// SPDX-License-Identifier: GPL-2.0+ /* * u_audio.c -- interface to USB gadget "ALSA sound card" utilities * * Copyright (C) 2016 * Author: Ruslan Bilovol * * Sound card implementation was cut-and-pasted with changes * from f_uac2.c and has: * Copyright (C) 2011 * Yadwinder Singh (yadi.brar01@gmail.com) * Jaswinder Singh (jaswinder.singh@linaro.org) */ #include #include #include #include #include #include #include "u_audio.h" #define BUFF_SIZE_MAX (PAGE_SIZE * 16) #define PRD_SIZE_MAX PAGE_SIZE #define MIN_PERIODS 4 #define CLK_PPM_GROUP_SIZE 20 static struct class *audio_class; struct uac_req { struct uac_rtd_params *pp; /* parent param */ struct usb_request *req; }; /* Runtime data params for one stream */ struct uac_rtd_params { struct snd_uac_chip *uac; /* parent chip */ bool ep_enabled; /* if the ep is enabled */ struct snd_pcm_substream *ss; /* Ring buffer */ ssize_t hw_ptr; void *rbuf; unsigned max_psize; /* MaxPacketSize of endpoint */ struct uac_req *ureq; spinlock_t lock; }; struct snd_uac_chip { struct g_audio *audio_dev; struct uac_rtd_params p_prm; struct uac_rtd_params c_prm; struct snd_card *card; struct snd_pcm *pcm; /* timekeeping for the playback endpoint */ unsigned int p_interval; unsigned int p_residue; /* pre-calculated values for playback iso completion */ unsigned int p_pktsize; unsigned int p_pktsize_residue; unsigned int p_framesize; }; static const struct snd_pcm_hardware uac_pcm_hardware = { .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME, .rates = SNDRV_PCM_RATE_CONTINUOUS, .periods_max = BUFF_SIZE_MAX / PRD_SIZE_MAX, .buffer_bytes_max = BUFF_SIZE_MAX, .period_bytes_max = PRD_SIZE_MAX, .periods_min = MIN_PERIODS, }; static void u_audio_iso_complete(struct usb_ep *ep, struct usb_request *req) { unsigned pending; unsigned long flags, flags2; unsigned int hw_ptr; int status = req->status; struct uac_req *ur = req->context; struct snd_pcm_substream *substream; struct snd_pcm_runtime *runtime; struct uac_rtd_params *prm = ur->pp; struct snd_uac_chip *uac = prm->uac; /* i/f shutting down */ if (!prm->ep_enabled) { usb_ep_free_request(ep, req); return; } if (req->status == -ESHUTDOWN) return; /* * We can't really do much about bad xfers. * Afterall, the ISOCH xfers could fail legitimately. */ if (status) pr_debug("%s: iso_complete status(%d) %d/%d\n", __func__, status, req->actual, req->length); substream = prm->ss; /* Do nothing if ALSA isn't active */ if (!substream) goto exit; snd_pcm_stream_lock_irqsave(substream, flags2); runtime = substream->runtime; if (!runtime || !snd_pcm_running(substream)) { snd_pcm_stream_unlock_irqrestore(substream, flags2); goto exit; } spin_lock_irqsave(&prm->lock, flags); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { /* * For each IN packet, take the quotient of the current data * rate and the endpoint's interval as the base packet size. * If there is a residue from this division, add it to the * residue accumulator. */ req->length = uac->p_pktsize; uac->p_residue += uac->p_pktsize_residue; /* * Whenever there are more bytes in the accumulator than we * need to add one more sample frame, increase this packet's * size and decrease the accumulator. */ if (uac->p_residue / uac->p_interval >= uac->p_framesize) { req->length += uac->p_framesize; uac->p_residue -= uac->p_framesize * uac->p_interval; } req->actual = req->length; } hw_ptr = prm->hw_ptr; spin_unlock_irqrestore(&prm->lock, flags); /* Pack USB load in ALSA ring buffer */ pending = runtime->dma_bytes - hw_ptr; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { if (unlikely(pending < req->actual)) { memcpy(req->buf, runtime->dma_area + hw_ptr, pending); memcpy(req->buf + pending, runtime->dma_area, req->actual - pending); } else { memcpy(req->buf, runtime->dma_area + hw_ptr, req->actual); } } else { if (unlikely(pending < req->actual)) { memcpy(runtime->dma_area + hw_ptr, req->buf, pending); memcpy(runtime->dma_area, req->buf + pending, req->actual - pending); } else { memcpy(runtime->dma_area + hw_ptr, req->buf, req->actual); } } spin_lock_irqsave(&prm->lock, flags); /* update hw_ptr after data is copied to memory */ prm->hw_ptr = (hw_ptr + req->actual) % runtime->dma_bytes; hw_ptr = prm->hw_ptr; spin_unlock_irqrestore(&prm->lock, flags); snd_pcm_stream_unlock_irqrestore(substream, flags2); if ((hw_ptr % snd_pcm_lib_period_bytes(substream)) < req->actual) snd_pcm_period_elapsed(substream); exit: if (usb_ep_queue(ep, req, GFP_ATOMIC)) dev_err(uac->card->dev, "%d Error!\n", __LINE__); } static int uac_pcm_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_uac_chip *uac = snd_pcm_substream_chip(substream); struct uac_rtd_params *prm; struct g_audio *audio_dev; struct uac_params *params; unsigned long flags; int err = 0; audio_dev = uac->audio_dev; params = &audio_dev->params; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) prm = &uac->p_prm; else prm = &uac->c_prm; spin_lock_irqsave(&prm->lock, flags); /* Reset */ prm->hw_ptr = 0; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: prm->ss = substream; break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: prm->ss = NULL; break; default: err = -EINVAL; } spin_unlock_irqrestore(&prm->lock, flags); /* Clear buffer after Play stops */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && !prm->ss) memset(prm->rbuf, 0, prm->max_psize * params->req_number); return err; } static snd_pcm_uframes_t uac_pcm_pointer(struct snd_pcm_substream *substream) { struct snd_uac_chip *uac = snd_pcm_substream_chip(substream); struct uac_rtd_params *prm; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) prm = &uac->p_prm; else prm = &uac->c_prm; return bytes_to_frames(substream->runtime, prm->hw_ptr); } static int uac_pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); } static int uac_pcm_hw_free(struct snd_pcm_substream *substream) { return snd_pcm_lib_free_pages(substream); } static int uac_pcm_open(struct snd_pcm_substream *substream) { struct snd_uac_chip *uac = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct g_audio *audio_dev = uac->audio_dev; struct uac_params *params; int p_ssize, c_ssize; int p_srate, c_srate; int p_chmask, c_chmask; params = &audio_dev->params; p_ssize = params->p_ssize; c_ssize = params->c_ssize; p_srate = params->p_srate_active; c_srate = params->c_srate_active; p_chmask = params->p_chmask; c_chmask = params->c_chmask; uac->p_residue = 0; runtime->hw = uac_pcm_hardware; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { spin_lock_init(&uac->p_prm.lock); runtime->hw.rate_min = p_srate; switch (p_ssize) { case 3: runtime->hw.formats = SNDRV_PCM_FMTBIT_S24_3LE; break; case 4: runtime->hw.formats = SNDRV_PCM_FMTBIT_S32_LE; break; default: runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE; break; } runtime->hw.channels_min = num_channels(p_chmask); runtime->hw.period_bytes_min = 2 * uac->p_prm.max_psize / runtime->hw.periods_min; } else { spin_lock_init(&uac->c_prm.lock); runtime->hw.rate_min = c_srate; switch (c_ssize) { case 3: runtime->hw.formats = SNDRV_PCM_FMTBIT_S24_3LE; break; case 4: runtime->hw.formats = SNDRV_PCM_FMTBIT_S32_LE; break; default: runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE; break; } runtime->hw.channels_min = num_channels(c_chmask); runtime->hw.period_bytes_min = 2 * uac->c_prm.max_psize / runtime->hw.periods_min; } runtime->hw.rate_max = runtime->hw.rate_min; runtime->hw.channels_max = runtime->hw.channels_min; snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); return 0; } static int uac_pcm_rate_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 324000; return 0; } static int uac_pcm_rate_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_uac_chip *uac = snd_kcontrol_chip(kcontrol); struct g_audio *audio_dev = uac->audio_dev; struct uac_params *params = &audio_dev->params; if (kcontrol->private_value == SNDRV_PCM_STREAM_CAPTURE) ucontrol->value.integer.value[0] = params->c_srate_active; else if (kcontrol->private_value == SNDRV_PCM_STREAM_PLAYBACK) ucontrol->value.integer.value[0] = params->p_srate_active; else return -EINVAL; return 0; } static struct snd_kcontrol_new uac_pcm_controls[] = { { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "Capture Rate", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = uac_pcm_rate_info, .get = uac_pcm_rate_get, .private_value = SNDRV_PCM_STREAM_CAPTURE, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "Playback Rate", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = uac_pcm_rate_info, .get = uac_pcm_rate_get, .private_value = SNDRV_PCM_STREAM_PLAYBACK, }, }; /* ALSA cries without these function pointers */ static int uac_pcm_null(struct snd_pcm_substream *substream) { return 0; } static const struct snd_pcm_ops uac_pcm_ops = { .open = uac_pcm_open, .close = uac_pcm_null, .ioctl = snd_pcm_lib_ioctl, .hw_params = uac_pcm_hw_params, .hw_free = uac_pcm_hw_free, .trigger = uac_pcm_trigger, .pointer = uac_pcm_pointer, .prepare = uac_pcm_null, }; static inline void free_ep(struct uac_rtd_params *prm, struct usb_ep *ep) { struct snd_uac_chip *uac = prm->uac; struct g_audio *audio_dev; struct uac_params *params; int i; if (!prm->ep_enabled) return; audio_dev = uac->audio_dev; params = &audio_dev->params; for (i = 0; i < params->req_number; i++) { if (prm->ureq[i].req) { if (usb_ep_dequeue(ep, prm->ureq[i].req)) usb_ep_free_request(ep, prm->ureq[i].req); /* * If usb_ep_dequeue() cannot successfully dequeue the * request, the request will be freed by the completion * callback. */ prm->ureq[i].req = NULL; } } prm->ep_enabled = false; if (usb_ep_disable(ep)) dev_err(uac->card->dev, "%s:%d Error!\n", __func__, __LINE__); } static struct snd_kcontrol *u_audio_get_ctl(struct g_audio *audio_dev, const char *name) { struct snd_ctl_elem_id elem_id; memset(&elem_id, 0, sizeof(elem_id)); elem_id.iface = SNDRV_CTL_ELEM_IFACE_PCM; strlcpy(elem_id.name, name, sizeof(elem_id.name)); return snd_ctl_find_id(audio_dev->uac->card, &elem_id); } int u_audio_set_capture_srate(struct g_audio *audio_dev, int srate) { struct snd_kcontrol *ctl = u_audio_get_ctl(audio_dev, "Capture Rate"); struct uac_params *params = &audio_dev->params; int i; for (i = 0; i < UAC_MAX_RATES; i++) { if (params->c_srate[i] == srate) { audio_dev->usb_state[SET_SAMPLE_RATE_OUT] = true; schedule_work(&audio_dev->work); params->c_srate_active = srate; snd_ctl_notify(audio_dev->uac->card, SNDRV_CTL_EVENT_MASK_VALUE, &ctl->id); return 0; } if (params->c_srate[i] == 0) break; } return -EINVAL; } EXPORT_SYMBOL_GPL(u_audio_set_capture_srate); static void u_audio_set_playback_pktsize(struct g_audio *audio_dev, int srate) { struct uac_params *params = &audio_dev->params; struct snd_uac_chip *uac = audio_dev->uac; struct usb_gadget *gadget = audio_dev->gadget; const struct usb_endpoint_descriptor *ep_desc; struct uac_rtd_params *prm; unsigned int factor; prm = &uac->p_prm; /* set srate before starting playback, epin is not configured */ if (!prm->ep_enabled) return; ep_desc = audio_dev->in_ep->desc; /* pre-calculate the playback endpoint's interval */ if (gadget->speed == USB_SPEED_FULL) factor = 1000; else factor = 8000; /* pre-compute some values for iso_complete() */ uac->p_framesize = params->p_ssize * num_channels(params->p_chmask); uac->p_interval = factor / (1 << (ep_desc->bInterval - 1)); uac->p_pktsize = min_t(unsigned int, uac->p_framesize * (params->p_srate_active / uac->p_interval), prm->max_psize); if (uac->p_pktsize < prm->max_psize) uac->p_pktsize_residue = uac->p_framesize * (params->p_srate_active % uac->p_interval); else uac->p_pktsize_residue = 0; } int u_audio_set_playback_srate(struct g_audio *audio_dev, int srate) { struct snd_kcontrol *ctl = u_audio_get_ctl(audio_dev, "Playback Rate"); struct uac_params *params = &audio_dev->params; int i; for (i = 0; i < UAC_MAX_RATES; i++) { if (params->p_srate[i] == srate) { audio_dev->usb_state[SET_SAMPLE_RATE_IN] = true; schedule_work(&audio_dev->work); params->p_srate_active = srate; u_audio_set_playback_pktsize(audio_dev, srate); snd_ctl_notify(audio_dev->uac->card, SNDRV_CTL_EVENT_MASK_VALUE, &ctl->id); return 0; } if (params->p_srate[i] == 0) break; } return -EINVAL; } EXPORT_SYMBOL_GPL(u_audio_set_playback_srate); int u_audio_start_capture(struct g_audio *audio_dev) { struct snd_uac_chip *uac = audio_dev->uac; struct usb_gadget *gadget = audio_dev->gadget; struct device *dev = &gadget->dev; struct usb_request *req; struct usb_ep *ep; struct uac_rtd_params *prm; struct uac_params *params = &audio_dev->params; int req_len, i; /* * For better compatibility on some PC Hosts which * failed to send SetInterface(AltSet=0) to stop * capture last time. It needs to stop capture * prior to start capture next time. */ if (audio_dev->stream_state[STATE_OUT]) u_audio_stop_capture(audio_dev); audio_dev->usb_state[SET_INTERFACE_OUT] = true; audio_dev->stream_state[STATE_OUT] = true; schedule_work(&audio_dev->work); ep = audio_dev->out_ep; prm = &uac->c_prm; config_ep_by_speed(gadget, &audio_dev->func, ep); req_len = prm->max_psize; prm->ep_enabled = true; usb_ep_enable(ep); for (i = 0; i < params->req_number; i++) { if (!prm->ureq[i].req) { req = usb_ep_alloc_request(ep, GFP_ATOMIC); if (req == NULL) return -ENOMEM; prm->ureq[i].req = req; prm->ureq[i].pp = prm; req->zero = 0; req->context = &prm->ureq[i]; req->length = req_len; req->complete = u_audio_iso_complete; req->buf = prm->rbuf + i * prm->max_psize; } if (usb_ep_queue(ep, prm->ureq[i].req, GFP_ATOMIC)) dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); } return 0; } EXPORT_SYMBOL_GPL(u_audio_start_capture); void u_audio_stop_capture(struct g_audio *audio_dev) { struct snd_uac_chip *uac = audio_dev->uac; free_ep(&uac->c_prm, audio_dev->out_ep); audio_dev->usb_state[SET_INTERFACE_OUT] = true; audio_dev->stream_state[STATE_OUT] = false; schedule_work(&audio_dev->work); } EXPORT_SYMBOL_GPL(u_audio_stop_capture); int u_audio_start_playback(struct g_audio *audio_dev) { struct snd_uac_chip *uac = audio_dev->uac; struct usb_gadget *gadget = audio_dev->gadget; struct device *dev = audio_dev->device; struct usb_request *req; struct usb_ep *ep; struct uac_rtd_params *prm; struct uac_params *params = &audio_dev->params; int req_len, i; /* * For better compatibility on some PC Hosts which * failed to send SetInterface(AltSet=0) to stop * playback last time. It needs to stop playback * prior to start playback next time. */ if (audio_dev->stream_state[STATE_IN]) u_audio_stop_playback(audio_dev); audio_dev->usb_state[SET_INTERFACE_IN] = true; audio_dev->stream_state[STATE_IN] = true; schedule_work(&audio_dev->work); dev_dbg(dev, "start playback with rate %d\n", params->p_srate_active); ep = audio_dev->in_ep; prm = &uac->p_prm; config_ep_by_speed(gadget, &audio_dev->func, ep); prm->ep_enabled = true; usb_ep_enable(ep); u_audio_set_playback_pktsize(audio_dev, params->p_srate_active); req_len = uac->p_pktsize; uac->p_residue = 0; for (i = 0; i < params->req_number; i++) { if (!prm->ureq[i].req) { req = usb_ep_alloc_request(ep, GFP_ATOMIC); if (req == NULL) return -ENOMEM; prm->ureq[i].req = req; prm->ureq[i].pp = prm; req->zero = 0; req->context = &prm->ureq[i]; req->length = req_len; req->complete = u_audio_iso_complete; req->buf = prm->rbuf + i * prm->max_psize; } if (usb_ep_queue(ep, prm->ureq[i].req, GFP_ATOMIC)) dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); } return 0; } EXPORT_SYMBOL_GPL(u_audio_start_playback); void u_audio_stop_playback(struct g_audio *audio_dev) { struct snd_uac_chip *uac = audio_dev->uac; free_ep(&uac->p_prm, audio_dev->in_ep); audio_dev->usb_state[SET_INTERFACE_IN] = true; audio_dev->stream_state[STATE_IN] = false; schedule_work(&audio_dev->work); } EXPORT_SYMBOL_GPL(u_audio_stop_playback); int u_audio_fu_set_cmd(struct usb_audio_control *con, u8 cmd, int value) { struct g_audio *audio_dev = (struct g_audio *)con->context; struct uac_params *params = &audio_dev->params; switch (cmd) { case UAC_SET_CUR: if (!strncmp(con->name, "Capture Mute", 12)) { params->c_mute = value; audio_dev->usb_state[SET_MUTE_OUT] = true; } else if (!strncmp(con->name, "Capture Volume", 14)) { params->c_volume = value; audio_dev->usb_state[SET_VOLUME_OUT] = true; } else if (!strncmp(con->name, "Playback Mute", 13)) { params->p_mute = value; audio_dev->usb_state[SET_MUTE_IN] = true; } else if (!strncmp(con->name, "Playback Volume", 15)) { params->p_volume = value; audio_dev->usb_state[SET_VOLUME_IN] = true; } break; case UAC_SET_RES: /* fall through */ default: return 0; } con->data[cmd] = value; schedule_work(&audio_dev->work); return 0; } EXPORT_SYMBOL_GPL(u_audio_fu_set_cmd); int u_audio_fu_get_cmd(struct usb_audio_control *con, u8 cmd) { struct g_audio *audio_dev = (struct g_audio *)con->context; dev_dbg(audio_dev->device, "GET_CMD con %s cmd %d data %d\n", con->name, cmd, (int16_t)con->data[cmd]); return con->data[cmd]; } EXPORT_SYMBOL_GPL(u_audio_fu_get_cmd); static void g_audio_work(struct work_struct *data) { struct g_audio *audio = container_of(data, struct g_audio, work); struct uac_params *params = &audio->params; char *uac_event[4] = { NULL, NULL, NULL, NULL }; char str[19]; signed short volume; int i; for (i = 0; i < SET_USB_STATE_MAX; i++) { if (!audio->usb_state[i]) continue; switch (i) { case SET_INTERFACE_OUT: uac_event[0] = "USB_STATE=SET_INTERFACE"; uac_event[1] = "STREAM_DIRECTION=OUT"; uac_event[2] = audio->stream_state[STATE_OUT] ? "STREAM_STATE=ON" : "STREAM_STATE=OFF"; break; case SET_INTERFACE_IN: uac_event[0] = "USB_STATE=SET_INTERFACE"; uac_event[1] = "STREAM_DIRECTION=IN"; uac_event[2] = audio->stream_state[STATE_IN] ? "STREAM_STATE=ON" : "STREAM_STATE=OFF"; break; case SET_SAMPLE_RATE_OUT: uac_event[0] = "USB_STATE=SET_SAMPLE_RATE"; uac_event[1] = "STREAM_DIRECTION=OUT"; snprintf(str, sizeof(str), "SAMPLE_RATE=%d", params->c_srate_active); uac_event[2] = str; break; case SET_SAMPLE_RATE_IN: uac_event[0] = "USB_STATE=SET_SAMPLE_RATE"; uac_event[1] = "STREAM_DIRECTION=IN"; snprintf(str, sizeof(str), "SAMPLE_RATE=%d", params->p_srate_active); uac_event[2] = str; break; case SET_MUTE_OUT: uac_event[0] = "USB_STATE=SET_MUTE"; uac_event[1] = "STREAM_DIRECTION=OUT"; snprintf(str, sizeof(str), "MUTE=%d", params->c_mute); uac_event[2] = str; break; case SET_MUTE_IN: uac_event[0] = "USB_STATE=SET_MUTE"; uac_event[1] = "STREAM_DIRECTION=IN"; snprintf(str, sizeof(str), "MUTE=%d", params->p_mute); uac_event[2] = str; break; case SET_VOLUME_OUT: uac_event[0] = "USB_STATE=SET_VOLUME"; uac_event[1] = "STREAM_DIRECTION=OUT"; volume = (signed short)params->c_volume; volume /= UAC_VOLUME_RES; snprintf(str, sizeof(str), "VOLUME=%d%%", volume + 50); uac_event[2] = str; break; case SET_VOLUME_IN: uac_event[0] = "USB_STATE=SET_VOLUME"; uac_event[1] = "STREAM_DIRECTION=IN"; volume = (signed short)params->p_volume; volume /= UAC_VOLUME_RES; snprintf(str, sizeof(str), "VOLUME=%d%%", volume + 50); uac_event[2] = str; break; case SET_AUDIO_CLK: uac_event[0] = "USB_STATE=SET_AUDIO_CLK"; snprintf(str, sizeof(str), "PPM=%d", params->ppm); uac_event[1] = str; default: break; } audio->usb_state[i] = false; kobject_uevent_env(&audio->device->kobj, KOBJ_CHANGE, uac_event); dev_dbg(audio->device, "%s: sent uac uevent %s %s %s\n", __func__, uac_event[0], uac_event[1], uac_event[2]); } } static void ppm_calculate_work(struct work_struct *data) { struct g_audio *g_audio = container_of(data, struct g_audio, ppm_work.work); struct usb_gadget *gadget = g_audio->gadget; uint32_t frame_number, fn_msec, clk_msec; struct frame_number_data *fn = g_audio->fn; uint64_t time_now, time_msec_tmp; int32_t ppm; static int32_t ppms[CLK_PPM_GROUP_SIZE]; static int32_t ppm_sum; int32_t cnt = fn->second % CLK_PPM_GROUP_SIZE; time_now = ktime_get_raw(); frame_number = gadget->ops->get_frame(gadget); if (g_audio->fn->time_last && time_now - g_audio->fn->time_last > 1500000000ULL) dev_warn(g_audio->device, "PPM work scheduled too slow!\n"); g_audio->fn->time_last = time_now; /* * If usb is disconnected, the controller will not receive the * SoF signal and frame number will be invalid. Because we can't * get accurate time of disconnect and whether the gadget will be * plugged into the same host next time or not. We must clear all * statistics. */ if (gadget->state != USB_STATE_CONFIGURED) { memset(g_audio->fn, 0, sizeof(*g_audio->fn)); dev_dbg(g_audio->device, "Disconnect. frame number is cleared\n"); goto out; } /* Fist statistic to record begin frame number and system time */ if (!g_audio->fn->second++) { g_audio->fn->time_begin = g_audio->fn->time_last; g_audio->fn->fn_begin = frame_number; g_audio->fn->fn_last = frame_number; goto out; } /* * For DWC3 Controller, only 13 bits is used to store frame(micro) * number. In other words, the frame number will overflow at most * 2.047 seconds. We add another registor fn_overflow the record * total frame number. */ if (frame_number <= g_audio->fn->fn_last) g_audio->fn->fn_overflow++; g_audio->fn->fn_last = frame_number; if (!g_audio->fn->fn_overflow) goto out; /* The lower 3 bits represent micro number frame, we don't need it */ fn_msec = (((fn->fn_overflow - 1) << 14) + (BIT(14) + fn->fn_last - fn->fn_begin) + BIT(2)) >> 3; time_msec_tmp = fn->time_last - fn->time_begin + 500000ULL; do_div(time_msec_tmp, 1000000U); clk_msec = (uint32_t)time_msec_tmp; /* * According to the definition of ppm: * host_clk = (1 + ppm / 1000000) * gadget_clk * we can get: * ppm = (host_clk - gadget_clk) * 1000000 / gadget_clk */ ppm = (fn_msec > clk_msec) ? (fn_msec - clk_msec) * 1000000L / clk_msec : -((clk_msec - fn_msec) * 1000000L / clk_msec); ppm_sum = ppm_sum - ppms[cnt] + ppm; ppms[cnt] = ppm; dev_dbg(g_audio->device, "frame %u msec %u ppm_calc %d ppm_avage(%d) %d\n", fn_msec, clk_msec, ppm, CLK_PPM_GROUP_SIZE, ppm_sum / CLK_PPM_GROUP_SIZE); /* * We calculate the average of ppm over a period of time. If the * latest frame number is too far from the average, no event will * be sent. */ if (abs(ppm_sum / CLK_PPM_GROUP_SIZE - ppm) < 3) { ppm = ppm_sum > 0 ? (ppm_sum + CLK_PPM_GROUP_SIZE / 2) / CLK_PPM_GROUP_SIZE : (ppm_sum - CLK_PPM_GROUP_SIZE / 2) / CLK_PPM_GROUP_SIZE; if (ppm != g_audio->params.ppm) { g_audio->params.ppm = ppm; g_audio->usb_state[SET_AUDIO_CLK] = true; schedule_work(&g_audio->work); } } out: schedule_delayed_work(&g_audio->ppm_work, 1 * HZ); } int g_audio_setup(struct g_audio *g_audio, const char *pcm_name, const char *card_name) { struct snd_uac_chip *uac; struct snd_card *card; struct snd_pcm *pcm; struct uac_params *params; int p_chmask, c_chmask; int err; int i; if (!g_audio) return -EINVAL; uac = kzalloc(sizeof(*uac), GFP_KERNEL); if (!uac) return -ENOMEM; g_audio->uac = uac; uac->audio_dev = g_audio; params = &g_audio->params; p_chmask = params->p_chmask; c_chmask = params->c_chmask; g_audio->fn = kzalloc(sizeof(*g_audio->fn), GFP_KERNEL); if (!g_audio->fn) { err = -ENOMEM; goto fail; } if (c_chmask) { struct uac_rtd_params *prm = &uac->c_prm; uac->c_prm.uac = uac; prm->max_psize = g_audio->out_ep_maxpsize; prm->ureq = kcalloc(params->req_number, sizeof(struct uac_req), GFP_KERNEL); if (!prm->ureq) { err = -ENOMEM; goto fail; } prm->rbuf = kcalloc(params->req_number, prm->max_psize, GFP_KERNEL); if (!prm->rbuf) { prm->max_psize = 0; err = -ENOMEM; goto fail; } } if (p_chmask) { struct uac_rtd_params *prm = &uac->p_prm; uac->p_prm.uac = uac; prm->max_psize = g_audio->in_ep_maxpsize; prm->ureq = kcalloc(params->req_number, sizeof(struct uac_req), GFP_KERNEL); if (!prm->ureq) { err = -ENOMEM; goto fail; } prm->rbuf = kcalloc(params->req_number, prm->max_psize, GFP_KERNEL); if (!prm->rbuf) { prm->max_psize = 0; err = -ENOMEM; goto fail; } } /* Choose any slot, with no id */ err = snd_card_new(&g_audio->gadget->dev, -1, NULL, THIS_MODULE, 0, &card); if (err < 0) goto fail; uac->card = card; /* * Create first PCM device * Create a substream only for non-zero channel streams */ err = snd_pcm_new(uac->card, pcm_name, 0, p_chmask ? 1 : 0, c_chmask ? 1 : 0, &pcm); if (err < 0) goto snd_fail; strlcpy(pcm->name, pcm_name, sizeof(pcm->name)); pcm->private_data = uac; uac->pcm = pcm; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &uac_pcm_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &uac_pcm_ops); strlcpy(card->driver, card_name, sizeof(card->driver)); strlcpy(card->shortname, card_name, sizeof(card->shortname)); sprintf(card->longname, "%s %i", card_name, card->dev->id); snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS, snd_dma_continuous_data(GFP_KERNEL), 0, BUFF_SIZE_MAX); /* Add controls */ for (i = 0; i < ARRAY_SIZE(uac_pcm_controls); i++) { err = snd_ctl_add(card, snd_ctl_new1(&uac_pcm_controls[i], uac)); if (err < 0) goto snd_fail; } err = snd_card_register(card); if (err < 0) goto snd_fail; g_audio->device = device_create(audio_class, NULL, MKDEV(0, 0), NULL, "%s", g_audio->uac->card->longname); if (IS_ERR(g_audio->device)) { err = PTR_ERR(g_audio->device); goto snd_fail; } INIT_WORK(&g_audio->work, g_audio_work); INIT_DELAYED_WORK(&g_audio->ppm_work, ppm_calculate_work); ppm_calculate_work(&g_audio->ppm_work.work); if (!err) return 0; snd_fail: snd_card_free(card); fail: kfree(uac->p_prm.ureq); kfree(uac->c_prm.ureq); kfree(uac->p_prm.rbuf); kfree(uac->c_prm.rbuf); kfree(uac); kfree(g_audio->fn); return err; } EXPORT_SYMBOL_GPL(g_audio_setup); void g_audio_cleanup(struct g_audio *g_audio) { struct snd_uac_chip *uac; struct snd_card *card; if (!g_audio || !g_audio->uac) return; cancel_work_sync(&g_audio->work); cancel_delayed_work_sync(&g_audio->ppm_work); device_destroy(g_audio->device->class, g_audio->device->devt); g_audio->device = NULL; uac = g_audio->uac; card = uac->card; if (card) snd_card_free(card); free_ep(&uac->c_prm, g_audio->out_ep); free_ep(&uac->p_prm, g_audio->in_ep); kfree(uac->p_prm.ureq); kfree(uac->c_prm.ureq); kfree(uac->p_prm.rbuf); kfree(uac->c_prm.rbuf); kfree(uac); kfree(g_audio->fn); } EXPORT_SYMBOL_GPL(g_audio_cleanup); static int __init u_audio_init(void) { int err = 0; audio_class = class_create(THIS_MODULE, "u_audio"); if (IS_ERR(audio_class)) { err = PTR_ERR(audio_class); audio_class = NULL; } return err; } module_init(u_audio_init); static void __exit u_audio_exit(void) { if (audio_class) class_destroy(audio_class); } module_exit(u_audio_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("USB gadget \"ALSA sound card\" utilities"); MODULE_AUTHOR("Ruslan Bilovol");