// Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /*------------------------------------------- Includes -------------------------------------------*/ #include "rknn_api.h" #include #include #include #include #include #include #define STB_IMAGE_IMPLEMENTATION #include "stb/stb_image.h" #define STB_IMAGE_RESIZE_IMPLEMENTATION #include #include "postprocess.h" #define PERF_WITH_POST 1 /*------------------------------------------- Functions -------------------------------------------*/ static inline int64_t getCurrentTimeUs() { struct timeval tv; gettimeofday(&tv, NULL); return tv.tv_sec * 1000000 + tv.tv_usec; } static void dump_tensor_attr(rknn_tensor_attr *attr) { char dims[128] = {0}; for (int i = 0; i < attr->n_dims; ++i) { int idx = strlen(dims); sprintf(&dims[idx], "%d%s", attr->dims[i], (i == attr->n_dims - 1) ? "" : ", "); } printf(" index=%d, name=%s, n_dims=%d, dims=[%s], n_elems=%d, size=%d, fmt=%s, type=%s, qnt_type=%s, " "zp=%d, scale=%f\n", attr->index, attr->name, attr->n_dims, dims, attr->n_elems, attr->size, get_format_string(attr->fmt), get_type_string(attr->type), get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale); } static void *load_file(const char *file_path, size_t *file_size) { FILE *fp = fopen(file_path, "r"); if (fp == NULL) { printf("failed to open file: %s\n", file_path); return NULL; } fseek(fp, 0, SEEK_END); size_t size = (size_t)ftell(fp); fseek(fp, 0, SEEK_SET); void *file_data = malloc(size); if (file_data == NULL) { fclose(fp); printf("failed allocate file size: %zu\n", size); return NULL; } if (fread(file_data, 1, size, fp) != size) { fclose(fp); free(file_data); printf("failed to read file data!\n"); return NULL; } fclose(fp); *file_size = size; return file_data; } static unsigned char *load_image(const char *image_path, rknn_tensor_attr *input_attr, int *img_height, int *img_width) { int req_height = 0; int req_width = 0; int req_channel = 0; switch (input_attr->fmt) { case RKNN_TENSOR_NHWC: req_height = input_attr->dims[1]; req_width = input_attr->dims[2]; req_channel = input_attr->dims[3]; break; case RKNN_TENSOR_NCHW: req_height = input_attr->dims[2]; req_width = input_attr->dims[3]; req_channel = input_attr->dims[1]; break; default: printf("meet unsupported layout\n"); return NULL; } int channel = 0; unsigned char *image_data = stbi_load(image_path, img_width, img_height, &channel, req_channel); if (image_data == NULL) { printf("load image failed!\n"); return NULL; } if (*img_width != req_width || *img_height != req_height) { unsigned char *image_resized = (unsigned char *)STBI_MALLOC(req_width * req_height * req_channel); if (!image_resized) { printf("malloc image failed!\n"); STBI_FREE(image_data); return NULL; } if (stbir_resize_uint8(image_data, *img_width, *img_height, 0, image_resized, req_width, req_height, 0, channel) != 1) { printf("resize image failed!\n"); STBI_FREE(image_data); return NULL; } STBI_FREE(image_data); image_data = image_resized; } return image_data; } // 量化模型的npu输出结果为int8数据类型,后处理要按照int8数据类型处理 // 如下提供了int8排布的NC1HWC2转换成int8的nchw转换代码 int NC1HWC2_int8_to_NCHW_int8(const int8_t *src, int8_t *dst, int *dims, int channel, int h, int w) { int batch = dims[0]; int C1 = dims[1]; int C2 = dims[4]; int hw_src = dims[2] * dims[3]; int hw_dst = h * w; for (int i = 0; i < batch; i++) { src = src + i * C1 * hw_src * C2; dst = dst + i * channel * hw_dst; for (int c = 0; c < channel; ++c) { int plane = c / C2; const int8_t *src_c = plane * hw_src * C2 + src; int offset = c % C2; for (int cur_h = 0; cur_h < h; ++cur_h) for (int cur_w = 0; cur_w < w; ++cur_w) { int cur_hw = cur_h * w + cur_w; dst[c * hw_dst + cur_h * w + cur_w] = src_c[C2 * cur_hw + offset]; } } } return 0; } // 量化模型的npu输出结果为int8数据类型,后处理要按照int8数据类型处理 // 如下提供了int8排布的NC1HWC2转换成float的nchw转换代码 int NC1HWC2_int8_to_NCHW_float(const int8_t *src, float *dst, int *dims, int channel, int h, int w, int zp, float scale) { int batch = dims[0]; int C1 = dims[1]; int C2 = dims[4]; int hw_src = dims[2] * dims[3]; int hw_dst = h * w; for (int i = 0; i < batch; i++) { src = src + i * C1 * hw_src * C2; dst = dst + i * channel * hw_dst; for (int c = 0; c < channel; ++c) { int plane = c / C2; const int8_t *src_c = plane * hw_src * C2 + src; int offset = c % C2; for (int cur_h = 0; cur_h < h; ++cur_h) for (int cur_w = 0; cur_w < w; ++cur_w) { int cur_hw = cur_h * w + cur_w; dst[c * hw_dst + cur_h * w + cur_w] = (src_c[C2 * cur_hw + offset] - zp) * scale; // int8-->float } } } return 0; } /*------------------------------------------- Main Functions -------------------------------------------*/ int main(int argc, char *argv[]) { if (argc < 3) { printf("Usage:%s model_path input_path [loop_count]\n", argv[0]); return -1; } char *model_path = argv[1]; char *input_path = argv[2]; int loop_count = 1; if (argc > 3) { loop_count = atoi(argv[3]); } const float nms_threshold = NMS_THRESH; const float box_conf_threshold = BOX_THRESH; int img_width = 0; int img_height = 0; rknn_context ctx = 0; // Load RKNN Model #if 1 // Init rknn from model path int ret = rknn_init(&ctx, model_path, 0, 0, NULL); #else // Init rknn from model data size_t model_size; void *model_data = load_file(model_path, &model_size); if (model_data == NULL) { return -1; } int ret = rknn_init(&ctx, model_data, model_size, 0, NULL); free(model_data); #endif if (ret < 0) { printf("rknn_init fail! ret=%d\n", ret); return -1; } // Get sdk and driver version rknn_sdk_version sdk_ver; ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &sdk_ver, sizeof(sdk_ver)); if (ret != RKNN_SUCC) { printf("rknn_query fail! ret=%d\n", ret); return -1; } printf("rknn_api/rknnrt version: %s, driver version: %s\n", sdk_ver.api_version, sdk_ver.drv_version); // Get Model Input Output Info rknn_input_output_num io_num; ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num)); if (ret != RKNN_SUCC) { printf("rknn_query fail! ret=%d\n", ret); return -1; } printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output); printf("input tensors:\n"); rknn_tensor_attr input_attrs[io_num.n_input]; memset(input_attrs, 0, io_num.n_input * sizeof(rknn_tensor_attr)); for (uint32_t i = 0; i < io_num.n_input; i++) { input_attrs[i].index = i; // query info ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr)); if (ret < 0) { printf("rknn_init error! ret=%d\n", ret); return -1; } dump_tensor_attr(&input_attrs[i]); } printf("output tensors:\n"); rknn_tensor_attr output_attrs[io_num.n_output]; memset(output_attrs, 0, io_num.n_output * sizeof(rknn_tensor_attr)); for (uint32_t i = 0; i < io_num.n_output; i++) { output_attrs[i].index = i; // query info ret = rknn_query(ctx, RKNN_QUERY_NATIVE_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr)); if (ret != RKNN_SUCC) { printf("rknn_query fail! ret=%d\n", ret); return -1; } dump_tensor_attr(&output_attrs[i]); } // Get custom string rknn_custom_string custom_string; ret = rknn_query(ctx, RKNN_QUERY_CUSTOM_STRING, &custom_string, sizeof(custom_string)); if (ret != RKNN_SUCC) { printf("rknn_query fail! ret=%d\n", ret); return -1; } printf("custom string: %s\n", custom_string.string); unsigned char *input_data = NULL; rknn_tensor_type input_type = RKNN_TENSOR_UINT8; rknn_tensor_format input_layout = RKNN_TENSOR_NHWC; // Load image input_data = load_image(input_path, &input_attrs[0], &img_height, &img_width); if (!input_data) { return -1; } // Create input tensor memory rknn_tensor_mem *input_mems[1]; // default input type is int8 (normalize and quantize need compute in outside) // if set uint8, will fuse normalize and quantize to npu input_attrs[0].type = input_type; // default fmt is NHWC, npu only support NHWC in zero copy mode input_attrs[0].fmt = input_layout; input_mems[0] = rknn_create_mem(ctx, input_attrs[0].size_with_stride); // Copy input data to input tensor memory int width = input_attrs[0].dims[2]; int stride = input_attrs[0].w_stride; if (width == stride) { memcpy(input_mems[0]->virt_addr, input_data, width * input_attrs[0].dims[1] * input_attrs[0].dims[3]); } else { int height = input_attrs[0].dims[1]; int channel = input_attrs[0].dims[3]; // copy from src to dst with stride uint8_t *src_ptr = input_data; uint8_t *dst_ptr = (uint8_t *)input_mems[0]->virt_addr; // width-channel elements int src_wc_elems = width * channel; int dst_wc_elems = stride * channel; for (int h = 0; h < height; ++h) { memcpy(dst_ptr, src_ptr, src_wc_elems); src_ptr += src_wc_elems; dst_ptr += dst_wc_elems; } } // Create output tensor memory rknn_tensor_mem *output_mems[io_num.n_output]; for (uint32_t i = 0; i < io_num.n_output; ++i) { output_mems[i] = rknn_create_mem(ctx, output_attrs[i].size_with_stride); } // Set input tensor memory ret = rknn_set_io_mem(ctx, input_mems[0], &input_attrs[0]); if (ret < 0) { printf("rknn_set_io_mem fail! ret=%d\n", ret); return -1; } // Set output tensor memory for (uint32_t i = 0; i < io_num.n_output; ++i) { // set output memory and attribute ret = rknn_set_io_mem(ctx, output_mems[i], &output_attrs[i]); if (ret < 0) { printf("rknn_set_io_mem fail! ret=%d\n", ret); return -1; } } // Run printf("Begin perf ...\n"); for (int i = 0; i < loop_count; ++i) { int64_t start_us = getCurrentTimeUs(); ret = rknn_run(ctx, NULL); int64_t elapse_us = getCurrentTimeUs() - start_us; if (ret < 0) { printf("rknn run error %d\n", ret); return -1; } printf("%4d: Elapse Time = %.2fms, FPS = %.2f\n", i, elapse_us / 1000.f, 1000.f * 1000.f / elapse_us); } printf("output origin tensors:\n"); rknn_tensor_attr orig_output_attrs[io_num.n_output]; memset(orig_output_attrs, 0, io_num.n_output * sizeof(rknn_tensor_attr)); for (uint32_t i = 0; i < io_num.n_output; i++) { orig_output_attrs[i].index = i; // query info ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(orig_output_attrs[i]), sizeof(rknn_tensor_attr)); if (ret != RKNN_SUCC) { printf("rknn_query fail! ret=%d\n", ret); return -1; } dump_tensor_attr(&orig_output_attrs[i]); } int8_t *output_mems_nchw[io_num.n_output]; for (uint32_t i = 0; i < io_num.n_output; ++i) { int size = orig_output_attrs[i].size_with_stride; output_mems_nchw[i] = (int8_t *)malloc(size); } for (uint32_t i = 0; i < io_num.n_output; i++) { int channel = orig_output_attrs[i].dims[1]; int h = orig_output_attrs[i].n_dims > 2 ? orig_output_attrs[i].dims[2] : 1; int w = orig_output_attrs[i].n_dims > 3 ? orig_output_attrs[i].dims[3] : 1; int hw = h * w; NC1HWC2_int8_to_NCHW_int8((int8_t *)output_mems[i]->virt_addr, (int8_t *)output_mems_nchw[i], (int *)output_attrs[i].dims, channel, h, w); } int model_width = 0; int model_height = 0; if (input_attrs[0].fmt == RKNN_TENSOR_NCHW) { printf("model is NCHW input fmt\n"); model_width = input_attrs[0].dims[2]; model_height = input_attrs[0].dims[3]; } else { printf("model is NHWC input fmt\n"); model_width = input_attrs[0].dims[1]; model_height = input_attrs[0].dims[2]; } // post process float scale_w = (float)model_width / img_width; float scale_h = (float)model_height / img_height; detect_result_group_t detect_result_group; std::vector out_scales; std::vector out_zps; for (int i = 0; i < io_num.n_output; ++i) { out_scales.push_back(output_attrs[i].scale); out_zps.push_back(output_attrs[i].zp); } post_process((int8_t *)output_mems_nchw[0], (int8_t *)output_mems_nchw[1], (int8_t *)output_mems_nchw[2], 640, 640, box_conf_threshold, nms_threshold, scale_w, scale_h, out_zps, out_scales, &detect_result_group); char text[256]; for (int i = 0; i < detect_result_group.count; i++) { detect_result_t *det_result = &(detect_result_group.results[i]); sprintf(text, "%s %.1f%%", det_result->name, det_result->prop * 100); printf("%s @ (%d %d %d %d) %f\n", det_result->name, det_result->box.left, det_result->box.top, det_result->box.right, det_result->box.bottom, det_result->prop); } // Destroy rknn memory rknn_destroy_mem(ctx, input_mems[0]); for (uint32_t i = 0; i < io_num.n_output; ++i) { rknn_destroy_mem(ctx, output_mems[i]); free(output_mems_nchw[i]); } // destroy rknn_destroy(ctx); free(input_data); return 0; }