (enable && (value & BIT(6))) { value &= ~BIT(6); rtw_write8(padapter, 0x4e, value); } else if (enable == _FALSE) { value |= BIT(6); rtw_write8(padapter, 0x4e, value); } RTW_INFO("%s: set WL control, 0x4E=0x%02X\n", __func__, rtw_read8(padapter, 0x4e)); } break; #endif #if defined(CONFIG_TDLS) && defined(CONFIG_TDLS_CH_SW) case HW_VAR_TDLS_BCN_EARLY_C2H_RPT: rtl8188f_set_BcnEarly_C2H_Rpt_cmd(padapter, *val); break; #endif default: ret = SetHwReg(padapter, variable, val); break; } return ret; } struct qinfo_8188f { u32 head:8; u32 pkt_num:7; u32 tail:8; u32 ac:2; u32 macid:7; }; struct bcn_qinfo_8188f { u16 head:8; u16 pkt_num:8; }; void dump_qinfo_8188f(void *sel, struct qinfo_8188f *info, const char *tag) { /*if (info->pkt_num) */ RTW_PRINT_SEL(sel, "%shead:0x%02x, tail:0x%02x, pkt_num:%u, macid:%u, ac:%u\n" , tag ? tag : "", info->head, info->tail, info->pkt_num, info->macid, info->ac ); } void dump_bcn_qinfo_8188f(void *sel, struct bcn_qinfo_8188f *info, const char *tag) { /*if (info->pkt_num) */ RTW_PRINT_SEL(sel, "%shead:0x%02x, pkt_num:%u\n" , tag ? tag : "", info->head, info->pkt_num ); } void dump_mac_qinfo_8188f(void *sel, _adapter *adapter) { u32 q0_info; u32 q1_info; u32 q2_info; u32 q3_info; u32 q4_info; u32 q5_info; u32 q6_info; u32 q7_info; u32 mg_q_info; u32 hi_q_info; u16 bcn_q_info; q0_info = rtw_read32(adapter, REG_Q0_INFO); q1_info = rtw_read32(adapter, REG_Q1_INFO); q2_info = rtw_read32(adapter, REG_Q2_INFO); q3_info = rtw_read32(adapter, REG_Q3_INFO); q4_info = rtw_read32(adapter, REG_Q4_INFO); q5_info = rtw_read32(adapter, REG_Q5_INFO); q6_info = rtw_read32(adapter, REG_Q6_INFO); q7_info = rtw_read32(adapter, REG_Q7_INFO); mg_q_info = rtw_read32(adapter, REG_MGQ_INFO); hi_q_info = rtw_read32(adapter, REG_HGQ_INFO); bcn_q_info = rtw_read16(adapter, REG_BCNQ_INFO); dump_qinfo_8188f(sel, (struct qinfo_8188f *)&q0_info, "Q0 "); dump_qinfo_8188f(sel, (struct qinfo_8188f *)&q1_info, "Q1 "); dump_qinfo_8188f(sel, (struct qinfo_8188f *)&q2_info, "Q2 "); dump_qinfo_8188f(sel, (struct qinfo_8188f *)&q3_info, "Q3 "); dump_qinfo_8188f(sel, (struct qinfo_8188f *)&q4_info, "Q4 "); dump_qinfo_8188f(sel, (struct qinfo_8188f *)&q5_info, "Q5 "); dump_qinfo_8188f(sel, (struct qinfo_8188f *)&q6_info, "Q6 "); dump_qinfo_8188f(sel, (struct qinfo_8188f *)&q7_info, "Q7 "); dump_qinfo_8188f(sel, (struct qinfo_8188f *)&mg_q_info, "MG "); dump_qinfo_8188f(sel, (struct qinfo_8188f *)&hi_q_info, "HI "); dump_bcn_qinfo_8188f(sel, (struct bcn_qinfo_8188f *)&bcn_q_info, "BCN "); } static void dump_mac_txfifo_8188f(void *sel, _adapter *adapter) { u32 rqpn, rqpn_npq; u32 hpq, lpq, npq, epq, pubq; rqpn = rtw_read32(adapter, REG_FIFOPAGE); rqpn_npq = rtw_read32(adapter, REG_RQPN_NPQ); hpq = (rqpn & 0xFF); lpq = ((rqpn & 0xFF00)>>8); pubq = ((rqpn & 0xFF0000)>>16); npq = ((rqpn_npq & 0xFF00)>>8); epq = ((rqpn_npq & 0xFF000000)>>24); RTW_PRINT_SEL(sel, "Tx: available page num: "); if ((hpq == 0xEA) && (hpq == lpq) && (hpq == pubq)) RTW_PRINT_SEL(sel, "N/A (reg val = 0xea)\n"); else RTW_PRINT_SEL(sel, "HPQ: %d, LPQ: %d, NPQ: %d, EPQ: %d, PUBQ: %d\n" , hpq, lpq, npq, epq, pubq); } void rtl8188f_read_wmmedca_reg(PADAPTER adapter, u16 *vo_params, u16 *vi_params, u16 *be_params, u16 *bk_params) { u8 vo_reg_params[4]; u8 vi_reg_params[4]; u8 be_reg_params[4]; u8 bk_reg_params[4]; GetHwReg8188F(adapter, HW_VAR_AC_PARAM_VO, vo_reg_params); GetHwReg8188F(adapter, HW_VAR_AC_PARAM_VI, vi_reg_params); GetHwReg8188F(adapter, HW_VAR_AC_PARAM_BE, be_reg_params); GetHwReg8188F(adapter, HW_VAR_AC_PARAM_BK, bk_reg_params); vo_params[0] = vo_reg_params[0]; vo_params[1] = vo_reg_params[1] & 0x0F; vo_params[2] = (vo_reg_params[1] & 0xF0) >> 4; vo_params[3] = ((vo_reg_params[3] << 8) | (vo_reg_params[2])) * 32; vi_params[0] = vi_reg_params[0]; vi_params[1] = vi_reg_params[1] & 0x0F; vi_params[2] = (vi_reg_params[1] & 0xF0) >> 4; vi_params[3] = ((vi_reg_params[3] << 8) | (vi_reg_params[2])) * 32; be_params[0] = be_reg_params[0]; be_params[1] = be_reg_params[1] & 0x0F; be_params[2] = (be_reg_params[1] & 0xF0) >> 4; be_params[3] = ((be_reg_params[3] << 8) | (be_reg_params[2])) * 32; bk_params[0] = bk_reg_params[0]; bk_params[1] = bk_reg_params[1] & 0x0F; bk_params[2] = (bk_reg_params[1] & 0xF0) >> 4; bk_params[3] = ((bk_reg_params[3] << 8) | (bk_reg_params[2])) * 32; vo_params[1] = (1 << vo_params[1]) - 1; vo_params[2] = (1 << vo_params[2]) - 1; vi_params[1] = (1 << vi_params[1]) - 1; vi_params[2] = (1 << vi_params[2]) - 1; be_params[1] = (1 << be_params[1]) - 1; be_params[2] = (1 << be_params[2]) - 1; bk_params[1] = (1 << bk_params[1]) - 1; bk_params[2] = (1 << bk_params[2]) - 1; } void GetHwReg8188F(PADAPTER padapter, u8 variable, u8 *val) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); u8 val8; u16 val16; u32 val32; switch (variable) { case HW_VAR_TXPAUSE: *val = rtw_read8(padapter, REG_TXPAUSE); break; case HW_VAR_BCN_VALID: #ifdef CONFIG_CONCURRENT_MODE if (padapter->hw_port == HW_PORT1) { val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8188F + 2); *val = (BIT(0) & val8) ? _TRUE : _FALSE; } else #endif { /* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */ val8 = rtw_read8(padapter, REG_TDECTRL + 2); *val = (BIT(0) & val8) ? _TRUE : _FALSE; } break; case HW_VAR_AC_PARAM_VO: val32 = rtw_read32(padapter, REG_EDCA_VO_PARAM); val[0] = val32 & 0xFF; val[1] = (val32 >> 8) & 0xFF; val[2] = (val32 >> 16) & 0xFF; val[3] = (val32 >> 24) & 0x07; break; case HW_VAR_AC_PARAM_VI: val32 = rtw_read32(padapter, REG_EDCA_VI_PARAM); val[0] = val32 & 0xFF; val[1] = (val32 >> 8) & 0xFF; val[2] = (val32 >> 16) & 0xFF; val[3] = (val32 >> 24) & 0x07; break; case HW_VAR_AC_PARAM_BE: val32 = rtw_read32(padapter, REG_EDCA_BE_PARAM); val[0] = val32 & 0xFF; val[1] = (val32 >> 8) & 0xFF; val[2] = (val32 >> 16) & 0xFF; val[3] = (val32 >> 24) & 0x07; break; case HW_VAR_AC_PARAM_BK: val32 = rtw_read32(padapter, REG_EDCA_BK_PARAM); val[0] = val32 & 0xFF; val[1] = (val32 >> 8) & 0xFF; val[2] = (val32 >> 16) & 0xFF; val[3] = (val32 >> 24) & 0x07; break; case HW_VAR_EFUSE_USAGE: *val = pHalData->EfuseUsedPercentage; break; case HW_VAR_EFUSE_BYTES: *((u16 *)val) = pHalData->EfuseUsedBytes; break; case HW_VAR_EFUSE_BT_USAGE: #ifdef HAL_EFUSE_MEMORY *val = pHalData->EfuseHal.BTEfuseUsedPercentage; #endif break; case HW_VAR_EFUSE_BT_BYTES: #ifdef HAL_EFUSE_MEMORY *((u16 *)val) = pHalData->EfuseHal.BTEfuseUsedBytes; #else *((u16 *)val) = BTEfuseUsedBytes; #endif break; case HW_VAR_CHK_HI_QUEUE_EMPTY: val16 = rtw_read16(padapter, REG_TXPKT_EMPTY); *val = (val16 & BIT(10)) ? _TRUE : _FALSE; break; case HW_VAR_CHK_MGQ_CPU_EMPTY: val16 = rtw_read16(padapter, REG_TXPKT_EMPTY); *val = (val16 & BIT(8)) ? _TRUE : _FALSE; break; #ifdef CONFIG_WOWLAN case HW_VAR_RPWM_TOG: *val = rtw_read8(padapter, SDIO_LOCAL_BASE | SDIO_REG_HRPWM1) & BIT7; break; case HW_VAR_WAKEUP_REASON: *val = rtw_read8(padapter, REG_WOWLAN_WAKE_REASON); if (*val == 0xEA) *val = 0; break; case HW_VAR_SYS_CLKR: *val = rtw_read8(padapter, REG_SYS_CLKR); break; #endif case HW_VAR_DUMP_MAC_QUEUE_INFO: dump_mac_qinfo_8188f(val, padapter); break; case HW_VAR_DUMP_MAC_TXFIFO: dump_mac_txfifo_8188f(val, padapter); break; default: GetHwReg(padapter, variable, val); break; } } /* * Description: * Change default setting of specified variable. */ u8 SetHalDefVar8188F(PADAPTER padapter, HAL_DEF_VARIABLE variable, void *pval) { PHAL_DATA_TYPE pHalData; u8 bResult; pHalData = GET_HAL_DATA(padapter); bResult = _SUCCESS; switch (variable) { default: bResult = SetHalDefVar(padapter, variable, pval); break; } return bResult; } void hal_ra_info_dump(_adapter *padapter , void *sel) { int i; u8 mac_id; u32 cmd; u32 ra_info1, ra_info2, bw_set; u32 rate_mask1, rate_mask2; u8 curr_tx_rate, curr_tx_sgi, hight_rate, lowest_rate; HAL_DATA_TYPE *HalData = GET_HAL_DATA(padapter); struct dvobj_priv *dvobj = adapter_to_dvobj(padapter); struct macid_ctl_t *macid_ctl = dvobj_to_macidctl(dvobj); for (i = 0; i < macid_ctl->num; i++) { if (rtw_macid_is_used(macid_ctl, i) && !rtw_macid_is_bmc(macid_ctl, i)) { mac_id = (u8) i; _RTW_PRINT_SEL(sel , "============ RA status check Mac_id:%d ===================\n", mac_id); cmd = 0x40000100 | mac_id; rtw_write32(padapter, REG_HMEBOX_DBG_2_8188F, cmd); rtw_msleep_os(10); ra_info1 = rtw_read32(padapter, 0x2F0); curr_tx_sgi = rtw_get_current_tx_sgi(padapter, macid_ctl->sta[mac_id]); curr_tx_rate = rtw_get_current_tx_rate(padapter, macid_ctl->sta[mac_id]); _RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] =>cur_tx_rate= %s,cur_sgi:%d\n" , ra_info1 , HDATA_RATE(curr_tx_rate), curr_tx_sgi); _RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] => PWRSTS = 0x%02x\n", ra_info1, (ra_info1 >> 8) & 0x07); cmd = 0x40000400 | mac_id; rtw_write32(padapter, REG_HMEBOX_DBG_2_8188F, cmd); rtw_msleep_os(10); ra_info1 = rtw_read32(padapter, 0x2F0); ra_info2 = rtw_read32(padapter, 0x2F4); rate_mask1 = rtw_read32(padapter, 0x2F8); rate_mask2 = rtw_read32(padapter, 0x2FC); hight_rate = ra_info2 & 0xFF; lowest_rate = (ra_info2 >> 8) & 0xFF; bw_set = (ra_info1 >> 8) & 0xFF; _RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] => VHT_EN=0x%02x, ", ra_info1, (ra_info1 >> 24) & 0xFF); switch (bw_set) { case CHANNEL_WIDTH_20: _RTW_PRINT_SEL(sel , "BW_setting=20M\n"); break; case CHANNEL_WIDTH_40: _RTW_PRINT_SEL(sel , "BW_setting=40M\n"); break; case CHANNEL_WIDTH_80: _RTW_PRINT_SEL(sel , "BW_setting=80M\n"); break; case CHANNEL_WIDTH_160: _RTW_PRINT_SEL(sel , "BW_setting=160M\n"); break; default: _RTW_PRINT_SEL(sel , "BW_setting=0x%02x\n", bw_set); break; } _RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] =>RSSI=%d, DISRA=0x%02x\n", ra_info1, ra_info1 & 0xFF, (ra_info1 >> 16) & 0xFF); _RTW_PRINT_SEL(sel , "[ ra_info2:0x%08x ] =>hight_rate=%s, lowest_rate=%s, SGI=0x%02x, RateID=%d\n", ra_info2, HDATA_RATE(hight_rate), HDATA_RATE(lowest_rate), (ra_info2 >> 16) & 0xFF, (ra_info2 >> 24) & 0xFF); _RTW_PRINT_SEL(sel , "rate_mask2=0x%08x, rate_mask1=0x%08x\n", rate_mask2, rate_mask1); } } } /* * Description: * Query setting of specified variable. */ u8 GetHalDefVar8188F(PADAPTER padapter, HAL_DEF_VARIABLE variable, void *pval) { PHAL_DATA_TYPE pHalData; u8 bResult; pHalData = GET_HAL_DATA(padapter); bResult = _SUCCESS; switch (variable) { case HAL_DEF_MAX_RECVBUF_SZ: *((u32 *)pval) = MAX_RECVBUF_SZ; break; case HAL_DEF_RX_PACKET_OFFSET: *((u32 *)pval) = RXDESC_SIZE + DRVINFO_SZ * 8; break; case HW_VAR_MAX_RX_AMPDU_FACTOR: /* Stanley@BB.SD3 suggests 16K can get stable performance */ /* The experiment was done on SDIO interface */ /* coding by Lucas@20130730 */ *(HT_CAP_AMPDU_FACTOR *)pval = MAX_AMPDU_FACTOR_16K; break; case HW_VAR_BEST_AMPDU_DENSITY: *((u32 *)pval) = AMPDU_DENSITY_VALUE_7; break; case HAL_DEF_TX_LDPC: case HAL_DEF_RX_LDPC: *((u8 *)pval) = _FALSE; break; case HAL_DEF_TX_STBC: *((u8 *)pval) = 0; break; case HAL_DEF_RX_STBC: *((u8 *)pval) = 1; break; case HAL_DEF_EXPLICIT_BEAMFORMER: case HAL_DEF_EXPLICIT_BEAMFORMEE: *((u8 *)pval) = _FALSE; break; case HW_DEF_RA_INFO_DUMP: hal_ra_info_dump(padapter, pval); break; case HAL_DEF_TX_PAGE_BOUNDARY: if (!padapter->registrypriv.wifi_spec) *(u8 *)pval = TX_PAGE_BOUNDARY_8188F; else *(u8 *)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8188F; break; case HAL_DEF_TX_PAGE_SIZE: *((u32 *)pval) = PAGE_SIZE_128; break; case HAL_DEF_RX_DMA_SZ_WOW: *(u32 *)pval = RX_DMA_SIZE_8188F - RESV_FMWF; break; case HAL_DEF_RX_DMA_SZ: *(u32 *)pval = RX_DMA_BOUNDARY_8188F + 1; break; case HAL_DEF_RX_PAGE_SIZE: *((u32 *)pval) = 8; break; default: bResult = GetHalDefVar(padapter, variable, pval); break; } return bResult; } #ifdef CONFIG_WOWLAN void Hal_DetectWoWMode(PADAPTER pAdapter) { adapter_to_pwrctl(pAdapter)->bSupportRemoteWakeup = _TRUE; RTW_INFO("%s\n", __func__); } #endif /*CONFIG_WOWLAN */ void rtl8188f_start_thread(_adapter *padapter) { #if (defined CONFIG_SDIO_HCI) || (defined CONFIG_GSPI_HCI) #ifndef CONFIG_SDIO_TX_TASKLET struct xmit_priv *xmitpriv = &padapter->xmitpriv; if (xmitpriv->SdioXmitThread == NULL) { RTW_INFO(FUNC_ADPT_FMT " start RTWHALXT\n", FUNC_ADPT_ARG(padapter)); xmitpriv->SdioXmitThread = kthread_run(rtl8188fs_xmit_thread, padapter, "RTWHALXT"); if (IS_ERR(xmitpriv->SdioXmitThread)) { RTW_ERR("%s: start rtl8188fs_xmit_thread FAIL!!\n", __func__); xmitpriv->SdioXmitThread = NULL; } } #endif #endif } void rtl8188f_stop_thread(_adapter *padapter) { #if (defined CONFIG_SDIO_HCI) || (defined CONFIG_GSPI_HCI) #ifndef CONFIG_SDIO_TX_TASKLET struct xmit_priv *xmitpriv = &padapter->xmitpriv; /* stop xmit_buf_thread */ if (xmitpriv->SdioXmitThread) { _rtw_up_sema(&xmitpriv->SdioXmitSema); rtw_thread_stop(xmitpriv->SdioXmitThread); xmitpriv->SdioXmitThread = NULL; } #endif #endif } #if defined(CONFIG_CHECK_BT_HANG) && defined(CONFIG_BT_COEXIST) extern void check_bt_status_work(void *data); void rtl8188fs_init_checkbthang_workqueue(_adapter *adapter) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) adapter->priv_checkbt_wq = alloc_workqueue("sdio_wq", 0, 0); #else adapter->priv_checkbt_wq = create_workqueue("sdio_wq"); #endif INIT_DELAYED_WORK(&adapter->checkbt_work, (void *)check_bt_status_work); } void rtl8188fs_free_checkbthang_workqueue(_adapter *adapter) { if (adapter->priv_checkbt_wq) { cancel_delayed_work_sync(&adapter->checkbt_work); flush_workqueue(adapter->priv_checkbt_wq); destroy_workqueue(adapter->priv_checkbt_wq); adapter->priv_checkbt_wq = NULL; } } void rtl8188fs_cancle_checkbthang_workqueue(_adapter *adapter) { if (adapter->priv_checkbt_wq) cancel_delayed_work_sync(&adapter->checkbt_work); } void rtl8188fs_hal_check_bt_hang(_adapter *adapter) { if (adapter->priv_checkbt_wq) queue_delayed_work(adapter->priv_checkbt_wq, &(adapter->checkbt_work), 0); } #endif void rtl8188f_set_hal_ops(struct hal_ops *pHalFunc) { pHalFunc->dm_init = &rtl8188f_init_dm_priv; pHalFunc->dm_deinit = &rtl8188f_deinit_dm_priv; pHalFunc->read_chip_version = &rtl8188f_read_chip_version; pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8188F; pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8188F; pHalFunc->set_txpwr_done = rtl8188f_set_txpwr_done; pHalFunc->set_tx_power_index_handler = PHY_SetTxPowerIndex_8188F; pHalFunc->get_tx_power_index_handler = &PHY_GetTxPowerIndex_8188F; pHalFunc->hal_dm_watchdog = &rtl8188f_HalDmWatchDog; pHalFunc->SetBeaconRelatedRegistersHandler = &rtl8188f_SetBeaconRelatedRegisters; pHalFunc->run_thread = &rtl8188f_start_thread; pHalFunc->cancel_thread = &rtl8188f_stop_thread; pHalFunc->read_bbreg = &PHY_QueryBBReg_8188F; pHalFunc->write_bbreg = &PHY_SetBBReg_8188F; pHalFunc->read_rfreg = &PHY_QueryRFReg_8188F; pHalFunc->write_rfreg = &PHY_SetRFReg_8188F; pHalFunc->read_wmmedca_reg = &rtl8188f_read_wmmedca_reg; /* Efuse related function */ pHalFunc->BTEfusePowerSwitch = &Hal_BT_EfusePowerSwitch; pHalFunc->EfusePowerSwitch = &Hal_EfusePowerSwitch; pHalFunc->ReadEFuse = &Hal_ReadEFuse; pHalFunc->EFUSEGetEfuseDefinition = &Hal_GetEfuseDefinition; pHalFunc->EfuseGetCurrentSize = &Hal_EfuseGetCurrentSize; pHalFunc->Efuse_PgPacketRead = &Hal_EfusePgPacketRead; pHalFunc->Efuse_PgPacketWrite = &Hal_EfusePgPacketWrite; pHalFunc->Efuse_WordEnableDataWrite = &Hal_EfuseWordEnableDataWrite; pHalFunc->Efuse_PgPacketWrite_BT = &Hal_EfusePgPacketWrite_BT; #ifdef DBG_CONFIG_ERROR_DETECT pHalFunc->sreset_init_value = &sreset_init_value; pHalFunc->sreset_reset_value = &sreset_reset_value; pHalFunc->silentreset = &sreset_reset; pHalFunc->sreset_xmit_status_check = &rtl8188f_sreset_xmit_status_check; pHalFunc->sreset_linked_status_check = &rtl8188f_sreset_linked_status_check; pHalFunc->sreset_get_wifi_status = &sreset_get_wifi_status; pHalFunc->sreset_inprogress = &sreset_inprogress; #endif pHalFunc->GetHalODMVarHandler = GetHalODMVar; pHalFunc->SetHalODMVarHandler = SetHalODMVar; #ifdef CONFIG_XMIT_THREAD_MODE pHalFunc->xmit_thread_handler = &hal_xmit_handler; #endif pHalFunc->hal_notch_filter = &hal_notch_filter_8188f; pHalFunc->c2h_handler = c2h_handler_8188f; pHalFunc->fill_h2c_cmd = &FillH2CCmd8188F; pHalFunc->fill_fake_txdesc = &rtl8188f_fill_fake_txdesc; pHalFunc->fw_dl = &rtl8188f_FirmwareDownload; pHalFunc->hal_get_tx_buff_rsvd_page_num = &GetTxBufferRsvdPageNum8188F; }