/*************************************************************************/ /*! @File @Title Device Memory Management internal utility functions @Copyright Copyright (c) Imagination Technologies Ltd. All Rights Reserved @Description Utility functions used internally by device memory management code. @License Dual MIT/GPLv2 The contents of this file are subject to the MIT license as set out below. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. Alternatively, the contents of this file may be used under the terms of the GNU General Public License Version 2 ("GPL") in which case the provisions of GPL are applicable instead of those above. If you wish to allow use of your version of this file only under the terms of GPL, and not to allow others to use your version of this file under the terms of the MIT license, indicate your decision by deleting the provisions above and replace them with the notice and other provisions required by GPL as set out in the file called "GPL-COPYING" included in this distribution. If you do not delete the provisions above, a recipient may use your version of this file under the terms of either the MIT license or GPL. This License is also included in this distribution in the file called "MIT-COPYING". EXCEPT AS OTHERWISE STATED IN A NEGOTIATED AGREEMENT: (A) THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT; AND (B) IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "allocmem.h" #include "img_types.h" #include "pvrsrv_error.h" #include "ra.h" #include "devicemem_utils.h" #include "client_mm_bridge.h" /* SVM heap management support functions for CPU (un)mapping */ #define DEVMEM_MAP_SVM_USER_MANAGED_RETRY 2 static inline PVRSRV_ERROR _DevmemCPUMapSVMKernelManaged(DEVMEM_HEAP *psHeap, DEVMEM_IMPORT *psImport, IMG_UINT64 *ui64MapAddress) { PVRSRV_ERROR eError; IMG_UINT64 ui64SvmMapAddr; IMG_UINT64 ui64SvmMapAddrEnd; IMG_UINT64 ui64SvmHeapAddrEnd; /* SVM heap management is always XXX_KERNEL_MANAGED unless we have triggered the fall back code-path in which case we should not be calling into this code-path */ PVR_ASSERT(psHeap->eHeapType == DEVMEM_HEAP_TYPE_KERNEL_MANAGED); /* By acquiring the CPU virtual address here, it essentially means we lock-down the virtual address for the duration of the life-cycle of the allocation until a de-allocation request comes in. Thus the allocation is guaranteed not to change its virtual address on the CPU during its life-time. NOTE: Import might have already been CPU Mapped before now, normally this is not a problem, see fall back */ eError = _DevmemImportStructCPUMap(psImport); if (eError != PVRSRV_OK) { PVR_DPF((PVR_DBG_ERROR, "%s: Unable to CPU map (lock-down) device memory for SVM use", __func__)); eError = PVRSRV_ERROR_DEVICEMEM_MAP_FAILED; goto failSVM; } /* Supplied kernel mmap virtual address is also device virtual address; calculate the heap & kernel supplied mmap virtual address limits */ ui64SvmMapAddr = (IMG_UINT64)(uintptr_t)psImport->sCPUImport.pvCPUVAddr; ui64SvmHeapAddrEnd = psHeap->sBaseAddress.uiAddr + psHeap->uiSize; ui64SvmMapAddrEnd = ui64SvmMapAddr + psImport->uiSize; PVR_ASSERT(ui64SvmMapAddr != (IMG_UINT64)0); /* SVM limit test may fail if processor has more virtual address bits than device */ if (ui64SvmMapAddr >= ui64SvmHeapAddrEnd || ui64SvmMapAddrEnd > ui64SvmHeapAddrEnd) { /* Unmap incompatible SVM virtual address, this may not release address if it was elsewhere CPU Mapped before call into this function */ _DevmemImportStructCPUUnmap(psImport); /* Flag incompatible SVM mapping */ eError = PVRSRV_ERROR_BAD_MAPPING; goto failSVM; } *ui64MapAddress = ui64SvmMapAddr; failSVM: /* either OK, MAP_FAILED or BAD_MAPPING */ return eError; } static inline void _DevmemCPUUnmapSVMKernelManaged(DEVMEM_HEAP *psHeap, DEVMEM_IMPORT *psImport) { PVR_UNREFERENCED_PARAMETER(psHeap); _DevmemImportStructCPUUnmap(psImport); } static inline PVRSRV_ERROR _DevmemCPUMapSVMUserManaged(DEVMEM_HEAP *psHeap, DEVMEM_IMPORT *psImport, IMG_UINT uiAlign, IMG_UINT64 *ui64MapAddress) { RA_LENGTH_T uiAllocatedSize; RA_BASE_T uiAllocatedAddr; IMG_UINT64 ui64SvmMapAddr; IMG_UINT uiRetry = 0; PVRSRV_ERROR eError; /* If SVM heap management has transitioned to XXX_USER_MANAGED, this is essentially a fall back approach that ensures we continue to satisfy SVM alloc. This approach is not without hazards in that we may specify a virtual address that is already in use by the user process */ PVR_ASSERT(psHeap->eHeapType == DEVMEM_HEAP_TYPE_USER_MANAGED); /* Normally, for SVM heap allocations, CPUMap _must_ be done before DevMap; ideally the initial CPUMap should be done by SVM functions though this is not a hard requirement as long as the prior elsewhere obtained CPUMap virtual address meets SVM address requirements. This is a fall-back code-pathway so we have to test that this assumption holds before we progress any further */ OSLockAcquire(psImport->sCPUImport.hLock); if (psImport->sCPUImport.ui32RefCount) { /* Already CPU Mapped SVM heap allocation, this prior elsewhere obtained virtual address is responsible for the above XXX_KERNEL_MANAGED failure. As we are not responsible for this, we cannot progress any further so need to fail */ PVR_DPF((PVR_DBG_ERROR, "%s: Previously obtained CPU map address not SVM compatible" , __func__)); /* Revert SVM heap to DEVMEM_HEAP_TYPE_KERNEL_MANAGED */ psHeap->eHeapType = DEVMEM_HEAP_TYPE_KERNEL_MANAGED; PVR_DPF((PVR_DBG_MESSAGE, "%s: Reverting SVM heap back to kernel managed", __func__)); OSLockRelease(psImport->sCPUImport.hLock); /* Do we need a more specific error code here */ eError = PVRSRV_ERROR_DEVICEMEM_ALREADY_MAPPED; goto failSVM; } OSLockRelease(psImport->sCPUImport.hLock); do { /* Next we proceed to instruct the kernel to use the RA_Alloc supplied virtual address to map-in this SVM import suballocation; there is no guarantee that this RA_Alloc virtual address may not collide with an already in-use VMA range in the process */ eError = RA_Alloc(psHeap->psQuantizedVMRA, psImport->uiSize, RA_NO_IMPORT_MULTIPLIER, 0, /* flags: this RA doesn't use flags*/ uiAlign, "SVM_Virtual_Alloc", &uiAllocatedAddr, &uiAllocatedSize, NULL /* don't care about per-import priv data */); if (eError != PVRSRV_OK) { PVR_DPF((PVR_DBG_ERROR, "%s: Cannot RA allocate SVM compatible address", __func__)); goto failSVM; } /* No reason for allocated virtual size to be different from the PMR's size */ psImport->sCPUImport.pvCPUVAddr = (void*)(uintptr_t)uiAllocatedAddr; PVR_ASSERT(uiAllocatedSize == psImport->uiSize); /* Map the import or allocation using the RA_Alloc virtual address; the kernel may fail the request if the supplied virtual address is already in-use in which case we re-try using another virtual address obtained from the RA_Alloc */ eError = _DevmemImportStructCPUMap(psImport); if (eError != PVRSRV_OK) { /* For now we simply discard failed RA_Alloc() obtained virtual address (i.e. plenty of virtual space), this prevents us from re-using these and furthermore essentially blacklists these addresses from future SVM consideration; We exit fall-back attempt if retry exceeds the fall-back retry limit */ if (uiRetry++ > DEVMEM_MAP_SVM_USER_MANAGED_RETRY) { PVR_DPF((PVR_DBG_ERROR, "%s: Cannot find SVM compatible address, bad mapping", __func__)); eError = PVRSRV_ERROR_BAD_MAPPING; goto failSVM; } } else { /* Found compatible SVM virtual address, set as device virtual address */ ui64SvmMapAddr = (IMG_UINT64)(uintptr_t)psImport->sCPUImport.pvCPUVAddr; } } while (eError != PVRSRV_OK); *ui64MapAddress = ui64SvmMapAddr; failSVM: return eError; } static inline void _DevmemCPUUnmapSVMUserManaged(DEVMEM_HEAP *psHeap, DEVMEM_IMPORT *psImport) { RA_BASE_T uiAllocatedAddr; /* We only free SVM compatible addresses, all addresses in the blacklist are essentially excluded from future RA_Alloc */ uiAllocatedAddr = psImport->sDeviceImport.sDevVAddr.uiAddr; RA_Free(psHeap->psQuantizedVMRA, uiAllocatedAddr); _DevmemImportStructCPUUnmap(psImport); } static inline PVRSRV_ERROR _DevmemImportStructDevMapSVM(DEVMEM_HEAP *psHeap, DEVMEM_IMPORT *psImport, IMG_UINT uiAlign, IMG_UINT64 *ui64MapAddress) { PVRSRV_ERROR eError; switch(psHeap->eHeapType) { case DEVMEM_HEAP_TYPE_KERNEL_MANAGED: eError = _DevmemCPUMapSVMKernelManaged(psHeap, psImport, ui64MapAddress); if (eError == PVRSRV_ERROR_BAD_MAPPING) { /* If the SVM map address is outside of SVM heap limits, change heap type to DEVMEM_HEAP_TYPE_USER_MANAGED */ psHeap->eHeapType = DEVMEM_HEAP_TYPE_USER_MANAGED; PVR_DPF((PVR_DBG_MESSAGE, "%s: Kernel managed SVM heap is now user managed", __func__)); /* Retry using user managed fall-back approach */ eError = _DevmemCPUMapSVMUserManaged(psHeap, psImport, uiAlign, ui64MapAddress); } break; case DEVMEM_HEAP_TYPE_USER_MANAGED: eError = _DevmemCPUMapSVMUserManaged(psHeap, psImport, uiAlign, ui64MapAddress); break; default: eError = PVRSRV_ERROR_INVALID_PARAMS; break; } return eError; } static inline void _DevmemImportStructDevUnmapSVM(DEVMEM_HEAP *psHeap, DEVMEM_IMPORT *psImport) { switch(psHeap->eHeapType) { case DEVMEM_HEAP_TYPE_KERNEL_MANAGED: _DevmemCPUUnmapSVMKernelManaged(psHeap, psImport); break; case DEVMEM_HEAP_TYPE_USER_MANAGED: _DevmemCPUUnmapSVMUserManaged(psHeap, psImport); break; default: break; } } /* The Devmem import structure is the structure we use to manage memory that is "imported" (which is page granular) from the server into our process, this includes allocations. This allows memory to be imported without requiring any CPU or device mapping. Memory can then be mapped into the device or CPU on demand, but neither is required. */ IMG_INTERNAL void _DevmemImportStructAcquire(DEVMEM_IMPORT *psImport) { IMG_INT iRefCount = OSAtomicIncrement(&psImport->hRefCount); PVR_UNREFERENCED_PARAMETER(iRefCount); PVR_ASSERT(iRefCount != 1); DEVMEM_REFCOUNT_PRINT("%s (%p) %d->%d", __FUNCTION__, psImport, iRefCount-1, iRefCount); } IMG_INTERNAL void _DevmemImportStructRelease(DEVMEM_IMPORT *psImport) { IMG_INT iRefCount = OSAtomicDecrement(&psImport->hRefCount); PVR_ASSERT(iRefCount >= 0); DEVMEM_REFCOUNT_PRINT("%s (%p) %d->%d", __FUNCTION__, psImport, iRefCount+1, iRefCount); if (iRefCount == 0) { BridgePMRUnrefPMR(psImport->hDevConnection, psImport->hPMR); OSLockDestroy(psImport->sCPUImport.hLock); OSLockDestroy(psImport->sDeviceImport.hLock); OSLockDestroy(psImport->hLock); #if defined(PDUMP) OSFreeMem(psImport->pszAnnotation); #endif OSFreeMem(psImport); } } IMG_INTERNAL void _DevmemImportDiscard(DEVMEM_IMPORT *psImport) { PVR_ASSERT(OSAtomicRead(&psImport->hRefCount) == 0); OSLockDestroy(psImport->sCPUImport.hLock); OSLockDestroy(psImport->sDeviceImport.hLock); OSLockDestroy(psImport->hLock); OSFreeMem(psImport); } IMG_INTERNAL PVRSRV_ERROR _DevmemMemDescAlloc(DEVMEM_MEMDESC **ppsMemDesc) { DEVMEM_MEMDESC *psMemDesc; PVRSRV_ERROR eError; psMemDesc = OSAllocMem(sizeof(DEVMEM_MEMDESC)); if (psMemDesc == NULL) { eError = PVRSRV_ERROR_OUT_OF_MEMORY; goto failAlloc; } /* Structure must be zero'd incase it needs to be freed before it is initialised! */ OSCachedMemSet(psMemDesc, 0, sizeof(DEVMEM_MEMDESC)); eError = OSLockCreate(&psMemDesc->hLock, LOCK_TYPE_PASSIVE); if (eError != PVRSRV_OK) { goto failMDLock; } eError = OSLockCreate(&psMemDesc->sDeviceMemDesc.hLock, LOCK_TYPE_PASSIVE); if (eError != PVRSRV_OK) { goto failDMDLock; } eError = OSLockCreate(&psMemDesc->sCPUMemDesc.hLock, LOCK_TYPE_PASSIVE); if (eError != PVRSRV_OK) { goto failCMDLock; } *ppsMemDesc = psMemDesc; return PVRSRV_OK; failCMDLock: OSLockDestroy(psMemDesc->sDeviceMemDesc.hLock); failDMDLock: OSLockDestroy(psMemDesc->hLock); failMDLock: OSFreeMem(psMemDesc); failAlloc: PVR_ASSERT(eError != PVRSRV_OK); return eError; } /* Init the MemDesc structure */ IMG_INTERNAL void _DevmemMemDescInit(DEVMEM_MEMDESC *psMemDesc, IMG_DEVMEM_OFFSET_T uiOffset, DEVMEM_IMPORT *psImport, IMG_DEVMEM_SIZE_T uiSize) { DEVMEM_REFCOUNT_PRINT("%s (%p) %d->%d", __FUNCTION__, psMemDesc, 0, 1); psMemDesc->psImport = psImport; psMemDesc->uiOffset = uiOffset; psMemDesc->sDeviceMemDesc.ui32RefCount = 0; psMemDesc->sCPUMemDesc.ui32RefCount = 0; psMemDesc->uiAllocSize = uiSize; psMemDesc->hPrivData = NULL; #if defined(SUPPORT_PAGE_FAULT_DEBUG) psMemDesc->sTraceData.ui32AllocationIndex = DEVICEMEM_HISTORY_ALLOC_INDEX_NONE; #endif OSAtomicWrite(&psMemDesc->hRefCount, 1); } IMG_INTERNAL void _DevmemMemDescAcquire(DEVMEM_MEMDESC *psMemDesc) { IMG_INT iRefCount = 0; iRefCount = OSAtomicIncrement(&psMemDesc->hRefCount); DEVMEM_REFCOUNT_PRINT("%s (%p) %d->%d", __FUNCTION__, psMemDesc, iRefCount-1, iRefCount); } IMG_INTERNAL void _DevmemMemDescRelease(DEVMEM_MEMDESC *psMemDesc) { IMG_INT iRefCount; PVR_ASSERT(psMemDesc != NULL); iRefCount = OSAtomicDecrement(&psMemDesc->hRefCount); PVR_ASSERT(iRefCount >= 0); DEVMEM_REFCOUNT_PRINT("%s (%p) %d->%d", __FUNCTION__, psMemDesc, iRefCount+1, iRefCount); if (iRefCount == 0) { if (psMemDesc->psImport->uiProperties & DEVMEM_PROPERTIES_SUBALLOCATABLE) { /* As soon as the first sub-allocation on the psImport is freed * we might get dirty memory when reusing it. * We have to delete the ZEROED & CLEAN flag */ psMemDesc->psImport->uiProperties &= ~DEVMEM_PROPERTIES_IMPORT_IS_ZEROED; psMemDesc->psImport->uiProperties &= ~DEVMEM_PROPERTIES_IMPORT_IS_CLEAN; RA_Free(psMemDesc->psImport->sDeviceImport.psHeap->psSubAllocRA, psMemDesc->psImport->sDeviceImport.sDevVAddr.uiAddr + psMemDesc->uiOffset); } else { _DevmemImportStructRelease(psMemDesc->psImport); } OSLockDestroy(psMemDesc->sCPUMemDesc.hLock); OSLockDestroy(psMemDesc->sDeviceMemDesc.hLock); OSLockDestroy(psMemDesc->hLock); OSFreeMem(psMemDesc); } } IMG_INTERNAL void _DevmemMemDescDiscard(DEVMEM_MEMDESC *psMemDesc) { PVR_ASSERT(OSAtomicRead(&psMemDesc->hRefCount) == 0); OSLockDestroy(psMemDesc->sCPUMemDesc.hLock); OSLockDestroy(psMemDesc->sDeviceMemDesc.hLock); OSLockDestroy(psMemDesc->hLock); OSFreeMem(psMemDesc); } IMG_INTERNAL PVRSRV_ERROR _DevmemValidateParams(IMG_DEVMEM_SIZE_T uiSize, IMG_DEVMEM_ALIGN_T uiAlign, DEVMEM_FLAGS_T *puiFlags) { if ((*puiFlags & PVRSRV_MEMALLOCFLAG_ZERO_ON_ALLOC) && (*puiFlags & PVRSRV_MEMALLOCFLAG_POISON_ON_ALLOC)) { PVR_DPF((PVR_DBG_ERROR, "%s: Zero on Alloc and Poison on Alloc are mutually exclusive.", __FUNCTION__)); return PVRSRV_ERROR_INVALID_PARAMS; } if (uiAlign & (uiAlign-1)) { PVR_DPF((PVR_DBG_ERROR, "%s: The requested alignment is not a power of two.", __FUNCTION__)); return PVRSRV_ERROR_INVALID_PARAMS; } if (uiSize == 0) { PVR_DPF((PVR_DBG_ERROR, "%s: Please request a non-zero size value.", __FUNCTION__)); return PVRSRV_ERROR_INVALID_PARAMS; } /* If zero flag is set we have to have write access to the page. */ if (PVRSRV_CHECK_ZERO_ON_ALLOC(*puiFlags) || PVRSRV_CHECK_CPU_WRITEABLE(*puiFlags)) { (*puiFlags) |= PVRSRV_MEMALLOCFLAG_CPU_WRITEABLE | PVRSRV_MEMALLOCFLAG_CPU_READABLE; } return PVRSRV_OK; } /* Allocate and init an import structure */ IMG_INTERNAL PVRSRV_ERROR _DevmemImportStructAlloc(SHARED_DEV_CONNECTION hDevConnection, DEVMEM_IMPORT **ppsImport) { DEVMEM_IMPORT *psImport; PVRSRV_ERROR eError; psImport = OSAllocMem(sizeof *psImport); if (psImport == NULL) { return PVRSRV_ERROR_OUT_OF_MEMORY; } #if defined (PDUMP) /* Make sure this points nowhere as long as we don't need it */ psImport->pszAnnotation = NULL; #endif /* Setup some known bad values for things we don't have yet */ psImport->sDeviceImport.hReservation = LACK_OF_RESERVATION_POISON; psImport->sDeviceImport.hMapping = LACK_OF_MAPPING_POISON; psImport->sDeviceImport.psHeap = NULL; psImport->sDeviceImport.bMapped = IMG_FALSE; eError = OSLockCreate(&psImport->sDeviceImport.hLock, LOCK_TYPE_PASSIVE); if (eError != PVRSRV_OK) { goto failDIOSLockCreate; } psImport->sCPUImport.hOSMMapData = NULL; psImport->sCPUImport.pvCPUVAddr = NULL; eError = OSLockCreate(&psImport->sCPUImport.hLock, LOCK_TYPE_PASSIVE); if (eError != PVRSRV_OK) { goto failCIOSLockCreate; } /* Set up common elements */ psImport->hDevConnection = hDevConnection; /* Setup properties */ psImport->uiProperties = 0; /* Setup refcounts */ psImport->sDeviceImport.ui32RefCount = 0; psImport->sCPUImport.ui32RefCount = 0; OSAtomicWrite(&psImport->hRefCount, 0); /* Create the lock */ eError = OSLockCreate(&psImport->hLock, LOCK_TYPE_PASSIVE); if (eError != PVRSRV_OK) { goto failILockAlloc; } *ppsImport = psImport; return PVRSRV_OK; failILockAlloc: OSLockDestroy(psImport->sCPUImport.hLock); failCIOSLockCreate: OSLockDestroy(psImport->sDeviceImport.hLock); failDIOSLockCreate: OSFreeMem(psImport); PVR_ASSERT(eError != PVRSRV_OK); return eError; } /* Initialise the import structure */ IMG_INTERNAL void _DevmemImportStructInit(DEVMEM_IMPORT *psImport, IMG_DEVMEM_SIZE_T uiSize, IMG_DEVMEM_ALIGN_T uiAlign, DEVMEM_FLAGS_T uiFlags, IMG_HANDLE hPMR, DEVMEM_PROPERTIES_T uiProperties) { DEVMEM_REFCOUNT_PRINT("%s (%p) %d->%d", __FUNCTION__, psImport, 0, 1); psImport->uiSize = uiSize; psImport->uiAlign = uiAlign; psImport->uiFlags = uiFlags; psImport->hPMR = hPMR; psImport->uiProperties = uiProperties; OSAtomicWrite(&psImport->hRefCount, 1); } /* Map an import to the device */ IMG_INTERNAL PVRSRV_ERROR _DevmemImportStructDevMap(DEVMEM_HEAP *psHeap, IMG_BOOL bMap, DEVMEM_IMPORT *psImport, IMG_UINT64 ui64OptionalMapAddress) { DEVMEM_DEVICE_IMPORT *psDeviceImport; RA_BASE_T uiAllocatedAddr; RA_LENGTH_T uiAllocatedSize; IMG_DEV_VIRTADDR sBase; IMG_HANDLE hReservation; PVRSRV_ERROR eError; IMG_UINT uiAlign; /* Round the provided import alignment to the configured heap alignment */ uiAlign = 1ULL << psHeap->uiLog2ImportAlignment; uiAlign = (psImport->uiAlign + uiAlign - 1) & ~(uiAlign-1); psDeviceImport = &psImport->sDeviceImport; OSLockAcquire(psDeviceImport->hLock); DEVMEM_REFCOUNT_PRINT("%s (%p) %d->%d", __FUNCTION__, psImport, psDeviceImport->ui32RefCount, psDeviceImport->ui32RefCount+1); if (psDeviceImport->ui32RefCount++ == 0) { _DevmemImportStructAcquire(psImport); OSAtomicIncrement(&psHeap->hImportCount); if (PVRSRV_CHECK_SVM_ALLOC(psImport->uiFlags)) { /* SVM (shared virtual memory) imports or allocations always need to acquire CPU virtual address first as address is used to map the allocation into the device virtual address space; i.e. the virtual address of the allocation for both the CPU/GPU must be identical. */ eError = _DevmemImportStructDevMapSVM(psHeap, psImport, uiAlign, &ui64OptionalMapAddress); if (eError != PVRSRV_OK) { goto failVMRAAlloc; } } if (ui64OptionalMapAddress == 0) { if (psHeap->eHeapType == DEVMEM_HEAP_TYPE_USER_MANAGED || psHeap->eHeapType == DEVMEM_HEAP_TYPE_KERNEL_MANAGED) { PVR_DPF((PVR_DBG_ERROR, psHeap->eHeapType == DEVMEM_HEAP_TYPE_USER_MANAGED ? "%s: Heap is user managed, please use PVRSRVMapToDeviceAddress().": "%s: Heap is kernel managed, use right allocation flags (e.g. SVM).", __func__)); eError = PVRSRV_ERROR_INVALID_PARAMS; goto failVMRAAlloc; } psHeap->eHeapType = DEVMEM_HEAP_TYPE_RA_MANAGED; /* Allocate space in the VM */ eError = RA_Alloc(psHeap->psQuantizedVMRA, psImport->uiSize, RA_NO_IMPORT_MULTIPLIER, 0, /* flags: this RA doesn't use flags*/ uiAlign, "Virtual_Alloc", &uiAllocatedAddr, &uiAllocatedSize, NULL /* don't care about per-import priv data */ ); if (PVRSRV_OK != eError) { eError = PVRSRV_ERROR_DEVICEMEM_OUT_OF_DEVICE_VM; goto failVMRAAlloc; } /* No reason for the allocated virtual size to be different from the PMR's size */ PVR_ASSERT(uiAllocatedSize == psImport->uiSize); sBase.uiAddr = uiAllocatedAddr; } else { IMG_UINT64 uiHeapAddrEnd; switch (psHeap->eHeapType) { case DEVMEM_HEAP_TYPE_UNKNOWN: /* DEVMEM_HEAP_TYPE_USER_MANAGED can apply to _any_ heap and can only be determined here. This heap type transitions from DEVMEM_HEAP_TYPE_UNKNOWN to DEVMEM_HEAP_TYPE_USER_MANAGED on 1st alloc */ psHeap->eHeapType = DEVMEM_HEAP_TYPE_USER_MANAGED; break; case DEVMEM_HEAP_TYPE_USER_MANAGED: case DEVMEM_HEAP_TYPE_KERNEL_MANAGED: if (! psHeap->uiSize) { PVR_DPF((PVR_DBG_ERROR, psHeap->eHeapType == DEVMEM_HEAP_TYPE_USER_MANAGED ? "%s: Heap DEVMEM_HEAP_TYPE_USER_MANAGED is disabled.": "%s: Heap DEVMEM_HEAP_TYPE_KERNEL_MANAGED is disabled." , __func__)); eError = PVRSRV_ERROR_INVALID_HEAP; goto failVMRAAlloc; } break; case DEVMEM_HEAP_TYPE_RA_MANAGED: PVR_DPF((PVR_DBG_ERROR, "%s: This heap is managed by an RA, please use PVRSRVMapToDevice()" " and don't use allocation flags that assume differently (e.g. SVM)." , __func__)); eError = PVRSRV_ERROR_INVALID_PARAMS; goto failVMRAAlloc; default: break; } /* Ensure supplied ui64OptionalMapAddress is within heap range */ uiHeapAddrEnd = psHeap->sBaseAddress.uiAddr + psHeap->uiSize; if (ui64OptionalMapAddress >= uiHeapAddrEnd || ui64OptionalMapAddress + psImport->uiSize > uiHeapAddrEnd) { PVR_DPF((PVR_DBG_ERROR, "%s: ui64OptionalMapAddress %p is outside of heap limits <%p:%p>." , __func__ , (void*)(uintptr_t)ui64OptionalMapAddress , (void*)(uintptr_t)psHeap->sBaseAddress.uiAddr , (void*)(uintptr_t)uiHeapAddrEnd)); eError = PVRSRV_ERROR_INVALID_PARAMS; goto failVMRAAlloc; } if (ui64OptionalMapAddress & ((1 << psHeap->uiLog2Quantum) - 1)) { PVR_DPF((PVR_DBG_ERROR, "%s: Invalid address to map to. Please prove an address aligned to" "a page multiple of the heap." , __func__)); eError = PVRSRV_ERROR_INVALID_PARAMS; goto failVMRAAlloc; } uiAllocatedAddr = ui64OptionalMapAddress; if (psImport->uiSize & ((1 << psHeap->uiLog2Quantum) - 1)) { PVR_DPF((PVR_DBG_ERROR, "%s: Invalid heap to map to. " "Please choose a heap that can handle smaller page sizes." , __func__)); eError = PVRSRV_ERROR_INVALID_PARAMS; goto failVMRAAlloc; } uiAllocatedSize = psImport->uiSize; sBase.uiAddr = uiAllocatedAddr; } /* Setup page tables for the allocated VM space */ eError = BridgeDevmemIntReserveRange(psHeap->psCtx->hDevConnection, psHeap->hDevMemServerHeap, sBase, uiAllocatedSize, &hReservation); if (eError != PVRSRV_OK) { goto failReserve; } if (bMap) { DEVMEM_FLAGS_T uiMapFlags; uiMapFlags = psImport->uiFlags & PVRSRV_MEMALLOCFLAGS_PERMAPPINGFLAGSMASK; /* Actually map the PMR to allocated VM space */ eError = BridgeDevmemIntMapPMR(psHeap->psCtx->hDevConnection, psHeap->hDevMemServerHeap, hReservation, psImport->hPMR, uiMapFlags, &psDeviceImport->hMapping); if (eError != PVRSRV_OK) { goto failMap; } psDeviceImport->bMapped = IMG_TRUE; } /* Setup device mapping specific parts of the mapping info */ psDeviceImport->hReservation = hReservation; psDeviceImport->sDevVAddr.uiAddr = uiAllocatedAddr; psDeviceImport->psHeap = psHeap; } else { /* Check that we've been asked to map it into the same heap 2nd time around */ if (psHeap != psDeviceImport->psHeap) { eError = PVRSRV_ERROR_INVALID_HEAP; goto failParams; } } OSLockRelease(psDeviceImport->hLock); return PVRSRV_OK; failMap: BridgeDevmemIntUnreserveRange(psHeap->psCtx->hDevConnection, hReservation); failReserve: if (ui64OptionalMapAddress == 0) { RA_Free(psHeap->psQuantizedVMRA, uiAllocatedAddr); } failVMRAAlloc: _DevmemImportStructRelease(psImport); OSAtomicDecrement(&psHeap->hImportCount); failParams: psDeviceImport->ui32RefCount--; OSLockRelease(psDeviceImport->hLock); PVR_ASSERT(eError != PVRSRV_OK); return eError; } /* Unmap an import from the Device */ IMG_INTERNAL void _DevmemImportStructDevUnmap(DEVMEM_IMPORT *psImport) { PVRSRV_ERROR eError; DEVMEM_DEVICE_IMPORT *psDeviceImport; psDeviceImport = &psImport->sDeviceImport; OSLockAcquire(psDeviceImport->hLock); DEVMEM_REFCOUNT_PRINT("%s (%p) %d->%d", __FUNCTION__, psImport, psDeviceImport->ui32RefCount, psDeviceImport->ui32RefCount-1); if (--psDeviceImport->ui32RefCount == 0) { DEVMEM_HEAP *psHeap = psDeviceImport->psHeap; if (psDeviceImport->bMapped) { eError = BridgeDevmemIntUnmapPMR(psImport->hDevConnection, psDeviceImport->hMapping); PVR_ASSERT(eError == PVRSRV_OK); } eError = BridgeDevmemIntUnreserveRange(psImport->hDevConnection, psDeviceImport->hReservation); PVR_ASSERT(eError == PVRSRV_OK); psDeviceImport->bMapped = IMG_FALSE; psDeviceImport->hMapping = LACK_OF_MAPPING_POISON; psDeviceImport->hReservation = LACK_OF_RESERVATION_POISON; if (psHeap->eHeapType == DEVMEM_HEAP_TYPE_RA_MANAGED) { RA_Free(psHeap->psQuantizedVMRA, psDeviceImport->sDevVAddr.uiAddr); } if (PVRSRV_CHECK_SVM_ALLOC(psImport->uiFlags)) { _DevmemImportStructDevUnmapSVM(psHeap, psImport); } OSLockRelease(psDeviceImport->hLock); _DevmemImportStructRelease(psImport); OSAtomicDecrement(&psHeap->hImportCount); } else { OSLockRelease(psDeviceImport->hLock); } } /* Map an import into the CPU */ IMG_INTERNAL PVRSRV_ERROR _DevmemImportStructCPUMap(DEVMEM_IMPORT *psImport) { PVRSRV_ERROR eError; DEVMEM_CPU_IMPORT *psCPUImport; size_t uiMappingLength; psCPUImport = &psImport->sCPUImport; OSLockAcquire(psCPUImport->hLock); DEVMEM_REFCOUNT_PRINT("%s (%p) %d->%d", __FUNCTION__, psImport, psCPUImport->ui32RefCount, psCPUImport->ui32RefCount+1); if (psCPUImport->ui32RefCount++ == 0) { _DevmemImportStructAcquire(psImport); eError = OSMMapPMR(psImport->hDevConnection, psImport->hPMR, psImport->uiSize, psImport->uiFlags, &psCPUImport->hOSMMapData, &psCPUImport->pvCPUVAddr, &uiMappingLength); if (eError != PVRSRV_OK) { goto failMap; } /* There is no reason the mapping length is different to the size */ PVR_ASSERT(uiMappingLength == psImport->uiSize); } OSLockRelease(psCPUImport->hLock); return PVRSRV_OK; failMap: psCPUImport->ui32RefCount--; _DevmemImportStructRelease(psImport); OSLockRelease(psCPUImport->hLock); PVR_ASSERT(eError != PVRSRV_OK); return eError; } /* Unmap an import from the CPU */ IMG_INTERNAL void _DevmemImportStructCPUUnmap(DEVMEM_IMPORT *psImport) { DEVMEM_CPU_IMPORT *psCPUImport; psCPUImport = &psImport->sCPUImport; OSLockAcquire(psCPUImport->hLock); DEVMEM_REFCOUNT_PRINT("%s (%p) %d->%d", __FUNCTION__, psImport, psCPUImport->ui32RefCount, psCPUImport->ui32RefCount-1); if (--psCPUImport->ui32RefCount == 0) { /* FIXME: psImport->uiSize is a 64-bit quantity where as the 5th * argument to OSUnmapPMR is a 32-bit quantity on 32-bit systems * hence a compiler warning of implicit cast and loss of data. * Added explicit cast and assert to remove warning. */ #if (defined(_WIN32) && !defined(_WIN64)) || (defined(LINUX) && defined(__i386__)) PVR_ASSERT(psImport->uiSizehDevConnection, psImport->hPMR, psCPUImport->hOSMMapData, psCPUImport->pvCPUVAddr, psImport->uiSize); OSLockRelease(psCPUImport->hLock); _DevmemImportStructRelease(psImport); } else { OSLockRelease(psCPUImport->hLock); } }