/*************************************************************************/ /*! @File @Title Host memory management implementation for Linux @Copyright Copyright (c) Imagination Technologies Ltd. All Rights Reserved @License Dual MIT/GPLv2 The contents of this file are subject to the MIT license as set out below. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. Alternatively, the contents of this file may be used under the terms of the GNU General Public License Version 2 ("GPL") in which case the provisions of GPL are applicable instead of those above. If you wish to allow use of your version of this file only under the terms of GPL, and not to allow others to use your version of this file under the terms of the MIT license, indicate your decision by deleting the provisions above and replace them with the notice and other provisions required by GPL as set out in the file called "GPL-COPYING" included in this distribution. If you do not delete the provisions above, a recipient may use your version of this file under the terms of either the MIT license or GPL. This License is also included in this distribution in the file called "MIT-COPYING". EXCEPT AS OTHERWISE STATED IN A NEGOTIATED AGREEMENT: (A) THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT; AND (B) IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include #include #include #include #include "img_defs.h" #include "allocmem.h" #include "pvr_debug.h" #if defined(PVRSRV_ENABLE_PROCESS_STATS) #include "process_stats.h" #endif #include "osfunc.h" #if defined(PVR_DISABLE_KMALLOC_MEMSTATS) #define ALLOCMEM_MEMSTATS_PADDING 0 #else #define ALLOCMEM_MEMSTATS_PADDING sizeof(IMG_UINT32) #endif /* Ensure poison value is not divisible by 4. * Used to poison memory to trip up use after free in kernel-side code */ #define OS_MEM_POISON_VALUE (0x6b) static inline void _pvr_vfree(const void* pvAddr) { #if defined(DEBUG) /* Size harder to come by for vmalloc and since vmalloc allocates * a whole number of pages, poison the minimum size known to have * been allocated. */ OSCachedMemSet((void*)pvAddr, OS_MEM_POISON_VALUE, PVR_LINUX_KMALLOC_ALLOCATION_THRESHOLD); #endif vfree(pvAddr); } static inline void _pvr_kfree(const void* pvAddr) { #if defined(DEBUG) /* Poison whole memory block */ OSCachedMemSet((void*)pvAddr, OS_MEM_POISON_VALUE, ksize(pvAddr)); #endif kfree(pvAddr); } #if !defined(PVRSRV_ENABLE_PROCESS_STATS) IMG_INTERNAL void *OSAllocMem(IMG_UINT32 ui32Size) { void *pvRet = NULL; if (ui32Size > PVR_LINUX_KMALLOC_ALLOCATION_THRESHOLD) { pvRet = vmalloc(ui32Size); } if (pvRet == NULL) { pvRet = kmalloc(ui32Size, GFP_KERNEL); } return pvRet; } IMG_INTERNAL void *OSAllocZMem(IMG_UINT32 ui32Size) { void *pvRet = NULL; if (ui32Size > PVR_LINUX_KMALLOC_ALLOCATION_THRESHOLD) { pvRet = vzalloc(ui32Size); } if (pvRet == NULL) { pvRet = kzalloc(ui32Size, GFP_KERNEL); } return pvRet; } /* * The parentheses around OSFreeMem prevent the macro in allocmem.h from * applying, as it would break the function's definition. */ IMG_INTERNAL void (OSFreeMem)(void *pvMem) { if (pvMem != NULL) { if (!is_vmalloc_addr(pvMem)) { _pvr_kfree(pvMem); } else { _pvr_vfree(pvMem); } } } #else #if defined(PVRSRV_DEBUG_LINUX_MEMORY_STATS) && defined(DEBUG) && defined(PVRSRV_ENABLE_MEMORY_STATS) IMG_INTERNAL void *_OSAllocMem(IMG_UINT32 ui32Size, void *pvAllocFromFile, IMG_UINT32 ui32AllocFromLine) { void *pvRet = NULL; if (ui32Size > PVR_LINUX_KMALLOC_ALLOCATION_THRESHOLD) { pvRet = vmalloc(ui32Size); } if (pvRet == NULL) { pvRet = kmalloc(ui32Size, GFP_KERNEL); } if (pvRet != NULL) { if (!is_vmalloc_addr(pvRet)) { IMG_CPU_PHYADDR sCpuPAddr; sCpuPAddr.uiAddr = 0; _PVRSRVStatsAddMemAllocRecord(PVRSRV_MEM_ALLOC_TYPE_KMALLOC, pvRet, sCpuPAddr, ksize(pvRet), NULL, pvAllocFromFile, ui32AllocFromLine); } else { IMG_CPU_PHYADDR sCpuPAddr; sCpuPAddr.uiAddr = 0; _PVRSRVStatsAddMemAllocRecord(PVRSRV_MEM_ALLOC_TYPE_VMALLOC, pvRet, sCpuPAddr, ((ui32Size + PAGE_SIZE -1) & ~(PAGE_SIZE-1)), NULL, pvAllocFromFile, ui32AllocFromLine); } } return pvRet; } IMG_INTERNAL void *_OSAllocZMem(IMG_UINT32 ui32Size, void *pvAllocFromFile, IMG_UINT32 ui32AllocFromLine) { void *pvRet = NULL; if (ui32Size > PVR_LINUX_KMALLOC_ALLOCATION_THRESHOLD) { pvRet = vzalloc(ui32Size); } if (pvRet == NULL) { pvRet = kzalloc(ui32Size, GFP_KERNEL); } if (pvRet != NULL) { if (!is_vmalloc_addr(pvRet)) { IMG_CPU_PHYADDR sCpuPAddr; sCpuPAddr.uiAddr = 0; _PVRSRVStatsAddMemAllocRecord(PVRSRV_MEM_ALLOC_TYPE_KMALLOC, pvRet, sCpuPAddr, ksize(pvRet), NULL, pvAllocFromFile, ui32AllocFromLine); } else { IMG_CPU_PHYADDR sCpuPAddr; sCpuPAddr.uiAddr = 0; _PVRSRVStatsAddMemAllocRecord(PVRSRV_MEM_ALLOC_TYPE_VMALLOC, pvRet, sCpuPAddr, ((ui32Size + PAGE_SIZE -1) & ~(PAGE_SIZE-1)), NULL, pvAllocFromFile, ui32AllocFromLine); } } return pvRet; } #else IMG_INTERNAL void *OSAllocMem(IMG_UINT32 ui32Size) { void *pvRet = NULL; if ((ui32Size + ALLOCMEM_MEMSTATS_PADDING) > PVR_LINUX_KMALLOC_ALLOCATION_THRESHOLD) { pvRet = vmalloc(ui32Size); } if (pvRet == NULL) { /* Allocate an additional 4 bytes to store the PID of the allocating process */ pvRet = kmalloc(ui32Size + ALLOCMEM_MEMSTATS_PADDING, GFP_KERNEL); } if (pvRet != NULL) { if (!is_vmalloc_addr(pvRet)) { #if !defined(PVR_DISABLE_KMALLOC_MEMSTATS) #if !defined(PVRSRV_ENABLE_MEMORY_STATS) { /* Store the PID in the final additional 4 bytes allocated */ IMG_UINT32 *puiTemp = (IMG_UINT32*) (((IMG_BYTE*)pvRet) + (ksize(pvRet) - ALLOCMEM_MEMSTATS_PADDING)); *puiTemp = OSGetCurrentProcessID(); } PVRSRVStatsIncrMemAllocStat(PVRSRV_MEM_ALLOC_TYPE_KMALLOC, ksize(pvRet)); #else IMG_CPU_PHYADDR sCpuPAddr; sCpuPAddr.uiAddr = 0; PVRSRVStatsAddMemAllocRecord(PVRSRV_MEM_ALLOC_TYPE_KMALLOC, pvRet, sCpuPAddr, ksize(pvRet), NULL); #endif #endif } else { #if !defined(PVR_DISABLE_KMALLOC_MEMSTATS) #if !defined(PVRSRV_ENABLE_MEMORY_STATS) PVRSRVStatsIncrMemAllocStatAndTrack(PVRSRV_MEM_ALLOC_TYPE_VMALLOC, ((ui32Size + PAGE_SIZE -1) & ~(PAGE_SIZE-1)), (IMG_UINT64)(uintptr_t) pvRet); #else IMG_CPU_PHYADDR sCpuPAddr; sCpuPAddr.uiAddr = 0; PVRSRVStatsAddMemAllocRecord(PVRSRV_MEM_ALLOC_TYPE_VMALLOC, pvRet, sCpuPAddr, ((ui32Size + PAGE_SIZE -1) & ~(PAGE_SIZE-1)), NULL); #endif #endif } } return pvRet; } IMG_INTERNAL void *OSAllocZMem(IMG_UINT32 ui32Size) { void *pvRet = NULL; if ((ui32Size + ALLOCMEM_MEMSTATS_PADDING) > PVR_LINUX_KMALLOC_ALLOCATION_THRESHOLD) { pvRet = vzalloc(ui32Size); } if (pvRet == NULL) { /* Allocate an additional 4 bytes to store the PID of the allocating process */ pvRet = kzalloc(ui32Size + ALLOCMEM_MEMSTATS_PADDING, GFP_KERNEL); } if (pvRet != NULL) { if (!is_vmalloc_addr(pvRet)) { #if !defined(PVR_DISABLE_KMALLOC_MEMSTATS) #if !defined(PVRSRV_ENABLE_MEMORY_STATS) { /* Store the PID in the final additional 4 bytes allocated */ IMG_UINT32 *puiTemp = (IMG_UINT32*) (((IMG_BYTE*)pvRet) + (ksize(pvRet) - ALLOCMEM_MEMSTATS_PADDING)); *puiTemp = OSGetCurrentProcessID(); } PVRSRVStatsIncrMemAllocStat(PVRSRV_MEM_ALLOC_TYPE_KMALLOC, ksize(pvRet)); #else IMG_CPU_PHYADDR sCpuPAddr; sCpuPAddr.uiAddr = 0; PVRSRVStatsAddMemAllocRecord(PVRSRV_MEM_ALLOC_TYPE_KMALLOC, pvRet, sCpuPAddr, ksize(pvRet), NULL); #endif #endif } else { #if !defined(PVR_DISABLE_KMALLOC_MEMSTATS) #if !defined(PVRSRV_ENABLE_MEMORY_STATS) PVRSRVStatsIncrMemAllocStatAndTrack(PVRSRV_MEM_ALLOC_TYPE_VMALLOC, ((ui32Size + PAGE_SIZE -1) & ~(PAGE_SIZE-1)), (IMG_UINT64)(uintptr_t) pvRet); #else IMG_CPU_PHYADDR sCpuPAddr; sCpuPAddr.uiAddr = 0; PVRSRVStatsAddMemAllocRecord(PVRSRV_MEM_ALLOC_TYPE_VMALLOC, pvRet, sCpuPAddr, ((ui32Size + PAGE_SIZE -1) & ~(PAGE_SIZE-1)), NULL); #endif #endif } } return pvRet; } #endif /* * The parentheses around OSFreeMem prevent the macro in allocmem.h from * applying, as it would break the function's definition. */ IMG_INTERNAL void (OSFreeMem)(void *pvMem) { if (pvMem != NULL) { if (!is_vmalloc_addr(pvMem)) { #if !defined(PVR_DISABLE_KMALLOC_MEMSTATS) #if !defined(PVRSRV_ENABLE_MEMORY_STATS) PVRSRVStatsDecrMemAllocStat(PVRSRV_MEM_ALLOC_TYPE_KMALLOC, ksize(pvMem)); #else PVRSRVStatsRemoveMemAllocRecord(PVRSRV_MEM_ALLOC_TYPE_KMALLOC, (IMG_UINT64)(uintptr_t) pvMem); #endif #endif _pvr_kfree(pvMem); } else { #if !defined(PVR_DISABLE_KMALLOC_MEMSTATS) #if !defined(PVRSRV_ENABLE_MEMORY_STATS) PVRSRVStatsDecrMemAllocStatAndUntrack(PVRSRV_MEM_ALLOC_TYPE_VMALLOC, (IMG_UINT64)(uintptr_t) pvMem); #else PVRSRVStatsRemoveMemAllocRecord(PVRSRV_MEM_ALLOC_TYPE_VMALLOC, (IMG_UINT64)(uintptr_t) pvMem); #endif #endif _pvr_vfree(pvMem); } } } #endif IMG_INTERNAL void *OSAllocMemNoStats(IMG_UINT32 ui32Size) { void *pvRet = NULL; if (ui32Size > PVR_LINUX_KMALLOC_ALLOCATION_THRESHOLD) { pvRet = vmalloc(ui32Size); } if (pvRet == NULL) { pvRet = kmalloc(ui32Size, GFP_KERNEL); } return pvRet; } IMG_INTERNAL void *OSAllocZMemNoStats(IMG_UINT32 ui32Size) { void *pvRet = NULL; if (ui32Size > PVR_LINUX_KMALLOC_ALLOCATION_THRESHOLD) { pvRet = vzalloc(ui32Size); } if (pvRet == NULL) { pvRet = kzalloc(ui32Size, GFP_KERNEL); } return pvRet; } /* * The parentheses around OSFreeMemNoStats prevent the macro in allocmem.h from * applying, as it would break the function's definition. */ IMG_INTERNAL void (OSFreeMemNoStats)(void *pvMem) { if (pvMem != NULL) { if ( !is_vmalloc_addr(pvMem) ) { _pvr_kfree(pvMem); } else { _pvr_vfree(pvMem); } } }