// SPDX-License-Identifier: BSD-2-Clause /* * Copyright (c) 2015, Linaro Limited * All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "crypto_common.h" #include "xtest_helpers.h" /* * TEE client stuff */ static TEEC_Context ctx; static TEEC_Session sess; static TEEC_SharedMemory in_shm = { .flags = TEEC_MEM_INPUT }; static TEEC_SharedMemory out_shm = { .flags = TEEC_MEM_OUTPUT }; static void errx(const char *msg, TEEC_Result res, uint32_t *orig) { fprintf(stderr, "%s: 0x%08x", msg, res); if (orig) fprintf(stderr, " (orig=%d)", (int)*orig); fprintf(stderr, "\n"); exit (1); } static void check_res(TEEC_Result res, const char *errmsg, uint32_t *orig) { if (res != TEEC_SUCCESS) errx(errmsg, res, orig); } static void open_ta(void) { TEEC_Result res = TEEC_ERROR_GENERIC; TEEC_UUID uuid = TA_SHA_PERF_UUID; uint32_t err_origin = 0; res = TEEC_InitializeContext(NULL, &ctx); check_res(res,"TEEC_InitializeContext", NULL); res = TEEC_OpenSession(&ctx, &sess, &uuid, TEEC_LOGIN_PUBLIC, NULL, NULL, &err_origin); check_res(res,"TEEC_OpenSession", &err_origin); } /* * Statistics * * We want to compute min, max, mean and standard deviation of processing time */ struct statistics { int n; double m; double M2; double min; double max; int initialized; }; /* Take new sample into account (Knuth/Welford algorithm) */ static void update_stats(struct statistics *s, uint64_t t) { double x = (double)t; double delta = x - s->m; s->n++; s->m += delta/s->n; s->M2 += delta*(x - s->m); if (!s->initialized) { s->min = s->max = x; s->initialized = 1; } else { if (s->min > x) s->min = x; if (s->max < x) s->max = x; } } static double stddev(struct statistics *s) { if (s->n < 2) return NAN; return sqrt(s->M2/s->n); } static const char *algo_str(uint32_t algo) { switch (algo) { case TA_SHA_SHA1: return "SHA1"; case TA_SHA_SHA224: return "SHA224"; case TA_SHA_SHA256: return "SHA256"; case TA_SHA_SHA384: return "SHA384"; case TA_SHA_SHA512: return "SHA512"; default: return "???"; } } static int hash_size(uint32_t algo) { switch (algo) { case TA_SHA_SHA1: return 20; case TA_SHA_SHA224: return 28; case TA_SHA_SHA256: return 32; case TA_SHA_SHA384: return 48; case TA_SHA_SHA512: return 64; default: return 0; } } #define _TO_STR(x) #x #define TO_STR(x) _TO_STR(x) static void alloc_shm(size_t sz, uint32_t algo, int offset) { TEEC_Result res = TEEC_ERROR_GENERIC; in_shm.buffer = NULL; in_shm.size = sz + offset; res = TEEC_AllocateSharedMemory(&ctx, &in_shm); check_res(res, "TEEC_AllocateSharedMemory", NULL); out_shm.buffer = NULL; out_shm.size = hash_size(algo); res = TEEC_AllocateSharedMemory(&ctx, &out_shm); check_res(res, "TEEC_AllocateSharedMemory", NULL); } static void free_shm(void) { TEEC_ReleaseSharedMemory(&in_shm); TEEC_ReleaseSharedMemory(&out_shm); } static ssize_t read_random(void *in, size_t rsize) { static int rnd; ssize_t s = 0; if (!rnd) { rnd = open("/dev/urandom", O_RDONLY); if (rnd < 0) { perror("open"); return 1; } } s = read(rnd, in, rsize); if (s < 0) { perror("read"); return 1; } if ((size_t)s != rsize) { printf("read: requested %zu bytes, got %zd\n", rsize, s); } return 0; } static long get_current_time(struct timespec *ts) { if (clock_gettime(CLOCK_MONOTONIC, ts) < 0) { perror("clock_gettime"); exit(1); } return 0; } static uint64_t timespec_diff_ns(struct timespec *start, struct timespec *end) { uint64_t ns = 0; if (end->tv_nsec < start->tv_nsec) { ns += 1000000000 * (end->tv_sec - start->tv_sec - 1); ns += 1000000000 - start->tv_nsec + end->tv_nsec; } else { ns += 1000000000 * (end->tv_sec - start->tv_sec); ns += end->tv_nsec - start->tv_nsec; } return ns; } static uint64_t run_test_once(void *in, size_t size, int random_in, TEEC_Operation *op) { struct timespec t0 = { }; struct timespec t1 = { }; TEEC_Result res = TEEC_ERROR_GENERIC; uint32_t ret_origin = 0; if (random_in == CRYPTO_USE_RANDOM) read_random(in, size); get_current_time(&t0); res = TEEC_InvokeCommand(&sess, TA_SHA_PERF_CMD_PROCESS, op, &ret_origin); check_res(res, "TEEC_InvokeCommand", &ret_origin); get_current_time(&t1); return timespec_diff_ns(&t0, &t1); } static void prepare_op(int algo) { TEEC_Result res = TEEC_ERROR_GENERIC; uint32_t ret_origin = 0; TEEC_Operation op = TEEC_OPERATION_INITIALIZER; op.paramTypes = TEEC_PARAM_TYPES(TEEC_VALUE_INPUT, TEEC_NONE, TEEC_NONE, TEEC_NONE); op.params[0].value.a = algo; res = TEEC_InvokeCommand(&sess, TA_SHA_PERF_CMD_PREPARE_OP, &op, &ret_origin); check_res(res, "TEEC_InvokeCommand", &ret_origin); } static void do_warmup(int warmup) { struct timespec t0 = { }; struct timespec t = { }; int i = 0; get_current_time(&t0); do { for (i = 0; i < 100000; i++) ; get_current_time(&t); } while (timespec_diff_ns(&t0, &t) < (uint64_t)warmup * 1000000000); } static const char *yesno(int v) { return (v ? "yes" : "no"); } static double mb_per_sec(size_t size, double usec) { return (1000000000/usec)*((double)size/(1024*1024)); } /* Hash test: buffer of size byte. Run test n times. * Entry point for running SHA benchmark * Params: * algo - Algorithm * size - Buffer size * n - Number of measurements * l - Amount of inner loops * random_in - Get input from /dev/urandom * offset - Buffer offset wrt. alloc-ed address * warmup - Start with a-second busy loop * verbosity - Verbosity level * */ extern void sha_perf_run_test(int algo, size_t size, unsigned int n, unsigned int l, int random_in, int offset, int warmup, int verbosity) { uint64_t t = 0; struct statistics stats = { }; TEEC_Operation op = TEEC_OPERATION_INITIALIZER; int n0 = n; struct timespec ts = { }; double sd = 0; vverbose("sha-perf\n"); if (clock_getres(CLOCK_MONOTONIC, &ts) < 0) { perror("clock_getres"); return; } vverbose("Clock resolution is %jd ns\n", (intmax_t)ts.tv_sec * 1000000000 + ts.tv_nsec); open_ta(); prepare_op(algo); alloc_shm(size, algo, offset); if (random_in == CRYPTO_USE_ZEROS) memset((uint8_t *)in_shm.buffer + offset, 0, size); op.paramTypes = TEEC_PARAM_TYPES(TEEC_MEMREF_PARTIAL_INPUT, TEEC_MEMREF_PARTIAL_OUTPUT, TEEC_VALUE_INPUT, TEEC_NONE); op.params[0].memref.parent = &in_shm; op.params[0].memref.offset = 0; op.params[0].memref.size = size + offset; op.params[1].memref.parent = &out_shm; op.params[1].memref.offset = 0; op.params[1].memref.size = hash_size(algo); op.params[2].value.a = l; op.params[2].value.b = offset; verbose("Starting test: %s, size=%zu bytes, ", algo_str(algo), size); verbose("random=%s, ", yesno(random_in == CRYPTO_USE_RANDOM)); verbose("unaligned=%s, ", yesno(offset)); verbose("inner loops=%u, loops=%u, warm-up=%u s\n", l, n, warmup); if (warmup) do_warmup(warmup); while (n-- > 0) { t = run_test_once((uint8_t *)in_shm.buffer + offset, size, random_in, &op); update_stats(&stats, t); if (n % (n0 / 10) == 0) vverbose("#"); } vverbose("\n"); sd = stddev(&stats); printf("min=%gus max=%gus mean=%gus stddev=%gus (cv %g%%) (%gMiB/s)\n", stats.min / 1000, stats.max / 1000, stats.m / 1000, sd / 1000, 100 * sd / stats.m, mb_per_sec(size, stats.m)); verbose("2-sigma interval: %g..%gus (%g..%gMiB/s)\n", (stats.m - 2 * sd) / 1000, (stats.m + 2 * sd) / 1000, mb_per_sec(size, stats.m + 2 * sd), mb_per_sec(size, stats.m - 2 * sd)); free_shm(); } static void usage(const char *progname, /* Default params */ int algo, size_t size, int warmup, int l, int n) { fprintf(stderr, "Usage: %s [-h]\n", progname); fprintf(stderr, "Usage: %s [-a ALGO] [-l LOOP] [-n LOOP] [-r] [-s SIZE]", progname); fprintf(stderr, " [-v [-v]] [-w SEC]\n"); fprintf(stderr, "SHA performance testing tool for OP-TEE\n"); fprintf(stderr, "\n"); fprintf(stderr, "Options:\n"); fprintf(stderr, " -a ALGO Algorithm (SHA1, SHA224, SHA256, SHA384, SHA512) [%s]\n", algo_str(algo)); fprintf(stderr, " -h|--help Print this help and exit\n"); fprintf(stderr, " -l LOOP Inner loop iterations (TA calls TEE_DigestDoFinal() times) [%u]\n", l); fprintf(stderr, " -n LOOP Outer test loop iterations [%u]\n", n); fprintf(stderr, " -r|--random Get input data from /dev/urandom (default: all-zeros)\n"); fprintf(stderr, " -s SIZE Test buffer size in bytes [%zu]\n", size); fprintf(stderr, " -u|--unalign Use unaligned buffer (odd address)\n"); fprintf(stderr, " -v Be verbose (use twice for greater effect)\n"); fprintf(stderr, " -w|--warmup SEC Warm-up time in seconds: execute a busy loop before\n"); fprintf(stderr, " the test to mitigate the effects of cpufreq etc. [%u]\n", warmup); } #define NEXT_ARG(i) \ do { \ if (++i == argc) { \ fprintf(stderr, "%s: %s: missing argument\n", \ argv[0], argv[i - 1]); \ return 1; \ } \ } while (0); extern int sha_perf_runner_cmd_parser(int argc, char *argv[]) { int i = 0; /* Command line params */ size_t size = 1024; /* Buffer size (-s) */ unsigned int n = CRYPTO_DEF_COUNT;/* Number of measurements (-n)*/ unsigned int l = CRYPTO_DEF_LOOPS; /* Inner loops (-l) */ int verbosity = CRYPTO_DEF_VERBOSITY; /* Verbosity (-v) */ int algo = TA_SHA_SHA1; /* Algorithm (-a) */ /* Get input data from /dev/urandom (-r) */ int random_in = CRYPTO_USE_ZEROS; /* Start with a 2-second busy loop (-w) */ int warmup = CRYPTO_DEF_WARMUP; int offset = 0; /* Buffer offset wrt. alloc'ed address (-u) */ /* Parse command line */ for (i = 1; i < argc; i++) { if (!strcmp(argv[i], "-h") || !strcmp(argv[i], "--help")) { usage(argv[0], algo, size, warmup, l, n); return 0; } } for (i = 1; i < argc; i++) { if (!strcmp(argv[i], "-l")) { NEXT_ARG(i); l = atoi(argv[i]); } else if (!strcmp(argv[i], "-a")) { NEXT_ARG(i); if (!strcasecmp(argv[i], "SHA1")) algo = TA_SHA_SHA1; else if (!strcasecmp(argv[i], "SHA224")) algo = TA_SHA_SHA224; else if (!strcasecmp(argv[i], "SHA256")) algo = TA_SHA_SHA256; else if (!strcasecmp(argv[i], "SHA384")) algo = TA_SHA_SHA384; else if (!strcasecmp(argv[i], "SHA512")) algo = TA_SHA_SHA512; else { fprintf(stderr, "%s, invalid algorithm\n", argv[0]); usage(argv[0], algo, size, warmup, l, n); return 1; } } else if (!strcmp(argv[i], "-n")) { NEXT_ARG(i); n = atoi(argv[i]); } else if (!strcmp(argv[i], "--random") || !strcmp(argv[i], "-r")) { random_in = CRYPTO_USE_RANDOM; } else if (!strcmp(argv[i], "-s")) { NEXT_ARG(i); size = atoi(argv[i]); } else if (!strcmp(argv[i], "--unalign") || !strcmp(argv[i], "-u")) { offset = 1; } else if (!strcmp(argv[i], "-v")) { verbosity++; } else if (!strcmp(argv[i], "--warmup") || !strcmp(argv[i], "-w")) { NEXT_ARG(i); warmup = atoi(argv[i]); } else { fprintf(stderr, "%s: invalid argument: %s\n", argv[0], argv[i]); usage(argv[0], algo, size, warmup, l, n); return 1; } } sha_perf_run_test(algo, size, n, l, random_in, offset, warmup, verbosity); return 0; }