
Rockchip Linux Secure Boot Developer Guide

ID: RK-KF-YF-379

Release Version: V3.0.0

Release Date: 2022-4-30

Security Level: □Top-Secret □Secret □Internal ■Public

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES
NOT PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH
RESPECT TO THE ACCURACY, RELIABILITY, COMPLETENESS,MERCHANTABILITY, FITNESS FOR
ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION
AND CONTENT IN THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS
DOCUMENT MAY BE UPDATED OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE
UPGRADES OF THE PRODUCT OR ANY OTHER REASONS.

Trademark Statement

"Rockchip", "瑞芯微", "瑞芯" shall be Rockchip’s registered trademarks and owned by Rockchip. All the other
trademarks or registered trademarks mentioned in this document shall be owned by their respective owners.

All rights reserved. ©2022. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in
any form in whole or in part without the written approval of Rockchip.

Rockchip Electronics Co., Ltd.

No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590

Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Chipset Kernel verify Kernel Version

RK3308/RK3399/RK3328/RK3326/PX30 AVB 4.4

RK3588/RK356X FIT 5.10

Version Author Date 修改说明

V1.0.0 WZZ 2018-10-31 Initial version

V1.0.1 WZZ 2018-12-17 Fix vbmeta to security

V2.0.0 WZZ 2019-06-03
Sign_Tool is compatible with AVB boot.img，

Update device-mapper related introduction

V2.0.1 Ruby Zhang 2020-08-10 Update the company name and document format

V3.0.0 WZZ 2022-04-30

Add RK3588 FIT supported

Fixed AVB key storage description

Add more reference documents

Update AVB description

Update tool links

V3.0.1 WZZ 2022-09-27 Add RK356X FIT supported statement

Preface

Overview

This document mainly introduces the steps and notices of Secure Boot under RK Linux platform, which is
convenient for customers to do secondary development base on it. Secure Boot function is designed to ensure
devices with correct and valid firmware, and unsigned or invalid firmware will not boot.

Product Version

Intended Audience

This document (this guide) is mainly intended for:

Technical support engineers

Software development engineers

Revision History

Contents

Rockchip Linux Secure Boot Developer Guide
1. Secure Boot Introduction

1.1 Secure Boot Process
1.2 Secure Boot Secure Storage
1.3 Reference Resources

2. Base Secure Boot
2.1 Signature Tools

2.1.1 UI tool (Windows)
2.1.2 Command Line Tool

2.2 Secure Information Flashing
2.2.1 OTP
2.2.2 eFuse

2.3 Verify
3. Kernel Verify

3.1 AVB
3.1.1 Notice
3.1.2 Firmware Configuration

3.1.2.1 Trust：
3.1.2.2 U-boot：
3.1.2.3 Parameter：

3.1.3 AVB Key
3.1.4 Sign the firmware
3.1.5 Download firmware
3.1.6 AVB Lock & Unlock

3.2 FIT
3.2.1 Keys generation
3.2.2 Configuration
3.2.3 U-Boot compilation and signature
3.2.4 Boot Log

4. DM-V
4.1 Sign Firmware

4.1.1 Version upgrade
5. Partition Encryption

5.1 rootfs Encryption
5.1.1 Version upgrade

5.2 Non System Firmware Encryption
6. Keybox
7. Security Demo

7.1 Ramdisk startup process
7.2 System configuration
7.3 Detailed configuration
7.4 Debugging method

1. Secure Boot Introduction

1.1 Secure Boot Process

As shown in the above figure, starting from BootRom, a reliable security verification solution is established step
by step on Linux platform. And it is divided into three parts in order. Customers can choose verification contents
according to their own need.

Base Secure Boot: start with BootRom and verify Miniloader/Trust/Uboot step by step.

AVB / FIT: start with Uboot and verify Boot and Recovery (Optional).

DM-V: verify or decrypt system partition by Ramdisk tool that is packaged in Boot.

Note: the main difference between the above process and Android platform is DM-V process. Android takes
fs_mgr mechanism to implement DMV verification in kernel. But Linux uses Ramdisk to verify.

1.2 Secure Boot Secure Storage

The following secure storage areas are included in Linux platform:

af://n81
af://n82
af://n89

Storage area Note

OTP / eFuse

Located in SOC, it is a fuse mechanism and irreversible flashing.

OTP can be flashed by Miniloader but eFuse can only be flashed by PC tool

(Refer to Section 2.2 Secure Information Flahing).

Medias are different in different SOC.

Currently, Linux platforms mainly includes:

eFuse: RK3399 / RK3288

OTP： RK3308 / RK3326 / PX30 / RK3328

(See Section 1.3 Reference Resources

Rockchip-Secure-Boot-Application-Note-V1.9.pdf）

RPMB

It is a physical partition of eMMC, and it is not available

in file system and requires SOC authorizing access

(that is, it can only be accessed by TEE).

Generally it is considered to be a secure area.

Security Partition

The logical partition of storage medium

is a temporary partition added to supplement

the absence of RPMB on Flash. The partition contents

are encrypted and stored and cannot be mounted,

but may be forcibly erased. It can only be accessed by TEE

(if you force to erase, TEE access will fail and

Secure Boot will not start properly).

Security
Information

Storage area

Base Secure Boot Public Key Hash is stored in OTP/eFuse

AVB

In OTP device：

permanent_attributes.bin hash is stored in OTP

In eFuse device：

permanent_attributes.bin is stored in RPMB/Security Partition

permanent_attributes_cer.bin is stored in RPMB/Security Partition

(permanent_attributes.bin is verified by Base Secure Boot Key)

DM-V
Root Hash is stored in Boot's Ramdisk, and Boot contents are verified by AVB to
ensure accurate

Note: Since OTP (eFuse) is mainly used internally by Rockchip, for security information, customers should give
priority to other areas such as RPMB/Security. If you have a special needs, please apply for related materials by
business.

Secure information and storage location of each process:

1.3 Reference Resources

Reference documents:

Rockchip_Developer_Guide_UBoot_Nextdev_CN.pdf

Rockchip-Secure-Boot-Application-Note-V1.9.pdf

af://n119

Rockchip-Secure-Boot2.0.pdf

SDK/tools/linux/Linux_SecurityAVB/Readme.md

SDK/kernel/ Documentation/device-mapper/

https://android.googlesource.com/platform/external/avb/+/master/README.md

https://source.android.google.cn/security/verifiedboot/dm-verity

2. Base Secure Boot

Base Secure Boot provides basic security to U-boot (loader/trust/uboot)

The start process is as follows:

In short, a signed firmware includes Firmware(OBM Code) + Digital Signature + Public key

Digital Signature + Public Key are added by signature tool.

About memory, the signed firmware is stored in eMMC or Flash, and the Public Key Hash is stored in OTP
(eFuse) of a chip.

When starting, public key of the end of a firmware is verified by the Hash in OTP, and then the digital signature
is verified by the public key to achieve the binding effect of a chip and signature code.

See Rockchip-Secure-Boot-Application-Note-V1.9.pdf for details.

If device using FIT, skip this part, because FIT image making has contained Base Secure Boot operation,
do not repeat the operation manually

https://android.googlesource.com/platform/external/avb/+/master/README.md
https://source.android.google.cn/security/verifiedboot/dm-verity
af://n128

2.1 Signature Tools

2.1.1 UI tool (Windows)

SDK/tools/windows/SecureBootTool_v1.94 or see the enterprise network disk (see Section 1.3 Reference
Resources)

1. Modify configurations

Open setting.ini in the tool：

If AVB is needed, modify exclude_boot_sign = True。

If the chip uses OTP to enable Secure Boot, set sign_flag=0x20. (bit 5: loader OTP write enabled, boards that
have been written OTP, or eFuse chips, this flag should be set to null.)

2. Generate public and private keys

Select Chip and Key formats (pem is common format), click “Generate Key Pairs” to generate PrivteKey.pem
and PublicKey.pem. (Keys are generated randomly. Please save these two keys properly. After the security
function is enabled, if the two keys are lost, the device will not be able to upgrade.)

3. Load key

Select “Load Key” to load the public and private keys follow the prompts.

4. Signature

There are two ways to sign: only sign update.img and independent sign.

If you have already packaged update.img, you can sign update.img directly by “Sign Firmware”.

Independent sign need to press “CTRL + R +K” to open “Advanced Function”:

“Sign Loader” is used to sign Miniloader.bin

“Sign File” is used to sign trust.img and uboot.img

af://n138
af://n139

 (Actually, sign update.img is unpack update.img, and then sign each firmware separately, and then packaged as a
whole, at last sign the whole again)

2.1.2 Command Line Tool

2.2 Secure Information Flashing

2.2.1 OTP

If a chip uses OTP to enable Secure Boot function, ensure that OTP pin of the chip is powered during Loader
process. Download firmware directly through AndroidTool (Windows) / upgrade_tool (Linux). The first time you
restart, Loader will be responsible for writing Hash of the Key to OTP and activating Secure Boot. Restart again
and then the firmware is protected.

step1：Generate rsa public private key (if you already have a key, skip this
step)
 ./rk_sign_tool kk --out .
step2：Load the public and private keys (can be load only once) and
automatically saved to setting.ini
./rk_sign_tool lk --key privateKey.pem --pubkey publicKey.pem
step3：Select the chip to determine signature solution
./rk_sign_tool cc --chip 3326
stpe4：Open setting.ini
Set sign_flag = 0x20
If the platform uses OTP to store security information, set sign_flag = 0x20,
enable RKloader OTP writing function, empty boards must be enabled; otherwise,
this item will be cleared.
If AVB is needed, change exclude_boot_sign = True
stpe5：Overall sign(independent sign skip this step).
./rk_sign_tool sf --firmware update.img
stpe6：Sign loader, overall sign, skip steps 6-8.
./rk_sign_tool sl --loader rk3326loader.bin
stpe7：Sign uboot, for versions before v1.3, RK3326/RK3308 need to add—pss;
others do not need.
./rk_sign_tool si --img uboot.img
stpe8：Sign trust, for version before v1.3, RK3326/RK3308 need to add--pss；
others do not needed.
./rk_sign_tool si --img trust.img

af://n166
af://n168
af://n169

2.2.2 eFuse

If a chip uses eFuse to enable Secure Boot function, please ensure that the hardware connection is correct,
because kernel has not been started when downloading eFuse, so please ensure that VCC_IO was powered in
MaskRom state.

The board enters MaskRom state by using tools/windows/eFusetool_vXX.zip,.

Click "Firmware", select the signed update.img, or Miniloader.bin, click "Start" to start download eFuse.

After eFuse is successfully downloaded, power off and restart, enter MaskRom, use AndroidTool to download
other sign firmware to the board.

2.3 Verify

After secure boot takes effect, there are logs similar to the following output during Loader process.

af://n172
af://n179

3. Kernel Verify

3.1 AVB

AVB requires U-boot to work together. AVB on Linux is used to guarantee the integrity of uboot.img (including
boot.img and recovery.img).

The corresponding tool is in tools/linux/Linux_SecurityAVB.

For detailed usage, please refer to tools/linux/Linux_SecurityAVB/Readme.md

(If there is a conflict, the Linux_SecurityAVB/Readme.md shall prevail)

3.1.1 Notice

About device lock & unlock：

When a device is in unlock state, program will still verify the whole boot.img. If the firmware has an error, the
program will report what the error is, but the device starts normally. If a device is in lock state, the program will
verify the whole boot.img. If the firmware has an error, the next level of firmware will not be started. Therefore,
setting the device to unlock state during debugging is more convenient.

3.1.2 Firmware Configuration

3.1.2.1 Trust：

Endter rkbin/RKTRUST, take RK3308 as an example, find RK3308TRUST.ini and change:

to

TOS trust.img has enabled BL32_OPTION as default，such as RK3288TOS.ini

SecureMode = 1
Secure read PBA: 0x4
SecureInit ret = 0, SecureMode = 1

[BL32_OPTION]
SEC=0

[BL32_OPTION]
SEC=1

af://n182
af://n183
af://n188
af://n191
af://n192

3.1.2.2 U-boot：

U-boot requires the following features:

Use ./make.sh xxxx , to generate uboot.img, trust.img, loader.bin

3.1.2.3 Parameter：

vbmeta and system partitions is required in parameter.txt , security partitions is optional:

vbmeta is stored partitions signed information, it needs 1M size.
system is named rootfs in buildroot. In order to fit more system, call it system in AVB. So if used
buildroot, do not forget to rename your rootfs to system .
security has the same functions to RPMB, 4M size, you have to add this partition if storage medium
was not eMMC.

The following is an example of AVB parameter:

OPTEE support
CONFIG_OPTEE_CLIENT=y
CONFIG_OPTEE_V1=y #RK312x/RK322x/RK3288/RK3228H/RK3368/RK3399 and V2 are
mutually
CONFIG_OPTEE_V2=y #RK3308/RK3326 and V1 are mutually exclusive

CRYPTO support
CONFIG_DM_CRYPTO=y # eFuse device required
CONFIG_ROCKCHIP_CRYPTO_V1=y # For eFuse devices, like RK3399/RK3288
CONFIG_ROCKCHIP_CRYPTO_V2=y # For eFuse devices, like RK1808

AVB support
CONFIG_AVB_LIBAVB=y
CONFIG_AVB_LIBAVB_AB=y
CONFIG_AVB_LIBAVB_ATX=y
CONFIG_AVB_LIBAVB_USER=y
CONFIG_RK_AVB_LIBAVB_USER=y
CONFIG_AVB_VBMETA_PUBLIC_KEY_VALIDATE=y
CONFIG_ANDROID_AVB=y
CONFIG_OPTEE_ALWAYS_USE_SECURITY_PARTITION=y # open when rpmb is not
available, not open as default
CONFIG_ROCKCHIP_PRELOADER_PUB_KEY=y # just for eFuse device
CONFIG_RK_AVB_LIBAVB_ENABLE_ATH_UNLOCK=y

#fastboot support
CONFIG_FASTBOOT=y
CONFIG_FASTBOOT_BUF_ADDR=0x2000000 # it varies between
platforms, refer to default configuration
CONFIG_FASTBOOT_BUF_SIZE=0x08000000 # it varies between
platforms, refer to default configuration
CONFIG_FASTBOOT_FLASH=y
CONFIG_FASTBOOT_FLASH_MMC_DEV=0

af://n198
af://n202

When downloading, the name on the tool should be modified synchronously. After modification, reload
parameter.

3.1.3 AVB Key

The main information of AVB contains the following four Keys:

Product RootKey (PRK): root Key of AVB, in eFuse devices, related information is verified by Base Secure Boot
Key. In OTP devices, PRK-Hash information pre-stored in OTP is directly read and verified;

ProductIntermediate Key (PIK): intermediate Key;

ProductSigning Key (PSK): used to sign a firmware;

ProductUnlock Key (PUK): used to unlock a device.

AVB parameter:
0x00002000@0x00004000(uboot),0x00002000@0x00006000(trust),0x00002000@0x00008000(
misc),0x00010000@0x0000a000(boot),0x00010000@0x0001a000(recovery),0x00010000@0x0
002a000(backup),0x00020000@0x0003a000(oem),0x00300000@0x0005a000(system),0x00000
800@0x0035a000(vbmeta),0x00002000@0x0035a800(security),-
@0x0035c800(userdata:grow)
uuid:system=614e0000-0000-4b53-8000-1d28000054a9

AVB and A/B parameter:
0x00002000@0x00004000(uboot),0x00002000@0x00006000(trust),0x00004000@0x00008000(
misc),0x00010000@0x0000c000(boot_a),0x00010000@0x0001c000(boot_b),0x00010000@0x0
002c000(backup),0x00020000@0x0003c000(oem),0x00300000@0x0005c000(system_a),0x003
00000@0x0035c000(system_b),0x00000800@0x0065c000(vbmeta_a),0x00000800@0x0065c800
(vbmeta_b),0x00002000@0x0065d000(security),-@0x0065f00(userdata:grow)

af://n214

A series of files are generated based on these 4 Keys, as shown in the figure. Refer to the Google AVB open
source documents for details. https://android.googlesource.com/platform/external/avb/+/master/README.md

Compared with the original AVB, Linux grabs of main firmware verification function of AVB. In order to adapt
to RK platform, additional permanent_attributes_cer.bin is generated in eFuse, in other words, it unnecessary to
store permanent_attributes.bin in eFuse, permanent_attributes.bin information is verified directly by Base Secure
Boot Key to save eFuse space.

There is already a set of test certificates and key in this directory. If you need a new Key and certificate,
you can generate it yourself by the following steps:

For eFuse devices, you also need to generate additional permanent_attributes_cer.bin (OTP devices can skip this
step).

When generating permanent_attributes_cer.bin , .setting file would be generated at same time, and
marks the device as eFuse device in the file. If the target device is changed, do not forget to change device type
here.

Please keep the generated files properly, otherwise you will not be able to unlock after locking, and the
device will not be able to flashed.

./avb_user_tool.sh -n <Product ID> #The size of Product ID is 16 bytes.

./avb_user_tool.sh -f < /Path/to/PrivateKey.pem >

https://android.googlesource.com/platform/external/avb/+/master/README.md

3.1.4 Sign the firmware

If AVB is enabled, device only can boot with sign firmware.

AVB can verify the boot.img and recovery.img, sign them with this command:

The signed images and vbmeta.img generated in out directory.

There are 2 ways to signed firmware(update.img) with 2.1 Signature Tools:

use signature tools to sign loader.bin / uboot.img / trust.img, pack all signed images to update.img
pack signed boot.img / recovery.img / vbmeta.bin and other images to update.img, and sign the update.img.
(Set exclude_boot_sign=True firstly)

security partition do not need to pack to update.img, it would initialized by U-Boot.

3.1.5 Download firmware

Download tool is upgrade_tool in Linux， RKDevTool in Windows.

You can directly download update.img or flash it one by one according to the partition.

If you try to flash it one by one, some images should be replaced:

boot.img and recovery.img used out directory generated above.
vbmeta should be downloaded.
MiniloaderAll.bin / uboot.img / trust.img should use signed images.
parameter.txt should be fixed with 3.1.2.3 Parameter

You should add vbmeta for RKDevTool, blank the address, and reload parameter, RKDevTool will update the
address by itself.

After downloading firmware, the device is unlock state, it can not stop booting invalid image.

3.1.6 AVB Lock & Unlock

AVB supports Lock and Unlock states:

Lock: verify the image next stage to U-Boot like boot.img and recovery.img, and stop booting invalid
image, report error if image is invalid
Unlock: verify the image next stage to U-Boot like boot.img and recovery.img, report error if image is
invalid, but still boot.

Therefore, setting the device to unlock state is convenient for debugging.

All of AVB user operations use fastboot. There are some ways to enter device fastboot mode:

Press "fastboot" key at booting if there is "fastboot" button in board.
Run reboot fastboot in system
Run fastboot usb 0 in U-Boot console. (set CONFIG_BOOTDELAY in U-Boot, it supports specific
delay to wait Ctrl-C to enter U-Boot console)

Anyway, device must communicate to PC with fastboot.

./avb_user_tool.sh -s -b < /path/to/boot.img > -r < /path/to/recovery.img > #
Remove -r option if no recovery.img

af://n229
af://n242
af://n257

Store user password for fastboot which run with supper user, it helps us run fastboot without input user password
manually.

Download AVB root information (must be done before "Lock" and "Unlock"):

Lock the device:

Unlock the device:

If everything goes well, the log below will be shown if the device is LOCKED.

3.2 FIT

FIT (flattened image tree) is a new type boot images scheme supported by u-boot, which can pack and verify any
number of images. FIT use its (image source file) file to describe image, and finally forms an itb(flattened image
tree BLOB) image with mkimage tool. its file use the syntax rules of DTS, it's flexible, and can directly run
libfdt library and related tools. At the same time, it comes with a new set of safety inspection methods.

Main differences between FIT and AVB:

FIT complation and signature are done by one command. AVB is compiled first and then signed.
Only one Key Hash of FIT is stored in OTP/eFuse. AVB should store two.
After FIT signature, the signature information is carried on the target images itself. AVB signature
information is stored in vbmeta.bin。
FIT has no trust.img, incorporated in uboot.img, AVB is not care about trust.img.

FIT supports below features：

sha256 + rsa2048 + pkcs-v2.1(pss) padding
Firmware rollback prevention
Firmware re-signature(Remote signature)
Crypto hardware acceleration

For now, security verify mode only supports sha256+rsa2048+pkcs-v2.1(pss) padding。

For more details，see Rockchip_Developer_Guide_UBoot_Nextdev.pdf chapter 12。

./avb_user_tool.sh --su_pswd < /user/password >

./avb_user_tool.sh -d

./avb_user_tool.sh -l # reboot device after finishing lock.

./avb_user_tool.sh -u # reboot device after finishing unlock.

ANDROID: reboot reason: "(none)"
Could not find security partition
read_is_device_unlocked() ops returned that device is LOCKED

af://n284

3.2.1 Keys generation

FIT Keys and Base Secure Boot keys are the same set of keys, but it's generation and using integrated into
compilation, and actually it calls rk_sign_tool to generate the key and sign the firmware as well.

Execute the following three commands in the u-boot project to generate the RSA keys. Usually, it only needs to
be generated once. After that, the keys are used to sign and verify the firmware. Please keep it properly.

If console report error below:

Can't load /home4/cjh//.rnd into RNG

140522933268928:error:2406F079:random number generator:RAND_load_file:Cannot open
file:../crypto/rand/randfile.c:88:Filename=/home4/cjh//.rnd

Please create it manually first: touch ~/.rnd

Note: The names "keys", "dev.key", "dev.crt" ,"dev.pubkey" are fixed. These names has defined in its file.
If name was changed, it would fail to pack images.

3.2.2 Configuration

These features should be enabled in U-Boot:

It is recommended to select configuration by make menuconfig，and make savedefconfig to
update original defconfig file. In this way, you can avoid some errors due to wrong dependency
relationship.

1. key stored directory：keys
mkdir -p keys

2. use rk_sign_tool to generate RSA privateKey.pem and publicKey.pem, and
rename them: keys/dev.key and keys/dev.pubkey
../rkbin/tools/rk_sign_tool kk --bits 2048 --out .

3. use -x509 and private key to generate signature certificate：keys/dev.crt
openssl req -batch -new -x509 -key keys/dev.key -out keys/dev.crt

ls keys/
dev.crt dev.key dev.pubkey

required
CONFIG_FIT_SIGNATURE=y
CONFIG_SPL_FIT_SIGNATURE=y

option
CONFIG_FIT_ROLLBACK_PROTECT=y # boot.img rollback prevention
CONFIG_SPL_FIT_ROLLBACK_PROTECT=y # uboot.img rollback prevention

af://n308
af://n319

3.2.3 U-Boot compilation and signature

U-Boot would sign boot.img / recovery.img / loader.bin / uboot.img at the end of compilation. So we should
determine the location of boot.img and recovery.img before compilation.

（1）Basic command（No rollback prevention）：

result：

（2）Extension command 1：

Enabled rollback prevention, add rollback parameter to basic command：

result：

（3）Extension command 2：

./make.sh rv1126 --spl-new --boot_img boot.img --recovery_img recovery.img

......
After compilation, generated signed uboot.img, boot.img and recovery.img.
start to sign rv1126_spl_loader_v1.00.100.bin
......
sign loader ok.
......
Image(signed, version=0): uboot.img (FIT with uboot, trust...) is ready
Image(signed, version=0): recovery.img (FIT with kernel, fdt, resource...) is
ready
Image(signed, version=0): boot.img (FIT with kernel, fdt, resource...) is ready
Image(signed): rv1126_spl_loader_v1.05.106.bin (with spl, ddr, usbplug) is ready
pack uboot.img okay! Input: /home4/cjh/rkbin/RKTRUST/RV1126TOS.ini

Platform RV1126 is build OK, with new .config(make rv1126-secure_defconfig)

// Specify the minimum version number of uboot.img, boot.img and recovery.img is
10 and 12
./make.sh rv1126 --spl-new --boot_img boot.img --recovery_img recovery.img --
rollback-index-uboot 10 --rollback-index-boot 12 --rollback-index-recovery 12

......

// After compilation, generated signed uboot.img, boot.img and recovery.img, and
enabled rollback prevention.
start to sign rv1126_spl_loader_v1.00.100.bin
......
sign loader ok.
......
Image(signed, version=0, rollback-index=10): uboot.img (FIT with uboot, trust)
is ready
Image(signed, version=0, rollback-index=12): recovery.img (FIT with kernel, fdt,
resource...) is ready
Image(signed, version=0, rollback-index=12): boot.img (FIT with kernel, fdt,
resource...) is ready
Image(signed): rv1126_spl_loader_v1.00.100.bin (with spl, ddr, usbplug) is ready

af://n324

Burn public key hash to OTP/eFuse，add --burn-key-hash to (1) or (2)：

System would stop booting if new version number is less that old when enabled rollback prevention.

result：

SPL print RSA: Write key hash successfull at booting

（4）Note:

--boot_img : optional. Specify target boot.img to be signed.
--recovery_img : optional. Specify target recovery.img to be signed.
--rollback-index-uboot , --rollback-index-boot , --rollback-index-recovery : optional. Specify
rollback version number.
--spl-new : If the compilation command does not take this parameter, the SPL file in rkbin is used to
package and generate loader by default; Otherwise, package the loader with the currently compiled SPL
file.

Because security u-boot-spl.dtb compilation requires RSA public key (generated by user), the official SDK does
not submit SPL file with security feature to rkbin repository. However, users can also submit their own security
SPL to the rkbin repository. After that, when compiling the firmware, they can no longer specify this parameter
and use the stable SPL file.

Three firmware will be generated after compilation: loader, uboot.img, boot.img. As long as the RSA key is not
replaced, it is allowed to update any firmware separately.

Specify the minimum version number of uboot.img, boot.img and recovery.img is
10 and 12
Public key is burned to OTP/eFUSE at SPL stage.
./make.sh rv1126 --spl-new --boot_img boot.img --recovery_img recovery.img --
rollback-index-uboot 10 --rollback-index-boot 12 --rollback-index-recovery 12 --
burn-key-hash

......
enabled burn-key-hash
spl/u-boot-spl.dtb: burn-key-hash=1

After compilation, generated signed uboot.img, boot.img and recovery.img, and
enabled rollback prevention.
start to sign rv1126_spl_loader_v1.00.100.bin
......
sign loader ok.
......
Image(signed, version=0, rollback-index=10): uboot.img (FIT with uboot, trust)
is ready
Image(signed, version=0, rollback-index=12): recovery.img (FIT with kernel, fdt,
resource...) is ready
Image(signed, version=0, rollback-index=12): boot.img (FIT with kernel, fdt,
resource...) is ready
Image(signed): rv1126_spl_loader_v1.00.100.bin (with spl, ddr, usbplug) is ready

3.2.4 Boot Log

BW=32 Col=10 Bk=8 CS0 Row=15 CS=1 Die BW=16 Size=1024MB
out
U-Boot SPL board init
U-Boot SPL 2017.09-gacb99c5-200408-dirty #cjh (Apr 09 2020 - 20:51:21)
unrecognized JEDEC id bytes: 00, 00, 00

Trying to boot from MMC1
// SPL signature verification is done.
sha256,rsa2048:dev+
// rollback prevention：now uboot.img version number is 10, device minimum
version number is 9. Rollback index: 10 >= 9, OK
// SPL checked images hash.
Checking optee ... sha256+ OK
Checking uboot ... sha256+ OK
Checking fdt ... sha256+ OK

Jumping to U-Boot via OP-TEE
I/TC:
E/TC:0 0 plat_rockchip_pmu_init:2003 0
E/TC:0 0 plat_rockchip_pmu_init:2006 cpu off
E/TC:0 0 plat_rockchip_pmusram_prepare:1945 pmu sram prepare 0x14b10000 0x8400880
0x1c
E/TC:0 0 plat_rockchip_pmu_init:2020 pmu sram prepare
E/TC:0 0 plat_rockchip_pmu_init:2056 remap
I/TC: OP-TEE version: 3.6.0-233-g35ecf936 #1 Tue Mar 31 08:46:13 UTC 2020 arm
I/TC: Next entry point address: 0x00400000
I/TC: Initialized

U-Boot 2017.09-gacb99c5-200408-dirty #cjh (Apr 09 2020 - 20:51:21 +0800)

Model: Rockchip RV1126 Evaluation Board
PreSerial: 2
DRAM: 1023.5 MiB
Sysmem: init
Relocation Offset: 00000000, fdt: 3df404e0
Using default environment

dwmmc@ffc50000: 0
Bootdev(atags): mmc 0
MMC0: HS200, 200Mhz
PartType: EFI
boot mode: normal
conf: sha256,rsa2048:dev+
resource: sha256+
DTB: rk-kernel.dtb
FIT: signed, conf required
HASH(c): OK

I2c0 speed: 400000Hz
PMIC: RK8090 (on=0x10, off=0x00)
vdd_logic 800000 uV
vdd_arm 800000 uV
vdd_npu init 800000 uV

af://n356

vdd_vepu init 800000 uV
......

Hit key to stop autoboot('CTRL+C'): 0
Booting FIT Image at 0x3d8122c0 with size 0x0052b200
Fdt Ramdisk skip relocation
Loading kernel from FIT Image at 3d8122c0 ...
 Using 'conf' configuration
 // uboot signature verification is done
 Verifying Hash Integrity ... sha256,rsa2048:dev+ OK
 // rollback prevention：now boot.img version number is 22, device minimum
version number is 21. Rollback index: 22 >= 21, OK
 Verifying Rollback-index ... 22 >= 21, OK
 Trying 'kernel' kernel subimage
 Description: Kernel for arm
 Type: Kernel Image
 Compression: uncompressed
 Data Start: 0x3d8234c0
 Data Size: 5349248 Bytes = 5.1 MiB
 Architecture: ARM
 OS: Linux
 Load Address: 0x02008000
 Entry Point: 0x02008000
 Hash algo: sha256
 Hash value:
64b4a0333f7862967be052a67ee3858884fcefebf4565db5c3828a941a15f34a
 Verifying Hash Integrity ... sha256+ OK // checked kernel hash
Loading ramdisk from FIT Image at 3d8122c0 ...
 Using 'conf' configuration
 Trying 'ramdisk' ramdisk subimage
 Description: Ramdisk for arm
 Type: RAMDisk Image
 Compression: uncompressed
 Data Start: 0x3dd3d4c0
 Data Size: 0 Bytes = 0 Bytes
 Architecture: ARM
 OS: Linux
 Load Address: 0x0a200000
 Entry Point: unavailable
 Hash algo: sha256
 Hash value:
e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
 Verifying Hash Integrity ... sha256+ OK // checked ramdisk hash
 Loading ramdisk from 0x3dd3d4c0 to 0x0a200000
Loading fdt from FIT Image at 3d8122c0 ...
 Using 'conf' configuration
 Trying 'fdt' fdt subimage
 Description: Device tree blob for arm
 Type: Flat Device Tree
 Compression: uncompressed
 Data Start: 0x3d812ec0
 Data Size: 66974 Bytes = 65.4 KiB
 Architecture: ARM
 Load Address: 0x08300000
 Hash algo: sha256
 Hash value:
8fb1f170766270ed4f37cce4b082a51614cb346c223f96ddfe3526fafc5729d7
 Verifying Hash Integrity ... sha256+ OK // checked fdt hash

4. DM-V

One precondition of using DM-V is that boot.img must be secure. This solution will package a ramdisk in
boot.img. The security of ramdisk is guaranteed by AVB. The veritysetup tool is used to verify mounted firmware
in ramdisk.

The advantage of DM-V is that verification speed is fast, the larger the firmware, the more obvious the effect.

The disadvantage is that DM-V can only work in read-only file systems, Boot and System firmware will become
larger.

The basic theory is Device-Mapper-Verity technology, which will do 4K segmentation on a verification firmware
and hash calculation for each 4K data slice, iterate multiple layers, and generate corresponding Hash-Map (within
30M) and Root- Hash. When creating a virtual partition based on DM-V, Hash-Map is verified to ensure that the
Hash-Map is correct.

After the partition is mounted, when there is data accessing, it is going to do hash verification of the 4K partition
where the data is located. When verification errors occur, I/O errors are returned, and the corresponding location
cannot be used, which is similar to file system corruption.

Please refer to Documentation/device-mapper/ under Kernel for details.

Or refer to https://source.android.google.cn/security/verifiedboot/dm-verit.

 Loading fdt from 0x3d812ec0 to 0x08300000
 Booting using the fdt blob at 0x8300000
 Loading Kernel Image from 0x3d8234c0 to 0x02008000 ... OK
 Using Device Tree in place at 08300000, end 0831359d
Adding bank: 0x00000000 - 0x08400000 (size: 0x08400000)
Adding bank: 0x0848a000 - 0x40000000 (size: 0x37b76000)
Total: 236.327 ms

Starting kernel ...

[0.000000] Booting Linux on physical CPU 0xf00
[0.000000] Linux version 4.19.111 (cjh@ubuntu) (gcc version 6.3.1 20170404
(Linaro GCC 6.3-2017.05)) #28 SMP PREEMPT Wed Mar 25 16:03:27 CST 2020
[0.000000] CPU: ARMv7 Processor [410fc075] revision 5 (ARMv7), cr=10c5387d

af://n358
https://source.android.google.cn/security/verifiedboot/dm-verit

4.1 Sign Firmware

DM-V function can be used when kernel opens related resources.

Pay attention to open CONFIG_DM_VERITY when Compiling Kernel.

For related tools, refer to the network disk file (Section 1.3 Reference Resources)
Linux_SecurityDM_v1_01.tar.gz

The above compressed files should be decompressed in a Linux environment. It contains soft links and will be
expanded to original file size, causing the file to become larger under windows.

Decompress the file to get:

First configure the config file, please fill in the corresponding information according to actual situation.

Then run ./mkdm.sh -m dmv -c config (--debug) , the script will automatically package Root-Hash into
Ramdisk, and package with kernel, resource to boot.img. Hash-Map is attached to rootfs.img.

Obtain boot.img and rootfs_dmv.img from output directory.

Download the two firmware to the board instead of the original boot.img and rootfs.img.

4.1.1 Version upgrade

In order to make Ramdisk more compatible with chips, Ramdisk is compiled instead of using the fixed Ramdisk
for new version.

$COMMON_DIR is <SDK>/device/rockchip/common/
$RK_CFG_RAMBOOT is SDK predefined compilation configuration. Only supported by RK3588 now.
System should be built first, some information about system will be packed to Ramdisk through mk-

ramdisk.sh .
This command is also used for encryption, encryption or verification depends on parameter
RK_SYSTEM_CHECK_METHOD in <SDK>/device/rockchip/.BoardConfig.mk , DM-V for
verification, DM-E for encryption.

|── config
|── mkbootimg
|── mkdm.sh
└── ramdisk.tar.gz

ROOT_DEV= #the partition location of actual root firmware in flash, such as
/dev/mmcblk2p8
INIT= #the first script that actual root runs, generally is /init or
/sbin/init
ROOTFS_PATH= #rootfs firmware that needs to be signed
KERNEL_PATH= #Kernel Image location, generally is
kernel/arch/arm(64)/boot/Image
RESOURCE_PATH= #kernel resource.img location, generally is kernel/resource.img

$COMMON_DIR/mk-ramdisk.sh ramboot.img $RK_CFG_RAMBOOT

af://n367
af://n379

5. Partition Encryption

Partition encryption is also based on device-mapper technology, except each partition block treatment. Refer to
Chapter 4 DM-V

Advantages: high security, free file system, readable and writable.

Disadvantages: when encrypting partitions, they cannot be compressed; reading and writing data must be
calculated by encryption and decryption, which affects the efficiency of reading and writing to some extent.

5.1 rootfs Encryption

Like DM-V, partition encryption also requires Kernel to open related resources:

Share a set of tools with DM-V (Linux_SecurityDM_v1_01.tar.gz)

Need to configure the following items in the config file:

Use ./mkdm.sh -m fde-s -c config

to generate boot.img and encrypted.img in output directory.

Download these two firmware to the board instead of the original boot.img and rootfs.img.

This part is just a demo, the key of system stored in init , this is weak security. Bacause customer's key is
private, it's better to design code by customer to store the keys. If There is no scheme of key processing,
you can refer to Keybox

5.1.1 Version upgrade

See 4.1.1 Version upgrade

CONFIG_BLK_DEV_DM
CONFIG_DM_CRYPT
CONFIG_BLK_DEV_CRYPTOLOOP

ROOT_DEV= #the location of actual root firmware in flash, such as
/dev/mmcblk2p8
INIT= #the first script that the actual root runs, generally is /init or
/sbin/init
KERNEL_PATH= #Kernel Image location, generally is
kernel/arch/arm(64)/boot/Image
RESOURCE_PATH= #Kernel resource.img location, generally is kernel/resource.img
inputimg= #firmware that needs to be encrypted
cipher= #aes-cbc-plain by default
key= #note the format size, the key should match with cipher

af://n391
af://n395
af://n405

5.2 Non System Firmware Encryption

There are many open source tools for firmware encryption and decryption. We are talking about dmsetup
(consistent with tools in chapter 5.1) here. To use this tool, you need to open the following configurations:

Share a set of tools with DM-V(Linux_SecurityDM_v1_01.tar.gz)

Need to configure the following items in the config file

Using ./mkdm.sh -m fde -c config to generate encrypted.img and encrypted_info in the output directory.

Encrypted.img is the encrypted file, which can be mounted and virtualized to a partition device by dmsetup. The
encrypted_info here is encrypted information, such as:

The method to mount encrypted files to /mnt:

Umount method：

6. Keybox

Kernel：
CONFIG_BLK_DEV_DM
CONFIG_DM_CRYPT
CONFIG_BLK_DEV_CRYPTOLOOP

Buildroot：
BR2_PACKAGE_LUKSMETA

inputimg= #firmware that need to be encrypted, or use inputfile to encrypt
folders
cipher= # aes-cbc-plain by default
key= # note the format size, the key should match with cipher

#dmsetup create encfs-4284779680572201071 --table "0 550912 crypt aes-cbc-plain
000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f 0
TARGET_PARTITION 0 1 allow_discards"
sectors=550912
cipher=aes-cbc-plain
key=000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

source encrypted_info
loopdevice=`losetup -f`
losetup ${loopdevice} encrypted.img
dmsetup create encrypt-file --table "0 $sectors crypt $cipher $key 0 $loopdevice
0 1 allow_discards"
mount /dev/mapper/encrypt-file /mnt

umount /mnt
dmsetup remove encrypt-file
losetup -d ${loopdevice}

af://n407
af://n420

When using partition or system encryption, a key storage location is required. Generally, the key is stored in
RPMB or security partition through OPTEE. In principle, this part needs to be designed by the manufacturer,
since the code design is in direct contact with the manufacturer's private key. Considering that some customers
don't know about OPTEE, a Keybox demo code is added to the SDK and actually used in 7. Security demo.

(It's recommended to refactor the code by customer)

OPTEE related codes，in <SDK>/external/security/，include bin and rk_tee_user :

Bin stores part of the pre compiled non-public code and header files and is the basic library for optee operation.

bin is pre-built private code and head files, and is the basic library for OPTEE.
rk_tee_user is a project to compile the customer's own CA/ TA, which comes with some demo test
projects.

This chapter mainly introduces how to use OPTEE in buildroot . For other systems, you can also refer to the
compilation rules in buildroot for compilation. More information about OPTEE, refers to
Rockchip_Developer_Guide_TEE_SDK_CN.pdf .

extra_app is a weak subproject of rk_tee_user , if this compilation directory exists, it will be compiled
followed rk_tee_user , otherwise skip the compilation. Therefore, there is a demo of keybox stored in
buildroot/packege/rockchip/tee-user-app/extra_app , when buildroot building, the code of
keybox will be added to rk_tee_user , and then compile rk_tee_user to get customer's keybox_app and
TA program.

The relevant codes of builderoot are located in <SDK>/builderoot/package/rockchip/tee user app

keybox_ App can write key in any cases, but can only read key in ramdisk and PID = 1. Ramdisk is
packed in boot.img, and it verified by FIT, that make sure keybox_app read key in safely. This requires
customers to use this code with FIT or AVB.

7. Security Demo

The Linux SDK has released a set of scripts to fast build a security firmware through several simple
configurations.

(At present, this building environment is only applicable to FIT. For the support list, refer to Product Version)

tree buildroot/package/rockchip/tee-user-app/
buildroot/package/rockchip/tee-user-app/
├── Config.in
├── extra_app
│ ├── host
│ │ ├── main.c
│ │ └── Makefile
│ └── ta
│ ├── include
│ │ ├── ta_keybox.h
│ │ └── user_ta_header_defines.h
│ ├── keybox.c
│ ├── Makefile
│ └── sub.mk
└── tee-user-app.mk

af://n436

7.1 Ramdisk startup process

This demo uses FIT + Ramdisk, and ramdisk guides the system to startup. The most critical part of ramdisk is its
init script. In ramdisk, the system is decrypted or verified according to the type of system packaging, and
unified into vroot device. The ramdisk takes into account the A/B system, system verification and system
encryption.

[1] In the encryption system, the file system will be expanded according to the actual size of the system
partition.

7.2 System configuration

If SDK supports Security Demo, BoardConfig-security-base.mk and BoardConfig-ab-base.mk can be found in
<SDK>/device/rockchip/.target_product

cat BoardConfig-security-base.mk
export RK_LOADER_UPDATE_SPL=true
ramboot config
export RK_CFG_RAMBOOT=rockchip_rk3588_ramboot
Set ramboot image type

af://n439
af://n444

RK_SECURITY_OTP_DEBUG is enabled by default, OTP key does not write public key hash to
OTP, in other word, loader.bin is safe in default. Please turn off this option when mass producting.

Enable Security Demo, BoardConfig-security-base.mk should be included to
<SDK>/device/rockchip/.BoardConfig.mk , like:

Append BoardConfig-ab-base.mk if enabled A/B system.

Now, run ./build.sh to build security firmware. In building, some errors may appear, according to the
prompts, fix the errors. Or continue to follow this document below and modify the configuration.

7.3 Detailed configuration

Generate FIT Key

Save user password to U-Boot if using system encryption.

Some operation of building encrypted system need root permission, which means that the system
cannot be compiled in the server environment (Normally, common server user can not have root
permission).

Modify Kernel configuration and add the following configuration:

export RK_RAMBOOT_TYPE=CPIO
Define enable RK SECUREBOOT
export RK_RAMDISK_SECURITY_BOOTUP=true
export RK_SECURITY_OTP_DEBUG=true # Default enabled, easier to
debug, do not write public key hash to OTP.
export RK_SYSTEM_CHECK_METHOD=DM-V # DM-V for system verified，
DM-E for system encrypt.

cat BoardConfig-ab-base.mk
export RK_PACKAGE_FILE_AB=rk3588-package-file-ab
export RK_MISC=blank-misc.img
export RK_PARAMETER=parameter-ab.txt
export RK_CFG_RECOVERY= # There is no recovery.img in
A/B.

diff --git a/rk3588/BoardConfig-rk3588-evb1-lp4-v10.mk b/rk3588/BoardConfig-
rk3588-evb1-lp4-v10.mk
index 5fa455d..753bb6c 100644
--- a/rk3588/BoardConfig-rk3588-evb1-lp4-v10.mk
+++ b/rk3588/BoardConfig-rk3588-evb1-lp4-v10.mk
@@ -59,3 +59,5 @@ export RK_DISTRO_MODULE=
 export RK_BOARD_PRE_BUILD_SCRIPT=app-build.sh
 # Define package-file
 export RK_PACKAGE_FILE=rk3588-package-file
+REALDIR=`dirname $(readlink -f ${BASH_SOURCE[0]})`
+source ${REALDIR}/BoardConfig-security-base.mk

./build.sh createkeys

echo "Pass work for sudo" > u-boot/keys/root_passwd

af://n454

If using encrypted system, modify Kernel dts and add the following node:

Modify U-Boot configuration and add the following configuration:

Modify ROOTFS configuration and add the following configuration:

If everything goes well, the system can be started and in protection. System can't started if any image was
replaced.

7.4 Debugging method

If Ramdisk init can't switch to system, try to enable debug log, and use DEBUG function to add private log.
Determine it's operation following 7.1 Ramdisk startup process

CONFIG_BLK_DEV_DM=y
CONFIG_DM_CRYPT=y
CONFIG_BLK_DEV_CRYPTOLOOP=y
CONFIG_DM_VERITY=y

CONFIG_TEE=y # Required in encrypted system.
CONFIG_OPTEE=y # Required in encrypted system.

optee: optee {
 compatible = "linaro,optee-tz";
 method = "smc";
 status = "okay";
 }

CONFIG_FIT_SIGNATURE=y
CONFIG_SPL_FIT_SIGNATURE=y
CONFIG_ANDROID_AB=y # Just for A/B system.

BR2_ROOTFS_OVERLAY="board/rockchip/common/security-system-overlay"
BR2_PACKAGE_RECOVERY=y # Required in encrypted system.
BR2_PACKAGE_RECOVERY_UPDATEENGINEBIN=y # Required in encrypted system.
BR2_PACKAGE_RECOVERY_BOOTCONTROL=y # Required in encrypted system,
and depends on two configurations above.

diff --git a/board/rockchip/common/security-ramdisk-overlay/init.in
b/board/rockchip/common/security-ramdisk-overlay/init.in
index 756d0b5375..c3267e28b1 100755
--- a/board/rockchip/common/security-ramdisk-overlay/init.in
+++ b/board/rockchip/common/security-ramdisk-overlay/init.in
@@ -16,7 +16,7 @@ BLOCK_TYPE_SUPPORTED="
 mmcblk
 flash"

-MSG_OUTPUT=/dev/null
+MSG_OUTPUT=/dev/kmsg
 DEBUG() {
 echo $1 > $MSG_OUTPUT
 }

af://n477

	Rockchip Linux Secure Boot Developer Guide
	Secure Boot Introduction
	Secure Boot Process
	Secure Boot Secure Storage
	Reference Resources

	Base Secure Boot
	Signature Tools
	UI tool (Windows)
	Command Line Tool

	Secure Information Flashing
	OTP
	eFuse

	Verify

	Kernel Verify
	AVB
	Notice
	Firmware Configuration
	Trust：
	U-boot：
	Parameter：

	AVB Key
	Sign the firmware
	Download firmware
	AVB Lock & Unlock

	FIT
	Keys generation
	Configuration
	U-Boot compilation and signature
	Boot Log

	DM-V
	Sign Firmware
	Version upgrade

	Partition Encryption
	rootfs Encryption
	Version upgrade

	Non System Firmware Encryption

	Keybox
	Security Demo
	Ramdisk startup process
	System configuration
	Detailed configuration
	Debugging method

