
Rockchip RK3326 Linux SDK Quick Start  

ID: RK-JC-YF-943

Release Version: V1.8.2

Release Date: 2022-11-20

Security Level: □Top-Secret   □Secret   □Internal   ■Public

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES 
NOT PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH 
RESPECT TO THE ACCURACY, RELIABILITY, COMPLETENESS,MERCHANTABILITY, FITNESS FOR 
ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION 
AND CONTENT IN THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS 
DOCUMENT MAY BE UPDATED OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE 
UPGRADES OF THE PRODUCT OR ANY OTHER REASONS.

Trademark Statement

"Rockchip", "瑞芯微", "瑞芯" shall be Rockchip’s registered trademarks and owned by Rockchip. All the other 
trademarks or registered trademarks mentioned in this document shall be owned by their respective owners.

All rights reserved. ©2022. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in 
any form in whole or in part without the written approval of Rockchip.

Rockchip Electronics Co., Ltd.

No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website:     www.rock-chips.com

Customer service Tel:  +86-4007-700-590

Customer service Fax:  +86-591-83951833

Customer service e-Mail:  fae@rock-chips.com

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com


Chipset Buildroot

RK3326/RK3326-S Y

Date Version Author Revision History

2022-06-16 V1.0.0 WJL Initial version.

2022-06-20 V1.8.0 WJL Update version to V1.8.0

2022-09-20 V1.8.1 LinJianHua Support Linux5.10 SDK

2022-11-20 V1.8.2 Caesar Wang Update Linux Upgrade Instruction

Preface

Overview

The document presents Rockchip RK3326 Linux SDK release notes, aiming to help engineers get started with  
RK3326 Linux SDK development and debugging faster.

Intended Audience

This document (this guide) is mainly intended for:

Technical support engineers

Software development engineers

Chipset and System Support

Revision History



Contents

Rockchip RK3326 Linux SDK Quick Start
1.   Set up an Development Environment
2.   Software Development Guide

2.1   Development Guide
2.2   Software Update History

3.   Hardware Development Guide
4.   SDK Building Introduction

4.1   SDK Project Directory Introduction
4.2   SDK Board Level Configuration
4.3   Compilation Commands
4.4   Automatic Build
4.5   Build and package each  module

4.5.1   U-boot  Build
4.5.2   Kernel Build
4.5.3   Recovery Build
4.5.4   Buildroot Build
4.5.5   Cross-compilation

4.5.5.1   Build Modules in Buildroot
4.5.6   Firmware Package

5.   Upgrade Introduciton
5.1   Windows Upgrade Introduction
5.2   Linux Upgrade Instruction
5.3   System Partition Introduction

6.   RK3326 SDK Firmware



1. Set up an Development Environment  

It is recommended to use Ubuntu 20.04 for compilation. Other Linux versions may need to adjust the software 
package accordingly. In addition to the system requirements, there are other hardware and software requirements.

Hardware requirements: 64-bit system, hard disk space should be greater than 40G. If you do multiple builds, you 
will need more hard drive space

Software requirements: Ubuntu 20.04 system:

Please install software packages with below commands to setup SDK compiling environment:

It is recommended to use Ubuntu 20.04 system or higher version for development. If you encounter an error 
during compilation, you can check the error message and install the corresponding software packages 
accordingly.

2. Software Development Guide  

2.1 Development Guide  

Aiming to help engineers get started with SDK development and debugging faster, We have released 
“Rockchip_Developer_Guide_Linux_Software_CN.pdf” with the SDK, please refer to the documents under the 
project's docs/ directory.

2.2 Software Update History  

Software release version upgrade can be checked through project xml file by the following command:

sudo apt-get install git ssh make gcc libssl-dev liblz4-tool expect \
     g++ patchelf chrpath gawk texinfo chrpath diffstat binfmt-support \
     qemu-user-static live-build bison flex fakeroot cmake gcc-multilib \
     g++-multilib unzip device-tree-compiler ncurses-dev libgucharmap-2-90-dev \
     bzip2 expat gpgv2 cpp-aarch64-linux-gnu g++-aarch64-linux-gnu

# Linux4.4 SDK
.repo/manifests$ realpath rk3326_linux_release.xml
# e.g.:printf version v1.8.0，update time on 20220620
<SDK>/.repo/manifests/rk3326_linux_release_v1.8.0_20220620.xml

# Linux4.19 SDK
.repo/manifests$ realpath rk3326_linux4.19_release.xml
# e.g.:printf version v1.2.0，update time on 20220620
<SDK>/.repo/manifests/rk3326_linux4.19_release_v1.2.0_20220620.xml

# Linux5.10 SDK
.repo/manifests$ realpath rk3326_linux5.10_release.xml

af://n65
af://n71
af://n72
af://n74


Software release version updated information can be checked through the project text file by the following 
command:

Or refer to the project directory:

3. Hardware Development Guide  

Please refer to user guides in the project directory for hardware development:

RK3326  hardware design guide:

RK3326 EVB hardware development guide:

4. SDK Building Introduction  

4.1 SDK Project Directory Introduction  

There are buildroot, debian, recovery, app, kernel, u-boot, device, docs, external and other directories in the 
project directory. Each directory or its sub-directories will correspond to a git project, and the commit should be 
done in the respective directory.

app: store application APPs with Demo.

# e.g.:printf version v1.0.0，update time on 20220920
<SDK>/.repo/manifests/rk3326_linux5.10_release_v1.0.0_20220920.xml

# Linux4.4 SDK
.repo/manifests$ cat RK3326_Linux_SDK_Release_Note.md

# Linux4.19 SDK
.repo/manifests$ cat RK3326_Linux4.19_SDK_Release_Note.md

# Linux5.10 SDK
.repo/manifests$ cat RK3326_Linux5.10_SDK_Note.md

# Linux4.4 SDK
<SDK>/docs/RK3326/RK3326_Linux_SDK_Release_Note.md

# Linux4.19 SDK
<SDK>/docs/RK3326/RK3326_Linux4.19_SDK_Release_Note.md

# Linux5.10 SDK
<SDK>/docs/RK3326/RK3326_Linux5.10_SDK_Note.md

<SDK>/docs/RK3326/Hardware/Rockchip_RK3326_Hardware_Design_Guide_V1.2_EN.pdf

<SDK>/docs/RK3326/Hardware/Rockchip_RK3326_User_Manual_EVB_V1.1_EN.pdf

af://n81
af://n87
af://n88


Board level configuration Note

BoardConfig-rk3326-evb-lp3-v10.mk

BoardConfig-rk3326-evb-lp3-v10-
32bit.mk

Suitable for RK3326 EVB V10 development board with
LPDDR3

BoardConfig-rk3326-evb-lp3-v12.mk

BoardConfig-rk3326-evb-lp3-v12-
32bit.mk

Suitable for RK3326 EVB V12 development board with
LPDDR3

BoardConfig-rk3326-robot64.mk

BoardConfig-rk3326-
robot64_no_gpu.mk

Suitable for RK3326 Robot development board with tiny
system

BoardConfig.mk Default

buildroot: root file system based on Buildroot (2018.02-rc3).
device/rockchip: store board-level configuration for each chip and some scripts and prepared files for 
building and packaging firmware.
docs: stores development guides, platform support lists, tool usage, Linux development guides, and so on.
IMAGE: stores building time, XML, patch and firmware directory for each building.
external: stores some third-party libraries, including audio, video, network, recovery and so on.
kernel: stores kernel4.4 development code.
prebuilts: stores cross-building toolchain.
rkbin: stores Rockchip Binary and tools.
rockdev: stores building output firmware.
tools: stores some commonly used tools under Linux and Windows system.
u-boot: store U-Boot code developed based on v2017.09 version.

4.2 SDK Board Level Configuration  

Enter the project  <SDK>/device/rockchip/RK3326  directory:

The first way:

Add board configuration file behind ./build.sh  , for example:

Select the board configuration of  RK3326 EVB V10 development board with LPDDR3:

Select the board configuration of  RK3326 EVB V12 development board with LPDDR3:

Select the board configuration of the RK3326 Robot development board with tiny system:

./build.sh device/rockchip/rk3326/BoardConfig-rk3326-evb-lp3-v10.mk
or
./build.sh device/rockchip/rk3326/BoardConfig-rk3326-evb-lp3-v10-32bit.mk

./build.sh device/rockchip/rk3326/BoardConfig-rk3326-evb-lp3-v12.mk
or
./build.sh device/rockchip/rk3326/BoardConfig-rk3326-evb-lp3-v12-32bit.mk

af://n115


The second way:

4.3 Compilation Commands  

Execute the command in the root directory: ./build.sh -h|help

./build.sh device/rockchip/rk3326/BoardConfig-rk3326-robot64.mk
or
./build.sh device/rockchip/rk3326/BoardConfig-rk3326-robot64_no_gpu.mk

rk3326$ ./build.sh lunch
processing option: lunch

You're building on Linux
Lunch menu...pick a combo:

0. default BoardConfig.mk
1. BoardConfig-rk3326-evb-lp3-v10-32bit.mk
2. BoardConfig-rk3326-evb-lp3-v10.mk
3. BoardConfig-rk3326-evb-lp3-v12-32bit.mk
4. BoardConfig-rk3326-evb-lp3-v12.mk
5. BoardConfig-rk3326-robot64.mk
6. BoardConfig-rk3326-robot64_no_gpu.mk
7. BoardConfig.mk
Which would you like? [0]:
...

rk3326$ ./build.sh -h
Usage: build.sh [OPTIONS]
Available options:
BoardConfig*.mk    -switch to specified board config
lunch              -list current SDK boards and switch to specified board config
wifibt             -build wifibt
uboot              -build uboot
uefi               -build uefi
spl                -build spl
loader             -build loader
kernel             -build kernel
modules            -build kernel modules
toolchain          -build toolchain
rootfs             -build default rootfs, currently build buildroot as default
buildroot          -build buildroot rootfs
ramboot            -build ramboot image
multi-npu_boot     -build boot image for multi-npu board
yocto              -build yocto rootfs
debian             -build debian rootfs
pcba               -build pcba
recovery           -build recovery
all                -build uboot, kernel, rootfs, recovery image
cleanall           -clean uboot, kernel, rootfs, recovery
firmware           -pack all the image we need to boot up system
updateimg          -pack update image
otapackage         -pack ab update otapackage image (update_ota.img)
sdpackage          -pack update sdcard package image (update_sdcard.img)

af://n143


View detailed build commands for some modules, for example: ./build.sh -h kernel

4.4 Automatic Build  

Enter root directory of project directory and execute the following commands to automatically complete all build:

4.5 Build and package each module  

4.5.1 U-boot Build  

save               -save images, patches, commands used to debug
allsave            -build all & firmware & updateimg & save
check              -check the environment of building
info               -see the current board building information
app/<pkg>          -build packages in the dir of app/*
external/<pkg>     -build packages in the dir of external/*

createkeys         -create secureboot root keys
security_rootfs    -build rootfs and some relevant images with security paramter 
(just for dm-v)
security_boot      -build boot with security paramter
security_uboot     -build uboot with security paramter
security_recovery  -build recovery with security paramter
security_check     -check security paramter if it's good

Default option is 'allsave'.

rk3326$ ./build.sh -h kernel
###Current SDK Default [ kernel ] Build Command###
cd kernel
make ARCH=arm64 px30_linux_defconfig rk3326_linux.config
make ARCH=arm64 rk3326-evb-lp3-v10-linux.img -j12

./build.sh all # Only build module code(u-Boot，kernel，Rootfs，Recovery)
               # Need to execute ./mkfirmware.sh again for firmware package

./build.sh     # Base on ./build.sh all
               # 1. Add firmware package ./mkfirmware.sh
               # 2. update.img package
               # 3. Copy the firmware in the rockdev directory to the 
IMAGE/***_RELEASE_TEST/IMAGES directory
               # 4. Save the patches of each module to the 
IMAGE/***_RELEASE_TEST/PATCHES directory
               # Note：./build.sh  and  ./build.sh allsave command are the same

### U-Boot build command
./build.sh uboot

### To view the detailed U-Boot build command
./build.sh -h uboot

af://n148
af://n151
af://n152


4.5.2 Kernel Build  

4.5.3 Recovery Build  

Note: Recovery is a unnecessary function, some board configuration will not be set

4.5.4 Buildroot Build  

Enter project root directory and run the following commands to automatically complete compiling and packaging 
of Rootfs.

After build, rootfs.ext4 is generated in Buildroot directory “output/rockchip_chipset/images”.

4.5.5 Cross-compilation  

If you need to compile individual modules or third-party applications, you need to configure the cross-
compilation environment. For example, RK3326, whose cross-compilation tool is located in the 
buildroot/output/rockchip_rk3326_64/host/usr  directory, needs to set the bin/ directory of the tool 
and the aarch64-buildroot-linux-gnu/bin/  directory as environment variables, and execute the script of 
automatically configuring environment variables in the top-level directory:

Enter the command to view:

Then the following logs are printed:

### Kernel build command
./build.sh kernel

### To view the detailed Kernel build command
./build.sh -h kernel

### Recovery build command
./build.sh recovery

### To view the detailed Recovery build command
./build.sh -h recovery

./build.sh rootfs

source envsetup.sh

cd buildroot/output/rockchip_rk3326_64/host/usr/bin
./aarch64-linux-gcc --version

aarch64-linux-gcc.br_real (Buildroot 2018.02-rc3-XXXXXX) 10.3.0
# XXXXXX is the latest commit ID of Buildroot

af://n154
af://n156
af://n159
af://n163


4.5.5.1 Build Modules in Buildroot  

For example, for the busybox module, commonly used build commands are as follows:

Build busybox

Rebuild busybox

delete busybox

4.5.6 Firmware Package  

After compiling various parts of Kernel/U-Boot/Recovery/Rootfs above, enter root directory of project directory 
and run the following command to automatically complete all firmware packaged into rockdev directory:

Firmware generation:

5. Upgrade Introduciton  

 Interfaces layout of RK3326 EVB board are showed as follows:

SDK$make busybox

SDK$make busybox-rebuild

SDK$make busybox-dirclean
or
SDK$rm -rf buildroot/output/rockchip_rk3326_64/build/busybox-1.34.1

./mkfirmware.sh

af://n170
af://n184
af://n188


5.1 Windows Upgrade Introduction  

SDK provides windows upgrade tool (this tool should be V2.92 or later version) which is located in project root 
directory:

As shown below, after compiling the corresponding firmware, device should enter MASKROM or BootROM  
mode for update. After connecting USB cable, long press the button “MASKROM” and press reset button “RST” 
at the same time and then release, device will enter MASKROM Mode. Then you should load the paths of the 
corresponding images and click “Run” to start upgrade. You can also press the “recovery” button and press reset 
button “RST”then release to enter loader mode to upgrade. Partition offset and flashing files of MASKROM 
Mode are shown as follows (Note: Window PC needs to run the tool as an administrator):

tools/
├── windows/RKDevTool

af://n191


Note：Before upgrade, please install the latest USB driver, which is in the below directory:

5.2 Linux Upgrade Instruction  

The Linux upgrade tool (Linux_Upgrade_Tool should be v2.1 or later versions) is located in “tools/linux” 
directory. Please make sure your board is connected to MASKROM/loader rockusb, if the compiled firmware is 
in rockdev directory, upgrade commands are as below:

Or upgrade the whole update.img in the firmware

Or in root directory, run the following command on the machine to upgrade in MASKROM state:

<SDK>/tools/windows/DriverAssitant_v5.11.zip

sudo ./upgrade_tool ul rockdev/MiniLoaderAll.bin -noreset
sudo ./upgrade_tool di -p rockdev/parameter.txt
sudo ./upgrade_tool di -u rockdev/uboot.img
sudo ./upgrade_tool di -misc rockdev/misc.img
sudo ./upgrade_tool di -b rockdev/boot.img
sudo ./upgrade_tool di -recovery rockdev/recovery.img
sudo ./upgrade_tool di -oem rockdev/oem.img
sudo ./upgrade_tool di -rootfs rocdev/rootfs.img
sudo ./upgrade_tool di -userdata rockdev/userdata.img
sudo ./upgrade_tool rd

sudo ./upgrade_tool uf rockdev/update.img

./rkflash.sh

af://n198


Number Start (sector) End (sector) Size Name

1 16384 24575 4096K uboot

2 24576 32767 4096K trust

3 32768 40959 4096K misc

4 40960 106495 32M boot

5 106496 303104 32M recovery

6 172032 237567 32M bakcup

7 237568 368639 64M oem

8 368640 12951551 6144M rootfs

9 12951552 30535646 8585M userdata

5.3 System Partition Introduction  

Default partition introduction (below is RK3326 EVB reference partition):

uboot partition: for uboot.img built from uboot．
misc partition: for misc.img built from recovery．
boot partition: for boot.img built from kernel．
recovery partition: for recovery.img built from recovery．
backup partition: reserved, temporarily useless. Will be used for backup of recovery as in Android in future.
oem partition: used by manufactor to store their APP or data, mounted in /oem directory
rootfs partition: store rootfs.img built from buildroot
userdata partition: store files temporarily generated by APP or for users, mounted in /userdata directory

6. RK3326 SDK Firmware  

Baidu Cloud Disk

Buildroot

Microsoft OneDriver

Buildroot

af://n205
af://n285
https://eyun.baidu.com/s/3cXqTDs
https://rockchips-my.sharepoint.com/:f:/g/personal/lin_huang_rockchips_onmicrosoft_com/EmhOOhNkIeNOpDXUs7VDOVUBz48yh4rOWu-QzvLyfz6tZQ?e=D0Pmi8

	Rockchip RK3326 Linux SDK Quick Start
	Set up an Development Environment
	Software Development Guide
	Development Guide
	Software Update History

	Hardware Development Guide
	SDK Building Introduction
	SDK Project Directory Introduction
	SDK Board Level Configuration
	Compilation Commands
	Automatic Build
	Build and package each  module
	U-boot  Build
	Kernel Build
	Recovery Build
	Buildroot Build
	Cross-compilation
	Build Modules in Buildroot

	Firmware Package


	Upgrade Introduciton
	Windows Upgrade Introduction
	Linux Upgrade Instruction
	System Partition Introduction

	RK3326 SDK Firmware


