// Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /*------------------------------------------- Includes -------------------------------------------*/ #include "opencv2/core/core.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/imgproc.hpp" #include "rknn_api.h" #include #include #include #include #include using namespace std; using namespace cv; /*------------------------------------------- Functions -------------------------------------------*/ static inline int64_t getCurrentTimeUs() { struct timeval tv; gettimeofday(&tv, NULL); return tv.tv_sec * 1000000 + tv.tv_usec; } static int rknn_GetTopN(float* pfProb, float* pfMaxProb, uint32_t* pMaxClass, uint32_t outputCount, uint32_t topNum) { uint32_t i, j; uint32_t top_count = outputCount > topNum ? topNum : outputCount; for (i = 0; i < topNum; ++i) { pfMaxProb[i] = -FLT_MAX; pMaxClass[i] = -1; } for (j = 0; j < top_count; j++) { for (i = 0; i < outputCount; i++) { if ((i == *(pMaxClass + 0)) || (i == *(pMaxClass + 1)) || (i == *(pMaxClass + 2)) || (i == *(pMaxClass + 3)) || (i == *(pMaxClass + 4))) { continue; } if (pfProb[i] > *(pfMaxProb + j)) { *(pfMaxProb + j) = pfProb[i]; *(pMaxClass + j) = i; } } } return 1; } static void dump_tensor_attr(rknn_tensor_attr* attr) { printf(" index=%d, name=%s, n_dims=%d, dims=[%d, %d, %d, %d], n_elems=%d, size=%d, fmt=%s, type=%s, qnt_type=%s, " "zp=%d, scale=%f\n", attr->index, attr->name, attr->n_dims, attr->dims[0], attr->dims[1], attr->dims[2], attr->dims[3], attr->n_elems, attr->size, get_format_string(attr->fmt), get_type_string(attr->type), get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale); } /*------------------------------------------- Main Functions -------------------------------------------*/ int main(int argc, char* argv[]) { if (argc < 3) { printf("Usage:%s model_path input_path [loop_count]\n", argv[0]); return -1; } char* model_path = argv[1]; char* input_path = argv[2]; int loop_count = 1; if (argc > 3) { loop_count = atoi(argv[3]); } rknn_context ctx = 0; // Load RKNN Model int ret = rknn_init(&ctx, model_path, 0, 0, NULL); if (ret < 0) { printf("rknn_init fail! ret=%d\n", ret); return -1; } // Get sdk and driver version rknn_sdk_version sdk_ver; ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &sdk_ver, sizeof(sdk_ver)); if (ret != RKNN_SUCC) { printf("rknn_query fail! ret=%d\n", ret); return -1; } printf("rknn_api/rknnrt version: %s, driver version: %s\n", sdk_ver.api_version, sdk_ver.drv_version); // Get Model Input Output Info rknn_input_output_num io_num; ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num)); if (ret != RKNN_SUCC) { printf("rknn_query fail! ret=%d\n", ret); return -1; } printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output); printf("input tensors:\n"); rknn_tensor_attr input_attrs[io_num.n_input]; memset(input_attrs, 0, io_num.n_input * sizeof(rknn_tensor_attr)); for (uint32_t i = 0; i < io_num.n_input; i++) { input_attrs[i].index = i; // query info ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr)); if (ret < 0) { printf("rknn_init error! ret=%d\n", ret); return -1; } dump_tensor_attr(&input_attrs[i]); } printf("output tensors:\n"); rknn_tensor_attr output_attrs[io_num.n_output]; memset(output_attrs, 0, io_num.n_output * sizeof(rknn_tensor_attr)); for (uint32_t i = 0; i < io_num.n_output; i++) { output_attrs[i].index = i; // query info ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr)); if (ret != RKNN_SUCC) { printf("rknn_query fail! ret=%d\n", ret); return -1; } dump_tensor_attr(&output_attrs[i]); } // Get custom string rknn_custom_string custom_string; ret = rknn_query(ctx, RKNN_QUERY_CUSTOM_STRING, &custom_string, sizeof(custom_string)); if (ret != RKNN_SUCC) { printf("rknn_query fail! ret=%d\n", ret); return -1; } printf("custom string: %s\n", custom_string.string); unsigned char* input_data = NULL; rknn_tensor_type input_type = RKNN_TENSOR_UINT8; rknn_tensor_format input_layout = RKNN_TENSOR_NHWC; // Load image int req_height = 0; int req_width = 0; int req_channel = 0; switch (input_attrs[0].fmt) { case RKNN_TENSOR_NHWC: req_height = input_attrs[0].dims[1]; req_width = input_attrs[0].dims[2]; req_channel = input_attrs[0].dims[3]; break; case RKNN_TENSOR_NCHW: req_height = input_attrs[0].dims[2]; req_width = input_attrs[0].dims[3]; req_channel = input_attrs[0].dims[1]; break; default: printf("meet unsupported layout\n"); return -1; } int height = 0; int width = 0; int channel = 0; cv::Mat orig_img = imread(input_path, cv::IMREAD_COLOR); if (!orig_img.data) { printf("cv::imread %s fail!\n", input_path); return -1; } // if origin model is from Caffe, you maybe not need do BGR2RGB. cv::Mat orig_img_rgb; cv::cvtColor(orig_img, orig_img_rgb, cv::COLOR_BGR2RGB); cv::Mat img = orig_img_rgb.clone(); if (orig_img.cols != req_width || orig_img.rows != req_height) { printf("resize %d %d to %d %d\n", orig_img.cols, orig_img.rows, req_width, req_height); cv::resize(orig_img_rgb, img, cv::Size(req_width, req_height), 0, 0, cv::INTER_LINEAR); } input_data = img.data; if (!input_data) { return -1; } // Create input tensor memory rknn_tensor_mem* input_mems[1]; // default input type is int8 (normalize and quantize need compute in outside) // if set uint8, will fuse normalize and quantize to npu input_attrs[0].type = input_type; // default fmt is NHWC, npu only support NHWC in zero copy mode input_attrs[0].fmt = input_layout; input_mems[0] = rknn_create_mem(ctx, input_attrs[0].size_with_stride); // Copy input data to input tensor memory width = input_attrs[0].dims[2]; int stride = input_attrs[0].w_stride; if (width == stride) { memcpy(input_mems[0]->virt_addr, input_data, width * input_attrs[0].dims[1] * input_attrs[0].dims[3]); } else { int height = input_attrs[0].dims[1]; int channel = input_attrs[0].dims[3]; // copy from src to dst with stride uint8_t* src_ptr = input_data; uint8_t* dst_ptr = (uint8_t*)input_mems[0]->virt_addr; // width-channel elements int src_wc_elems = width * channel; int dst_wc_elems = stride * channel; for (int h = 0; h < height; ++h) { memcpy(dst_ptr, src_ptr, src_wc_elems); src_ptr += src_wc_elems; dst_ptr += dst_wc_elems; } } // Create output tensor memory rknn_tensor_mem* output_mems[io_num.n_output]; for (uint32_t i = 0; i < io_num.n_output; ++i) { // default output type is depend on model, this require float32 to compute top5 // allocate float32 output tensor int output_size = output_attrs[i].n_elems * sizeof(float); output_mems[i] = rknn_create_mem(ctx, output_size); } // Set input tensor memory ret = rknn_set_io_mem(ctx, input_mems[0], &input_attrs[0]); if (ret < 0) { printf("rknn_set_io_mem fail! ret=%d\n", ret); return -1; } // Set output tensor memory for (uint32_t i = 0; i < io_num.n_output; ++i) { // default output type is depend on model, this require float32 to compute top5 output_attrs[i].type = RKNN_TENSOR_FLOAT32; // set output memory and attribute ret = rknn_set_io_mem(ctx, output_mems[i], &output_attrs[i]); if (ret < 0) { printf("rknn_set_io_mem fail! ret=%d\n", ret); return -1; } } // Run printf("Begin perf ...\n"); for (int i = 0; i < loop_count; ++i) { int64_t start_us = getCurrentTimeUs(); ret = rknn_run(ctx, NULL); int64_t elapse_us = getCurrentTimeUs() - start_us; if (ret < 0) { printf("rknn run error %d\n", ret); return -1; } printf("%4d: Elapse Time = %.2fms, FPS = %.2f\n", i, elapse_us / 1000.f, 1000.f * 1000.f / elapse_us); } // Get top 5 uint32_t topNum = 5; for (uint32_t i = 0; i < io_num.n_output; i++) { uint32_t MaxClass[topNum]; float fMaxProb[topNum]; float* buffer = (float*)output_mems[i]->virt_addr; uint32_t sz = output_attrs[i].n_elems; int top_count = sz > topNum ? topNum : sz; rknn_GetTopN(buffer, fMaxProb, MaxClass, sz, topNum); printf("---- Top%d ----\n", top_count); for (int j = 0; j < top_count; j++) { printf("%8.6f - %d\n", fMaxProb[j], MaxClass[j]); } } // Destroy rknn memory rknn_destroy_mem(ctx, input_mems[0]); for (uint32_t i = 0; i < io_num.n_output; ++i) { rknn_destroy_mem(ctx, output_mems[i]); } // destroy rknn_destroy(ctx); return 0; }