// SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note /* * * (C) COPYRIGHT 2014-2021 ARM Limited. All rights reserved. * * This program is free software and is provided to you under the terms of the * GNU General Public License version 2 as published by the Free Software * Foundation, and any use by you of this program is subject to the terms * of such GNU license. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you can access it online at * http://www.gnu.org/licenses/gpl-2.0.html. * */ /* * Register-based HW access backend specific APIs */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* Return whether the specified ringbuffer is empty. HW access lock must be * held */ #define SLOT_RB_EMPTY(rb) (rb->write_idx == rb->read_idx) /* Return number of atoms currently in the specified ringbuffer. HW access lock * must be held */ #define SLOT_RB_ENTRIES(rb) (int)(s8)(rb->write_idx - rb->read_idx) static void kbase_gpu_release_atom(struct kbase_device *kbdev, struct kbase_jd_atom *katom, ktime_t *end_timestamp); /** * kbase_gpu_enqueue_atom - Enqueue an atom in the HW access ringbuffer * @kbdev: Device pointer * @katom: Atom to enqueue * * Context: Caller must hold the HW access lock */ static void kbase_gpu_enqueue_atom(struct kbase_device *kbdev, struct kbase_jd_atom *katom) { struct slot_rb *rb = &kbdev->hwaccess.backend.slot_rb[katom->slot_nr]; WARN_ON(SLOT_RB_ENTRIES(rb) >= SLOT_RB_SIZE); lockdep_assert_held(&kbdev->hwaccess_lock); rb->entries[rb->write_idx & SLOT_RB_MASK].katom = katom; rb->write_idx++; katom->gpu_rb_state = KBASE_ATOM_GPU_RB_WAITING_BLOCKED; } /** * kbase_gpu_dequeue_atom - Remove an atom from the HW access ringbuffer, once * it has been completed * @kbdev: Device pointer * @js: Job slot to remove atom from * @end_timestamp: Pointer to timestamp of atom completion. May be NULL, in * which case current time will be used. * * Context: Caller must hold the HW access lock * * Return: Atom removed from ringbuffer */ static struct kbase_jd_atom *kbase_gpu_dequeue_atom(struct kbase_device *kbdev, int js, ktime_t *end_timestamp) { struct slot_rb *rb = &kbdev->hwaccess.backend.slot_rb[js]; struct kbase_jd_atom *katom; if (SLOT_RB_EMPTY(rb)) { WARN(1, "GPU ringbuffer unexpectedly empty\n"); return NULL; } lockdep_assert_held(&kbdev->hwaccess_lock); katom = rb->entries[rb->read_idx & SLOT_RB_MASK].katom; kbase_gpu_release_atom(kbdev, katom, end_timestamp); rb->read_idx++; katom->gpu_rb_state = KBASE_ATOM_GPU_RB_NOT_IN_SLOT_RB; return katom; } struct kbase_jd_atom *kbase_gpu_inspect(struct kbase_device *kbdev, int js, int idx) { struct slot_rb *rb = &kbdev->hwaccess.backend.slot_rb[js]; lockdep_assert_held(&kbdev->hwaccess_lock); if ((SLOT_RB_ENTRIES(rb) - 1) < idx) return NULL; /* idx out of range */ return rb->entries[(rb->read_idx + idx) & SLOT_RB_MASK].katom; } struct kbase_jd_atom *kbase_backend_inspect_tail(struct kbase_device *kbdev, int js) { struct slot_rb *rb = &kbdev->hwaccess.backend.slot_rb[js]; if (SLOT_RB_EMPTY(rb)) return NULL; return rb->entries[(rb->write_idx - 1) & SLOT_RB_MASK].katom; } bool kbase_gpu_atoms_submitted_any(struct kbase_device *kbdev) { int js; int i; lockdep_assert_held(&kbdev->hwaccess_lock); for (js = 0; js < kbdev->gpu_props.num_job_slots; js++) { for (i = 0; i < SLOT_RB_SIZE; i++) { struct kbase_jd_atom *katom = kbase_gpu_inspect(kbdev, js, i); if (katom && katom->gpu_rb_state == KBASE_ATOM_GPU_RB_SUBMITTED) return true; } } return false; } int kbase_backend_nr_atoms_submitted(struct kbase_device *kbdev, int js) { int nr = 0; int i; lockdep_assert_held(&kbdev->hwaccess_lock); for (i = 0; i < SLOT_RB_SIZE; i++) { struct kbase_jd_atom *katom = kbase_gpu_inspect(kbdev, js, i); if (katom && (katom->gpu_rb_state == KBASE_ATOM_GPU_RB_SUBMITTED)) nr++; } return nr; } int kbase_backend_nr_atoms_on_slot(struct kbase_device *kbdev, int js) { int nr = 0; int i; lockdep_assert_held(&kbdev->hwaccess_lock); for (i = 0; i < SLOT_RB_SIZE; i++) { if (kbase_gpu_inspect(kbdev, js, i)) nr++; } return nr; } static int kbase_gpu_nr_atoms_on_slot_min(struct kbase_device *kbdev, int js, enum kbase_atom_gpu_rb_state min_rb_state) { int nr = 0; int i; lockdep_assert_held(&kbdev->hwaccess_lock); for (i = 0; i < SLOT_RB_SIZE; i++) { struct kbase_jd_atom *katom = kbase_gpu_inspect(kbdev, js, i); if (katom && (katom->gpu_rb_state >= min_rb_state)) nr++; } return nr; } /** * check_secure_atom - Check if the given atom is in the given secure state and * has a ringbuffer state of at least * KBASE_ATOM_GPU_RB_WAITING_PROTECTED_MODE_TRANSITION * @katom: Atom pointer * @secure: Desired secure state * * Return: true if atom is in the given state, false otherwise */ static bool check_secure_atom(struct kbase_jd_atom *katom, bool secure) { if (katom->gpu_rb_state >= KBASE_ATOM_GPU_RB_WAITING_PROTECTED_MODE_TRANSITION && ((kbase_jd_katom_is_protected(katom) && secure) || (!kbase_jd_katom_is_protected(katom) && !secure))) return true; return false; } /** * kbase_gpu_check_secure_atoms - Check if there are any atoms in the given * secure state in the ringbuffers of at least * state * KBASE_ATOM_GPU_RB_WAITING_FOR_CORE_AVAILABLE * @kbdev: Device pointer * @secure: Desired secure state * * Return: true if any atoms are in the given state, false otherwise */ static bool kbase_gpu_check_secure_atoms(struct kbase_device *kbdev, bool secure) { int js, i; for (js = 0; js < kbdev->gpu_props.num_job_slots; js++) { for (i = 0; i < SLOT_RB_SIZE; i++) { struct kbase_jd_atom *katom = kbase_gpu_inspect(kbdev, js, i); if (katom) { if (check_secure_atom(katom, secure)) return true; } } } return false; } int kbase_backend_slot_free(struct kbase_device *kbdev, int js) { lockdep_assert_held(&kbdev->hwaccess_lock); if (atomic_read(&kbdev->hwaccess.backend.reset_gpu) != KBASE_RESET_GPU_NOT_PENDING) { /* The GPU is being reset - so prevent submission */ return 0; } return SLOT_RB_SIZE - kbase_backend_nr_atoms_on_slot(kbdev, js); } static void kbase_gpu_release_atom(struct kbase_device *kbdev, struct kbase_jd_atom *katom, ktime_t *end_timestamp) { struct kbase_context *kctx = katom->kctx; lockdep_assert_held(&kbdev->hwaccess_lock); switch (katom->gpu_rb_state) { case KBASE_ATOM_GPU_RB_NOT_IN_SLOT_RB: /* Should be impossible */ WARN(1, "Attempting to release atom not in ringbuffer\n"); break; case KBASE_ATOM_GPU_RB_SUBMITTED: kbase_kinstr_jm_atom_hw_release(katom); /* Inform power management at start/finish of atom so it can * update its GPU utilisation metrics. Mark atom as not * submitted beforehand. */ katom->gpu_rb_state = KBASE_ATOM_GPU_RB_READY; kbase_pm_metrics_update(kbdev, end_timestamp); /* Inform platform at start/finish of atom */ kbasep_platform_event_atom_complete(katom); if (katom->core_req & BASE_JD_REQ_PERMON) kbase_pm_release_gpu_cycle_counter_nolock(kbdev); KBASE_TLSTREAM_TL_NRET_ATOM_LPU(kbdev, katom, &kbdev->gpu_props.props.raw_props.js_features [katom->slot_nr]); KBASE_TLSTREAM_TL_NRET_ATOM_AS(kbdev, katom, &kbdev->as[kctx->as_nr]); KBASE_TLSTREAM_TL_NRET_CTX_LPU(kbdev, kctx, &kbdev->gpu_props.props.raw_props.js_features [katom->slot_nr]); /* ***FALLTHROUGH: TRANSITION TO LOWER STATE*** */ case KBASE_ATOM_GPU_RB_READY: /* ***FALLTHROUGH: TRANSITION TO LOWER STATE*** */ case KBASE_ATOM_GPU_RB_WAITING_FOR_CORE_AVAILABLE: break; case KBASE_ATOM_GPU_RB_WAITING_PROTECTED_MODE_TRANSITION: if (kbase_jd_katom_is_protected(katom) && (katom->protected_state.enter != KBASE_ATOM_ENTER_PROTECTED_CHECK) && (katom->protected_state.enter != KBASE_ATOM_ENTER_PROTECTED_HWCNT)) { kbase_pm_protected_override_disable(kbdev); kbase_pm_update_cores_state_nolock(kbdev); } if (kbase_jd_katom_is_protected(katom) && (katom->protected_state.enter == KBASE_ATOM_ENTER_PROTECTED_IDLE_L2)) kbase_pm_protected_entry_override_disable(kbdev); if (!kbase_jd_katom_is_protected(katom) && (katom->protected_state.exit != KBASE_ATOM_EXIT_PROTECTED_CHECK) && (katom->protected_state.exit != KBASE_ATOM_EXIT_PROTECTED_RESET_WAIT)) { kbase_pm_protected_override_disable(kbdev); kbase_pm_update_cores_state_nolock(kbdev); } if (katom->protected_state.enter != KBASE_ATOM_ENTER_PROTECTED_CHECK || katom->protected_state.exit != KBASE_ATOM_EXIT_PROTECTED_CHECK) kbdev->protected_mode_transition = false; /* If the atom has suspended hwcnt but has not yet entered * protected mode, then resume hwcnt now. If the GPU is now in * protected mode then hwcnt will be resumed by GPU reset so * don't resume it here. */ if (kbase_jd_katom_is_protected(katom) && ((katom->protected_state.enter == KBASE_ATOM_ENTER_PROTECTED_IDLE_L2) || (katom->protected_state.enter == KBASE_ATOM_ENTER_PROTECTED_SET_COHERENCY))) { WARN_ON(!kbdev->protected_mode_hwcnt_disabled); kbdev->protected_mode_hwcnt_desired = true; if (kbdev->protected_mode_hwcnt_disabled) { kbase_hwcnt_context_enable( kbdev->hwcnt_gpu_ctx); kbdev->protected_mode_hwcnt_disabled = false; } } if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_TGOX_R1_1234)) { if (katom->atom_flags & KBASE_KATOM_FLAG_HOLDING_L2_REF_PROT) { kbase_pm_protected_l2_override(kbdev, false); katom->atom_flags &= ~KBASE_KATOM_FLAG_HOLDING_L2_REF_PROT; } } /* ***FALLTHROUGH: TRANSITION TO LOWER STATE*** */ case KBASE_ATOM_GPU_RB_WAITING_PROTECTED_MODE_PREV: /* ***FALLTHROUGH: TRANSITION TO LOWER STATE*** */ case KBASE_ATOM_GPU_RB_WAITING_BLOCKED: /* ***FALLTHROUGH: TRANSITION TO LOWER STATE*** */ case KBASE_ATOM_GPU_RB_RETURN_TO_JS: break; } katom->gpu_rb_state = KBASE_ATOM_GPU_RB_WAITING_BLOCKED; katom->protected_state.exit = KBASE_ATOM_EXIT_PROTECTED_CHECK; } static void kbase_gpu_mark_atom_for_return(struct kbase_device *kbdev, struct kbase_jd_atom *katom) { lockdep_assert_held(&kbdev->hwaccess_lock); kbase_gpu_release_atom(kbdev, katom, NULL); katom->gpu_rb_state = KBASE_ATOM_GPU_RB_RETURN_TO_JS; } /** * other_slots_busy - Determine if any job slots other than @js are currently * running atoms * @kbdev: Device pointer * @js: Job slot * * Return: true if any slots other than @js are busy, false otherwise */ static inline bool other_slots_busy(struct kbase_device *kbdev, int js) { int slot; for (slot = 0; slot < kbdev->gpu_props.num_job_slots; slot++) { if (slot == js) continue; if (kbase_gpu_nr_atoms_on_slot_min(kbdev, slot, KBASE_ATOM_GPU_RB_SUBMITTED)) return true; } return false; } static inline bool kbase_gpu_in_protected_mode(struct kbase_device *kbdev) { return kbdev->protected_mode; } static void kbase_gpu_disable_coherent(struct kbase_device *kbdev) { lockdep_assert_held(&kbdev->hwaccess_lock); /* * When entering into protected mode, we must ensure that the * GPU is not operating in coherent mode as well. This is to * ensure that no protected memory can be leaked. */ if (kbdev->system_coherency == COHERENCY_ACE) kbase_cache_set_coherency_mode(kbdev, COHERENCY_ACE_LITE); } static int kbase_gpu_protected_mode_enter(struct kbase_device *kbdev) { int err = -EINVAL; lockdep_assert_held(&kbdev->hwaccess_lock); WARN_ONCE(!kbdev->protected_ops, "Cannot enter protected mode: protected callbacks not specified.\n"); if (kbdev->protected_ops) { /* Switch GPU to protected mode */ err = kbdev->protected_ops->protected_mode_enable( kbdev->protected_dev); if (err) { dev_warn(kbdev->dev, "Failed to enable protected mode: %d\n", err); } else { kbdev->protected_mode = true; kbase_ipa_protection_mode_switch_event(kbdev); } } return err; } static int kbase_gpu_protected_mode_reset(struct kbase_device *kbdev) { lockdep_assert_held(&kbdev->hwaccess_lock); WARN_ONCE(!kbdev->protected_ops, "Cannot exit protected mode: protected callbacks not specified.\n"); if (!kbdev->protected_ops) return -EINVAL; /* The protected mode disable callback will be called as part of reset */ return kbase_reset_gpu_silent(kbdev); } static int kbase_jm_protected_entry(struct kbase_device *kbdev, struct kbase_jd_atom **katom, int idx, int js) { int err = 0; lockdep_assert_held(&kbdev->hwaccess_lock); err = kbase_gpu_protected_mode_enter(kbdev); /* * Regardless of result before this call, we are no longer * transitioning the GPU. */ kbdev->protected_mode_transition = false; kbase_pm_protected_override_disable(kbdev); kbase_pm_update_cores_state_nolock(kbdev); KBASE_TLSTREAM_AUX_PROTECTED_ENTER_END(kbdev, kbdev); if (err) { /* * Failed to switch into protected mode, resume * GPU hwcnt and fail atom. */ WARN_ON(!kbdev->protected_mode_hwcnt_disabled); kbdev->protected_mode_hwcnt_desired = true; if (kbdev->protected_mode_hwcnt_disabled) { kbase_hwcnt_context_enable( kbdev->hwcnt_gpu_ctx); kbdev->protected_mode_hwcnt_disabled = false; } katom[idx]->event_code = BASE_JD_EVENT_JOB_INVALID; kbase_gpu_mark_atom_for_return(kbdev, katom[idx]); /* * Only return if head atom or previous atom * already removed - as atoms must be returned * in order. */ if (idx == 0 || katom[0]->gpu_rb_state == KBASE_ATOM_GPU_RB_NOT_IN_SLOT_RB) { kbase_gpu_dequeue_atom(kbdev, js, NULL); kbase_jm_return_atom_to_js(kbdev, katom[idx]); } return -EINVAL; } /* * Protected mode sanity checks. */ KBASE_DEBUG_ASSERT_MSG( kbase_jd_katom_is_protected(katom[idx]) == kbase_gpu_in_protected_mode(kbdev), "Protected mode of atom (%d) doesn't match protected mode of GPU (%d)", kbase_jd_katom_is_protected(katom[idx]), kbase_gpu_in_protected_mode(kbdev)); katom[idx]->gpu_rb_state = KBASE_ATOM_GPU_RB_READY; return err; } static int kbase_jm_enter_protected_mode(struct kbase_device *kbdev, struct kbase_jd_atom **katom, int idx, int js) { int err = 0; lockdep_assert_held(&kbdev->hwaccess_lock); switch (katom[idx]->protected_state.enter) { case KBASE_ATOM_ENTER_PROTECTED_CHECK: KBASE_TLSTREAM_AUX_PROTECTED_ENTER_START(kbdev, kbdev); /* The checks in KBASE_ATOM_GPU_RB_WAITING_PROTECTED_MODE_PREV * should ensure that we are not already transitiong, and that * there are no atoms currently on the GPU. */ WARN_ON(kbdev->protected_mode_transition); WARN_ON(kbase_gpu_atoms_submitted_any(kbdev)); /* If hwcnt is disabled, it means we didn't clean up correctly * during last exit from protected mode. */ WARN_ON(kbdev->protected_mode_hwcnt_disabled); katom[idx]->protected_state.enter = KBASE_ATOM_ENTER_PROTECTED_HWCNT; kbdev->protected_mode_transition = true; /* ***TRANSITION TO HIGHER STATE*** */ /* fallthrough */ case KBASE_ATOM_ENTER_PROTECTED_HWCNT: /* See if we can get away with disabling hwcnt atomically */ kbdev->protected_mode_hwcnt_desired = false; if (!kbdev->protected_mode_hwcnt_disabled) { if (kbase_hwcnt_context_disable_atomic( kbdev->hwcnt_gpu_ctx)) kbdev->protected_mode_hwcnt_disabled = true; } /* We couldn't disable atomically, so kick off a worker */ if (!kbdev->protected_mode_hwcnt_disabled) { kbase_hwcnt_context_queue_work( kbdev->hwcnt_gpu_ctx, &kbdev->protected_mode_hwcnt_disable_work); return -EAGAIN; } /* Once reaching this point GPU must be switched to protected * mode or hwcnt re-enabled. */ if (kbase_pm_protected_entry_override_enable(kbdev)) return -EAGAIN; /* * Not in correct mode, begin protected mode switch. * Entering protected mode requires us to power down the L2, * and drop out of fully coherent mode. */ katom[idx]->protected_state.enter = KBASE_ATOM_ENTER_PROTECTED_IDLE_L2; kbase_pm_protected_override_enable(kbdev); /* * Only if the GPU reset hasn't been initiated, there is a need * to invoke the state machine to explicitly power down the * shader cores and L2. */ if (!kbdev->pm.backend.protected_entry_transition_override) kbase_pm_update_cores_state_nolock(kbdev); /* ***TRANSITION TO HIGHER STATE*** */ /* fallthrough */ case KBASE_ATOM_ENTER_PROTECTED_IDLE_L2: /* Avoid unnecessary waiting on non-ACE platforms. */ if (kbdev->system_coherency == COHERENCY_ACE) { if (kbdev->pm.backend.l2_always_on) { /* * If the GPU reset hasn't completed, then L2 * could still be powered up. */ if (kbase_reset_gpu_is_active(kbdev)) return -EAGAIN; } if (kbase_pm_get_ready_cores(kbdev, KBASE_PM_CORE_L2) || kbase_pm_get_trans_cores(kbdev, KBASE_PM_CORE_L2) || kbase_is_gpu_removed(kbdev)) { /* * The L2 is still powered, wait for all * the users to finish with it before doing * the actual reset. */ return -EAGAIN; } } katom[idx]->protected_state.enter = KBASE_ATOM_ENTER_PROTECTED_SET_COHERENCY; /* ***TRANSITION TO HIGHER STATE*** */ /* fallthrough */ case KBASE_ATOM_ENTER_PROTECTED_SET_COHERENCY: /* * When entering into protected mode, we must ensure that the * GPU is not operating in coherent mode as well. This is to * ensure that no protected memory can be leaked. */ kbase_gpu_disable_coherent(kbdev); kbase_pm_protected_entry_override_disable(kbdev); if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_TGOX_R1_1234)) { /* * Power on L2 caches; this will also result in the * correct value written to coherency enable register. */ kbase_pm_protected_l2_override(kbdev, true); /* * Set the flag on the atom that additional * L2 references are taken. */ katom[idx]->atom_flags |= KBASE_KATOM_FLAG_HOLDING_L2_REF_PROT; } katom[idx]->protected_state.enter = KBASE_ATOM_ENTER_PROTECTED_FINISHED; if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_TGOX_R1_1234)) return -EAGAIN; /* ***TRANSITION TO HIGHER STATE*** */ /* fallthrough */ case KBASE_ATOM_ENTER_PROTECTED_FINISHED: if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_TGOX_R1_1234)) { /* * Check that L2 caches are powered and, if so, * enter protected mode. */ if (kbdev->pm.backend.l2_state == KBASE_L2_ON) { /* * Remove additional L2 reference and reset * the atom flag which denotes it. */ if (katom[idx]->atom_flags & KBASE_KATOM_FLAG_HOLDING_L2_REF_PROT) { kbase_pm_protected_l2_override(kbdev, false); katom[idx]->atom_flags &= ~KBASE_KATOM_FLAG_HOLDING_L2_REF_PROT; } err = kbase_jm_protected_entry(kbdev, katom, idx, js); if (err) return err; } else { /* * still waiting for L2 caches to power up */ return -EAGAIN; } } else { err = kbase_jm_protected_entry(kbdev, katom, idx, js); if (err) return err; } } return 0; } static int kbase_jm_exit_protected_mode(struct kbase_device *kbdev, struct kbase_jd_atom **katom, int idx, int js) { int err = 0; lockdep_assert_held(&kbdev->hwaccess_lock); switch (katom[idx]->protected_state.exit) { case KBASE_ATOM_EXIT_PROTECTED_CHECK: KBASE_TLSTREAM_AUX_PROTECTED_LEAVE_START(kbdev, kbdev); /* The checks in KBASE_ATOM_GPU_RB_WAITING_PROTECTED_MODE_PREV * should ensure that we are not already transitiong, and that * there are no atoms currently on the GPU. */ WARN_ON(kbdev->protected_mode_transition); WARN_ON(kbase_gpu_atoms_submitted_any(kbdev)); /* * Exiting protected mode requires a reset, but first the L2 * needs to be powered down to ensure it's not active when the * reset is issued. */ katom[idx]->protected_state.exit = KBASE_ATOM_EXIT_PROTECTED_IDLE_L2; kbdev->protected_mode_transition = true; kbase_pm_protected_override_enable(kbdev); kbase_pm_update_cores_state_nolock(kbdev); /* ***TRANSITION TO HIGHER STATE*** */ /* fallthrough */ case KBASE_ATOM_EXIT_PROTECTED_IDLE_L2: if (kbdev->pm.backend.l2_state != KBASE_L2_OFF) { /* * The L2 is still powered, wait for all the users to * finish with it before doing the actual reset. */ return -EAGAIN; } katom[idx]->protected_state.exit = KBASE_ATOM_EXIT_PROTECTED_RESET; /* ***TRANSITION TO HIGHER STATE*** */ /* fallthrough */ case KBASE_ATOM_EXIT_PROTECTED_RESET: /* Issue the reset to the GPU */ err = kbase_gpu_protected_mode_reset(kbdev); if (err == -EAGAIN) return -EAGAIN; if (err) { kbdev->protected_mode_transition = false; kbase_pm_protected_override_disable(kbdev); /* Failed to exit protected mode, fail atom */ katom[idx]->event_code = BASE_JD_EVENT_JOB_INVALID; kbase_gpu_mark_atom_for_return(kbdev, katom[idx]); /* Only return if head atom or previous atom * already removed - as atoms must be returned in order */ if (idx == 0 || katom[0]->gpu_rb_state == KBASE_ATOM_GPU_RB_NOT_IN_SLOT_RB) { kbase_gpu_dequeue_atom(kbdev, js, NULL); kbase_jm_return_atom_to_js(kbdev, katom[idx]); } /* If we're exiting from protected mode, hwcnt must have * been disabled during entry. */ WARN_ON(!kbdev->protected_mode_hwcnt_disabled); kbdev->protected_mode_hwcnt_desired = true; if (kbdev->protected_mode_hwcnt_disabled) { kbase_hwcnt_context_enable( kbdev->hwcnt_gpu_ctx); kbdev->protected_mode_hwcnt_disabled = false; } return -EINVAL; } katom[idx]->protected_state.exit = KBASE_ATOM_EXIT_PROTECTED_RESET_WAIT; /* ***TRANSITION TO HIGHER STATE*** */ /* fallthrough */ case KBASE_ATOM_EXIT_PROTECTED_RESET_WAIT: /* A GPU reset is issued when exiting protected mode. Once the * reset is done all atoms' state will also be reset. For this * reason, if the atom is still in this state we can safely * say that the reset has not completed i.e., we have not * finished exiting protected mode yet. */ return -EAGAIN; } return 0; } void kbase_backend_slot_update(struct kbase_device *kbdev) { int js; lockdep_assert_held(&kbdev->hwaccess_lock); #ifdef CONFIG_MALI_ARBITER_SUPPORT if (kbase_reset_gpu_is_active(kbdev) || kbase_is_gpu_removed(kbdev)) #else if (kbase_reset_gpu_is_active(kbdev)) #endif return; for (js = 0; js < kbdev->gpu_props.num_job_slots; js++) { struct kbase_jd_atom *katom[2]; int idx; katom[0] = kbase_gpu_inspect(kbdev, js, 0); katom[1] = kbase_gpu_inspect(kbdev, js, 1); WARN_ON(katom[1] && !katom[0]); for (idx = 0; idx < SLOT_RB_SIZE; idx++) { bool cores_ready; int ret; if (!katom[idx]) continue; switch (katom[idx]->gpu_rb_state) { case KBASE_ATOM_GPU_RB_NOT_IN_SLOT_RB: /* Should be impossible */ WARN(1, "Attempting to update atom not in ringbuffer\n"); break; case KBASE_ATOM_GPU_RB_WAITING_BLOCKED: if (kbase_js_atom_blocked_on_x_dep(katom[idx])) break; katom[idx]->gpu_rb_state = KBASE_ATOM_GPU_RB_WAITING_PROTECTED_MODE_PREV; /* ***TRANSITION TO HIGHER STATE*** */ /* fallthrough */ case KBASE_ATOM_GPU_RB_WAITING_PROTECTED_MODE_PREV: if (kbase_gpu_check_secure_atoms(kbdev, !kbase_jd_katom_is_protected( katom[idx]))) break; if ((idx == 1) && (kbase_jd_katom_is_protected( katom[0]) != kbase_jd_katom_is_protected( katom[1]))) break; if (kbdev->protected_mode_transition) break; katom[idx]->gpu_rb_state = KBASE_ATOM_GPU_RB_WAITING_PROTECTED_MODE_TRANSITION; /* ***TRANSITION TO HIGHER STATE*** */ /* fallthrough */ case KBASE_ATOM_GPU_RB_WAITING_PROTECTED_MODE_TRANSITION: /* * Exiting protected mode must be done before * the references on the cores are taken as * a power down the L2 is required which * can't happen after the references for this * atom are taken. */ if (!kbase_gpu_in_protected_mode(kbdev) && kbase_jd_katom_is_protected(katom[idx])) { /* Atom needs to transition into protected mode. */ ret = kbase_jm_enter_protected_mode(kbdev, katom, idx, js); if (ret) break; } else if (kbase_gpu_in_protected_mode(kbdev) && !kbase_jd_katom_is_protected(katom[idx])) { /* Atom needs to transition out of protected mode. */ ret = kbase_jm_exit_protected_mode(kbdev, katom, idx, js); if (ret) break; } katom[idx]->protected_state.exit = KBASE_ATOM_EXIT_PROTECTED_CHECK; /* Atom needs no protected mode transition. */ katom[idx]->gpu_rb_state = KBASE_ATOM_GPU_RB_WAITING_FOR_CORE_AVAILABLE; /* ***TRANSITION TO HIGHER STATE*** */ /* fallthrough */ case KBASE_ATOM_GPU_RB_WAITING_FOR_CORE_AVAILABLE: if (katom[idx]->will_fail_event_code) { kbase_gpu_mark_atom_for_return(kbdev, katom[idx]); /* Set EVENT_DONE so this atom will be * completed, not unpulled. */ katom[idx]->event_code = BASE_JD_EVENT_DONE; /* Only return if head atom or previous * atom already removed - as atoms must * be returned in order. */ if (idx == 0 || katom[0]->gpu_rb_state == KBASE_ATOM_GPU_RB_NOT_IN_SLOT_RB) { kbase_gpu_dequeue_atom(kbdev, js, NULL); kbase_jm_return_atom_to_js(kbdev, katom[idx]); } break; } cores_ready = kbase_pm_cores_requested(kbdev, true); if (katom[idx]->event_code == BASE_JD_EVENT_PM_EVENT) { katom[idx]->gpu_rb_state = KBASE_ATOM_GPU_RB_RETURN_TO_JS; break; } if (!cores_ready) break; katom[idx]->gpu_rb_state = KBASE_ATOM_GPU_RB_READY; /* ***TRANSITION TO HIGHER STATE*** */ /* fallthrough */ case KBASE_ATOM_GPU_RB_READY: if (idx == 1) { /* Only submit if head atom or previous * atom already submitted */ if ((katom[0]->gpu_rb_state != KBASE_ATOM_GPU_RB_SUBMITTED && katom[0]->gpu_rb_state != KBASE_ATOM_GPU_RB_NOT_IN_SLOT_RB)) break; /* If intra-slot serialization in use * then don't submit atom to NEXT slot */ if (kbdev->serialize_jobs & KBASE_SERIALIZE_INTRA_SLOT) break; } /* If inter-slot serialization in use then don't * submit atom if any other slots are in use */ if ((kbdev->serialize_jobs & KBASE_SERIALIZE_INTER_SLOT) && other_slots_busy(kbdev, js)) break; #ifdef CONFIG_MALI_GEM5_BUILD if (!kbasep_jm_is_js_free(kbdev, js, katom[idx]->kctx)) break; #endif /* Check if this job needs the cycle counter * enabled before submission */ if (katom[idx]->core_req & BASE_JD_REQ_PERMON) kbase_pm_request_gpu_cycle_counter_l2_is_on( kbdev); kbase_job_hw_submit(kbdev, katom[idx], js); katom[idx]->gpu_rb_state = KBASE_ATOM_GPU_RB_SUBMITTED; /* ***TRANSITION TO HIGHER STATE*** */ /* fallthrough */ case KBASE_ATOM_GPU_RB_SUBMITTED: /* Inform power management at start/finish of * atom so it can update its GPU utilisation * metrics. */ kbase_pm_metrics_update(kbdev, &katom[idx]->start_timestamp); /* Inform platform at start/finish of atom */ kbasep_platform_event_atom_submit(katom[idx]); break; case KBASE_ATOM_GPU_RB_RETURN_TO_JS: /* Only return if head atom or previous atom * already removed - as atoms must be returned * in order */ if (idx == 0 || katom[0]->gpu_rb_state == KBASE_ATOM_GPU_RB_NOT_IN_SLOT_RB) { kbase_gpu_dequeue_atom(kbdev, js, NULL); kbase_jm_return_atom_to_js(kbdev, katom[idx]); } break; } } } } void kbase_backend_run_atom(struct kbase_device *kbdev, struct kbase_jd_atom *katom) { lockdep_assert_held(&kbdev->hwaccess_lock); dev_dbg(kbdev->dev, "Backend running atom %pK\n", (void *)katom); kbase_gpu_enqueue_atom(kbdev, katom); kbase_backend_slot_update(kbdev); } #define HAS_DEP(katom) (katom->pre_dep || katom->atom_flags & \ (KBASE_KATOM_FLAG_X_DEP_BLOCKED | KBASE_KATOM_FLAG_FAIL_BLOCKER)) bool kbase_gpu_irq_evict(struct kbase_device *kbdev, int js, u32 completion_code) { struct kbase_jd_atom *katom; struct kbase_jd_atom *next_katom; lockdep_assert_held(&kbdev->hwaccess_lock); katom = kbase_gpu_inspect(kbdev, js, 0); next_katom = kbase_gpu_inspect(kbdev, js, 1); if (next_katom && katom->kctx == next_katom->kctx && next_katom->gpu_rb_state == KBASE_ATOM_GPU_RB_SUBMITTED && (HAS_DEP(next_katom) || next_katom->sched_priority == katom->sched_priority) && (kbase_reg_read(kbdev, JOB_SLOT_REG(js, JS_HEAD_NEXT_LO)) != 0 || kbase_reg_read(kbdev, JOB_SLOT_REG(js, JS_HEAD_NEXT_HI)) != 0)) { kbase_reg_write(kbdev, JOB_SLOT_REG(js, JS_COMMAND_NEXT), JS_COMMAND_NOP); next_katom->gpu_rb_state = KBASE_ATOM_GPU_RB_READY; if (completion_code == BASE_JD_EVENT_STOPPED) { KBASE_TLSTREAM_TL_NRET_ATOM_LPU(kbdev, next_katom, &kbdev->gpu_props.props.raw_props.js_features [next_katom->slot_nr]); KBASE_TLSTREAM_TL_NRET_ATOM_AS(kbdev, next_katom, &kbdev->as [next_katom->kctx->as_nr]); KBASE_TLSTREAM_TL_NRET_CTX_LPU(kbdev, next_katom->kctx, &kbdev->gpu_props.props.raw_props.js_features [next_katom->slot_nr]); } if (next_katom->core_req & BASE_JD_REQ_PERMON) kbase_pm_release_gpu_cycle_counter_nolock(kbdev); return true; } return false; } void kbase_gpu_complete_hw(struct kbase_device *kbdev, int js, u32 completion_code, u64 job_tail, ktime_t *end_timestamp) { struct kbase_jd_atom *katom = kbase_gpu_inspect(kbdev, js, 0); struct kbase_context *kctx = katom->kctx; dev_dbg(kbdev->dev, "Atom %pK completed on hw with code 0x%x and job_tail 0x%llx (s:%d)\n", (void *)katom, completion_code, job_tail, js); lockdep_assert_held(&kbdev->hwaccess_lock); /* * When a hard-stop is followed close after a soft-stop, the completion * code may be set to STOPPED, even though the job is terminated */ if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_TMIX_8438)) { if (completion_code == BASE_JD_EVENT_STOPPED && (katom->atom_flags & KBASE_KATOM_FLAG_BEEN_HARD_STOPPED)) { completion_code = BASE_JD_EVENT_TERMINATED; } } if ((katom->core_req & BASE_JD_REQ_SKIP_CACHE_END) && completion_code != BASE_JD_EVENT_DONE && !(completion_code & BASE_JD_SW_EVENT)) { /* When a job chain fails, on a T60x or when * BASE_JD_REQ_SKIP_CACHE_END is set, the GPU cache is not * flushed. To prevent future evictions causing possible memory * corruption we need to flush the cache manually before any * affected memory gets reused. */ katom->need_cache_flush_cores_retained = true; } katom = kbase_gpu_dequeue_atom(kbdev, js, end_timestamp); if (completion_code == BASE_JD_EVENT_STOPPED) { struct kbase_jd_atom *next_katom = kbase_gpu_inspect(kbdev, js, 0); /* * Dequeue next atom from ringbuffers on same slot if required. * This atom will already have been removed from the NEXT * registers by kbase_gpu_soft_hard_stop_slot(), to ensure that * the atoms on this slot are returned in the correct order. */ if (next_katom && katom->kctx == next_katom->kctx && next_katom->sched_priority == katom->sched_priority) { WARN_ON(next_katom->gpu_rb_state == KBASE_ATOM_GPU_RB_SUBMITTED); kbase_gpu_dequeue_atom(kbdev, js, end_timestamp); kbase_jm_return_atom_to_js(kbdev, next_katom); } } else if (completion_code != BASE_JD_EVENT_DONE) { struct kbasep_js_device_data *js_devdata = &kbdev->js_data; int i; if (!kbase_ctx_flag(katom->kctx, KCTX_DYING)) dev_warn(kbdev->dev, "error detected from slot %d, job status 0x%08x (%s)", js, completion_code, kbase_gpu_exception_name( completion_code)); #if KBASE_KTRACE_DUMP_ON_JOB_SLOT_ERROR != 0 KBASE_KTRACE_DUMP(kbdev); #endif kbasep_js_clear_submit_allowed(js_devdata, katom->kctx); /* * Remove all atoms on the same context from ringbuffers. This * will not remove atoms that are already on the GPU, as these * are guaranteed not to have fail dependencies on the failed * atom. */ for (i = 0; i < kbdev->gpu_props.num_job_slots; i++) { struct kbase_jd_atom *katom_idx0 = kbase_gpu_inspect(kbdev, i, 0); struct kbase_jd_atom *katom_idx1 = kbase_gpu_inspect(kbdev, i, 1); if (katom_idx0 && katom_idx0->kctx == katom->kctx && HAS_DEP(katom_idx0) && katom_idx0->gpu_rb_state != KBASE_ATOM_GPU_RB_SUBMITTED) { /* Dequeue katom_idx0 from ringbuffer */ kbase_gpu_dequeue_atom(kbdev, i, end_timestamp); if (katom_idx1 && katom_idx1->kctx == katom->kctx && HAS_DEP(katom_idx1) && katom_idx0->gpu_rb_state != KBASE_ATOM_GPU_RB_SUBMITTED) { /* Dequeue katom_idx1 from ringbuffer */ kbase_gpu_dequeue_atom(kbdev, i, end_timestamp); katom_idx1->event_code = BASE_JD_EVENT_STOPPED; kbase_jm_return_atom_to_js(kbdev, katom_idx1); } katom_idx0->event_code = BASE_JD_EVENT_STOPPED; kbase_jm_return_atom_to_js(kbdev, katom_idx0); } else if (katom_idx1 && katom_idx1->kctx == katom->kctx && HAS_DEP(katom_idx1) && katom_idx1->gpu_rb_state != KBASE_ATOM_GPU_RB_SUBMITTED) { /* Can not dequeue this atom yet - will be * dequeued when atom at idx0 completes */ katom_idx1->event_code = BASE_JD_EVENT_STOPPED; kbase_gpu_mark_atom_for_return(kbdev, katom_idx1); } } } KBASE_KTRACE_ADD_JM_SLOT_INFO(kbdev, JM_JOB_DONE, kctx, katom, katom->jc, js, completion_code); if (job_tail != 0 && job_tail != katom->jc) { /* Some of the job has been executed */ dev_dbg(kbdev->dev, "Update job chain address of atom %pK to resume from 0x%llx\n", (void *)katom, job_tail); katom->jc = job_tail; KBASE_KTRACE_ADD_JM_SLOT(kbdev, JM_UPDATE_HEAD, katom->kctx, katom, job_tail, js); } /* Only update the event code for jobs that weren't cancelled */ if (katom->event_code != BASE_JD_EVENT_JOB_CANCELLED) katom->event_code = (enum base_jd_event_code)completion_code; /* Complete the job, and start new ones * * Also defer remaining work onto the workqueue: * - Re-queue Soft-stopped jobs * - For any other jobs, queue the job back into the dependency system * - Schedule out the parent context if necessary, and schedule a new * one in. */ #if IS_ENABLED(CONFIG_GPU_TRACEPOINTS) { /* The atom in the HEAD */ struct kbase_jd_atom *next_katom = kbase_gpu_inspect(kbdev, js, 0); if (next_katom && next_katom->gpu_rb_state == KBASE_ATOM_GPU_RB_SUBMITTED) { char js_string[16]; trace_gpu_sched_switch(kbasep_make_job_slot_string(js, js_string, sizeof(js_string)), ktime_to_ns(*end_timestamp), (u32)next_katom->kctx->id, 0, next_katom->work_id); kbdev->hwaccess.backend.slot_rb[js].last_context = next_katom->kctx; } else { char js_string[16]; trace_gpu_sched_switch(kbasep_make_job_slot_string(js, js_string, sizeof(js_string)), ktime_to_ns(ktime_get()), 0, 0, 0); kbdev->hwaccess.backend.slot_rb[js].last_context = 0; } } #endif if (kbdev->serialize_jobs & KBASE_SERIALIZE_RESET) kbase_reset_gpu_silent(kbdev); if (completion_code == BASE_JD_EVENT_STOPPED) katom = kbase_jm_return_atom_to_js(kbdev, katom); else katom = kbase_jm_complete(kbdev, katom, end_timestamp); if (katom) { dev_dbg(kbdev->dev, "Cross-slot dependency %pK has become runnable.\n", (void *)katom); /* Check if there are lower priority jobs to soft stop */ kbase_job_slot_ctx_priority_check_locked(kctx, katom); kbase_jm_try_kick(kbdev, 1 << katom->slot_nr); } /* For partial shader core off L2 cache flush */ kbase_pm_update_state(kbdev); /* Job completion may have unblocked other atoms. Try to update all job * slots */ kbase_backend_slot_update(kbdev); } void kbase_backend_reset(struct kbase_device *kbdev, ktime_t *end_timestamp) { int js; lockdep_assert_held(&kbdev->hwaccess_lock); /* Reset should always take the GPU out of protected mode */ WARN_ON(kbase_gpu_in_protected_mode(kbdev)); for (js = 0; js < kbdev->gpu_props.num_job_slots; js++) { int atom_idx = 0; int idx; for (idx = 0; idx < SLOT_RB_SIZE; idx++) { struct kbase_jd_atom *katom = kbase_gpu_inspect(kbdev, js, atom_idx); bool keep_in_jm_rb = false; if (!katom) break; if (katom->protected_state.exit == KBASE_ATOM_EXIT_PROTECTED_RESET_WAIT) { /* protected mode sanity checks */ KBASE_DEBUG_ASSERT_MSG( kbase_jd_katom_is_protected(katom) == kbase_gpu_in_protected_mode(kbdev), "Protected mode of atom (%d) doesn't match protected mode of GPU (%d)", kbase_jd_katom_is_protected(katom), kbase_gpu_in_protected_mode(kbdev)); KBASE_DEBUG_ASSERT_MSG( (kbase_jd_katom_is_protected(katom) && js == 0) || !kbase_jd_katom_is_protected(katom), "Protected atom on JS%d not supported", js); } if ((katom->gpu_rb_state < KBASE_ATOM_GPU_RB_SUBMITTED) && !kbase_ctx_flag(katom->kctx, KCTX_DYING)) keep_in_jm_rb = true; kbase_gpu_release_atom(kbdev, katom, NULL); /* * If the atom wasn't on HW when the reset was issued * then leave it in the RB and next time we're kicked * it will be processed again from the starting state. */ if (keep_in_jm_rb) { katom->protected_state.exit = KBASE_ATOM_EXIT_PROTECTED_CHECK; /* As the atom was not removed, increment the * index so that we read the correct atom in the * next iteration. */ atom_idx++; continue; } /* * The atom was on the HW when the reset was issued * all we can do is fail the atom. */ kbase_gpu_dequeue_atom(kbdev, js, NULL); katom->event_code = BASE_JD_EVENT_JOB_CANCELLED; kbase_jm_complete(kbdev, katom, end_timestamp); } } /* Re-enable GPU hardware counters if we're resetting from protected * mode. */ kbdev->protected_mode_hwcnt_desired = true; if (kbdev->protected_mode_hwcnt_disabled) { kbase_hwcnt_context_enable(kbdev->hwcnt_gpu_ctx); kbdev->protected_mode_hwcnt_disabled = false; KBASE_TLSTREAM_AUX_PROTECTED_LEAVE_END(kbdev, kbdev); } kbdev->protected_mode_transition = false; kbase_pm_protected_override_disable(kbdev); } static inline void kbase_gpu_stop_atom(struct kbase_device *kbdev, int js, struct kbase_jd_atom *katom, u32 action) { u32 hw_action = action & JS_COMMAND_MASK; kbase_job_check_enter_disjoint(kbdev, action, katom->core_req, katom); kbasep_job_slot_soft_or_hard_stop_do_action(kbdev, js, hw_action, katom->core_req, katom); katom->kctx->blocked_js[js][katom->sched_priority] = true; } static inline void kbase_gpu_remove_atom(struct kbase_device *kbdev, struct kbase_jd_atom *katom, u32 action, bool disjoint) { lockdep_assert_held(&kbdev->hwaccess_lock); katom->event_code = BASE_JD_EVENT_REMOVED_FROM_NEXT; kbase_gpu_mark_atom_for_return(kbdev, katom); katom->kctx->blocked_js[katom->slot_nr][katom->sched_priority] = true; if (disjoint) kbase_job_check_enter_disjoint(kbdev, action, katom->core_req, katom); } static int should_stop_x_dep_slot(struct kbase_jd_atom *katom) { if (katom->x_post_dep) { struct kbase_jd_atom *dep_atom = katom->x_post_dep; if (dep_atom->gpu_rb_state != KBASE_ATOM_GPU_RB_NOT_IN_SLOT_RB && dep_atom->gpu_rb_state != KBASE_ATOM_GPU_RB_RETURN_TO_JS) return dep_atom->slot_nr; } return -1; } bool kbase_backend_soft_hard_stop_slot(struct kbase_device *kbdev, struct kbase_context *kctx, int js, struct kbase_jd_atom *katom, u32 action) { struct kbase_jd_atom *katom_idx0; struct kbase_jd_atom *katom_idx1; bool katom_idx0_valid, katom_idx1_valid; bool ret = false; int stop_x_dep_idx0 = -1, stop_x_dep_idx1 = -1; int prio_idx0 = 0, prio_idx1 = 0; lockdep_assert_held(&kbdev->hwaccess_lock); katom_idx0 = kbase_gpu_inspect(kbdev, js, 0); katom_idx1 = kbase_gpu_inspect(kbdev, js, 1); if (katom_idx0) prio_idx0 = katom_idx0->sched_priority; if (katom_idx1) prio_idx1 = katom_idx1->sched_priority; if (katom) { katom_idx0_valid = (katom_idx0 == katom); /* If idx0 is to be removed and idx1 is on the same context, * then idx1 must also be removed otherwise the atoms might be * returned out of order */ if (katom_idx1) katom_idx1_valid = (katom_idx1 == katom) || (katom_idx0_valid && (katom_idx0->kctx == katom_idx1->kctx)); else katom_idx1_valid = false; } else { katom_idx0_valid = (katom_idx0 && (!kctx || katom_idx0->kctx == kctx)); katom_idx1_valid = (katom_idx1 && (!kctx || katom_idx1->kctx == kctx) && prio_idx0 == prio_idx1); } if (katom_idx0_valid) stop_x_dep_idx0 = should_stop_x_dep_slot(katom_idx0); if (katom_idx1_valid) stop_x_dep_idx1 = should_stop_x_dep_slot(katom_idx1); if (katom_idx0_valid) { if (katom_idx0->gpu_rb_state != KBASE_ATOM_GPU_RB_SUBMITTED) { /* Simple case - just dequeue and return */ kbase_gpu_dequeue_atom(kbdev, js, NULL); if (katom_idx1_valid) { kbase_gpu_dequeue_atom(kbdev, js, NULL); katom_idx1->event_code = BASE_JD_EVENT_REMOVED_FROM_NEXT; kbase_jm_return_atom_to_js(kbdev, katom_idx1); katom_idx1->kctx->blocked_js[js][prio_idx1] = true; } katom_idx0->event_code = BASE_JD_EVENT_REMOVED_FROM_NEXT; kbase_jm_return_atom_to_js(kbdev, katom_idx0); katom_idx0->kctx->blocked_js[js][prio_idx0] = true; } else { /* katom_idx0 is on GPU */ if (katom_idx1_valid && katom_idx1->gpu_rb_state == KBASE_ATOM_GPU_RB_SUBMITTED) { /* katom_idx0 and katom_idx1 are on GPU */ if (kbase_reg_read(kbdev, JOB_SLOT_REG(js, JS_COMMAND_NEXT)) == 0) { /* idx0 has already completed - stop * idx1 if needed */ if (katom_idx1_valid) { kbase_gpu_stop_atom(kbdev, js, katom_idx1, action); ret = true; } } else { /* idx1 is in NEXT registers - attempt * to remove */ kbase_reg_write(kbdev, JOB_SLOT_REG(js, JS_COMMAND_NEXT), JS_COMMAND_NOP); if (kbase_reg_read(kbdev, JOB_SLOT_REG(js, JS_HEAD_NEXT_LO)) != 0 || kbase_reg_read(kbdev, JOB_SLOT_REG(js, JS_HEAD_NEXT_HI)) != 0) { /* idx1 removed successfully, * will be handled in IRQ */ kbase_gpu_remove_atom(kbdev, katom_idx1, action, true); stop_x_dep_idx1 = should_stop_x_dep_slot(katom_idx1); /* stop idx0 if still on GPU */ kbase_gpu_stop_atom(kbdev, js, katom_idx0, action); ret = true; } else if (katom_idx1_valid) { /* idx0 has already completed, * stop idx1 if needed */ kbase_gpu_stop_atom(kbdev, js, katom_idx1, action); ret = true; } } } else if (katom_idx1_valid) { /* idx1 not on GPU but must be dequeued*/ /* idx1 will be handled in IRQ */ kbase_gpu_remove_atom(kbdev, katom_idx1, action, false); /* stop idx0 */ /* This will be repeated for anything removed * from the next registers, since their normal * flow was also interrupted, and this function * might not enter disjoint state e.g. if we * don't actually do a hard stop on the head * atom */ kbase_gpu_stop_atom(kbdev, js, katom_idx0, action); ret = true; } else { /* no atom in idx1 */ /* just stop idx0 */ kbase_gpu_stop_atom(kbdev, js, katom_idx0, action); ret = true; } } } else if (katom_idx1_valid) { if (katom_idx1->gpu_rb_state != KBASE_ATOM_GPU_RB_SUBMITTED) { /* Mark for return */ /* idx1 will be returned once idx0 completes */ kbase_gpu_remove_atom(kbdev, katom_idx1, action, false); } else { /* idx1 is on GPU */ if (kbase_reg_read(kbdev, JOB_SLOT_REG(js, JS_COMMAND_NEXT)) == 0) { /* idx0 has already completed - stop idx1 */ kbase_gpu_stop_atom(kbdev, js, katom_idx1, action); ret = true; } else { /* idx1 is in NEXT registers - attempt to * remove */ kbase_reg_write(kbdev, JOB_SLOT_REG(js, JS_COMMAND_NEXT), JS_COMMAND_NOP); if (kbase_reg_read(kbdev, JOB_SLOT_REG(js, JS_HEAD_NEXT_LO)) != 0 || kbase_reg_read(kbdev, JOB_SLOT_REG(js, JS_HEAD_NEXT_HI)) != 0) { /* idx1 removed successfully, will be * handled in IRQ once idx0 completes */ kbase_gpu_remove_atom(kbdev, katom_idx1, action, false); } else { /* idx0 has already completed - stop * idx1 */ kbase_gpu_stop_atom(kbdev, js, katom_idx1, action); ret = true; } } } } if (stop_x_dep_idx0 != -1) kbase_backend_soft_hard_stop_slot(kbdev, kctx, stop_x_dep_idx0, NULL, action); if (stop_x_dep_idx1 != -1) kbase_backend_soft_hard_stop_slot(kbdev, kctx, stop_x_dep_idx1, NULL, action); return ret; } void kbase_backend_cache_clean(struct kbase_device *kbdev, struct kbase_jd_atom *katom) { if (katom->need_cache_flush_cores_retained) { kbase_gpu_start_cache_clean(kbdev); kbase_gpu_wait_cache_clean(kbdev); katom->need_cache_flush_cores_retained = false; } } void kbase_backend_complete_wq(struct kbase_device *kbdev, struct kbase_jd_atom *katom) { /* * If cache flush required due to HW workaround then perform the flush * now */ kbase_backend_cache_clean(kbdev, katom); } void kbase_backend_complete_wq_post_sched(struct kbase_device *kbdev, base_jd_core_req core_req) { if (!kbdev->pm.active_count) { mutex_lock(&kbdev->js_data.runpool_mutex); mutex_lock(&kbdev->pm.lock); kbase_pm_update_active(kbdev); mutex_unlock(&kbdev->pm.lock); mutex_unlock(&kbdev->js_data.runpool_mutex); } } void kbase_gpu_dump_slots(struct kbase_device *kbdev) { unsigned long flags; int js; spin_lock_irqsave(&kbdev->hwaccess_lock, flags); dev_info(kbdev->dev, "kbase_gpu_dump_slots:\n"); for (js = 0; js < kbdev->gpu_props.num_job_slots; js++) { int idx; for (idx = 0; idx < SLOT_RB_SIZE; idx++) { struct kbase_jd_atom *katom = kbase_gpu_inspect(kbdev, js, idx); if (katom) dev_info(kbdev->dev, " js%d idx%d : katom=%pK gpu_rb_state=%d\n", js, idx, katom, katom->gpu_rb_state); else dev_info(kbdev->dev, " js%d idx%d : empty\n", js, idx); } } spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags); }