Rockchip Linux Wi-Fi/BT Developer Guide

ID: RK-KF-YF-381

Release Version: V6.1.1

Release Date: 2022-01-11

Security Level: oTop-Secret nOSecret olnternal mPublic
DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES
NOT PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH
RESPECT TO THE ACCURACY, RELIABILITY, COMPLETENESS, MERCHANTABILITY, FITNESS FOR
ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION
AND CONTENT IN THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS
DOCUMENT MAY BE UPDATED OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE
UPGRADES OF THE PRODUCT OR ANY OTHER REASONS.

Trademark Statement

"Rockchip", " & 0", "t shall be Rockchip’s registered trademarks and owned by Rockchip. All the other

trademarks or registered trademarks mentioned in this document shall be owned by their respective owners.
All rights reserved. ©2022. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in

any form in whole or in part without the written approval of Rockchip.
Rockchip Electronics Co., Ltd.
No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590
Customer service Fax: +86-591-83951833

Customer service e-Mail: fac@rock-chips.com

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Preface
Overview
This document is going to introduce Wi-Fi/BT development, porting and debugging on Rockchip Linux platform.

Product Version

Chipset Kernel Version
RK3566/RK3568/RK3399/RK3326/RK3288/RK3308/RV1109/RV1126/PX30 Linux 4.4/4.19
RK3588 Linux 5.10

Intended Audience

This document (this guide) is mainly intended for:
Technical support engineers

Software development engineers

Hardware development engineers

Revision History

Version Author Date Change Description

Added new module porting instructions,

V6.0.1 <y 2020- building instructions, RF test examples,
o 08-25 P2P bridge function, more detailed troubleshooting
instructions, etc.
2021-
V6.0.2 XY BiiS Add more detailed configuration and debug introduction;
2021- . . .
V6.0.3 XY 1 Add USB Wi-Fi/BT introduction.
L s 2021- Add Debian/Kylin and other system adaptation introduction;
o 12-27 add BT 5.0 function introduction, added CY chip low power mode.
Added Wi-Fi SDIO/USB/PCIE interface identification process and
2022- SDIO timing brief introduction;
Ve.1.1 XY L .
01-11 Added network performance troubleshooting introduction;

Added Buildroot system open source package update method;

Contents

Rockehip Linux Wi-Fi/BT Developer Guide
1. Quick Start Guide
2. Wi-Fi/BT Configuration

2.1
2.2

23
24

2.5

Buildroot SDK Compilation and Configuration Guide
DTS Configuration

2.2.1 Wi-Fi Configuration

2.2.2 Bluetooth Configuration

2.2.3 10 Power Domain Configuration
2.2.4 The 32.768K Configuration

2.2.5 PCIE Wi-Fi Configuration

SDMMC Interface Connected to Wi-Fi Chip
Kernel Configuration

2.4.1 Wi-Fi Configuration

2.4.2 Bluetooth Configuration

Buildroot Configuration

3. Wi-Fi/BT Files and Compilation Update Introduction

3.1
32
3.3
34
35

Compilation Files

Compilation Rules

Required Files and Their Paths during Wi-Fi/BT Running
The Rules for Auto Loading Wi-Fi Driver KO when Startup
Compilation Update

4. Wi-Fi/BT Function Verification

4.1

4.2
43
4.4
4.5
4.6
4.7

Wi-Fi STA Test

4.1.1 Turn Wi-Fi On and Off
4.1.2 Scan APs Nearby

4.1.3 Connect to Router
Wi-Fi AP Hotspot Verification
BT Verification Test

Wi-Fi Suspend and Resume
Wi-Fi Monitor Mode

Wi-Fi P2P Verification

Connection Function

5. Wi-Fi/BT Hardware RF Target

5.1
5.2

53

Test Items

Test Tools and Methods
5.2.1 Realtek Test
5.2.2 AP/CY Test
Report

6. Wi-Fi Performance Test
7. Wi-Fi/BT Troubleshooting

7.1
7.2

Brief Description of Wi-Fi Identification Process

Wi-Fi Issues

7.2.1 Wi-Fi Abnormal: SDIO Can Not Be Recognized

7.2.2 USB Wi-Fi Troubleshooting

7.2.3 Special Notice of Realtek Wi-Fi
7.2.3.1 wlan0 Has Identified but Scan Abnormality
7.2.3.2 Realtek Supports SDIO3.0

7.2.4 Wlan0 of RV1109/1126 Platform Cannot Be Up

7.2.5 Wi-Fi SDIO Card Is Recognized but Wlan0 Up Failed

7.2.6 Wi-Fi with SDIO Interface Runs Abnormally After A Period of Time

7.2.7 Wi-Fi Unable to Connect to Router for Disconnection or Unstable Connection

7.2.8 Throughput Not As Expected
7.2.9 1P Abnormal

7.2.10 Resume and Suspend Abnormal
7.2.11 PING Abnormal

7.2.12 Customized Modification
7.2.13 WlanO Is Normal, but No AP Can Be Scanned
7.2.14 Dual Wi-Fi AP+RTL Abnormal
7.2.15 iComm Wi-Fi Abnormal
7.2.16 Hotspot of iPhone Can't be Connected in i0OS15 System
7.3 Bluetooth Issues
8. New Module Porting or Old Module Driver Update
8.1 Realtek Modules
8.1.1 Wi-Fi Modules
8.1.2 BT Modules
8.1.2.1 UART Interface
8.1.2.2 USB Interface
8.2 AMPAK Modules
8.3 HiSilicon Wi-Fi Porting
9. Wi-Fi/BT of Debian and Other Third-Party Systems Adaptation Introduction
9.1 System Adaptation Overview
9.2 AMPAK Modules Adaptation Example
9.3 Realtek Module Adaptation Example
9.3.1 Adaptation Introduction
9.3.2 Bluetooth Driver /rtk hciattach Tool Compilation Introduction
9.4 Automatic Installation Introduction
10. Bluetooth Extension Functions
10.1 Bluetooth with Low Power Consumption
10.2 Bluetooth 5.0 Functional Verification (Currently only supported by RK3588 platform, more platforms will be
supported in the future)
11. Other Functions and Configurations Introduction
11.1 RV1126 /RV1109 Connmand
11.2 Set Static IP and Other Parameters at Boot Automatically
11.3 DHCP Client
11.4 Wi-Fi/BT MAC Address
11.5 AMPAK Module Compatible Version (Debian/Ubuntu)
11.6 Modify Realtek Wi-Fi Scan Time
11.7 Wi-Fi Country Code
11.8 Load and Unload Wi-Fi KO Mode Dynamically
11.9 Wi-Fi or Ethernet UDP Packet Loss Rate Test Is Abnormal
11.10 Network Issues Troubleshooting Steps
11.10.1 Stuck or Frame Loss Issue Troubleshooting
11.10.2 Simple Verification of Network Protocol Stack Processing Packet Time
11.11 wpa_supplicant/hostapd Version Updated
11.12 Debug Configuration of Driver Application
11.12.1 Wi-Fi Driver Debug
11.12.2 TCPDUMP Capture Packet
11.12.3 wpa_supplicant Debugging
11.12.4 SDIO Driver Debugging
12. Application Development
12.1 Deviceio Introduction
12.2 Configuration Build

1. Quick Start Guide

e [f WiFi/BT cannot be recognized, please check the abnormal log carefully first, and check the type of
problem according to Chapter 7 in order!

e About Wi-Fi/BT abnormalities please refer to Chapter 2/3/7,

e About Wi-Fi/BT files/compilation/update introduction, please refer to Chapter 3;

e About Wi-Fi driver KO loading, please refer to Chapter 3.4;

e About Wi-Fi/BT porting/driver update, please refer to Chapter §;

¢ Please refer to Chapter 12 for Wi-Fi/BT application development;

e About Wi-Fi country code settings, please refer to Chapter 11.7;

e About SDK compilation configuration, please refer to Chapter 2.1;

e About RV1126/RV1109 Wi-Fi, please refer to chapter 7.2.4;

e About USB interface Wi-Fi/BT, please refer to Chapter 8.1 for porting, Chapter 2/3 for configuration, and
Chapter 7 for troubleshooting;

e About PCIE Wi-Fi, please refer to Chapter 2.2.5;

e About performance issues, please refer to Chapter 5/7;

¢ For Debian/UOS/Kylin system Wi-Fi/BT adaptation introduction, please refer to Chapter 9

e Note: in the Wi-Fi/BT configuration chapter , the DTS and kernel configurations have nothing to do

with Buildroot or Debian systems, it can be used in both of the two system!

2. Wi-Fi/BT Configuration

2.1 Buildroot SDK Compilation and Configuration Guide

Before configuring Wi-Fi/BT, firstly, you must configure the board-level files, otherwise the Wi-Fi/BT
configuration will not take effect or cause other problems; the configuration file is located in the
device/rockchip/rkxx (rkxx represents the chip platform)/ directory, the following will take RV1126 for example

(other platforms can follow the same rules):

#Select board-level configuration, such as selecting BoardConfig.mk (this file
should be selected according to your actual situation, you can refer to the quick
start document of the SDK for details)

#In addition, the earlier version SDKs do not support this command, so this step
is not required.

./build.sh device/rockchip/rv1126 rv1109/BoardConfig.mk

#Checking the contents of the BoardConfig.mk file, it includes (important) :
#Kernel defconfig corresponds to the defconfig file used by the kernel,
corresponding to kernel/arch/arm/configs/rv1126 defconfig

export RK KERNEL DEFCONFIG=rv1126 defconfig

#Kernel dts corresponds to the DTS used by kernel

export RK KERNEL DTS=rvl1l26-evb-ddr3-v13

#defconfig of Buildroot, corresponding to this file
buildroot/configs/rockchip rv1126 rv1109 defconfig

export RK CFG BUILDROOT=rockchip rv1126 rv1109

af://n74
af://n104
af://n105

#Select the defconfig of buildroot, which is the RK CFG BUILDROOT configuration
above. After this step, rkwifibt and other modules can be compiled
separately, such as make rkwifibt/deviceio release and other command

source envsetup.sh rockchip rv1126 rv1109

#buildrootConfiguration

make menuconfig

#Select the corresponding configuration and save it to the rootfs configuration
file

#./buildroot/configs/rockchip rv1126 rv1109 defconfig

make savedefconfig

#Kernel configuration, take 32-bit as an example, note that directories of arm64
are different

cd kernel

make ARCH=arm rv1126 defconfig # it is the RK KERNEL DEFCONFIG mentioned above
make ARCH=arm menuconfig

make ARCH=arm savedefconfig

cp defconfig arch/arm/configs/rv1126 defconfig #Update kernel configuration

2.2 DTS Configuration

2.2.1 Wi-Fi Configuration

The following items are included in Wi-Fi/BT hardware pin configurations:

Remember to configure according to the schematic, and make sure that the dts/dtsi contains the following

nodes!

Note:

¢ For Wi-Fi with SDIO interface: WL _REG_ON is managed and controlled by the sdio_pwrseq node, no
need to add WIFI, poweren_gpio configuration under the wireless-wlan node repeatedly;

e For Wi-Fi with USB/PCIE interface: need to add WIFI, poweren_gpio corresponding configuration of
WL_REG_ON GPIO under the wireless-wlan node;

/* Only used for SDIO interface Wi-Fi configuration: WIFI REG ON: power enble PIN
of Wi-Fi */
sdio pwrseq: sdio-pwrseq {

compatible = "mmc-pwrseg-simple";

pinctrl-names = "default";

pinctrl-0 = <&wifi enable h>;

/* Special attention: WIFI REG ON GPIO ACTIVE configuration is exactly
the opposite of enable state: LOW is High effective, High is low effective;
Remember that: this configuration is mutually exclusive with the following WIFI,
poweren gpio, and cannot be configured at the same time! ! !*/

reset-gpios = <&gpioO RK PA2 GPIO ACTIVE LOW>;

}i
/* Only used for SDIO interface Wi-Fi configuration: pinctrl configuration of
WIFI REG ON pin */
&pinctrl {
sdio-pwrseq {
wifi enable h: wifi-enable-h {

rockchip,pins =

af://n108
af://n109

/* Corresponds to the WIFI REG ON above, turn off pull-up
and pull-down to prevent it from being pulled high or low*/
<0 RK_PA2 RK FUNC GPIO &pcfg pull none>;
}i

}i

/* Only used for SDIO interface Wi-Fi configuration: SDIO interface node */
&sdio {
max-frequency = <150000000>; /* The maximum frequency of the sdio

interface, adjustable */

bus-width = <4>; /* 4-1line mode,can be changed to 1-line mode
=/

sd-uhs-sdrl104; /* Support SDIO3.0 */

status = "okay";

}i

/* WIFI node*/
wireless-wlan {

compatible = "wlan-platdata";

rockchip,grf = <&grf>;

/* Note: If you finds that the Wi-Fi module does not have 32.768K
waveform when debugging, and the hardware is provided by RK PMU, open the clock
property below and fill in according to the actual PMU model used. Otherwise the
SDIO/Wi-Fi can not work.*/

//clocks = <&rk809 1>; //IF RK809 is used, only one can be configured

clocks = <ghym8563>; //IF hym8563 is used, only one can be configured

clock-names = "ext clock";

/* Fill in according to the model you actually used */

wifi chip type = "ap6255";

/* WIFI_WAKE HOST: The PIN of the Wi-Fi interrupt notification to
controller. Special attention: please check the hardware connection between the
Wi-Fi pin and the controller pin. If they are directly connected, it is
GPIO ACTIVE HIGH; if a reverse tube is added between them, it should be changed
to low-level GPIO ACTIVE LOW trigger*/

WIFI,host wake irg = <&gpioO RK PAO GPIO ACTIVE HIGH>;

/* Note that the Wi-Fi with USB/PCIE interface needs to add this
configuration, and the corresponding WIFI PIN should be enable,and no need to
configure nodes such as sdio pwrseqg/sdio*/

//WIFI,poweren gpio = <&gpioO RK PA2 GPIO ACTIVE HIGH>;
status = "okay";

}i

/* pinctrl configuration of WIFI WAKE HOST pin*/
wireless-wlan {

/omit-if-no-ref/

wifi wake host: wifi-wake-host {

/* Note that the wake host pin of regular Wi-Fi is triggered by a
high level, so it must be configured as a pull-down by default. If the customer’s
hardware design is reversed, it must be changed to a pull-up. In short, it must
be initialized with the opposite state with trigger circuit.*/

rockchip,pins = <0 RK_PAO 0 &pcfg pull down>;

}i

/* USB Wi-Fi: please refer to the following for the USB part configurations, and
modify according to the actual situation. Pleas refer to the USB related
documents in the doc/ directory for configuration */

&u2phy host {

status = "okay":;
bi
&u2phyl {

status = "okay";

}i

&usb_host0 ehci {
status = "okay";

}i

&usb_host0 ohci {
status = "okay";

}i

2.2.2 Bluetooth Configuration

The following UART related items should be configured as the corresponding PIN of actual used UART port.
Note that RTS/CTS pin must be connected according to SDK design (Please refer to the UART description in
Chapter 7.2 for details). So many abnormalities reported by customers are all because these two pins are not

connected, causing initialization abnormal, the following supposes that Bluetooth uses UART4:

/* Bluetooth node: pay attention to the following UART configuration: the name of
uart4 xfer/uart4 rts/uartd4 ctsn may be different between different platform, you
should find the corresponding uart in the dts/dtsi of the corresponding chip
platform, such as uart4 ctsn of some platforms are named uart4 cts. */
wireless-bluetooth {

compatible = "bluetooth-platdata";

/* It is used to configure the RTS pin of UART of correspoinding
controller */

uart rts gpios = <&gpio4 RK PA7 GPIO ACTIVE LOW>;

pinctrl-names = "default", "rts gpio";

pinctrl-0 = <&uartd4 rts>;

pinctrl-1 = <&uart4 rts gpio>;

/* BT REG ON is Bluetooth power switch */
BT, power gpio = <&gpio4 RK PB3 GPIO ACTIVE HIGH>;

/* Linux platform: the following two configurations do not need to be
configured */
//BT,wake host irq = <&gpio4 RK PB4 GPIO ACTIVE HIGH>; /* BT WAKE HOST */
//BT,wake gpio = <&gpio4 31 GPIO ACTIVE HIGH>; /* HOST WAKE BT */
status = "okay":;
}i
/* Open the corresponding UART configuration. */
&uartd {
pinctrl-names = "default";
/*The Configuration here corresponding to the TX/RX/CTS PIN of the UART
of the controller, and the RTS PIN is not needed to configure*/
pinctrl-0 = <&uartd4 xfer guartd ctsn>;

status = "okay":;

af://n119

2.2.3 10 Power Domain Configuration

The Wi-Fi circuit consists of two parts of power supply, one is the 1O of the controller:

SDIO_CLK/CMD/D0~D3, which requires external power supply, such as VCCIO3 VDD in the figure below,

you can see that it is powered by VCC_1VS;

SDMMC1/UART/I2S2

U10002
RV1126/110%
552409 SSRO0XSHRO0X42RES S
e s
SAMMC1/I282/SPI1/UARTO/UART1/I2CS
- D
s CPIOI EZ d 2
GPIOI EJ u T
GPIOl E4 u C
GFIOl ES u ni5
GFIO1l B6 u T 2
ci -
GFIOL BT u B ; > S _D3
ORRTU RTSn GPIOL C0 u 215 _ .
URRTU CTEn GPIOLl Cl u o >L’ARTCI_ETSN
OERTU R¥ GPIOL C7 u & L'FART'.'I_RX
TERTO TX iGN o URRTO_TX
1252 500 MO SPI1 MOSI M1 FLASH TRIG QUT GPIOl C4 d E13 v 4
1252 SDI MO T FLASH TRIG IN GPIOl C5 d D13
I/57 SCLE MO SPI PRELIGRT TRIG OOT UARRT1 RTSn Ml GPIOL Chk d C £
TZ57 LRCE MO 5FI | ORRTY CTSn MT GPIOT CT d B PCM_
TIEZ MCLE MO SFTi cEln Mi "EoeMci TET I2C5 ECL M2 ORRTI TX M1 CEIOL 00 d 2 <731FI_ ,_HOST_OPTION
EOMMCT T FAR TJCE EDA M2 TORRTI RX MT GPIOLl Dl a »EDST_'?-‘F\KE_ET
El4 ——
'-JEEZDS_'-EZZ —-—-—()vCC_OS_» DD
VCCI 3_"."DD ‘FCC_'_‘FS
R1302 2 0,IRL% 1 ROE03
‘FCCL'-.-'S_PHIJ
€1302
~| 100nF R1303 2 O0,1R1% 1 RO&03
X5R

[6.9V
| cozo1

The other is the power supply of the IO of the Wi-Fi module. For example, the VCCIO_WL in the figure below is
also powered by VCC_1V8. The power supply of the two parts must be the same, otherwise it will lead to
Wi-Fi abnormal; for support SDIO3.0 Ultra-High speed Mode (UHS), it must be powered by 1.8V, but for

Wi-Fi modules that only support SDIO2.0 high-speed mode, both power supply of 1.8 or 3.3V can be used,

remember to keep matching ;

af://n122

WIFI_X1AL_IN

I [o
I TE000 T aF,
| | & =
| bal m3—~+h I Y=
1 || 2 '.15 152 R | WIFLXTAL_QUT
I ceoos GRD e e
I 27pF 37.dMHz umu : 1
| | -
| ——coG CRY4_3R2DXZRSOXDRED 22p_ |
. 5OV Ee B B B B RO R B0
| co40z mu | EREExzzzrosn
| 37.4MHz: +=10ppm | ©0402 | Ellé TESISES Y
| | 5] InIn & I
— p— - 3
e escscscsassnens sl 2% =
etttk SE r
I = “-
. . o
nesded to wake up S0C, : B
needed to pull high. | __WIFLREG ON 12|
5+ WIET WARERCST 13 || WL _REG CH
must be connected to i ATETTT 12 WL_HOST_WAKE
)] hI:.:D3 15 EEID :‘AB.TE pri
is also connected to | WIET CHD 1e | SDIO_DATA 3
] WIFT_CLE 17 E.EID 1%.']‘?5. CMD Us00d
§ _FIELID 15| SDI0_DATA_CLE
M T I T T T T 'F\I:.:'D. 15 SEID_:'A.‘:.T.‘:._C- ABEI55
75| SDIC_DATA_1
'”r——*—ET— GND3
3] vIn_Loo oot
VCCIO WL O ' T
CEOL3 CEDLd
“l wrF 7| 100mF
i B — 11
o 1OV 16V
Co4anz o402
I R 9
| pw 28=
" LE00d3] g =4 z:{;g—c E
I S =! QQFH'HEELJQ
. T EEDEBBRORES
. [= E
| 0.08) P Bt = [=1 e =)) e]
)
: TEOLS T
" N 4.7wF [
' % s S ——

gﬁ[all 2 UR

Module Power
“‘-_-...q.h

T~

VCC_1vE VCCIO WL
e
REDIS 1 . OZR. 2 1% ROBOS
VCC1VE_BMD
Q REDZT 1 Q.OZR. 2 1% ROBOS

The above descriptions are all hardware requirements. The following is going to introduce the software

configuration: From the above figure, it can be seen that the VCCIO3_VDD supplying power to the controller 10

is 1.8V, then the io_domains corresponding to dts/dtsi need to be configured, and VDDIO3 VDD corresponds to

the software vccio3-supply, while vecio3-supply is powered by vec_1v8, the corresponding configuration is:

//Note that the names of io domains for each platform are different,

named as &pmu_io domains;

&io doma

// Or

&pmu_io

connecte

ins {

domains {

/* VDDIO3 VDD refers to the voltage of vcc 1v8,
Note:

d to 3.3v,

change it to vcc 3v3.

should be adjusted according to the actual dts/dtsi */

}i

vee 1v8:

vccio3-supply

vce 1v8:

compatible

regulator-name

<&vcc_1v8>;

vee-1v8 {

"regulator-fixed";

"vce 1v8";

regulator-always-on;

if the hardware is

and some are

The names of vcc 1v8/vcc 3v3

regulator-boot-on;

/* vcc 1v8 with power supply of 1.8v */
regulator-min-microvolt = <1800000>;
regulator-max-microvolt = <1800000>;

vin-supply = <&vcc io>;

2.2.4 The 32.768K Configuration

Modules of Azurewave/ AMPAK should be supplied with external 32.768k, while Realtek's modules are
packaged internally, so only COB chips need supplied externally.

Generally, 32k is powered by the RK8XX PMU for Wi-Fi, and 32k is turned on by default in the PMU. If it is not

turned on, the following configuration should be added:

wireless-wlan {

compatible = "wlan-platdata";

rockchip,grf = <&grf>;

/* rk809 must be changed to the actual model you used,If it still can't
be found after adding it, you need to commit a redmine with pmu output 32 clk */
+ clocks = <&rk809 1>;

+ clock-names = "clk wifi";
}i

Note: if RK's PMU are not used, this configuration is not needed.

2.2.5 PCIE Wi-Fi Configuration

// Which phy node is connected
&pcixxx |

/* This item is to set the PERST# signal of the PCIe interface; whether
it is a slot or a soldered device, please find this pin on the schematic diagram
and configure it correctly, otherwise the link will not be created. */

ep-gpios = <&gpio3 13 GPIO ACTIVE HIGH>; //RK3399 platform

reset-gpios = <&gpio4 RK_PA5 GPIO ACTIVE HIGH>; //RK356X/3588 platform

/* The following three configurations are optional, they are used to
configure the 1V8/3V3 power supply of PCIe peripherals; they are a board-level
configuration items that need to be controlled and enabled for PCIe peripheral
power supply */

vpcie3v3-supply = <&vdd pcie3v3>;

vpcielv8-supply = <&vdd pcielv8>;
vpcieOv9-supply = <&vdd pcielv8>;

num-lanes = <4>;
pinctrl-names = "default";
pinctrl-0 = <&pcie clkreqn cpm>;
status = "okay";

}i

//phy version
&pcieXXphy {

status = "okay";

af://n130
af://n135

}i

//Wi-Fi node configuration

wireless wlan: wireless-wlan {
compatible = "wlan-platdata";
wifi chip type = "ap6275p";

WIFI,host wake irg = <&gpio0 RK_PAO GPIO ACTIVE HIGH>;
WIFI,poweren gpio = <&gpio0 RK PC7 GPIO ACTIVE HIGH>;
status = "okay";

i

// Pull up a PIN by default, such as GPIO3D5
// Method one:

&pinctrl {

+ pinctrl-names = "default";

+ pinctrl-0 = <&pcie 3v3>;

+ pcie vbat {

+ pcie 3v3: pcie-vbat {

+ rockchip,pins = <3 RK_PD5 RK FUNC GPIO &pcfg pull up>;
+ }i

+ }i

+

—

For detailed configuration of PCIE, please refer to related documents in the SDK directory
docs\Common\PCle.

2.3 SDMMC Interface Connected to Wi-Fi Chip

For some special requirements, the Wi-Fi chip needs to be connected to SDMMC interface, so the configuration

will be modified as follows:

Find the following two configurations: change &sdio to &sdmmc, and disable unused nodes;

&sdmme {
bus-width = <4>;
cap-mmc-highspeed;
cap-sd-highspeed;
card-detect-delay = <200>;
rockchip,default-sample-phase = <90>;
supports-sd;
sd-uhs-sdrl2;
sd-uhs-sdr25;
sd-uhs-sdrl104;
vgmmc-supply = <&vccio sd>;
- status = "okay";
+ status = "disabled";

i

+&sdmme |

-&sdio {
max-frequency = <200000000>;
bus-width = <4>;
cap-sd-highspeed;

af://n138

cap-sdio-irqg;

keep-power-in-suspend;

non-removable;

rockchip,default-sample-phase = <90>;

sd-uhs-sdrl04;

supports—-sdio;

mmc-pwrseq = <&sdio pwrseqg>; //sdio pwrseq can only be referenced by one
node, should not be referenced by sdmmc and sdio at the same time!

status = "okay":;

}r

#RK3328 platform:

&sdmmec {
bus-width = <4>;
cap-mmc-highspeed;
cap-sd-highspeed;
disable-wp;
max-frequency = <150000000>;
pinctrl-names = "default";
pinctrl-0 = <&sdmmcO clk &sdmmcO cmd &sdmmcO dectn &sdmmc0 bus4d>;
vmmc-supply = <&vcc sd>;
supports-sd;

= status = "okay":;

+ status = "disabled";

+&sdmme {

-&sdio {
bus-width = <4>;
cap-sd-highspeed;
cap-sdio-irqg;
keep-power-in-suspend;
max-frequency = <150000000>;
supports-sdio;
mmc-pwrseq = <&sdio pwrseg>;
non-removable;
pinctrl-names = "default";
pinctrl-0 = <&sdmmcl bus4 &sdmmcl cmd &sdmmcl clk>;

status = "okay";

2.4 Kernel Configuration

#kernel directory

make menuconfig ARCH=armXX # please refer to Chapter 2.1 for defconfig usage

2.4.1 Wi-Fi Configuration

af://n142
af://n144

CONFIG_WL_ROCKCHIP:
Enable compatible wifi drivers for Rockchip platform.

Symbol: WL_ROCKCHIP [=y]
Type : boolean
Prompt: Rockchip wireless LAN support

Location:

-> Device Drivers
-> Network device support (NETDEVICES [=y])
-> Wireless LAN (WLAN [=y])

Defined at drivers/net/wireless/rockchip_wlan/Kconfig:2

DEﬁnends on: NETDEVICES [=y] && WLAN [=:~.ur51

Selects: WIRELESS_EXT [=y]| && WEXT_PRIV [=y] && CFGEO211 [=y] && MACE0211 [=y]

uild witi ko modules
1 wifi Toad driver when kernel bootup

> apéxxx wireless sdio cards support

> Cypress wireless sdio cards support

] Fealtek wireless Device Driver Support ----
> Realtek 8723B SDIO or SPI WiFi

> Realtek B723C SDIO or SPI WiFi

> Realtek B723D SDIO or SPI WiFi

> Marvell BBWBS77 SDIO WiFi

Wi-Fi driver can be built into kernel or ko mode,Remember that only one of the following two configurations
can be selected, otherwise Wi-Fi cannot be loaded!

KO configuration is as follows, the following two are mutually exclusive
[*] build wifi ko modules

[1] Wifi load driver when kernel bootup

buildin configuration is as follows, the following two are mutually exclusive
[] build wifi ko modules

[*] Wifi load driver when kernel bootup

¢ Only one model of buildin can be selected, Realtek modules and ap6xxx modules cannot be selected as y at

the same time, you can only choose one of them;

e ap6xxx and cypress are also mutually exclusive, you can only choose one and if you choose ap6xxx, the
cypress configuration will disappear automatically, and if you remove the ap configuration, cypress will

appear automatically;

You can select multiple Wi-Fi in ko mode.

After the configuration, the corresponding defconfig should be saved, please refer to Chapter 2.1 for
details.

2.4.2 Bluetooth Configuration

Both of Azurewave/AMPAK modules use the CONFIG_BT HCIUART driver of kernel by default, while
Realtek uses its own hci uart driver. The source code directory is as follows:
external\rkwifibt\realtek\bluetooth uart driver, and they are loaded in ko mode, so when
Realtek is used, don't forget to remove the CONFIG_BT_HCIUART configuration of kernel!

af://n156

CONFIG_BT_HCIUART:

Bluetooth HCI UART driver.

This driver is reguﬁred if wyou want to use Bluetooth devices with
serial port interface. vou will also need this driver if you have
UART based Bluetooth PCMCIA and CF devices Tike Xircom Credit card
adapter and BrainBoxes Bluetooth PC Card.

say Y here to compile support for Bluetooth UART devices into the
kernel or say M to compile it as module (hci_uart).

symbol: BT_HCIUART [=y]

Type @ tristate
Prompt: HCI UART driwver
Location:

-= Networking supEort (NET [=vy])
-> Bluetooth subsystem support (BT [=y])
-= Bluetooth device drivers
pefined at drivers/bluetooth/Kconfig:77
Depends on: NET [=y] && BT [=y] && %SERIAL_DEV_BUS [=n] || !'SERIAL_DEV_BUS [=n]) && TTY [=y]

After the configuration, the corresponding defconfig should be saved, please refer to Chapter 2.1 for
details.

2.5 Buildroot Configuration

Choose the corresponding configuration according to the Wi-Fi used actually, which should be consistent
with the kernel configuration:

Execute in the root directory: make menuconfig (refer to Chapter 2.1 for compilation environment), and then

search for rkwifibt to enter the following configuration interface:

There is no help available for this option.
Prompt: wifi chip support

Location:
-> Target chkagES
-> rockchip BSP packages (BRZ_PACKAGE_ROCKCHIP [=y])

-> rkwifibt (BRZ_PACKAGE_RKWIFIBT [=y])
pefined at package/rockchip/rkwifibt/Config.in:5
Deqends on: BRZ_PACKAGE_ROCKCHIF [=y] && BR2Z_PACKAGE_RKWIFIBT [=y]
Selected by: BRZ_PACKAGE_ROCKCHIF [=y] && BR2Z_PACKAGE_RKWIFIET [=y] && m

W

Use the arrow keys to naviﬁate this window or press the
hotkey of the item you wish to select followed by the <SPACE
BAR>. Press <7> for additional information about this

¢
{) AwW-NABL197

RTLEB1BOFS

M
=
m
W

--- rkwifibt
if 4 pport (AP6255) --->

Note: after the configuration, the corresponding defconfig should be saved, please refer to Chapter 2.1 for
details, remember to compile and update after saving: please refer to Chapter 3.5 for details;

3. Wi-Fi/BT Files and Compilation Update Introduction

af://n160
af://n168

3.1 Compilation Files

Files directory corresponding to different Wi-Fi drivers:

kernel/drivers/net/wireless/rockchip wlan/
kernel/drivers/net/wireless/rockchip wlan/rkwifibt/ #AMPAK modules commonly used

driver

kernel/drivers/net/wireless/rockchip wlan/cywdhd/ #Cypress/Azurewave modules

commonly used driver

kernel/drivers/net/wireless/rockchip wlan/rtlxxx #Realtek module is not commonly

used, each model has a separate driver

Wi-Fi and Bluetooth files are located in:
external/rkwifibt/

AMPAK and Cypress Wi-Fi/BT Firmware files are located in:
external/rkwifibt/firmware/broadcom/

The firmware name of the Wi-Fi/BT corresponding to each model of AMPAK and Cypress Wi-Fi:

— ap6212a1

F—— bt #Bluetooth firmware
| L— BCM43430A1.hcd
L— wifi #Wi-Fi firmware

|
|
|
| — fw bcm43438a0.bin
| — fw bcm43438al.bin
| — fw bcm43438al mfg.bin
| F—— nvram ap62l2a.txt
| — nvram ap6212.txt
— aP6236
| bt
| | L— BCM43430B0.hcd
| L— wifi
| — fw _bcm43436b0.bin
| F— fw bcm43436b0 mfg.bin
| — nvram ap6236.txt
— aw-cM256
| bt
| | L— BCM4345C0.hcd
| L— wifi
| F— fw cyw43455.bin
| — nvram azw256.txt
L— AW-NB197
— bt
| L— BCM43430A1.hcd
L— wifi
F—— fw cyw43438.bin
— nvram azw372.txt

Realtek BT UART/USB driver and Firmware: (Note: Realtek Wi-Fi does not require firmware files, only
Bluetooth requires)

af://n169

external/rkwifibt/realtek/bluetooth uart_driver/ #Bluetooth uart driver
external/rkwifibt/realtek/bluetooth usb driver/ #Bluetooth usb driver
external/rkwifibt/realtek/rtk _hciattach/ #Bluetooth initialization code

external/rkwifibt/realtek/RTL8723DS/
rt18723d config #8723DS Bluetooth config
rtl18723d fw #8723DS Bluetooth fw

3.2 Compilation Rules

The corresponding compilation rule files:

buildroot/package/rockchip/rkwifibt/Config.in # The same rules as regular
Kconfig
buildroot/package/rockchip/rkwifibt/rkwifibt.mk # Similar to Makefile

As the progress and time of SDK version of each chip platform are inconsistent, the content of the in/mk file

obtained by customers may be different, but the general rules are the same.

Config.in: pass the Wi-Fi/BT model configured by menuconfig rkwifibt to the mk
file;

rkwifibt.mk: Copy the files, firmware, etc. required for corresponding Wi-Fi/BT
into the file system;

Specify the source directory of rkwifibt

rkwifibt SITE = $(TOPDIR)/../external/rkwifibt

#Is the function of building process, pass the building and link options to the
source code, and call the source code Makefile to execute the building

RKWIFIBT BUILD CMDS

After building, install automatically, Buildroot will install the built
libraries and bin files to the specified directory

RKWIFIBT INSTALL TARGET CMDS

Please read these two rkwifibt.mk and Config.in files carefully. The main work of these two files is:

¢ Build module bluetooth driver KO files, such as Realtek's uart/usb bluetooth driver, and some
manufacturers' private executable binaries such as AMPAK's wl, Realtek's rtwpriv and other tools;
e According to the Wi-Fi/BT configuration model, copy and install the corresponding firmware/driver

KO/executable file to the specified directory, please refer to the corresponding directory in Chapter 3.1;
So developers must be familiar with compilation rules, which is very important for debugging!!!

Note: learn to read the output log printed by make rkwifibt-rebuild when compiling, which includes the
compilation/copying process of the above mk file, which is helpful to analyze and solve problems such as

compilation errors/copy errors.

3.3 Required Files and Their Paths during Wi-Fi/BT Running

af://n180
af://n193

Developers need to understand the files and locations used when Wi-Fi Bluetooth works. When encountering the
problem of abnormal Wi-Fi/BT startup, they need to confirm whether the firmware/config file of Wi-Fi Bluetooth
exists and whether it matches the Bluetooth model. Please refer to Chapter 3.1 to check the corresponding

relationship, if they are not matched, refer to Chapter 2.5 to check the configuration problems.
e For AMPAK/Azurewave modules, take AP6255 as an example:

The path of the Wi-Fi/BT firmware in the SDK:

external/rkwifibt/firmware/broadcom/AP6255/

— bt

| L— BCM4345C0.hcd

L— wifi
— fw bcm43455c0_ag.bin
— fw bcm43455c0_ag mfg.bin
— nvram ap6255.txt

After the compilation rules in Chapter 2.2, the corresponding files are copied to the output directory of the

project: (kernel4.19 is changed from system to vendor directory)

buildroot/output/rockchip rk3xxxx/target/

/system (vendor) /1lib/modules/bcmdhd. ko #Driver ko (if it is
compiled in ko mode)

/system(vendor) /etc/firmware/fw bcm43455c0_ag.bin #Driver firmware file
storage path

/system(vendor) /etc/firmware/nvram ap6255.txt #Driver nvram file
storage path

/system (vendor) /etc/firmware/BCM4345C0.hcd #Bluetooth firmware

file (if there is Bluetooth function)
After flashing into the device, the files and storage locations required for Wi-Fi running are as follows:

/system (vendor) /1lib/modules/bcmdhd. ko #Driver ko (if it is
compiled in ko mode)

/system(vendor) /etc/firmware/fw bcm43455c0 _ag.bin #Driver firmware file
storage path

/system(vendor) /etc/firmware/nvram ap6255.txt #Driver nvram file
storage path

/system (vendor) /etc/firmware/BCM4345C0.hcd #Bluetooth firmware

file (if there is Bluetooth function)

¢ For Realtek modules, take RTL8723DS/RTL8821CU as an example:
The path of the Wi-Fi/BT firmware in the SDK:

external/rkwifibt/realtek$ tree

— RTL8723Ds
| F—— mp rt18723d config #the config used by Bluetooth test, which needs to be

obtained from the vendor

| F—— mp rtl18723d fw #The fw for Bluetooth testing, which needs to be
obtained from the vendor

| F—— rt18723d config #Bluetooth config

| L— rt18723d fw #Bluetooth fw

— RTL8821CU

| F—— rtl8821lcu config #Bluetooth config

| L— rtl882lcu_ fw #Bluetooth fw

}—— bluetooth uart driver #RTL8723DS Bluetooth UART driver, which is compiled
into hci uart.ko
| hci_hé.c
| hci ldisc.c
| hci_rtk h5.c
| hci uart.h
| Kconfig
| Makefile
| rtk coex.c
| rtk_coex.h
luetooth usb driver #RTL8821CU Bluetooth USB driver, which is compiled into
tusb. ko

Makefile

rtk bt.c

rtk bt.h

-
o+

[TTTTTTe o ITTTTTTT

rtk coex.

rtk coex.

Q °ooQ

|
|
|
|
|
| rtk misc.
| rtk misc.h

F—— rtk hciattach #Bluetooth initialization program rtk hciattach, only BT
with UART interface will be used, BT with USB interface does not need

fix mac.patch

hciattach.c

hciattach.h

hciattach héd.c

hciattach h4.h

hciattach rtk.c

Makefile

rtb_fwc.c

rtb fwc.h

[TTTTTTTT

After the compilation rules in Chapter 2.2, the corresponding files are copied to the output directory of the

project:

prefix directory

buildroot/output/rockchip rk3xxxx/target/

if there is a bluetooth function

/system (vendor) /1lib/modules/8723ds.ko #Drive ko (if it is compiled in ko mode)
/system (vendor) /1lib/modules/8821cu.ko #Drive ko (if it is compiled in ko mode)
/usr/lib/rtk hciattach #Bluetooth initialization program
/usr/bin/modules/hci uart.ko #Bluetooth ko

#Remember that the firmware file of Bluetooth wtih UART interface will be copied
to the /lib/firmware/rtlbt/ directory

/lib/firmware/rtlbt/rt18723d config #The fw/config of normal Bluetooth
function

/lib/firmware/rtlbt/rtl18723d fw

#Remember that the firmware file of Bluetooth with USB interface will be copied
to the /lib/firmware/ directory

/lib/firmware/rt18821lcu config #The fw/config of normal Bluetooth
function

/lib/firmware/rt18821lcu_ fw

After flashing into the device, the files and storage paths required for Wi-Fi running is as follows: (kernel 4.19 is

changed from system to vendor directory)

/system (vendor) /1lib/modules/8723ds.ko #Drive ko (if it is compiled in ko mode)
/system (vendor) /1lib/modules/8821cu.ko #Drive ko (if it is compiled in ko mode)
/usr/bin/rtk _hciattach #Bluetooth initialization program (only
used by uart interface)

/usr/lib/modules/hci uart.ko #UART bluetooth ko

/usr/lib/modules/rtk btusb.ko #USB Bluetooth ko

#Remember that the firmware file of Bluetooth with UART interface will be copied
to the /lib/firmware/rtlbt/ directory

/lib/firmware/rtlbt/rtl18723d config #The fw/config of normal Bluetooth
function

/lib/firmware/rtlbt/rtl18723d fw

#Remember that the firmware file of Bluetooth with USB interface will be copied
to the /lib/firmware/ directory

/lib/firmware/rt18821cu_config #The fw/config for normal Bluetooth
function

/lib/firmware/rt18821lcu fw

3.4 The Rules for Auto Loading Wi-Fi Driver KO when Startup

The rules for Wi-Fi loading drivers are as follows:

The original file location is as follows, it will be copied to the /etc/init.d/
directory after being compiled by ./build.sh or make rkwifibt-rebuild (remember
to recompile and package after each modification)

cat external/rkwifibt/SXXload wifi xxx modules

insmod WIFI KO # The content is a generic name, which will be replaced according

to the configuration of rkwifibt during compilation

Through the configuration of menuconfig and the compilation rules of
buildroot/package/rockchip/rkwifibt/Config.in & rkwifibt.mk.

Part of the content of rkwifibt.mk is showed as follows, WIFI KO is replaced
with the actual configured ko name

$(SED) 's/WIFI_KO/\/$(FIRMWARE DIR)\/1lib\/modules\

To check the contents of file after compilation

cat buildroot/output/rockchip_ rk3xxxx/target/etc/init.d/SXXload wifi xxx modules

#You can see that the Wi-Fi KO is replaced with the actual configured ko, such as
RTL8723DS:

insmod 8723ds.ko

#It is passed in through the buildroot/package/rockchip/rkwifibt/Config.in file

when it is configured by make menuconfig

Finally, the files in the etc/init.d/ directory will be called in turn when the

system starts, so the Wi-Fi driver is automatically loaded during this period.

Frequently encountered problems: For example, when using RTL8723DS, but
sometimes developers forget to configure the Wi-Fi model in the buildroot,
resulting in the wrong ko model of insmod in the SXXload wifi xxx modules file:
insmod bcmdhd.ko (normally, it should be insmod 8723ds.ko), the solution: please

refer to Chapter 2.5 for modification of buildroot!

af://n213

3.5 Compilation Update

Firstly, refer to Chapter 2.1 to confirm the compilation environment

¢ For the modification of kernel Wi-Fi configuration,

after selecting make menuconfig, be sure to save the corresponding defconfig file. For example, If the
following is used: kernel/arch/arm/configs/rockchip xxxx defconfig, and the corresponding

modification should be updated to this file, otherwise the update will not take effect.

Kernel directory

make menuconfig

Modify the corresponding configuration
make savedefconfig

cp defconfig arch/arm/configs/rockchip xxxx defconfig

e For the modification of Buildroot configuration, after selecting make menuconfig, execute make

savedeconfig in the root directory to save.

Top directory

source XXxx #First select the configuration of the
corresponding project, please refers to the SDK development configuration
document

make menuconfig

Select the corresponding Wi-Fi model

make savedeconfig #Save configuration

make rkwifibt-dirclean #Clear the previous

make rkwifibt-rebuild #Rebuild

./build.sh #Repackage to generate firmware

Note: Be sure to make savedefconfig, otherwise it will be overwritten by the original when building,

resulting in the modification not taking effect.

4. Wi-Fi/BT Function Verification

4.1 Wi-Fi STA Test

4.1.1 Turn Wi-Fi On and Off

If there is no wlan0 node, please first check whether the dts/driver is configured correctly and whether the driver

is loaded (ko or buildin). If it is correct, please refer to Chapter 6 for troubleshooting.

Turn on Wi-Fi

af://n216
af://n228
af://n229
af://n230

echo 1> /sys/class/rfkill/rfkilll/state # it is rfkill0 when the Bluetooth node
is not turned on
ifconfig wlanO up
wlan0 Link encap:Ethernet HWaddr F0:85:Cl:0F:9C:02
UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Then check whether the Wi-Fi service process is started: check whether there is a wpa_supplicant process,

if it is not started, you can start it manually:

Note the -c option below is used to specify the path of the configuration file! Make sure it should be

correct!
wpa_supplicant -B -i wlanO -c /data/cfg/wpa supplicant.conf

Configuration file analysis:

#ctrl interface interface configuration

#If there is any modification, the -p parameter of the wpa cli command should be
modified accordingly, wpa cli -i wlanO -p <ctrl interface> xxx

$ vi /data/cfg/wpa supplicant.conf

ctrl interface=/var/run/wpa supplicant #It is not recommended to modify by
default!

ap_scan=1

update config=1 #This configuration saves the hotspot configured by the wpa cli

command to the conf file (wpa cli save config)

#AP configuration items
network={
ssid="WiFi-AP" # Wi-Fi name
psk="12345678" # Wi-Fi password
key mgmt=WPA-PSK # Encryption configuration, if it is not encrypted,
change to: key mgmt=NONE
}

Note: The wpa_ supplicant.conf file should be modified according to the storage path of the platform used
actually.

Turn off Wi-Fi:

ifconfig wlan0 down

killall wpa supplicant

4.1.2 Scan APs Nearby

The wpa_cli command communicates with the wpa_supplicant process, so make sure the wpa_supplicant process

is running.

wpa cli -i wlan0O -p /var/run/wpa supplicant scan

wpa cli -i wlan0O -p /var/run/wpa supplicant scan results

af://n243

Note: check whether the number of scanned hotspots matches the number of routers around you similarly,

you can compare it with Wi-Fi number scanned by your mobile phone (if your module does not support
5G, only compare 2.4G Wi-Fi numbers); also check the signal strength of the router closest to you, if the
router is very close to you, but the signal strength is very weak (regular: -20 to -65; weak: -65 to -70 ; Poor
-70 to -90), then check whether your Wi-Fi module is connected to antenna, whether the module's RF index
is qualified, etc. (please refer to Chapter 5 Wi-Fi/BT Hardware Test) .

4.1.3 Connect to Router

The first way: By modifying the configuration file:

#Add network configuration items in wpa supplicant.conf

network={

ssid="WiFi-AP" #The name of the Wi-Fi
psk="12345678" #The password of the Wi-Fi
key mgmt=WPA-PSK #Encryption configuration; change to

key mgmt=NONE if not encrypted

}

Use the wpa supplicant process to read the above configuration again by the
following command:

wpa cli -i wlan0 -p /var/run/wpa supplicant reconfigure

#Send a connection:

wpa cli -i wlanO -p /var/run/wpa_ supplicant reconnect

The second way: using simple script:

The latest SDK integrates the wifi_start.sh script, you can directly add ssid and password behind the script if it

exists:
wifi start.sh fanxing 12345678

The third way: using wpa_cli tool:

#encryption:

wpa cli -i wlanO -p /var/run/wpa_ supplicant remove network 0

wpa cli -i wlan0 -p /var/run/wpa supplicant ap scan 1

wpa cli -i wlan0 -p /var/run/wpa supplicant add network

wpa _cli -i wlanO -p /var/run/wpa supplicant set network 0 ssid "dlink"

wpa cli -i wlan0 -p /var/run/wpa supplicant set network 0 key mgmt WPA-PSK
wpa cli -i wlan0 -p /var/run/wpa supplicant set network 0 psk'"12345678"'
wpa_cli -i wlan0 -p /var/run/wpa supplicant select network 0

wpa cli -i wlanO -p /var/run/wpa_ supplicant save config # Save the above

configurations to the conf file

#No encryption:
wpa cli -i wlanO -p /var/run/wpa_ supplicant remove network 0

wpa cli -i wlan0 -p /var/run/wpa supplicant ap scan 1

af://n248

wpa cli -i wlan0 -p /var/run/wpa supplicant add network

wpa cli -i wlanO -p /var/run/wpa supplicant set network 0 ssid "dlink"
wpa cli -i wlanO -p /var/run/wpa_ supplicant set network 0 key mgmt NONE
wpa cli -i wlan0 -p /var/run/wpa supplicant select network 0

wpa cli -i wlan0 -p /var/run/wpa supplicant save config

Successful connection:

If there is wpa_state=COMPLETED but no valid ip_address, check whether the process of obtaining IP address

by dheped is started; if wpa_state is not COMPLETED, please check following 2.1.1 scanning chapter first.

4.2 Wi-Fi AP Hotspot Verification

SDK integrates related programs, execute: softapDemo apName (to open the hotspot with the name of apName
without encryption by default) to enable hotspot mode.
Code and building file path:

/external/softapDemo/src/main.c
buildroot/package/rockchip/softap/Config.in softap.mk
make softap-dirclean

make softap
If the softapDemo source code is not found, download it to the external directory from the following address:
https://github.com/rockchip-linux/softapServer

RTL module: take p2p0 as softap function to generate p2p0 through kernel driver configuration. If there is no

p2p0 node, please check the configuration below:

+++ b/drivers/net/wireless/rockchip wlan/rtl8xxx/Makefile
@@ -1593,7 +1593,7 @@ endif

ifeq ($(CONFIG PLATFORM ARM RK3188), y)

EXTRA CFLAGS += -DCONFIG_PLATFORM ANDROID

+EXTRA CFLAGS += -DCONFIG CONCURRENT MODE

AP/Azurewave module: wlanl is used as softap function, and generate wlanl nodes by iw command:
iw phyO interface add wlanl type managed

Debug and customized modification:

af://n259

//You can add encryption, modify IP address and dns and other related information
here by yourself
int wlan accesspoint start (const char* ssid, const char* password)
{
//Configuration of creating a softap hotspot

create hostapd file(ssid, password);

//softap name: wlanl/p2p0

sprintf (cmdline, "ifconfig %s up", softap name);

//Set a customize IP address

sprintf (cmdline, "ifconfig %s 192.168.88.1 netmask 255.255.255.0",
softap name) ;

//Create a configuration file of the dhcp address pool

creat dnsmasq_ file();

int dnsmasqg pid = get dnsmasq pid();

if (dnsmasq pid != 0) {

memset (cmdline, 0, sizeof (cmdline));

sprintf (cmdline, "kill %d", dnsmasq pid);

console run(cmdline);

}

memset (cmdline, 0, sizeof (cmdline));

//Use dnsmasqg as a dhcp server and assign an ip address to the device

sprintf (cmdline, "dnsmasq -C %s --interface=%s", DNSMASQ CONF DIR,
softap name) ;

console run(cmdline);

memset (cmdline, 0, sizeof (cmdline));

//Start softap hotspot mode

sprintf (cmdline, "hostapd %s &", HOSTAPD CONF DIR);
console run(cmdline);

return 1;

//Create a dhcp configuration file, which must be consistent with your customized
IP address, otherwise your phone will not obtain IP
bool creat dnsmasq file()

{

FILE* fp;
fp = fopen (DNSMASQ CONF DIR, "wt+");
if (fp != 0) {
fputs ("user=root\n", fp);
fputs ("listen-address=", fp);

fputs ("\n", £fp);

(
(
fputs (SOFTAP INTERFACE STATIC IP, fp);
(
fputs ("dhcp-range=192.168.88.50,192.168.88.150\n", f£fp);
fputs ("server=/google/8.8.8.8\n", fp);
fclose (fp) ;
return true;
}
DEBUG_ERR ("---open dnsmasq configuarion file failed!!---");

return true;

//Create AP hotspot configuration file, please consult Wi-Fi vendors for details,
the parameters here have a close relationship with chip specifications
int create_hostapd_file(const char* name, const char* password)
{
FILE* fp;

char cmdline[256] = {0};

fp = fopen (HOSTAPD CONF DIR, "wt+");

if (fp != 0) {
sprintf (cmdline, "interface=%s\n", softap name);
fputs (cmdline, f£fp);
fputs ("ctrl interface=/var/run/hostapd\n", £fp);
fputs ("driver=nl180211\n", f£fp):;
fputs ("ssid=", fp);
fputs (name, f£fp);

"\n", fp);

fputs ("channel=6\n", fp); // Channel settings

fputs

(
(
(
(
(
(
(
fputs ("hw_mode=g\n", fp); // 2.4/5G settings
fputs ("ieee80211n=1\n", fp);
fputs ("ignore broadcast ssid=0\n", fp);
#if 0 //If you choose encryption, modify here

fputs ("auth _algs=1\n", fp);

fputs ("wpa=3\n", fp);

fputs ("wpa passphrase=", fp);

fputs (password, fp);
"\n", fp);
fputs ("wpa key mgmt=WPA-PSK\n", fp);

fputs

(
(
(
(
(
(
fputs ("wpa pairwise=TKIP\n", fp);
fputs ("rsn pairwise=CCMP", fp);
#endif

fclose (fp) ;

return O;

}

return -1;

int main(int argc, char **argv)

//Set the corresponding hotspot interface according to the Wi-Fi model,
the 4.4 kernel can obtain the Wi-Fi model automatically through the
"/sys/class/rkwifi/chip" node, but there is no this node in the kernel version
4.19 and later, and the Wi-Fi model can be checked by the following way;

//BAMPAK/Azurewave: sys/ bus/sdio/drivers/bcmsdh sdmmc to check whether
this directory exists

//Realtek: sys/bus/sdio/drivers/rtl18723ds to check whether this directory

exists
if (!strncmp(wifi type, "RTL", 3))
strcpy (softap name, "p2p0");//For Realtek modules, use p2p0
else
strcpy (softap name, "wlanl");//For AMPAK/Azurewave modules, use
wlanl

if (!strncmp(wifi type, "RTL", 3)) {
//Realtek module will generate p2p0 node automatically after
opening the coexistence mode
console run("ifconfig p2p0 down");
console run("rm -rf /userdata/bin/p2p0");
wlan accesspoint start (apName, NULL);
} else {
console run("ifconfig wlanl down");
console run("rm -rf /userdata/bin/wlanl");

console run("iw dev wlanl del");

console run("ifconfig wlanO up");
//AP module needs iw command to generate wlanl node as softap
console run("iw phy0O interface add wlanl type managed");

wlan accesspoint start (apName, NULL);

After executing the command, you will see the corresponding AP under the setting Wi-Fi interface of the

phone. If not, please troubleshoot:

e First: ensure that the configuration files mentioned above are configured correctly;
¢ Second: confirm whether there is wlanl or p2p0 node in ifconfig;

e Third: whether the hostapd/dnsmasq process has started successfully;

4.3 BT Verification Test

First of all, make sure that dts/ Buildroot configuration are correct by referring to Chapter 2/3/7.2. Here are two
types of commonly used BT modules. If the configuration is correct, the system will generate a bt_pcba_test (or

the latest SDK will generate a bt_init.sh) script program.

Realtek modules:

#UART interface:
/ # cat usr/bin/bt pcba test (bt _init.sh)
#!/bin/sh

killall rtk hciattach

echo 0> /sys/class/rfkill/rfkill0/state #Power off

sleep 1

echo 1> /sys/class/rfkill/rfkill0/state #Power on

sleep 1

insmod /usr/lib/modules/hci uart.ko # Realtek modules need to load a
specific driver

rtk hciattach -n -s 115200 /dev/ttyS4 rtk h5 & # The blue refers to which uart
port is used by Bluetooth

#Note: every time you start a test, you have to kill the rtk hciattach process

firstly

#Note: There is no sh script for Bluetooth with USB interface, and execute
manually as follows:
echo 0 > /sys/class/rfkill/rfkillO/state #Power off

sleep 1

echo 1 > /sys/class/rfkill/rfkillQ/state #Power on

sleep 1

insmod /usr/lib/modules/rtk btusb.ko #realtek module needs to load usb driver

Azurewave/ AMPAK Modules:

af://n278

/ # cat usr/bin/bt pcba test (bt init.sh)
#!/bin/sh

killall brcm patchram plusl

echo 0> /sys/class/rfkill/rfkill0O/state # Power off
sleep 2
echo 1> /sys/class/rfkill/rfkill0/state # Power on
sleep 2

brcm patchram plusl --bd addr rand --enable hci --no2bytes --
use baudrate for download --tosleep 200000 --baudrate 1500000 --patchram
/system/etc/firmware/bcm43438al.hcd /dev/ttyS4 &

#Note: every time you start a test, you have to kill the brcm patchram plusl

process firstly
bem43438al.hed represents the firmware file corresponding to the BT model, and /dev/ttyS4 is the UART

port Bluetooth used.

Note: rtk hciattach, hci uart.ko, bcm43438al.hcd and other files are generated only when the
correct Wi-Fi/BT modules are selected in Buildroot configuration in Chapter 2. If these files are not available,

please check the above configurations (please refer to the building configuration file in Chapter 3).

After executing the script, execute:

Note: If there is no hciconfig command, please select BR2 PACKAGE_BLUEZS_UTILS in Buildroot

configuration to build and update test

hciconfig hciO up

hciconfig -a

Normally, you will see:

—Lll-

‘When abnormal, please refer to Chapter 7.2 for troubleshooting;

4.4 Wi-Fi Suspend and Resume

At present, Wi-Fi supports the network resume function. For example, when the device connects to an AP and
obtains an IP address, when the device suspends, we can resume the system through a wireless network packet

(ping). Generally, any network packet sent to the device can resume the system.
Modify the wpa_supplicant.conf file and add the following configuration:

wpa_ supplicant.conf

ctrl interface=/var/run/wpa supplicant

update config=1

ap_scan=1

+wowlan triggers=any # Add this configuration

For Realtek Wi-Fi, please check whether the following configuration is in the Makefile of the corresponding

driver:

kernel/drivers/net/wireless/rockchip wlan/rtl8xxx/Makefile
+CONFIG WOWLAN = y
+CONFIG GPIO WAKEUP = vy

DTS configuration: check the schematic diagram to ensure that WIFI WAKE HOST (or WL_HOST WAKE)

PIN is connected to the controller, and then check whether the following configuration of dts is correct:
WIFI,host wake irg = <&gpioO RK PAQ0 GPIO ACTIVE HIGH>
System and Wi-Fi suspend testing:

dhd priv setsuspendmode 1 # Only used for AMPAK/Azurewave modules, Realtek does
not need this command

echo mem> /sys/power/state

At this time, devices in the same local area network can ping this device. Normally, you can find that the system

is resumed. Note to return to normal Wi-Fi working state after the system is resumed:

dhd priv setsuspendmode 0 # Only for AMPAK and AzureWave modules, Realtek's do

not need this command

Troubleshooting: If the system does not wake up as expected, please check whether the wake pin is configured

correctly and the level status is correct, whether 32.768k is turned off, etc.

4.5 Wi-Fi Monitor Mode

AMPAK or AzureWave Wi-Fi modules:

af://n294
af://n307

#Set up monitoring channel:

dhd priv channel 6 //channal numbers

#Open monitor mode:

dhd priv monitor 1

#Close monitor mode:

dhd priv monitor 0
Realtek Wi-Fi modules:

#Driver Makefile should be opened:
+ CONFIG WIFI MONITOR = y

#Open wlan0 and close p2p0
ifconfig wlanO up

ifconfig p2p0 down

#Open monitor mode
iwconfig wlan0 mode monitor
or

iw dev wlanO set type monitor

#Switch channels
echo "<chan> 0 0"> /proc/net/<rtk module>/wlan0O/monitor // <rtk module> is the

realtek Wi-Fi module name, such like rtl88l12au, rtl8188eu ..etc

4.6 Wi-Fi P2P Verification

#New configuration file: p2p supplicant.conf

ctrl interface=/var/run/wpa supplicant

update config=1

device name=p2p name

device type=10-0050F204-5

config methods=display push button keypad virtual push button physical display
p2p_add cli chan=1

pmf=1

#Start: (kill the previous firstly)

wpa_ supplicant -B -i wlan0 -c /tmp/p2p supplicant.conf
wpa_ cli

> p2p find

>

#At this time, open p2p on the mobile phone, you wll search for the above

device name=p2p name, click to connect

#At this time it will display on the device: //The following is my phone

> <3>P2P-PROV-DISC-PBC-REQ 26:31:54:8e:14:e7 p2p dev addr=26:31:54:8e:14:e7
pri dev type=10-0050F204-5 name='www' config methods =0x188 dev_ capab=0x25
group_capab=0x0

#The device responds and send a connection command, and pay attention to the MAC

address to be consistent with the above

af://n312

>p2p_connect 26:31:54:8e:14:e7 pbc go_intent=1

> p2p connect 26:31:54:8e:14:e7 pbc go_intent=1

OK

<3>P2P-FIND-STOPPED

<3>P2P-GO-NEG-SUCCESS role=client freq=5200 ht40=0 peer dev=26:31:54:8e:14:e7
peer iface=26:31:54:8e:94:e7 wps method=PBC

<3>P2P-GROUP-FORMATION-SUCCESS

<3>P2P-GROUP-STARTED p2p-wlan0-2 client ssid="DIRECT-24-www" freg=5200
psk=3d67671b71f7al71118clace34aebedbcc8el7394394e258be91£55b7ab63748
go_dev_addr=26:31:54:8e:14e:14e:14

> #At this time the connection is successful

> quit

ifconfig
p2p-wlan0-2 Link encap:Ethernet HWaddr 82:C5:F2:2E:7F:89
inet addr:192.168.49.220 Bcast:192.168.49.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:470 errors:0 dropped:0 overruns:0 frame:0
TX packets:344 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes: 71779 (70.0 KiB) TX bytes: 33829 (33.0 KiB)
#You can see that the device is connected to the phone, and it is normal if you

can ping each other.

4.7 Connection Function

Case: Wi-Fi enables wlan0 to connect to an AP that can access Internet, together with opening wlanl or p2p0 as a
hotspot in Chapter 4.2, so that the mobile phone can connect to the hotspot for Internet access. The configuration

is as follows, and open the following configuration in the kernel :

+CONFIG_NETFILTER=y

+CONFIG_NF_ CONNTRACK=y
+CONFIG_NF_TABLES=y
+CONFIG_NF_TABLES INET=y
+CONFIG_NF_ CONNTRACK IPV4=y
+CONFIG IP NF IPTABLES=y
+CONFIG_IP NF NAT=y
+CONFIG_IP NF TARGET MASQUERADE=y
+CONFIG BRIDGE=y

Execute the following two commands to start the connection function, the following IP address is the address

configured when softap is started:

iptables -t nat -A POSTROUTING -s 192.168.43.0/24 -o wlan0 -j MASQUERADE
echo "1"> /proc/sys/net/ipv4/ip forward

5. Wi-Fi/BT Hardware RF Target

af://n314
af://n319

5.1 Test Items

Wi-Fi/BT test items:
For example: transmit power, EVM, crystal frequency offset, receiving sensitivity, etc.

Example: (b/g/n/ac):

ode 802.11b EF report

EEME ‘

17.17 16.86 17.21
S TE i |
fTransmit ‘

gpectrum mask

 tubps [pass | pass | pass |

fTransmit
maodul ation

acouracy 6.65% | 591% | 4.26%
|

= AR R E A

b I EEE R
fTransmit ‘
tolerance
Bh=aE,
Eeceiver
semsitivity | itbps | -84 | -83 | -82 | = 9z |
B T/ |
Eeceiver ‘

center
minimum input
maximum inhput

frequency
lewvel ‘
Lzl 11Mbps % —10dBn

Antenna test items:
Passive S11, OTA test of the whole active Wi-Fi antenna

Example:

5.2 Test Tools and Methods

The PDF/TXT documents mentioned below can be found in the docs/linux/wifibt directory, and if
customers have test problems or without professional test equipment, please directly contact module
vendors for assistance.

af://n320
af://n329

5.2.1 Realtek Test

Generally, there are two types of COB and module. Modules are generally strictly tested by the module factory
and flashed calibrated data to internal efuse by default. Customers only need to test and verify whether the
indicators are qualified; while COB need to design Wi-Fi peripherals circuits and additional components, so you
need to complete RF calibration test with Realtek, and integrate the calibrated data into efuse of the chip or load

it by driver. Please contact module vendor directly for details.

Wi-Fi test:

Please refer to Quick Start Guide V6.txt, pay special attention to replace the

command iwpriv with rtwpriv.

BT test:

Please refer to MP tool user guide for linux20180319.pdf (please contact module vendors or manufacturers for
detailed test items), pay special attention to the test that the module factory needs to provide a Bluetooth

firmware file specially used for testing, and put it in the specified directory to test the Bluetooth indicators..

Note: please turn on the BT power before testing
echo 0> sys/class/rfkill/rfkill0O/state

sleep 1

echo 1> sys/class/rfkill/rfkill0/state

Special attention: the process rtk hciattach cannot be run, please kill killall

rtk hciattach

11777777777
/ #
/ # rtlbtmp

>enable uart:/dev/ttyS4 # Note that ttySX corresponds to connected hardware uart
port actually
>

>>> enable[Success:0]

If it is Realtek's COB solution, and you need to integrate the test calibration data map file into driver,

please refer to the following way:

drivers/net/wireless/rockchip wlan/rtl8xxx/core/efuse/rtw efuse.c
#ifdef CONFIG EFUSE_CONFIG FILE
u32 rtw read efuse from file(const char *path, u8 *buf, int map size)
{

u32 i;

u8 c;

u8 templ[3];

u8 temp 1i;

u8 end = FALSE;

u32 ret = FAIL;

u8 *file data = NULL;

af://n331

u32 file size, read size, pos = 0;
u8 *map = NULL;

if (rtw _is file readable with size(path, &file size) != TRUE) ({
RTW_ PRINT ("%s %s is not readable\n", ~ func , path);

goto exit;

file data = rtw vmalloc(file size);
if (!file data) {
RTW _ERR("%s rtw _vmalloc(%d) fail\n", _ func , file size);

goto exit;

#if 0 //Block out here
read size = rtw retrieve from file(path, file data, file size);
if (read size == 0) {

RTW _ERR("%s read from %s faill\n", func_ , path);

goto exit;

RTW_PRINT ("efuse file:%s, 0x%03x byte content read\n", path, i);
#endif

//Change the calibration "map file" provided by the module vendor into an array
form and assign it to map.
_rtw_memcpy (buf, map, map size); //It is the operation that final assignment

of map to buf
ret = SUCCESS;

exit:
if (file data)
rtw vmfree (file data, file size);
if (map)

rtw _vmfree (map, map size);

return ret;

5.2.2 AP/CY Test

Wi-Fi Test
Firstly, replace it with test firmware: the test firmware of each AP module is different, such as:

AP6236 -> fw bcm43436b0 mfg.bin
AP6212A -> fw bcm43438al mfg.bin

The fw_bemxxx _mfg.bin and APxxxx should be matched according to your module model, otherwise it cannot
be tested! So confirm whether there is a test firmware of the corresponding model firstly, if you don't find it,

please ask module vendor to provide it.

The latest SDK has built-in test firmware for supporting models, so use the built-in test script to let Wi-Fi enter
RF test mode directly:

af://n340

external\rkwifibt\wifi ap6xxx rftest.sh
#!/bin/sh

killall ipc-daemon netserver connmand wpa supplicant
echo "Pull BT REG ON to Low"

echo 0> /sys/class/rfkill/rfkill0/state

echo "Pull WL REG ON to Up"

echo 1> /sys/class/rfkill/rfkilll/state
sleep 1

echo "update wifi test fw"

echo /vendor/etc/firmware/fw bcmdhd mfg.bin>
/sys/module/bcmdhd/parameters/firmware path
sleep 1

ifconfig wlanO down

ifconfig wlanO up

sleep 1

echo "wl ver"

wl ver

The previous SDK does not have a built-in test firmware. The following takes AP6236 as an example:

Push fw bcm43436b0 mfg.bin to data or other writable partitions, and then
execute the following command: (note the path below)

mount --bind /data/fw bcm43436b0 mfg.bin /system/etc/firmware/fw bcm43436b0.bin
ifconfig wlan0 down

ifconfig wlan0O up

wl ver

Normally, executing wl ver will print a string of characters with the word WL_TEST in it, indicating that it

has entered the test mode. Please refer to the following document for detailed test:

Wi-Fi RF Test Commands for Linux-v03.pdf

Bluetooth Test

After executing the bt _init.sh script (it is in SDK by default, please refer to Chapter 3.3), execute :(Note: If there
is no hciconfig command, please select BR2 PACKAGE_BLUEZS_UTILS in the Buildroot configuration
to build and update the test):

hciconfig hci0O up

hciconfig -a
It does not finish the initialization until hciO node appears. But when it does not appear, there are two
possibilities:

1. The Bluetooth dts configuration is abnormal or the hardware is abnormal or the uart port is configured
incorrectly, causing the failed initialization;

2. The Bluetooth firmware file is configured incorrectly or there is no such file;
Please refer to the BT related troubleshooting in Chapter lor 2;

For detailed test instructions, please refer to:

BT RF Test Commands for Linux-v05.pdf #Test 1/2 steps in the document have been

executed in the script, no need to execute)

5.3 Report

After confirming the above hardware tests, please output a test report, which should be provided to us when you

encounter performance or stability problems.

6. Wi-Fi Performance Test

Pleas test performance by iperf
Pay attention to the following two items that affect performance:

e After finishing Wi-Fi RF test and OTA test of antenna, and make sure that there is no problem with the
indicators before testing performance, otherwise it is meaningless;
e Ifyou find the data fluctuates greatly, please go to an open space or basement or other places with little

interference to confirm again (it is best to test in a shielded room);

Test environment: due to the large interference factors in an open environment, it is recommended to test in
a shielded room. First, ensure that Wi-Fi can connect to an AP normally and obtain an IP address;
Test points: the size of throughput rate, and stability, whether there is up and down fluctuations, etc.;

Router channel: choose low, medium, and high channels to test separately, such as 1/6/11 channel:

TCP
Down:

Board: iperf -s -i 1

Computer: iperf -c xxxxxxx (IP address of the board) -i 1 -w 2M -t
120
Up:

Compute: iperf -s -i 1

Board: iperf -c xxxxxxx (IP address of the computer) -i 1 -w 2M -t 120
UDP
Down:

Board: iperf -s -u -i 1

Compute: iperf -c xxxxxxx (IP address of the board) -u -i 1 -b 100M -t 120
Up:

Compute: iperf -s -u -i 1

Board: iperf -c xxxxxxx (IP address of the computer) -u -i 1 -b 100M -t
120

Note: The iperf command of the board should be configured in the Buildroot:
BR2 PACKAGE IPERF = y

7. Wi-Fi/BT Troubleshooting

af://n363
af://n365
af://n375

7.1 Brief Description of Wi-Fi Identification Process

SDIO interface: kernel MMC framework will initialize the SDIO WiFi device when booting,. First, it will parse
the GPIO configured by the reset-gpios attribute of the sdio_pwrseq node in the dts, that is, WL_REG_ON and
then pull it High, and send an initialization command to the module through SDIO_CLK/CMD/DATA. Firstly,
the controller will access the module at a low frequency of 400/300/200K and ask its basic information: SDI02.0
(maximum CLK is 50M) or 3.0 (maximum CLK is 208M), support 4-line or 1-line and other information, and
then increase the CLK frequency to high frequency according to the supported specifications. At this time, the

initialization is basically completed, and you will see the following log:

Note that mmcO: The number of 0 is not fixed, it may be 0/1/2; f££f4a0000:
indicates the address of the controller, and different platforms are also
different;

dwmmc_rockchip £f4a0000.dwmmc: allocated mmc-pwrseq

low frequency

mmc_host mmcO: Bus speed (slot 0) = 400000Hz (... actual 400000HZ div = 0)

increase frequency

mmc_host mmc0O: Bus speed (slot 0) 50000000Hz (... actual 50000000HZ div = 0)
mmcO0: new high speed SDIO card at address 0001 #SDIO 2.0

or
mmcx: new ultra high speed SDR104 SDIO card at address 0001 #SDIO 3.0

USB/PCIE interface: The identification process of these two interfaces is complicated. Please refer to the
USB/PCIE related documents in the doc/ directory. After identification:
USB interface: If it is recognized normally, execute Isusb, you will see the following information:

Bus 001 Device 002: ID Obda:£f179 Realtek Semiconductor Corp. RTL8188FTV
802.11b/g/n 1T1R 2.4G WLAN Adapter

PCIE interface: If it is recognized normally, execute Ispci, you will see the following information:

0002:21:00.0 Network controller: Broadcom Inc. and subsidiaries Device 449d (rev

02)

Note: The above identification processes are all identified during the boot process. Only after the correct

device is identified, Wi-Fi driver will be loaded correctly!

7.2 Wi-Fi Issues

Wi-Fi with SDIO interface: There are generally two cases

¢ First, make sure to find the following LOG in the kernel log. If not, it means that the SDIO card is not

recognized. For such issues, please refer to Chapter 7.1.1;

mmcO: new high speed SDIO card at address 0001

or
mmcx: new ultra high speed SDR104 SDIO card at address 0001

e If you see the LOG that recognizes SDIO normally, but without wlan0 or wlanO up fails; Refer to Chapter
7.1.2/7.1.3/7.1.4;

af://n376
af://n385

7.2.1 Wi-Fi Abnormal: SDIO Can Not Be Recognized

Follow the steps below to check the kernel LOG in turn:

¢ First of all, it is strongly recommended to double check the DTS/KERNEL configuration in Chapter
2 in detail! ! !

¢ Check the figure below, measure the level status of the corresponding pins and whether the CLK frequency
is correct according to the label (Note: SDI0O3.0 mode must be 1.8V)

- ceote £u=ovonm ANTRCS.
o003 | 2anF (Y 3 X \/CC_WL/VBAT 3.3V 1| B
8.2nH
Losoz] coaoz Eg’! —"Y:: 5 H . REOD0Y OR 5% 2 R0402 14
X5R
o ceon1 _| ceooz S | ceoo0 ™ | 2 o
10uF 100nF [l 308
_______________ - X5R E Leobo €06 Leod1
d 0 o 10V e fé pioz 50 0z
cosos | cosoz onP coa ONP
| OPTION 1 oo Ry . .
: 1 212_OR : N WIFIL XTAL_IN = =)
YB000 Z &% |,
I] 4 =
‘R T oo P H o == A
I 2 a 11 22 oR_ WIFI_XTAL_OUT o 2
(- ceons I 000 2 R ‘ T TT | N
] 22pF 37.4MI CEO0S | - o
= CRYA BRADXERSOX0RET Zr [! [
s0v e
o S 1 sEzuvveEsss
I] D mEIIL 02z
| $7 . auiiz: 4-10ppm| o H et TN
* IR Dok
| = = 1 E hhkET |
L= = \ = 38 H 47
--------------------- I, N_VDOSWP_IN g%
zy N_VDDSWP_GUT gz
(1 X WI_REG_ON 1.8/3.3V g NVDDSWPIO | ==
|
WIFI_REG_ON_(s
WIFLWARE_ROST T WL HUgT w UART €TS N UART4_RTS
WIFLD S A,
ket A 6 X SDIO CMD/DATAD~3 [éum_m Renzz on
WL CHD SDIO_DATA 3 1.8/3 3V UART_TXD AT 2 \MIART4_CTS
WFTEIR SOIO_DATA_EMD 3/3. UART_RTS & X
WIFLDT 57| SDIO_DATA_ELK /3 1 2%
...... SOIO_DATA_O T [
SOIO_DATA_1 N_REG_PU
NC12C_SCL

(2] VCCIO _SDIO/VDDIO 1.8/3.3
N_I2C_SDA

= ool 126
| ceoee _| ceoor BT_FST N
TF 1000F

PR [—— og
A By ZX
: Leonz 1 8 3dzzR% &
1 3.3uH | ;IE E‘E‘i‘i‘n‘g 38
1 el 52PkbopsEsd
1 0.080nm
-
: up to 700mA : R
: T auF |
H STKsR L B B B B 0T, -
10v 1
1 OPTION 2 2| coes \ Ih :
................. a
B 1
oL Reoos 1 30005 2 gosoz wik st azkn | SJEDIQINCS H
e RED1S cs00s 7| e
120K ONP PCM CLK
% Co402 PCM_IN

o RO402

¢ Measure the timing of VBAT/VDDIO/WL_REG_ON with an oscilloscope to ensure that the following

timing requirements are met:

Many customers fail to recognize SDIO because of abnormal VDDIO power-on sequence.

31768 Kz Sleep Clock

SRR EEEEES NS EE.

VBAT f ~—

90% of VH

vDDIO

~ 2 Sleep cycles

WL_REG_ON

BT_RST_N

¢ WL_REG_ON: Enable pin for WLAN device ON: pull high ; OFF: pull low [Voltage: VDDIO]

The WL_REG_ON configuration of DTS is incorrect, resulting in the Wi-Fi enable pin can not being pulled high;

af://n394

Method 1: You can use an oscilloscope to test its waveform to see if it is pulled high or low, and whether the
voltage amplitude (1.8/3.3V) meets the requirements; Because SDIO will retry several times during
initialization, when the identification is successful: WL._REG_ON will be pulled high, and if the

identification fails, it will be pulled low; if it is always low, it means DTS configuration error;

Method 2: Pull up hardware WL_REG_ON directly to verify, if it can be recognized, it means that the DTS
WL _REG_ON configuration is incorrect;

The typical abnormal LOG is as follows: (mmeX: The number of X is not fixed)

mmc_host mmcl: Bus speed (slot 0) = 300000Hz (slot req 300000Hz, actual 300000HZ
div = 0)
mmc_host mmcl: Bus speed (slot 0) = 200000Hz (slot req 200000Hz, actual 200000HZ
div = 0)
mmc_host mmcl: Bus speed (slot 0) = 100000Hz (slot req 100000Hz, actual 100000HZ
div = 0)

e DTS WL_REG_ON configuration error

Both of sdio_pwrseq and wireless-wlan are configured with WL_REG_ON, which leads to repetition,

please double check the DTS configuration introduction!

[WLAN RFKILL]: Enter rfkill wlan init

[WLAN RFKILL]: Enter rfkill wlan probe

[WLAN RFKILL]: wlan platdata parse dt: wifi chip type = ap6255
[WLAN_RFKILL]: wlan_platdata parse_dt: enable wifi power control.

[WLAN RFKILL]: wlan platdata parse dt: wifi power controled by gpio.

of get named gpiod flags: parsed 'WIFI,poweren gpio' property of node '/wireless-
wlan[0]' - status (0)

[WLAN RFKILL]: wlan platdata parse dt: WIFI,poweren gpio = 6 flags = O.
of get named gpiod flags: can't parse 'WIFI,vbat gpio' property of node
'/wireless-wlan[0]"'

of get named gpiod flags: can't parse 'WIFI,reset gpio' property of node
'/wireless-wlan[0]"

of get named gpiod flags: parsed 'WIFI,host wake irqg' property of node
'/wireless-wlan[0]"' - status (0)

[WLAN_RFKILL]: wlan platdata parse dt: WIFI,host wake irg = 8, flags = 0.
[WLAN RFKILL]: wlan platdata parse dt: The ref wifi clk not found !

[WLAN RFKILL]: rfkill wlan probe: init gpio

gpio-6 (reset): gpiod request: status -16

[WLAN RFKILL]: Failed to get rkwifi wlan poweren gpio.

wlan-platdata: probe of wireless-wlan failed with error -1

¢ VDDIO/SDIO: 1I/O Voltage supply input

The VDDIO power supply of pin 12 must be 3.3/1.8V, and the corresponding SDIO_CMD/SDIO_DATA0~3
must also be 3.3v or 1.8V.

¢ JO Power Domain

VDDIO: The power supply voltage does not match the DTS power domain configuration (please refer to
Chapter 2.2.3 10 power domain configuration);

¢ SDIO_CLK without waveform

SDIO_CLK: The wrong IO power domain setting may cause the CLK waveform can not to be measured (please
refer to Chapter 2.2.3 I0 Power Domain Configuration);

SDIO_CLK: Whether there is a pull-up resistor, if so, remove and then test;

¢ Insufficient power supply or too much ripple

VCC_WL/VBAT/VDDIO_SDIO: Insufficient power supply or too much ripple

Realtek modules

RTL871X: ### rtw hal ops check - Error : Please hook HalFunc.
#H#

RTL871X: ### rtw_hal ops check - Error : Please hook HalFunc.
###

RTL871X: ### rtw hal ops check - Error : Please hook HalFunc.
#H4

RTL871X: ### rtw _hal ops check - Error : Please hook HalFunc.
#H#

RTL871X: ### rtw hal ops check - Error : Please hook HalFunc.
RTL871X: ### rtw hal ops check - Error : Please hook HalFunc.

e 32.768K

External clock reference (External LPO signal characteristics)

read chip version

init default value

intf chip configure

read adapter info

hal power on ###
hal power off ###

Parameter Specification Units
Nominal input frequency 32.768 kHz
Frequency accuracy +30 ppm
Duty cycle 30-70 %
Input signal amplitude 400 to 1800 mV, p-p
Signal type Square-wave -

Input impedance >100k <5 Q pF
Clock jitter (integrated over 300Hz — 15KHz) <1 Hz
Output high voltage 0.7Vio - Vio v

CLK 32K OUT: There is no 32.768K waveform, or the waveform amplitude or

requirement of the above table

#Without 32k, abnormal log of AMPAK/Azurewave module::

11.074372] dhd bus init: clock state is wrong. state = 1

—_ = = —

12.086051] dhd net bus devreset: dhd bus devreset: -1

accuracy is not meet the

11.068180] dhdsdio htclk: HT Avail timeout (1000000): clkctl 0x50

12.078468] dhdsdio_htclk: HT Avail timeout (1000000): clkctl 0x50

¢ PCB trace quality/inappropriate capacitance or inductance/I0_DOMAIN voltage setting error

Case 1: SDIO_CLK/CMD/DATAX: PCB layout abnormality or capacitance and inductance do not

meet requirements, or poor connection and poor soldering lead to fail to initialize or run high

frequency, you can reduce the frequency appropriately to confirm whether it meets the timing

requirements of CLK/CMD/DATA in the datasheet of the WiFi module:

SDI02.0: SDIO High Speed Mode Timing Diagram (CLK <= 50M);

SDI03.0: SDIO Bus Timing Specifications in SDR Modes (SDR104/DDR50) (50M < CLK <= 208M);

Case 2:Wi-Fi does not match the controller's sdio voltage, please check whether the software io_domian

configuration is consistent with the hardware (please refer to Chapter 2.2.3)

Abnormal logl:

mmc_host mmcl: Bus speed(slot0)=100000000Hz (slotreq 100000000Hz, actual
100000000HZ div=0)

dwmmc_rockchip ££f0d0000.dwmmc: All phases bad!

mmcl: tuning execution failed

mmcl: error -5 whilst initialising SDIO card

Abnormal log2, For example, the log of data communication abnormality such as
failling to download firmware and so on:

sdioh buffer tofrom bus: TX FAILED ede95000, addr=0x08000, pkt len=1968, ERR=-84
_dhdsdio download firmware: dongle image file download failed

dhd bus devreset Failed to download binary to the donglesdio

Abnormal log3

dwmmc_rockchip 30120000.rksdmmc: Busy; trying anyway

sdioh buffer tofrom bus: RX FAILED c52ce000, addr=0x0f154, pkt len=3752, ERR=-5
dhdsdio membytes: membytes transfer failed

bcmsdh sdmmc: Failed to Write byte F1:@0x1000a=00, Err: -5

bcmsdh sdmmc: Failed to Write byte F1:@0x1000a=00, Err: -5

bcmsdh sdmmc: Failed to Write byte F1:@0x1000a=00, Err: -5

dhdsdio membytes: FAILED to set window back to 0x18100000

e WL_HOST_WAKE: WLAN to wake-up HOST [Voltage: VDDIO]
WL _HOST WAKE PIN or interrupt level configuration error (please refer to Chapter 2.2.1), or virtual

soldering, resulting in the following abnormality or system stuck:

Abnormal log of AMPAK and Azurewave module:
dhd bus rxctl: resumed on timeout, INT status=0x208000CO

dhd bus rxctl: rxcnt timeout=1, rxlen=0

The way to modify the frequency:

&sdio {
+ max-frequency = <10000000>; # Modify here to limit the frequency

e A certain line of SDIO_D1~3 is poorly soldered

If there is a log similar to the following, and it is still abnormal to reduce the max frequency to less than 10M:

[22.430412] mmc_host mmc3: Bus speed (slot 0)
actual 375000HZ div = 0)

[22.447549] mmc_host mmc3: Bus speed (slot 0) = 375000Hz (slot reqg 375000Hz,
actual 375000HZ div = 0)

375000Hz (slot reg 400000HZ,

[22.476779] mmc3: queuing unknown CIS tuple 0x80 (2 bytes)

[22.478881] mmc3: queuing unknown CIS tuple 0x80 (3 bytes)

[22.480874] mmc3: queuing unknown CIS tuple 0x80 (3 bytes)

[22.484301] mmc3: queuing unknown CIS tuple 0x80 (7 bytes)

[22.598965] mmc_host mmc3: Bus speed (slot 0) = 148500000Hz (slot reqg
150000000Hz, actual 148500000HZ div = 0)

[23.466816] dwmmc_rockchip fe000000.dwmmc: Unexpected xfer timeout, state 3
[24.370310] dwmmc rockchip fe000000.dwmmc: All phases bad!

[24.370391] mmc3: tuning execution failed: -5

Then modify it to 1-line mode to test:

&sdio {

+ bus-width = <1>; /* change to l-wire mode and test */

If it takes effect, it means that there is a hardware problem with one of SDIOD1~3 line of the hardware, such as

virtual soldering or wrong connection;
e Module/chip is defective product

There is a small probability that the controller chip or Wi-Fi module is found to be defective, and you can find a

few more devices for verification;

¢ Abnormal iomux multiplexing

rockchip-pinctrl pinctrl: pin gpio3-4 already requested by ££120000.serial;
cannot claim for f£f5f0000.dwmmc

rockchip-pinctrl pinctrl: pin-100 (££5f0000.dwmmc) status -22
rockchip-pinctrl pinctrl: could not request pin 100 (gpio3-4) from group
sdmmcOext-bus4 on device rockchip-pinctrl

dwmmc_rockchip f£f5f0000.dwmmc: Error applying setting, reverse things

e Others

If the above troubleshooting fails, please upload to RK redmine system: dts/dtsi configuration, complete
kernel log dmesg, pdf schematic diagram and other files, and provide: WIFI_REG_ON and Wi-
Fi_CLK/Wi-Fi CMD three lines on the power-on waveform diagram;

Abnormal log:

.842211] dhd module init: in Dongle Host Driver, version 1.579.77.41.10 (r)
.842219] ======== dhd _wlan_init plat data ========

.842224] [WLAN RFKILL]: rockchip wifi get oob irqg: Enter

3.842236] dhd wlan init gpio: WL HOST WAKE=-1, oob irg=71,

w W w

[
[
[
[

oob irqg flags=0x414

3.842240] dhd wlan init gpio: WL REG ON=-1

.842244] dhd wifi platform load: Enter

.842272] Power-up adapter 'DHD generic adapter'
.842321] wifi platform set power = 1

.842326] ======== PULL WL _REG ON(-1) HIGH! ========
.842332] [WLAN RFKILL]: rockchip_wifi_power: 1
.842338] [WLAN RFKILL]: wifi turn on power. -1

w W W w w w

[
[
[
[
[
[
[

actual
3
3
3
3
4.

500000
4

— — — — — — —/ —/ — —/ —/ — — ~— ~— — ~— ~— — — — B — —= — —/ —

[N T~ T S T S S S T T S O T T T S ST ST o

.852660]

mmc_host mmc2: Bus speed (slot 0) = 300000Hz (slot reg 300000HzZ,

300000HZ div = 0)

.905554]
.907592]
.909632]
.913294]

010193]

mmc2: queuing unknown CIS tuple 0x80 (2 bytes)
mmc2: queuing unknown CIS tuple 0x80 (3 bytes)
mmc2: queuing unknown CIS tuple 0x80 (3 bytes)
mmc2: queuing unknown CIS tuple 0x80 (7 bytes)
mmc_host mmc2: Bus speed (slot 0) = 150000000Hz (slot req

00Hz, actual 150000000HZ div = 0)

.142591]
.142597]
.142603]
.266632]
.271163]
.288408]
.288816]
.289045]
.289050]
.289056]
.289179]
.289285]
.289947]
.290183]
.300297]
.300304]
.300311]
.300318]
.300323]
.300327]
.300557]

wifi platform bus enumerate device present 1

======== Card detection to detect SDIO card! ========
mmc2:mmc host rescan start!

dwmmc rockchip fe310000.dwmmc: Successfully tuned phase to 216
mmc2: new ultra high speed SDR104 SDIO card at address 0001
bcmsdh register: register client driver

bcmsdh sdmmc _probe: Enter num=1

bcmsdh sdmmc probe: Enter num=2

bus num (host idx)=2, slot num (rca)=1

found adapter info 'DHD generic adapter'

sdioh attach: set sd f2 blocksize 256

sdioh attach: sd clock rate = 0

dhdsdio probe : no mutex held. set lock

Fl signature read @0x18000000=0x1042aae8

Fl signature OK, socitype:0x1 chip:0xaae8 rev:0x2 pkg:0x4
dhdsdio probe attach: unsupported chip: Oxaae8

dhdsdio probe: dhdsdio probe attach failed

dhdsdio probe : the lock is released.

bcmsdh probe: device attach failed

sdioh probe: bcmsdh probe failed

bcmsdh sdmmc: probe of mmc2:0001:2 failed with error -12

7.2.2 USB Wi-Fi Troubleshooting

USB Wi-Fi will print the information similar to the following, if not, the Wi-Fi driver will not be loaded:

usb 2-1:
usb 2-1:
usb 2-1:
uglo 2-i.8

new high-speed USB device number 2 using ehci-platform

New USB device found, idVendor=0bda, idProduct=b82c #PID/VID of vendor
New USB device strings: Mfr=1, Product=2, SerialNumber=3

Product: 802.1lac NIC

If you do not refer to Chapter 2.2.1, please check whether the module enable pin WL_REG_ON is pulled

high and whether the USB-related configuration is correct.

7.2.3 Special Notice of Realtek Wi-Fi

When you finish troubleshoot in Chapter 6.1, but Realtek Wi-Fi still cannot recognize SDIO, then confirm the

following two points:

af://n518
af://n522

7.2.3.1 wlan0 Has Identified but Scan Abnormality

e Rf-Link/Fn-Link Wi-Fi module: PIN25 (corresponding to the 22 PIN of the COB chip) is the internal
multiplexing pin of the chip, one is connected to the PCM_IN of RK chip as PCM_OUT, used for Bluetooth
PCM calls function; the other is as Wi-Fi IC LDO_SPS_SEL function (SPS or LDO mode selection), when
this pin is low, it means SPS mode, when it is high, it is LDO mode, so this pin is either High or Low
level, if there is a half-level , it will cause the Wi-Fi to fail to work normally, such as failing to scan SDIO
or failing to scan AP. If a half-level hardware is detected, it is required to pull-up

e Required module: PIN7 must be pulled down.

7.2.3.2 Realtek Supports SDI03.0

Realtek Wi-Fi SDIO 3.0 abnormality

When using high-end modules such as RTL8821CS that support 3.0, initialization failure with some probability,

and the abnormal log is as follows:

mmc_host mmcl: Bus speed (slot 0) = 400000Hz (slot req 400000Hz, actual 400000HZ
div = 0)
mmc_host mmcl: Voltage change didn't complete

mmcl: error -5 whilst initialising SDIO card

Please add the following patches:

diff --git a/drivers/mmc/core/sdio.c b/drivers/mmc/core/sdio.c
index 2046eff..6626752 100644
--- a/drivers/mmc/core/sdio.c
+++ b/drivers/mmc/core/sdio.c
@@ -646,7 +646,7 @@ static int mmc sdio init card(struct mmc host *host, u32 ocr,
* try to init uhs card. sdio read cccr will take over this task
* to make sure which speed mode should work.
*/
- 1f (!powered resume && (rocr & ocr & R4 18V PRESENT)) {
+ /*if (!powered resume && (rocr & ocr & R4 18V PRESENT)) ({

err = mmc_set uhs voltage (host, ocr card);

if (err == -EAGAIN) {

mmc_sdio resend if cond(host, card):;

@@ -655,7 +655,10 @@ static int mmc sdio init card(struct mmc_host *host, u32

OC®,
} else if (err) {
ocr &= ~R4 18V PRESENT;
}
-}
+ }*/
+

+ ocr &= R4_18V_PRESENT;

#The other way
if (host->ops->card busy && !host->ops->card busy(host)) {
+#if 0 /* SDIO 3.0 patch for Realtek 88x2BS */
err = —-EAGAIN;
goto power cycle;
+#else

no

+ pr warning("%s: Ignore checking low after cmdll\n",

af://n524
af://n530

+ mmc_hostname (host)) ;
+#endif

7.2.4 Wlan0 of RV1109/1126 Platform Cannot Be Up

ifconfig -a #There is a wlan0O interface, but ifconfig wlan0O reports this
error

ifconfig: SIOCSIFFLAGS: Operation not possible due to RF-kill

#Buildroot configuration, modify the following configuration and save:
BR2 PACKAGE IPC_DAEMON = n

BR2 PACKAGE NETSERVER = n

BR2_PACKAGE CONNMAN = n

BR2_PACKAGE DHCPCD = y

#Delete intermediate files:
buildroot/output/rockchip rv1126 rv1109 xxx/target/etc/init.d/S45connman
buildroot/output/rockchip rv1126 rv1109 xxx/target/usr/bin/connmanctl
buildroot/output/rockchip rv1126 rv1109 xxx/target/usr/sbin/connmand
buildroot/output/rockchip rv1126 rv1109 xxx/target/usr/sbin/ipc_daemon
buildroot/output/rockchip rv1126 rv1109 xxx/target/usr/sbin/netserver
#Rebuild to ensure busybox ps after booting: there is no processes such as

ipc_daemon/connmand/netserver appear

7.2.5 Wi-Fi SDIO Card Is Recognized but Wlan0 Up Failed

The following log appears in the kmesg log, indicating that SDIO is recognized normally, but Wi-Fi is still

unavailable.

mmcx: new high speed SDR104 SDIO card at address 0001
#or

mmcx: new ultra high speed SDR104 SDIO card at address 0001

e Wi-Fi driver ko mode: insmod ko loading error, please refer to Chapter 2.4;
e Wi-Fi driver buildin mode: kernel configuration error, please refer to Chapter 2.4;
e The Firmware file does not exist or the file name does not match the module model (only for AMPAK and

Azurewave modules), please refer to Chapter 3.3;

[dhd] dhd conf set path params : Final

clm path=/vendor/etc/firmware/clm bcm43438al.blob

[dhd] dhd conf set path params : Final conf path=/vendor/etc/firmware/config.txt
dhdsdio download code file: Open firmware file failed

/vendor/etc/firmware/fw_bcm43438al.bin

_dhdsdio download firmware: dongle image file download failed
e The power supply of the Wi-Fi module is unstable

[14.059448] RTW: ERROR sd write8: FAIL! (-110) addr=0x10080 val=0x00
[14.059602] RTW: ERROR sd cmd52 read: FAIL! (-110) addr=0x00086
[14.059615] RTW: ERROR sdio chk hci resume((null)) err:-110

af://n536
af://n538

e The RTL module scans abnormally, for example, the AP cannot be scanned

Please refer to Chapter 7.2.3.1

[43.859911] RTW: sdio_power_on_check: val_mix:OxOOOOO63f, res:0x0000063f

[43.859932] RTIW: sdio power on check: 0x100 the result of cmd52 and cmd53 is the
same.

[43.860022] RTW: sdio power on check: 0x1B8 test Pass.

[43.860115] RTW: InitPowerOn 8723DS: Test Mode

[43.860156] RTW: InitPowerOn 8723DS: SPS Mode

¢ The buildin and ko modes of the kernel configuration are selected at the same time or the

configuration does not match

1. The Wi-Fi driver is loaded too early, causing an exception. From the log, it can be seen that the driver is
loaded more than 0 points. At this time, the sdio/usb device has not been enumerated. Pleas check the
kernel configuration chapter;

2. The system loads two kos at the same time, one is bcmdhd.ko and the other is 88xx.ko, which causes an

abnormality. Please refer to the compilation instructions in Chapter 3 for details;

7.2.6 Wi-Fi with SDIO Interface Runs Abnormally After A Period of Time

Case 1: SDIO_CLK/CMD/DATAX: PCB trace is abnormal, capacitor and inductance does not meet the
requirements, poor connection, poor soldering and other problems lead to abnormal initialization or can
not run high frequency, you can reduce the frequency to confirm (modify the max-frequency under &sdio
node) If the frequency can be reduced, you need to find the hardware measurement waveform to confirm
whether it meets the timing requirements of CLK/CMD/DATA in the datasheet of the Wi-Fi module.

SDI02.0: SDIO High Speed Mode Timing Diagram (CLK <= 50M);
SD103.0: SDIO Bus Timing Specifications in SDR Modes (SDR104/DDR50) (50M < CLK <= 208M);

&sdio {

+ max-frequency = <10000000>; # Modify here to limit the frequency

Case 2: Wi-Fi and the controller's sdio voltage do not match, please check whether the software io_domian

configuration is consistent with the hardware (please refer to Chapter 2.2.3)

7.2.7 Wi-Fi Unable to Connect to Router for Disconnection or Unstable Connection

This kind of problem is usually caused by the unqualified RF and antenna indicators of the Wi-Fi chip or
module. The confirmation method is as follows:

¢ RF indicators

First, get a report on the Wi-Fi RF indicators and the antenna OTA test of the whole device from a hardware
engineer to ensure that the hardware indicators are normal (transmit power, EVM, crystal frequency offset,

receiving sensitivity);

e Scan comparison

af://n566
af://n572

Do a basic scan comparison: place the test device and the mobile phone at the same location away from the
router, and preliminarily check whether the hardware indicator is normal by comparing the number of APs
scanned and their signal strength with the mobile phone (or a competitor of the same specification). Please refer
to Chapter 4.1 for the scanning method. It is going to introduce how to compare it with a mobile phone. Find an
Android phone, go to the developer option from settings, enable the option of WLAN detailed logging, and go
back to the WLAN setting interface to see the AP's detailed information includes RSSI, and the hardware
indicators are preliminarily checked by comparing the number of hotspots and signal strengths scanned by the

mobile phone;
o Interference

Troubleshooting interference factors. For example, there are a lot of 2.4/5G wireless devices connected at the
same time in the current environment, so that the current environment has a lot of interference, you can put the
test device and the comparison mobile phone (or a competitor of the same specification) at the same location, if
both are abnormal, it can be regarded as interference; if the mobile phone is normal, it can be regarded as an

abnormal hardware indicator of the device;
e Distance

Troubleshooting distance factors, the signal is weak due to too long distance (by scanning wpa_cli scan/scan_r,
the signal strength of the connected AP is between -70 ~ -90), which leads to communication failure, you can

reduce the distance to confirm;
e Router compatibility

Troubleshooting router compatibility issues, you can replace routers of different manufacturers and models to

confirm;
e Consistency

Troubleshooting abnormal problem of the single board, you can use two or three devices for comparative testing;
e Ask the module vendor for assistance

You can directly ask the module vendor or the original Wi-Fi manufactory for assistance. They have professional

packet capture instruments to capture air packets, which can quickly fix the problem;

¢ Bring the issue scene to our Shenzhen office to confirm

7.2.8 Throughput Not As Expected

e I[fitis SDIO interface, RK platform interface only supports a maximum of 150M, and the protocol supports
a maximum of 208M, so the hardware itself will lose some performance;

e The second is to pass the RF indicators test first, and provide test reports and antenna OTA test reports if
necessary;

e Then find a shielded room or a clean environment such as an underground parking lot for testing, eliminate
environmental interference, and ensure that the clean environment is normal at first;

e Finally, CPU/DDR fixed frequency verification can be done;

#DDR

cat /sys/devices/platform/dmc/devfreq/dmc/available frequencies
echo userspace > /sys/devices/platform/dmc/devfreq/dmc/governor
echo 1560000000 > /sys/devices/platform/dmc/devfreqg/dmc/min freq
cat /sys/devices/platform/dmc/devfreq/dmc/cur freqg

#CPU

cat /sys/devices/system/cpu/cpul/cpufreq/scaling available frequencies

af://n605

cat /sys/devices/system/cpu/cpul/cpufreq/scaling available governors
echo userspace > /sys/devices/system/cpu/cpul/cpufreq/scaling governor
echo 1992000 > /sys/devices/system/cpu/cpul/cpufreq/scaling min freqg

cat /sys/devices/system/cpu/cpul/cpufreq/scaling cur freq
#Put the dw-mmc interrupt to other cpu cores for verification

Reference:

Such as switching CPU core interrupt to verify.

cat /proc/interrupts // check the corresponding interrupt number

echo 5 > /proc/irq/38/smp affinity list // put the interrupt on cpu2 for running

cat /proc/interrupts //check the count

7.2.9 IP Abnormal

If the IP address cannot be obtained or the IP address conflicts, please confirm whether the dhcped or udhepe

process is enabled;

dhcped: is used by the SDK by default and starts with the system start. It is a dhcp client with relatively complete

functions;
udhceped: is a simplified dhep client of busybox;

Note: The two processes should not be enabled at the same time, only one of them can be used!

7.2.10 Resume and Suspend Abnormal

Frequent resume by Wi-Fi after suspending, troubleshoot the following situations:

e The 32.768k of the Wi-Fi module is turned off after suspending;

e WIFI REG ON is pulled low;

e WIFI_ WAKE HOST PIN hardware is unstable, and the level is jittering (normally it is low level, and the
trigger is high level);

e The following specific commands are not executed before and after the AP/CY module Wi-Fi suspending to

filter broadcast or multicast packets:

#Execute before suspending:
dhd priv setsuspendmode 1
#Execute after Resuming:

dhd priv setsuspendmode 0

7.2.11 PING Abnormal

PING fails or delay is very large with some probability:

¢ RF indicators have not been tested;
e There is a high probability that Wi-Fi is performing a scanning operation, which will cause a large ping
delay;

e The router or PC firewall is turned on, so the ping operation is forbidden;

af://n616
af://n621
af://n633

7.2.12 Customized Modification

We often receive some strange issues. After troubleshooting, it is found that some customers have modified some
Wi-Fi/BT driver configurations, which leads to abnormality, so please check whether you have modified the

original code. The modification code and the reason can be sent to us via redmine for confirmation.

7.2.13 Wlan0 Is Normal, but No AP Can Be Scanned

¢ Check whether the crystal oscillator corresponding to the module is consistent with the requirements of the
chip, for example, Wi-Fi requires 24M, but a 37M is connected;
e The accuracy of 32.768k does not meet the requirements;

7.2.14 Dual Wi-Fi AP+RTL Abnormal

Connect two Wi-Fi, one is AP6xxx with sdio interface and the other is RTL8xxxu with USB interface; after the
kernel is started, both initializations are normal, but when doing "down" operation of RTLxxxbu module

interface, kernel hangs.

diff --git a/drivers/net/wireless/rockchip wlan/rkwifi/bcmdhd/wl cfg80211.c
b/drivers/net/wireless/rockchip wlan/rkwifi/bcmdhd/wl cfg80211.c
index £4838a8..ceb2al00 100644
--- a/drivers/net/wireless/rockchip wlan/rkwifi/bcmdhd/wl cfg80211.c
+++ b/drivers/net/wireless/rockchip wlan/rkwifi/bcmdhd/wl cfg80211.c
@@ -14640,6 +14640,9 @@ wl cfg80211 netdev notifier call(struct notifier block *
nb,

if (!wdev || !cfg || dev == bcmcfg to prmry ndev(cfg))

return NOTIFY DONE;

+ if (strncmp (dev->name, "wlanO",strlen("wlanO0"))) {
+ return NOTIFY DONE;
+ }

switch (state) {
case NETDEV_DOWN:
{

7.2.15 iComm Wi-Fi Abnormal

On the RV1109/1126 platform, it is found that SDIO can be recognized, but there is an error in reading and

writing. Try the following modifications:

&sdio {
//rockchip,default-sample-phase = <90>; #Delete this configuration option

af://n642
af://n644
af://n650
af://n653

7.2.16 Hotspot of iPhone Can't be Connected in iOS15 System

#For Realtek modules, modified like this
sdk project@aaaaa:~/poco/3399/10/kernel/drivers/net/wireless/rockchip wlan/rt1818
8eu$ git diff
diff --git a/os_dep/linux/ioctl cfg8021l.c b/os_dep/linux/ioctl cfg8021l.c
index 2fe9%c2b..ba24cb7 100755
--- a/os_dep/linux/ioctl cfg8021l.c
+++ b/os dep/linux/ioctl cfg8021l.c
@@ -10114,7 +10114,7 @@ static int rtw cfg80211 init wiphy(adapter *adapter,
struct wiphy *wiphy)
#endif

#if (KERNEL VERSION(3, 8, 0) <= LINUX VERSION CODE)
- wiphy->features |= NL80211 FEATURE SAE;
+ //wiphy->features |= NL80211 FEATURE SAE;
#endif

#Broadcom modules:
diff --git a/drivers/net/wireless/rockchip wlan/rkwifi/bcmdhd/Makefile
b/drivers/net/wireless/rockchip wlan/rkwifi/bcmdhd/Makefile
index 39c1984..1f156d8 100644
--- a/drivers/net/wireless/rockchip wlan/rkwifi/bcmdhd/Makefile
+++ b/drivers/net/wireless/rockchip wlan/rkwifi/bcmdhd/Makefile
@e -157,7 +157,7 Q@ ifneg ($(CONFIG CFG80211),)

DHDCFLAGS += -DWLTDLS -DMIRACAST AMPDU SIZE=8

DHDCFLAGS += -DWL_ VIRTUAL APSTA

DHDCFLAGS += -DPNO_SUPPORT -DEXPLICIT DISCIF CLEANUP
- DHDCFLAGS += -DWL SAE
+ #DHDCFLAGS += -DWL_SAE

7.3 Bluetooth Issues

The Bluetooth test items fail in Chapter 4.3 or the deviceio_test bluetooth function is abnormal, in must be

one of the following situations, please follow the steps below to check carefully:

e The kernel configuration of Realtek modules must be turned off : CONFIG_BT_HCIUART=n, please
refer to Chapter 2.4.2;
e DTS BT (BT_RST_N) power enable pin configuration is incorrect, please refer to Chapter 2.2.2;

#Can be confirmed by the following command:

echo 0 > sys/class/rfkill/rfkill0/state #Pull down BT REG ON and measure the
corresponding PIN with a multimeter

echo 1 > sys/class/rfkill/rfkill0/state #Pull BT REG ON high and measure the

corresponding PIN with a multimeter

e UART configuration error, please refer to Chapter 2.2.2/2.4.2/2.5;
e The Realtek module needs rtk_hciattach / hei_uart.ko / rtk_btusb.ko, make sure whether is is compiled
correctly or the kernel configuration is right, please refer to Chapter 2.5/3.3;

af://n656
af://n658

#Initialize bluetooth, only used by UART module
/usr/bin/rtk hciattach

#Whether CONFIG BT HCIUART configuration of the kernel is removed, and whether
the corresponding ko file has been generated?

/usr/lib/modules/hci uart.ko

#Whether there is a corresponding usb driver generated for the USB interface
/usr/lib/modules/rtk btusb.ko

¢ Bluetooth Firmware/config file does not exist or does not match the Bluetooth module version, please

refer to Chapter 3.3;

#AMPAK and Azurewave module, For example: AP6212A: The corresponding file is
bcm43438al.hcd

/system (vendor) /etc/firmware/BCMxxxx.hcd

#The corresponding file of RTL8723DS with SDIO interface
/lib/firmware/rtlbt/rtl18723d fw
/lib/firmware/rtlbt/rt18723d_config

#The corresponding file of RTL8821CU with USB interface:
/lib/firmware/rt1882lcu_fw
/lib/firmware/rt18821lcu config

¢ BT UART RTS/CTS hardware connection error, resulting in abnormal initialization recognition;

#AMPAK and Azurewave module, 4 lines must be connected to the controller
host tx - controller rx

host rx - controller tx

host rts - controller cts

host cts - controller rts

#Realtek Modules

#For COB chips that use Realtek Bluetooth directly: The hardware connection of
the UART interface is as follows:

host tx - controller rx

host rx - controller tx

host rts - controller cts

host cts - ground #The cts of the controller should be grounded

#RTL8822C chip is special, all 4 lines must be connected to the controller
host tx - controller rx

host rx - controller tx

host rts - controller cts

host cts - controller rts

#For modules, the module vendors generally grounds the controller rts internally,
so the controller does not need to be grounded, and is directly connected to the
controller rts; Special attention: realtek has a large number of agents and each
modules may be different, so please confirm with the module vendor, if the
controller rts is not grounded, it must be grounded on the controller side.

host tx - controller rx

host rx - controller tx

host rts - controller cts

host cts - controller rts

e deviceio_release compilation error, Please refer to Chapter 10.2/3.5 for configuration!

e The deviceio_test bluetooth abnormality is basically caused by the above problems;

#Print the following log when turning on bluetooth

#hcd file = /system/etc/firmware/BCM4343Al1.hcd, does this file match the
Bluetooth module?

#ttys dev = /dev/ttySl, Whether the UART port matches the hardware
Which would you like: bt test bluetooth init thread: BT BLUETOOTH INIT
++++++++++ RK_BT STATE TURNING ON ++++++++++

hcd_file = /system/etc/firmware/BCM4343A1.hcd

ttys dev = /dev/ttysSl

killall: brcm patchram plusl: no process killed

killall: bsa_server: no process killed

/usr/bin/bsa server.sh: line 41: check not exist.sh: not found

start broadcom bluetooth server bsa sever

| ===—== bluetooth bsa server is open ------

8. New Module Porting or Old Module Driver Update

Pay special attention to the following items:

e [tis strongly recommended to read and understand the files storage rules and building rules in
Chapter 3, which is very important for porting.

¢ The SDK obtained by customers may be outdated, so the rules of Config.in and rkwifibt.mk may be
updated but the theory are the same;

¢ For updating driver cases, you can skip some steps accordingly.

8.1 Realtek Modules

8.1.1 Wi-Fi Modules
Take RTL8821CS as an example:
Get the corresponding porting package from module vendors or the manufacturers:

20171225 RTL8821CS WiFi linux v5.2.18 25830 BT ANDROID UART COEX 8821CS-
Bldld COEX20170908-1f1f

For Wi-Fi driver part, go to the following directory:
WiFi\RTL8821CS WiFi linux v5.2.18 25830 COEX20170908-1f1f.20171225\driver

e Add the corresponding compilation configuration (This operation is not required for case of updating

driver)

Copy the driver file to drivers/net/wireless/rockchip wlan/, rename it to rt18821cs, and modify Makefile/Kconfig

to add the corresponding configuration:

af://n686
af://n695
af://n696

drivers/net/wireless/rockchip wlan/Makefile
+ obj-$ (CONFIG_RTL8821CS) += rtl882lcs/

drivers/net/wireless/rockchip wlan/Kconfig

+ source "drivers/net/wireless/rockchip wlan/rtl1882lcs/Kconfig"

¢ Modify Makefile

#Change to RK platform:
CONFIG PLATFORM I386 PC = n
CONFIG_PLATFORM ARM RK3188 = y

#The following configuration should be removed on RK platform:

ifeq ($(CONFIG PLATFORM ARM RK3188), y)

-EXTRA CFLAGS += -DRTW_ENABLE WIFI CONTROL FUNC #Remove this configuration,if it
existed

MODULE NAME := 8821lcs

#If there is a requirement for WiFi keep in connection when in sleep (WOWLAN),
open the following configuration

CONFIG WOWLAN = y

CONFIG GPIO WAKEUP = y

o [fthere isa WOWLAN requirement, add the irq obtainning function of the WL_HOST WAKE pin

#Modify platform\platform ops.c
+#include <linux/rfkill-wlan.h>
t+extern unsigned int oob irg;
int platform wifi power on(void)
{

int ret = 0;

+ oob_irqg = rockchip wifi_get_oob_irqg(); //corresponding to WIFI_WAKE_HOST
PIN of dts

return ret;

e If there is a customized MAC address requirements

Modify: core\rtw ieee8021l.c

+include <linux/rfkill-wlan.h> //Add the header file
Find the rtw macaddr_cfg function

void rtw macaddr cfg(u8 *out, const u8 *hw mac addr)
-/* Use the mac address stored in the Efuse */

-if (hw mac_addr) {

- rtw memcpy (mac, hw mac addr, ETH ALEN) ;

= goto err chk;

-}

+ /* Use the mac address stored in the Efuse */
+ if (hw _mac addr) {

+ _rtw memcpy (mac, hw mac addr, ETH ALEN);

+ if (!rockchip wifi mac addr (mac)) {

+ printk ("get mac address from flash=[%02x:%02x:%02x:%02x:%02x:%02x]\n",
mac[0], mac[1l],

+ mac[2], mac[3], mac[4], mac[5]);

+ }

+}

Add driver loading entrance

/* SDIO interface: os_dep\linux\sdio intf.c */
/* USB interface: os dep\linux\usb_ intf.c */
/* PCIE interface: os_dep\linux\pci intf.c */

//Add the following code at the end of the file:
#include "rtw_version.h"

#include <linux/rfkill-wlan.h>

extern int get wifi chip type(void);

extern int rockchip wifi power (int on);

extern int rockchip wifi set carddetect (int wval);

int rockchip wifi init module rtkwifi (void)
{
printk ("\n");

printk (" \n") ;
printk ("==== Launching Wi-Fi driver! (Powered by Rockchip) ====\n");
printk (" \n") ;

printk ("Realtek 8XXX SDIO Wi-Fi driver (Powered by Rockchip,Ver %s)
init.\n", DRIVERVERSION) ;

rockchip wifi power(1l);

rockchip wifi set carddetect(l);

return rtw drv_entry();

void rockchip wifi exit module rtkWi-Fi (void)

{
printk ("\n");

printk (" \n") ;
printk ("==== Dislaunching Wi-Fi driver! (Powered by Rockchip) ====\n");
printk (" ==== \n") ;

printk ("Realtek 8XXX SDIO Wi-Fi driver (Powered by Rockchip,Ver %s)
init.\n", DRIVERVERSION) ;

rtw drv_halt();

rockchip wifi set carddetect (0);

rockchip wifi power (0);

//Pay attention to the configuration of the kernel, the corresponding
configuration of KO or buildin is different

#ifdef CONFIG WIFI BUILD MODULE

//KO mode following this way

module init (rockchip wifi init module rtkwifi);

module exit (rockchip wifi exit module rtkwifi);

#else

#ifdef CONFIG WIFI LOAD DRIVER WHEN KERNEL BOOTUP

//buildin mode following this way

late initcall (rockchip wifi init module rtkwifi); //late initcall delay loading,
waiting for the file system to be ready

module exit (rockchip wifi exit module rtkwifi);

#else

EXPORT SYMBOL (rockchip wifi init module rtkwifi);

EXPORT SYMBOL (rockchip wifi exit module rtkwifi);

#endif

#endif

//comment out the followings, pay attention to delete the entry init exit of
the following two functions
//module init (rtw_drv_entry);

//module exit (rtw drv_halt);

e The 4.4 version kernel needs to add the model identification function (This operation is not required for

the case of updating driver, and the 4.19 kernel does not need to add the following content)

diff --git a/drivers/net/wireless/rockchip wlan/wifi sys/rkwifi sys iface.c
b/drivers/net/wireless/rockchip wlan/wifi sys/rkwifi sys iface.c
index 88db4de..2e3679a 100755
--- a/drivers/net/wireless/rockchip wlan/wifi sys/rkwifi sys iface.c
+++ b/drivers/net/wireless/rockchip wlan/wifi sys/rkwifi sys iface.c
@@ -133,6 +133,11 Q@ static ssize t wifi chip read(struct class *cls, struct
class_attribute *attr, c
printk ("Current wifi chip is RTL8189FS.\n");
}
if (type == WIFI RTL8821CS) {
count = sprintf(buf, "%s", "RTL8821CS");
printk ("Current Wi-Fi chip is RTL8821CS.\n");

+ o+ o+ o+ o+

if (type == WIFI ESP8089) ({
count = sprintf(buf, "%s", "ESP8089");
printk ("Current Wi-Fi chip is ESP8089.\n");
diff --git a/include/linux/rfkill-wlan.h b/include/linux/rfkill-wlan.h
index 4218b84..698b685 100755
-—-- a/include/linux/rfkill-wlan.h
+++ b/include/linux/rfkill-wlan.h
@R -73,6 +73,7 QR enum {
WIFI RTL8189ES,
WIFI RTL8189FS,
WIFI RTL8812AU,
I WIFI RTL8821CS,
WIFI RTL SERIES,
WIFI_ESP8089,
WIFI MVL88W8977,
diff --git a/net/rfkill/rfkill-wlan.c b/net/rfkill/rfkill-wlan.c
index al7810d..7bbce0l 100755
--- a/net/rfkill/rfkill-wlan.c
+++ b/net/rfkill/rfkill-wlan.c
@@ -156,6 +156,8 @@ int get WIFI chip type (void)
type = WIFI RTL8189FS;
} else if (strcmp(wifi chip type string, "rtl881l2au") == 0) {
type = WIFI_RTL8812AU;
+ } else if (strcmp(wifi chip type string, "rtl882lcs") == 0) {

+ type = WIFI RTL8821CS;
} else if (strcmp(wifi chip type string, "esp8089") == 0) {
type = WIFI ESP8089;
} else if (strcmp(wifi chip type string, "mv1l88w8977") == 0) {

e Deal with the possible compilation errors:

rtl18xxx\os dep\linux\rtw_android.c //Comment out the following two commands
#if (LINUX VERSION CODE >= KERNEL VERSION (2, 6, 39)) ||
defined (COMPAT KERNEL RELEASE)
void *wifi get country code(char *ccode)
{
RTW_INFO("$s\n", _ FUNCTION);
if (!ccode)
return NULL;
= if (wifi control data && wifi control data->get country code)
- return wifi control data->get country code (ccode);
return NULL;
}
fendif /* (LINUX VERSION CODE >= KERNEL VERSION(2, 6, 39)) 7

For Buildroot system part: (This operation is not necessary in the case of updating driver)

buildroot\package\rockchip\rkwifibt\Config.in
Add the followings in turn:

+config BR2 PACKAGE RKWIFIBT RTL8821CS

+ bool "RTL8821CS"

config BR2 PACKAGE RKWIFIBT CHIPNAME
+ default "RTL8821CS" if BR2 PACKAGE RKWIFIBT RTL8821CS

config BR2 PACKAGE RKWIFIBT VENDOR
A default "REALTEK" if BR2 PACKAGE RKWIFIBT RTL8821CS

config BR2 PACKAGE RKWIFIBT WIFI KO

+ default "882lcs.ko" if BR2 PACKAGE RKWIFIBT RTL8821CS

#The name of 882lcs.ko corresponds to the driver's Makefile. When do make
rkwifibt compilation, it will be copied from the kernel driver directory to the

file system according to this name.

8.1.2 BT Modules

8.1.2.1 UART Interface

If modules support Bluetooth, you have to ask the vendors to provide a software package similar to the following:

20201130 ANDROID BT DRIVER RTL8822C COEX vlclc.tar.xx

Take RTL8821CS as an example (you only need to replace the corresponding file in the case of updating driver):

af://n733
af://n734

#Place or update the Bluetooth firmware and configuration files to the following
directory:

1s external/rkwifibt/realtek/

#The structure is as follows:

external/rkwifibt/realtek/RTL8821CS #Create a new directory if it didn't exist
F—— rtl8821lcs config

L— rtl882lcs fw

Note: The name of the RTL8821CS directory should be consistent with the
configuration in Buildroot rkwifibt Config.in:

BR2 PACKAGE RKWIFIBT "RTL8821CS"
For Buildroot part: enable the Bluetooth, (no need to do this in the case of updating driver)

config BR2_ PACKAGE RKWIFIBT BT EN
+ default "ENABLE" if BR2 PACKAGE RKWIFIBT RTL8821CS

8.1.2.2 USB Interface

For Bluetooth with USB interface, the vendor will provide a porting package similar to the following, take
RTL8821CU as an example:

tree

Linux BT USB v3.10 20190430 8821CU BTCOEX 20190509-4139.tar.xx
or

20201130 ANDROID BT DRIVER RTL8821CU COEX vlclc.tar.xx
|-8821CU #firmware file

I—bluetooth_usb_driver #usb driver

#Copy or update to the external/rkwifibt/realtek/ directory, the results are as
follows:

external/rkwifibt/realtek$ tree

— RTL8821CU

| — rt18821cu config #Bluetooth config

| — rtl882lcu fw #Bluetooth fw

— bluetooth usb driver #Bluetooth USB driver of RTL8821CU, which is compiled
into rtk btusb.ko
Makefile
rtk bt.c
rtk bt.h
rtk coex.
rtk coex.

rtk misc.

[TTTTTT

[= 2O = O]

rtk misc.

For Buildroot system part (The same as the Wi-Fi part, if the Wi-Fi is configured, no need to configure it again,
pay attention to match the name):

buildroot\package\rockchip\rkwifibt\Config.in
Add the following in sequence:

+config BR2 PACKAGE RKWIFIBT RTL8821CU

+ bool "RTL8821CU"

af://n741

config BR2 PACKAGE RKWIFIBT CHIPNAME
+ default "RTL8821CU" if BRZ2 PACKAGE RKWIFIBT RTL8821CU

config BR2 PACKAGE RKWIFIBT VENDOR
+ default "REALTEK" if BR2 PACKAGE RKWIFIBT RTL8821CU

config BR2 PACKAGE RKWIFIBT WIFI KO
+ default "882lcu.ko" if BR2 PACKAGE RKWIFIBT RTL8821CU

config BR2_ PACKAGE RKWIFIBT BT EN
+ default "ENABLE" if BR2_ PACKAGE RKWIFIBT RTL8821CU

Add the compilation ko option and the install command in rkwifibt.mk, as follows:

+++ b/package/rockchip/rkwifibt/rkwifibt.mk
@@ -73,6 +73,7 @@ define RKWIFIBT REALTEK BT INSTALL
$ (INSTALL) -D -m 0644
$(@D) /realtek/$ (BR2_PACKAGE RKWIFIBT CHIPNAME)/mp * $(TARGET DIR)/lib/firmware/

#USB interface Bluetooth needs to copy the firmware file to the /lib/firmware/
directory
+ $ (INSTALL) -D -m 0644 $(@D)/realtek/$ (BR2 PACKAGE RKWIFIBT CHIPNAME) /
$ (TARGET_DIR) /lib/firmware/

$ (INSTALL) -D -m 0755 $(@D) /bt realtek* $(TARGET DIR)/usr/bin/

$ (INSTALL) -D -m 0644 $(@D)/realtek/bluetooth uart driver/hci uart.ko
$ (TARGET_DIR) /usr/lib/modules/hci uart.ko

#Copy the ko of the USB interface to the specified directory usr/lib/modules/
+ $ (INSTALL) -D -m 0644 $(@D)/realtek/bluetooth usb driver/rtk btusb.ko
$ (TARGET_DIR) /usr/lib/modules/rtk btusb.ko
$ (INSTALL) -D -m 0755 $(@D) /bt load rtk firmware $(TARGET DIR)/usr/bin/
$(SED) 's/BT_TTY DEV/\/dev\/$ (BT_TTY_DEV)/g'
$ (TARGET_DIR) /usr/bin/bt load rtk firmware
$ (INSTALL) -D -m 0755 $(TARGET DIR)/usr/bin/bt load rtk firmware
$ (TARGET DIR) /usr/bin/bt pcba test
@@ -92,8 +93,10 Q@ define RKWIFIBT BUILD CMDS
$ (TARGET_CC) -o $(@D)/brcm tools/brcm patchram plusl
$(@D) /brcm_tools/brcm patchram plusl.c
$ (TARGET CC) -o $(@D)/brcm tools/dhd priv $(@D)/brcm tools/dhd priv.c
$ (TARGET CC) -o $(@D)/src/rk wifi init $(@D)/src/rk wifi init.c
$ (MAKE) -C $(@D)/realtek/rtk hciattach/ CC=$(TARGET CC)
$ (TARGET CONFIGURE OPTS) $(MAKE) -C $(TOPDIR)/../kernel/
M=$ (@D) /realtek/bluetooth uart driver ARCH=$ (RK_ARCH)

#Compile the ko of the USB interface, pay attention to the following
ARCH=$ (RK_ARCH) ,it may be different in different SDKs, please refer to the
writing way of the above line

+ $ (TARGET CONFIGURE OPTS) §$ (MAKE) -C $ (TOPDIR) /../kernel/

M=$ (@D) /realtek/bluetooth usb driver ARCH=$ (RK ARCH)

8.2 AMPAK Modules

Take AP6256 as an example, obtain the Wi-Fi and BT firmware file package of AP6256 from the module

vendors (if it is updating driver case, just replace the corresponding file):

external\rkwifibt\firmware\broadcom\

//Create a folder named AP6256 in this directory, and store the files inside
according to the following structure

external/rkwifibt/firmware/broadcom/AP6256S$ tree

— bt
| L— BCM4345C5.hcd
L— wifi
— fw bcm43456c5 ag.bin
— fw bcm43456c5 ag mfg.bin
L nvram ap6256.txt
//Pay attention to the directory name of AP6256, which should be consistent with
the configuration in the following Config.in of WiFi: BR2 PACKAGE RKWIFIBT AP6256

Buildroot configuration (no need to do this in updating driver case):

buildroot\package\rockchip\rkwifibt\Config.in
Add the followings in turn:

+config BR2 PACKAGE RKWIFIBT AP6256

+ bool "AP6256"

config BR2 PACKAGE RKWIFIBT CHIPNAME
+ default "AP6256" if BR2 PACKAGE RKWIFIBT AP6256

config BR2 PACKAGE RKWIFIBT VENDOR
+ default "BROADCOM" if BR2 PACKAGE RKWIFIBT AP6256

config BR2 PACKAGE RKWIFIBT WIFI KO
+ default "bemdhd.ko" if BR2 PACKAGE RKWIFIBT AP6256

config BR2 PACKAGE RKWIFIBT BT FW
+ default "BCM4345C5.hcd" if BR2 PACKAGE RKWIFIBT AP6256 //pay attention

to this name of "BCM4345C5.hcd" , which shoud be changed to the corresponding
model

config BR2_ PACKAGE RKWIFIBT BT EN
+ default "ENABLE" if BR2 PACKAGE RKWIFIBT AP6256

There is no need to change the kernel driver part, and it is basically compatible with all AP modules. the
configuration of CONFIG_AP6XXX can be used by default.

8.3 HiSilicon Wi-Fi Porting

For HiSilicon Hi3881/3861 modules:

DTS modification:

//DTS configuration

wireless-wlan {

af://n748
af://n754

wifi chip type = "Hi3861L";

WIFI,poweren gpio = <&gpiol RK PC7 GPIO ACTIVE LOW>; //Configure the
corresponding Wi-Fi enable pin

status = "okay";
}i

sdio pwrseq: sdio-pwrseq ({
status = "disabled"; // disable this node
}i

&sdio { //Turn off the following properties
//non-removable;
//sd-uhs-sdrl04;
//mmc-pwrseq = <&sdio pwrseq>;

bi

RK code modification

diff --git a/drivers/mmc/host/dw _mmc.c b/drivers/mmc/host/dw _mmc.c
index 8730e2e..04b9%cb8 100644
--- a/drivers/mmc/host/dw mmc.c
+++ b/drivers/mmc/host/dw _mmc.c
@@ -1518,6 +1518,9 @@ static int dw mci get cd(struct mmc_host *mmc)
struct dw mci *host = slot->host;
int gpio cd = mmc gpio get cd(mmc);
+ if (mmc->restrict caps & RESTRICT CARD TYPE SDIO)
return test bit (DW_MMC CARD PRESENT, &slot->flags);

/* Use platform get cd function, else try onboard card detect */
if ((brd->quirks & DW MCI QUIRK BROKEN CARD DETECTION) ||
(mmc->caps & MMC_CAP_NONREMOVABLE))
@@ -2755,6 +2758,9 @@ static int dw mci init slot(struct dw mci *host, unsigned
int id)
dw mci get cd(mmc);
+ if (mmc->restrict caps & RESTRICT CARD TYPE SDIO)
clear bit (DW MMC CARD PRESENT, &slot->flags);

ret = mmc_add host (mmc) ;
if (ret)

goto err host allocated;

--- a/drivers/mmc/core/sdio.c
+++ b/drivers/mmc/core/sdio.c
@@ -996,9 +996,7 QR static int mmc sdio resume (struct mmc host *host)

}

/* No need to reinitialize powered-resumed nonremovable cards */
- if (mmc_card is removable (host) || !mmc card keep power (host)) {
- err = mmc_sdio reinit card(host,
mmc_card keep power (host));
- } else if (mmc card keep power (host) &&
mmc_card wake sdio irqg(host)) {
+ if (mmc_card keep power (host) && mmc card wake sdio irg(host)) {

/* We may have switched to 1l-bit mode during suspend */

err = sdio _enable 4bit bus (host->card);

Specify the kernel directory and the corresponding RK compiler:

Hi3881V100R001CO0SPC021$ git diff
diff --git a/Makefile b/Makefile

index 649da3c..d0bl28d 100644

--- a/Makefile
+++ b/Makefile

@@ -4,9 +4,9 qa

Author Date Version

hisilion 2020-3-29 V1.0

E R
-KDIR=/home/shell/linux-4.9.y
+KDIR=/home/hcq/1126/kernel/

ARCH=arm

-CROSS COMPILE=arm-himix100-linux-
+CROSS COMPILE=../prebuilts/gcc/linux-x86/arm/gcc-linaro-6.3.1-2017.05-
x86 64 arm-linux-gnueabihf/bin/arm-linux-gnueabihf-

HISILICON_ PLATFORM?=

CURDIR := $(shell if ["$S$SPWD"™ != ""]; then echo $$PWD; else pwd; fi)

Add the RK platform code to the HiSilicon driver:

diff --git a/driver/oal/ocal sdio host.c b/driver/ocal/oal sdio host.c
index 1b27742..e964b20 100644
--- a/driver/oal/oal sdio_host.c
+++ b/driver/oal/oal sdio_host.c
@@ -2263,10 +2263,13 @@ static struct sdio driver oal sdio driver = {
}

#endif

bi
+#include <linux/rfkill-wlan.h>
+extern int maybe unused rockchip wifi power (int on);
+extern int rockchip wifi set carddetect (int val);

hi void sdio card detect change (hi s32 val)

{

printk("sdio card detect change. val: %d \n", val);

+#if O
#if (_PRE OS VERSION LINUX == PRE OS VERSION)
hisi sdio rescan(val);
#else

@@ -2275,6 +2278,15 @@ hi void sdio card detect change(hi s32 wval)

oam error log0(0, 0, "sdio rescan failed.");

#endif
+
+#endif
+ printk ("call rockchip carddetect api\n");
+ rockchip wifi set carddetect (0);
+ rockchip wifi power (0);
+ msleep (50) ;
+ rockchip wifi power(1);
+ msleep (100) ;
+ rockchip wifi set carddetect(l);

#if (PRE_OS_VERSION LITEOS == PRE OS_VERSION)

9. Wi-Fi/BT of Debian and Other Third-Party Systems
Adaptation Introduction

9.1 System Adaptation Overview

e Debian/Kylin/UOS/Tongxin System

There are complete Wi-Fi/BT applications on the upper layer of such systems, and our work only needs to
initialize the interface before the system starts; for example, for Wi-Fi: the wlan0 node can be found from
ifconfig; for Bluetooth: the hci0 node can be found from hciconfig; Note that the DTS/kernel configuration of
Wi-Fi/BT has nothing to do with the specific system, they are general configurations, and please directly
refer to Chapter 2 for basic DTS and kernel configuration, The following is going to introduce the interface

initialization:
¢ For Buildroot-like systems, such as Yocto
If such systems also have upper-layer WiFiBT applications, the process is the same as above; if not:

For Wi-Fi: Generally, the wpa_supplicant application is used for wireless management such as WiFi scanning
connection, and this type of system usually has the wpa_supplicant application package, select the corresponding

configuration in the system and compile, and then refer to Chapter 4.1 for basic verification;

For Bluetooth: Generally, bluez5 protocol stack is used for basic operations such as scanning and connection of
Bluetooth, and these systems usually include bluez5 application packages. Select the corresponding configuration

and compile in the system, and start the test steps. :

Binaries such as bluetoothd/bluetoothctl/hciconfig will be generated after
compilation

S bluetoothd -ndC & # start bluetoothd

$ bluetoothctl # enter swap mode

[bluetooth]# power on

[bluetooth]# scan on

[bluetooth]# help # To see more commands

Note: For the application tools and compilation mentioned above, please refer to the documentation and

instructions of the corresponding system.

9.2 AMPAK Modules Adaptation Example

The following takes AP6275P as an example, and the three files are obtained
from the AMPAK module vendor.

Bluetooth initialization file: brcm patchram plusl.c, then compile it into an
executable file brcm patchram plusl with the compiler of the system and put it in
the system

external/rkwifibt/brcm tools/brcm patchram plusl.c # If there is a RKSDK, you can

get it from this directory

af://n764
af://n765
af://n778

BT firmware file: Stored according to the system actually used, no special
requirements, the following brcm patchram plusl Bluetooth initialization program
will require to specify firmware path;

BCM4362A2.hcd

Wi-Fi firmware file: stored according to the actual used system
clm bcmd43752a2 pcie ag.blob

fw bcm43752a2 pcie ag.bin

fw bcm43752a2 pcie ag apsta.bin

nvram AP6275P.txt

Configuration

Check the kernel Wi-Fi configuration and enbale the following configurations:
CONFIG_WL_ROCKCHIP=y

CONFIG WIFI BUILD MODULE=y

CONFIG BCMDHD=y

CONFIG AP6XXX=m

CONFIG_BCMDHD PCIE=y #PCIE interface, mutually exclusive with SDIO, if it is not
PCIE, no need to config

CONFIG BCMDHD SDIO=y #SDIO interface, mutually exclusive with PCIE

Wi-Fi interface initialization

After make compiling, ko will be generated. This file is stored in the
corresponding location according to your actual needs, and you can turn on Wi-Fi
to load this ko;

drivers/net/wireless/rockchip wlan/rkwifi/bcmdhd/bemdhd. ko

Turn on Wi-Fi: you need to load ko first, and specify the path of
firmware/nvram in the parameter when in insmod. The following xx path is changed
to the actual one used:

insmod /ko path/bcmdhd.ko firmware path=/fw path/ nvram path=/nvram path/
ifconfig -a #Normally, you can see wlanO. If you can't, refer to Chapter 2

and Chapter 7 for troubleshooting

Bluetooth interface initialization

Turn on Bluetooth and reset the BT power first:

echo 0 > /sys/class/rfkill/rfkill0O/state #Turn off the BT power, which is be
equal to the rfkill block operation

sleep 0.2

echo 1 > /sys/class/rfkill/rfkill0/state #Turn on the BT power, which is be
equal to the rfkill unblock operation

sleep 0.2

Initialize Bluetooth command, --patchram specifies the path of the Bluetooth
firmware file (modified according to the actual situation), /dev/ttyS8 is the
serial port number of the corresponding hardware (modified according to the
actual situation)

brcm patchram plusl --bd addr rand --enable hci --no2bytes --

use baudrate for download --tosleep 200000 --baudrate 1500000 --patchram
/system/etc/firmware/BCM4362A2.hcd /dev/ttyS8 &

If the system has installed the bluez protocol stack, use the hciconfig command
hciconfig -a #You can see the hciO node, if you can't, please refer to Chapter 2

and Chapter 7 for troubleshooting

Turn off bluetooth:
echo 0 > /sys/class/rfkill/rfkillO/state #Turn off the BT power, which is equal
to the rfkill block operation

killall brcm patchram plusl #Be sure to kill the
brcm patchram plusl process, because it will be executed again when it is opened,

otherwise it will conflict;

#The above enable and disable operations can be porting to your system according

to the actual situation;

Note: If the application layer switch bluetooth calls the rfkill block to turn
off the bluetooth power, when unblock to turn on the bluetooth power again, you
must execute the brcm patchram plusl bluetooth initialization command again,
otherwise bluetooth cannot be used; if the upper layer is only hciconfig hciO

down/up, no need to Call repeated initialization;

9.3 Realtek Module Adaptation Example

9.3.1 Adaptation Introduction

The following takes RTL8822CS as an example, first get the driver package of
the corresponding module from module vendor

Wi-Fi: RTL8822CS WiFi linux v5.12.1.5-1-g0el519%e COEX20210504-2323.20210527

BT: 20201202 LINUX BT DRIVER RTL8822C COEX vlclc

Wi-Fi Adaptation

Please refer to chapter 8.1 to adapt Wi-Fi driver to RK platform, and refer to
chapter 2 for basic dts and kernel configuration

After make compilation, ko will be generated. This file is stored in the
corresponding location according to your actual requirements, and you can turn on
Wi-Fi to load this ko;

drivers/net/wireless/rockchip wlan/rkwifi/rt18822cs/8822cs.ko

insmod /ko_path/88xxxx.ko # realtek does not need the firmware/nvram file, and
the execution timing of insmod is adjusted according to system requirements;
ifconfig -a #Normally, you can see wlanO. If you can't, please refer to

Chapter 2 and Chapter 7 for troubleshooting

Bluetooth adapter

fw/config file introduction:

Only bluetooth needs the fw/config file(the file is found in the driver
package), the storage location is related to the interface

RTL UART interface, the file of RTL8822CS is placed in the following location
/lib/firmware/rtlbt/rtl18822cs fw

/lib/firmware/rtlbt/rtl18822cs_config

Copy the right FW file and config file to the correct path. (copy the
firmware/config file)

$ sudo mkdir -p /lib/firmware/rtlbt/

$ sudo cp rtkbt-firmware/lib/firmware/rtlbt/rtl8xxxx fw /lib/firmware/rtlbt/

$ sudo cp rtkbt-firmware/lib/firmware/rtlbt/rtl8xxxx config /lib/firmware/rtlbt/

RTL USB interface: RTL8822CU corresponding file (copy the corresponding
fw/config file to the corresponding location of the system)
/lib/firmware/rt18822cu_fw

/lib/firmware/rt18822cu_config

Copy the right FW file and config file to the correct path.

$ sudo cp rtkbt-firmware/lib/firmware/rtl8xxxxx fw /lib/firmware/

af://n780
af://n781

$ sudo cp rtkbt-firmware/lib/firmware/rtl8xxxxx config /lib/firmware/

rtk hciattach/hci uart/usb.ko file introduction

Please refer to Chapter 9.2.2 Tool Compilation Introduction

The introduction to hci uart/usb.ko file: realtek does not use the interface
driver that comes with the kernel. The kernel must first remove the following two
configurations:

CONFIG BT HCIBTUSB

CONFIG BT HCIUART

Initialization introduction

UART interface:

killall rtk hciattach #First make sure to close this process (if it was opened
before)

echo 0 > /sys/class/rfkill/rfkill0/state #Power off

sleep 0.5

echo 1 > /sys/class/rfkill/rfkill0O/state #Power on

sleep 0.5

insmod /usr/lib/modules/hci uart.ko # The realtek module needs to

load the uart driver

rtk_hciattach -n -s 115200 /dev/ttyS4 rtk h5 & # ttySX refers to which uart
port Bluetooth used

If the system has installed the bluez protocol stack, use the hciconfig command
hciconfig -a #Normally, you can see the hciO node. If you can't, please refer to

Chapter 2 and Chapter 7 for troubleshooting

USB interface:
echo 0 > /sys/class/rfkill/rfkill0/state #Power off

sleep 0.5

echo 1 > /sys/class/rfkill/rfkill0/state #Power on

sleep 0.5

insmod /usr/lib/modules/rtk btusb.ko # The realtek modules need to

load the usb driver
If the system has installed the bluez protocol stack, use the hciconfig command
hciconfig -a #Normally, you can see the hciO node. If you can't, please refer to

Chapter 2 and Chapter 7 for troubleshooting

9.3.2 Bluetooth Driver /rtk_hciattach Tool Compilation Introduction

af://n783

Realtek UART/USB Bluetooth driver ko driver compilation:

$ make -C /home/rk/rk3xxx/kernel/
CROSS_COMPILE=/home/rk/rk3xxx/prebuilts/gcc/linux-x86/aarch64/gcc-arm-10.3-
2021.07-x86 64-aarch64-none-linux-gnu/bin/aarch64-none-linux-gnu- ARCH=arm64

M=/home/rk/rk3xxx/usb (uart) /bluetooth usb (uart) driver/

-C specifies the kernel directory

CROSS _COMPILE specifies the cross-compilation toolchain path

ARCH specifies the system platform

M specifies the uart/usb driver path

Note that the path must be an absolute path

S

Generated after successful compilation

rtk hciattach UART initialization program build:

$ make CROSS_COMPILE=/home/rk/rk3xxx/prebuilts/gcc/linux-x86/aarch64/gcc-arm—
10.3-2021.07-x86_64-aarch64-none-linux-gnu/bin/aarch64-none-linux-gnu- -C
/home/rk/rk3xxx/uart/rtk_hciattach/

-C specifies the kernel directory

CROSS COMPILE specifies the cross-compile toolchain path

9.4 Automatic Installation Introduction

The above adaptation introduction are all done by manual compilation or push operations. When debugging is

completed, how to simplify the steps to install automatically, the suggestions are as follows:

e [fitis a mature commercial system: such as UOS/Kylin/Tongxin, they have their own methods, please
consult the system provider;

e If you are using free Debian, you need to make various files mentioned above into deb packages for
installation and use; please refer to the following link for making deb packages and installation

documentation: https://www.debian.org/doc/

e [fyou use the Yocto-like Buildroot system, please refer to the compilation rules and methods used by the

corresponding system;

10. Bluetooth Extension Functions

10.1 Bluetooth with Low Power Consumption

Currently only suitable for CY module + BSA protocol stack , and the AP module is being verified, and the
Realtek module is supported by default; The performance achieved so far are as follows: the power consumption

is reduced from about 2~3mA to about 0.5mA when the BT is turned on;

Modify the script to add lpm parameters, the bsa version needs to be updated
external/broadcom bsa/bsa server.sh

bsa server -r 12 -pp $hcd file -d $ttys dev -all=0 -lpm &

Kernel needs to update the rfkill-bt.c file

The above files can be obtained through redmine;

af://n785
https://www.debian.org/doc/
af://n794
af://n795

10.2 Bluetooth 5.0 Functional Verification (Currently only supported
by RK3588 platform, more platforms will be supported in the future)

PHY selection: If you choose a module that supports BT5.0, you can choose the following PHY's: the speed

and transmission distance are greatly improved.

PHY Data Rate Theoretical Relative Range Advantage

2 Mbps 2 Mb/s ~0.8x Speed (Throughput)

1 Mbps 1 Mb/s 1x Compatilbility (balanced)
Coded S2 500 kbps 2x Range

Coded S8 125 kbps 4x Range x2

/* Modify according to actual requirements: */
diff --git a/net/bluetooth/hci core.c b/net/bluetooth/hci core.c
index 2ad66f64879f..a80d921c66ed 100644

--- a/net/bluetooth/hci core.c

+++ b/net/bluetooth/hci core.c

@@ -3632,8 +3632,8 @@ struct hci dev *hci alloc dev(void)
hdev->le max rx time = 0x0148;
hdev->le max key size = SMP MAX ENC KEY SIZE;
hdev->le min key size = SMP_MIN ENC_KEY SIZE;

= hdev->le tx def phys = HCI LE SET PHY 1M;

- hdev->le rx def phys = HCI LE SET PHY 1M;

//2M

+ hdev->le tx def phys = HCI LE SET PHY 2M;

+ hdev->le rx def phys = HCI LE SET PHY 2M;

//CODED

+ hdev->le tx def phys = HCI LE SET PHY CODED;

+

vV VvV W #H= H

>

hdev->le rx def phys = HCI LE SET PHY CODED;
hdev->le num of adv sets = HCI MAX ADV INSTANCES;

hdev->def multi adv rotation duration = HCI DEFAULT ADV_ DURATION;
hdev->def le autoconnect timeout = HCI LE AUTOCONN TIMEOUT;

Extended broadcast to support two new features:
Broadcast data size: increased from the original 3 1byte to 251byte;

Multiple broadcasts at the same time: 4.2 can only broadcast one at the same time, and 5.0 supports a

maximum of 6 broadcasts at the same time;

test:

Broadcast data size test:
btmgmt

privacy on

power on

add-adv -u 180d -u 180f -d

240954657374204C4554657374204C4554657374204C4554657374204C4554657374204C45 -c -P

M1

Multiple broadcast test example
S btmgmt

> privacy on

af://n798

power on
add-adv -u 180d -u 180f -d 080954657374204C45 -c -P 1M 1
add-adv -u 180d -u 180f -d 080954657374204C46 -c -P 1M 2
add-adv -u 180d -u 180f -d 080954657374204C47 -c -P 1M 3
add-adv -u 180d -u 180f -d 080954657374204C48 -c -P 1M 3

vV V V V V

TS

At the same time, install nrf connect apk with a mobile phone that supports

5.0, and you can see multiple broadcast test examples

Add the patchs in kernel as follows:

diff --git a/net/bluetooth/hci request.c b/net/bluetooth/hci request.c

index 33dc78c24b73..6194fdcbad86 100644

--- a/net/bluetooth/hci request.c

+++ b/net/bluetooth/hci request.c

@@ -2054,7 +2060,8 @@ int hci reqg setup ext adv instance(struct hci request

*req, u8 instance)

hci req add(req, HCI OP LE SET EXT ADV PARAMS, sizeof (cp), &cp);

= if (own addr type == ADDR LE DEV_ RANDOM &&
+ if ((own_addr type == ADDR LE DEV RANDOM | |
+ own addr type == ADDR LE DEV_RANDOM RESOLVED) &&

bacmp (&random addr, BDADDR ANY)) {

11. Other Functions and Configurations Introduction

11.1 RV1126 /RV1109 Connmand

Control Wi-Fi by Connmand (not recommended, it is no longer being maintained)

RV1109/1126 platform uses connman to manage WiFi by default, and the start way of the core process
wpa_supplicant of Wi-Fi is started by:

ps
//You will see the following two processes
conmand //It uses dbus to communicate with wpa supplicant

wpa_supplicant -u //Open support for dbus communication

Standard usage: Wi-Fi can be operated through RV1109 web interface, please refer to the related
documents of the RV1109/RV1126 platform;

docs/RV1126 RV1109/ApplicationNote/Rockchip Instructions Linux Web Configuration
CN.pdf

The simple way to test terminal is as follows:

/ # killall ipc-daemon netserver #kill conflicting applications in upper-level
/ # connmanctl

connmanctl> enable wifi

af://n837
af://n838

connmanctl> scan wifi #Can scan multiple times

connmanctl> scan wifi #Can scan multiple times

connmanctl> agent on

connmanctl> services #List the scanned Wi-Fi list

connmanctl> *A0 yyzl23

wifi c0847daf6f42 79797a313233 managed psk
NETGEAR75-5G

wifi c0847daf6f42 4e45544745415237352d3547 managed psk
aaabbb wifi c0847daf6f42 616161626262 managed psk
HiWiFi-Free

wifi c0847daf6fd42 204869576946692d46726565 managed none
Fang-Hiwifi wifi c0847daf6f42 46616e672d486957694669 managed psk
yyzl1l23 wifi c0847daf6f42 79797a313233 managed psk

connmanctl> connect wifi c0847daf6f42 79797a313233 managed psk #If you want to
connect to yyzl23 above, the connect parameter is the following wifi xxx psk
connmanctl> Connected wifi c0847daf6f42 79797a313233 managed psk #If the
connection is successful, there will be this print

connmanctl> quit #Exit connection mode

/ # ifconfig wlanO #You will see the IP address

If you want to use the traditional wpa_supplicant/wpa_cli method instead of connman, then remove the connman

configuration in Buildroot:

BR2 PACKAGE CONNMAN

And delete the related files generated before:

buildroot/output/rockchip rv1126 rv1109(Adjust the directory name
actually) /target/etc/init.d/S45connman

buildroot/output/rockchip rvl1126 rv1109/target/usr/bin/connmanctl
buildroot/output/rockchip rv1126 rv1109/target/usr/sbin/connmand

The steps refer to Chapter 4.1/2 for the development of the previous way.
Functions of AP hotspot:

Use Wi-Fi as the main network card by default:

Download from https://github.com/rockchip-linux/softapdemo to the external
directory
88 port can be changed to any one that does not conflict with your application,
and for other customized modifications, please refer to chapter 3.2 of the Wf-Fi
development document
external/softapDemo$ git diff
diff --git a/src/main.c b/src/main.c
index 0aad306..d713be3 100644
--- a/src/main.c
+++ b/src/main.c
@@ -170,7 +170,7 @@ int wlan accesspoint start(const char* ssid, const char*
password)
console run(cmdline);

}

memset (cmdline, 0, sizeof(cmdline));
- sprintf (cmdline, "dnsmasqg -C %s --interface=%s", DNSMASQ CONF DIR,

softap name) ;

+ sprintf (cmdline, "dnsmasq -p 88 -C %s --interface=%s", DNSMASQ CONF DIR,
softap name) ;

console_run(cmdline) ;
Build and run:

$ make menuconfig
choose

$ make savedefconfig
$ make softap

$./build.sh

Execute at boot

//Close ethernet

dbus-send --system --print-reply --dest=rockchip.dbserver /
rockchip.dbserver.net.Cmd \string:"{ \"table\": \"NetworkPower\",\"key\":
{\"sType\": \"ethernet\"}, \"data\": {\"iPower\": 0}, \"cmd\": \"Update\" }"

//Open Wi-Fi

dbus-send --system --print-reply --dest=rockchip.dbserver /
rockchip.dbserver.net.Cmd \string:"{ \"table\": \"NetworkPower\",\"key\":
{\"sType\": \"wifi\"}, \"data\": {\"iPower\": 1}, \"cmd\": \"Update\" }"

//Execute softapDemo:
$ softapDemo AP NAME

Search for AP NAME on the mobile phone, connect it, then open the browser and
enter: 192.168.88.1 to access the web

11.2 Set Static IP and Other Parameters at Boot Automatically

//The standard Linux ifupdown command is used in Buildroot system by default, the
corresponding boot script is in the following directory:
buildroot/package/ifupdown-scripts
> S40network //Started by /etc/init.d/rcS
//But S40network will call the ifup command to read the default configuration
script: /etc/network/interfaces
//So the default configuration can be written into the /etc/network/interfaces
file, and the way to modify the interfaces file is as follows:
buildroot/package/ifupdown-scripts/ifupdown-scripts.mk
define IFUPDOWN SCRIPTS LOCALHOST
(\

echo "# interface file auto-generated by buildroot™; \

echo ; \

echo "auto lo"; \

echo "iface lo inet loopback"; \

echo "auto wlanO"; \

echo "iface wlan0O inet static"; \

echo "address 192.168.1.111"; \

echo "gateway 192.168.1.1"; \

echo "netmask 255.255.255.0"; \

echo "broadcast 192.168.1.0"; \

af://n856

)> S (TARGET DIR)/etc/network/interfaces // when more configuration needs to be
added, please check the related materials by yourself, which are all linux
standard endef

//Build upgrade: make ifupdown-scripts-dirclean && make ifupdown-scripts-rebuild

//For the modification of the default dns, Buildroot system does not have a pre-
build configuration. You have to add it manually when the DHCP process is not
running:

echo 'nameserver 114.114.114.114' >> /etc/resolv.conf // Add customized dns

configuration

//Dynamic setting

//Set IP address

ifconfig wlan0 xx.xx.xx.xxX netmask xx.Xx.XX.xX
//Set the default router

route add default gw XX.XX.XX.XX

//Add dns

echo 'nameserver xx.xXx.XX.xX' > /etc/resolv.conf

11.3 DHCP Client

dhcped: it is used in the SDK by default and starts when the system is started. It is a dhcp client with relatively

complete functions;
udhcped: is a compact dhcp client of busybox;
Note: these two processes must not be enabled at the same time, only one of them can be used!
If you need to get IP addresses faster when using dhcped client, modify as follows:
#Modify S4ldhcpcd file
index a2e87cal54..£8b9%924ab0f 100755
/buildroot/package/dhcpcd/S41dhcpcd

@@ -13,7 +13,7 @Q PIDFILE=/var/run/dhcpcd.pid

case "$1" in

start)
echo "Starting dhcpcd..."
= start-stop-daemon -S -x "$DAEMON" -p "S$PIDFILE" -- -f "$SCONFIG"
+ start-stop-daemon -S -x "S$DAEMON" -p "S$PIDFILE" -- -AL -f
"SCONFIG"

rr

//Repackage a firmware
make dhcpcd-dirclean

make dhcpcd-rebuild

11.4 Wi-Fi/BT MAC Address

Generally, MAC address of Wi-Fi is built-in in the chip. If you need to customize the MAC address, you need to
use RK special tool to write to customize vendor partition of Flash (Please refer to the related documents of

vendor storage operation for details, we won't go into much detail here.);

AzureWave/AMPAK Wi-Fi Modules

af://n858
af://n864

Modify the Makefile and add the following configuration:

+ -DGET_CUSTOM MAC ENABLE
- -DGET OTP _MAC ENABLE #if it exists

AMPAK: drivers/net/wireless/rockchip wlan/rkwifi/bcmdhd/Makefile
AzureWave: drivers/net/wireless/rockchip wlan/cywdhd/bcmdhd/Makefile

Note: AMPAK modules need additional modification of Wi-Fi to work normally. The first 3 bytes of the
MAC address are called OUIL Each OUI corresponds to a group of macpad. If you want to modify the
OUI, you need to apply to AMPAK for corresponding macpad, then modify as follows:

Note: The new firmware of AMPAK has removed this restriction, you can ask AMPAK for the latest firmware:

drivers/net/wireless/rockchip wlan/rkwifi/bcemdhd/dhd gpio.c
static int dhd wlan get mac addr (unsigned char *buf)

{

int err = 0;

oe
0]

printf ("
#ifdef EXAMPLE GET MAC

/* EXAMPLE code */

{

\n", _ FUNCTION);

struct ether addr ea example = {{0x00, Ox11, 0x22, 0x33, 0x44,
OxXFF}};
bcopy ((char *)&ea example, buf, sizeof (struct ether addr)):;
}
#endif /* EXAMPLE GET MAC */

//Method 1: If you use our vendor solution and flash the customized MAC
to the vendor partition, the following function will be read from the vendor
partition.

err = rockchip wifi mac_addr (buf) ;

//The function is used to fill the MAC address into the first 6 positions

of buf, please refer to the above ea example.

// Method 2: If the MAC address is stored in your customized place, you
need to implement the read function by yourself
// TODO: Fill the MAC address into the first 6 positions of buf, please

refer to ea example above

//#ifdef EXAMPLE GET MAC VER2 //Define or comment out this macro to make
the following code effective
/* EXAMPLE code */
{
char macpad[56]= {//Replace with the macpad provided by the
vendors
0x43,0xdf, 0x6c, 0xb3,0x06, 0x3e,0x8e, 0x94,
Oxc7,0xa9,0xd3,0x41,0xc8,0x6f,0xef, 0x67,
0x05,0x30,0xfl, 0xeb, 0x4b, 0xa9, 0x0a, 0x05,
0x41,0x73,0xbc, 0x8c,0x30, 0xe5,0x74, 0xco6,
0x88,0x36,0xad, 0x0c,0x34,0x7d, 0x5b, 0x60,
Oxe7,0xd7,0x98,0x64,0xd0, 0xfa, 0xe3, 0x83,
0x76,0x35,0x1la,0xc8,0x2b, 0x0b, 0x65, 0xbl};
bcopy (macpad, buf+6, sizeof (macpad));

//#endif /* EXAMPLE GET MAC VER2 */

return err;

11.5 AMPAK Module Compatible Version (Debian/Ubuntu)

A compatible configuration Buildroot rkwifibt is provided in the SDK for regular AMPAK chips:
BR2 PACKAGE RKWIFIBT AMPAKALL

This configuration can be compatible with the modules supported by SDK. It will automatically detect the Wi-

Fi/BT chip model and load the corresponding firmware when it is turned on. The source code directory is:
external/rkwifibt/src/rk_wifi_init.c

The following points should be noted:

e This configuration will copy the firmware of all AMPAK modules and cause the rootfs file system to
become larger, a larger flash is needed;
e This configuration does not support BSA (AMPAK Bluetooth proprietary protocol stack) compatibility,

resulting in BSA unusable;

So only Debian/Ubuntu systems are recommended to use this configuration, these open source systems

have their own Bluetooth protocol stack, we only need to do the initialization (rk_wifi_init).

11.6 Modify Realtek Wi-Fi Scan Time

//Realtek wifi scan time during each channel, modify include/rtw mlme ext.h

#define SURVEY TO (100) //The unit is ms, modify as required

11.7 Wi-Fi Country Code

Realtek modules: modify the Makefile of driver and add the following items in platform building:

+++ b/drivers/net/wireless/rockchip wlan/rtlxxx/Makefile

@@ -1270,6 +1270,7 @@ EXTRA CFLAGS += -DCONFIG LITTLE ENDIAN -
DCONFIG PLATFORM ANDROID -DCONFIG PLATFO

default setting for Android 4.1, 4.2, 4.3, 4.4

EXTRA CFLAGS += —-DCONFIG IOCTL CFG80211 -DRTW USE CFG80211 STA EVENT
EXTRA CFLAGS += -DCONFIG CONCURRENT MODE

+EXTRA CFLAGS += -DCONFIG RTW IOCTL SET COUNTRY

default setting for Power control

#EXTRA_CFLAGS += —-DRTW_ENABLE WIFI_CONTROL_ FUNC

#EXTRA CFLAGS += -DRTW_SUPPORT PLATFORM SHUTDOWN

1. By the way of proc echo X> /proc/net/rtlxxx/wlan0/country code, such as:

echo CN> /proc/net/rtlxxx/wlan0/country code

af://n872
af://n884
af://n886

2. wpa_supplicant.conf configuration parameter country=X, if it is softap, configuration parameter of
hostapd.conf is country code=X;
Note: the way to confirm country code X can be searched through the website, such as

https://countrycode.org/ to see the combination of two capital letters in ISO CODES.

AzureWave/AMPAK Wi-Fi Modules:

dhd priv country XX

11.8 Load and Unload Wi-Fi KO Mode Dynamically

If there are multiple loading/unloading operations in Wi-Fi built in KO mode, the following patch needs to be
added:

-—- a/arch/armé4/boot/dts/rockchip/rk3xxx.dts
+++ b/arch/arm64/boot/dts/rockchip/rk3xxx.dts
@@ -112,6 +112,7 @@
wireless-wlan {
rockchip,grf = <&grf>;
wifi chip type = "ap6354";
sdio_vref = <1800>;
+ WIFI,poweren gpio = <&gpiol 18 GPIO ACTIVE HIGH>; //Configure the
PIN corresponding to WIFI REG ON
WIFI,host wake irqg = <&gpiol 19 GPIO ACTIVE HIGH>;
status = "okay";
}i
sdio pwrseq: sdio-pwrseq {
4 status = "disabled"; //Disabled this node
bi

&sdio { //remove the following two configurations
disable-wp;
keep-power-in-suspend;
max-frequency = <150000000>;

= mmc-pwrseq = <&sdio pwrseq>;

= non-removable;

num-slots = <1>;

diff --git a/drivers/mmc/host/dw _mmc.c b/drivers/mmc/host/dw mmc.c

index 8730e2e..04b9%cb8 100644

--- a/drivers/mmc/host/dw_mmc.c

+++ b/drivers/mmc/host/dw_mmc.c

@@ -1518,6 +1518,9 @@ static int dw mci get cd(struct mmc_host *mmc)
struct dw mci *host = slot->host;

int gpio cd = mmc gpio get cd(mmc);

+ if (mmc->restrict caps & RESTRICT CARD TYPE SDIO)
+ return test bit (DW_MMC CARD PRESENT, &slot->flags):;
+

/* Use platform get cd function, else try onboard card detect */
if ((brd->quirks & DW MCI QUIRK BROKEN CARD DETECTION) ||
(mmc->caps & MMC CAP NONREMOVABLE))
@@ -2755,6 +2758,9 @@ static int dw mci init slot(struct dw mci *host, unsigned
int id)
dw mci get cd(mmc);
+ if (mmc->restrict caps & RESTRICT CARD TYPE SDIO)

https://countrycode.org/
af://n896

+ clear bit (DW MMC CARD PRESENT, &slot->flags);

ret = mmc_add host (mmc) ;
if (ret)

goto err host allocated;

--- a/drivers/mmc/core/sdio.c
+++ b/drivers/mmc/core/sdio.c
@@ -996,9 +996,7 Q@ static int mmc sdio resume (struct mmc_host *host)

}

/* No need to reinitialize powered-resumed nonremovable cards */
- if (mmc_card is removable (host) || !mmc_card keep power (host)) {
- err = mmc_sdio reinit card(host,
mmc_card keep power (host));
- } else if (mmc_card keep power (host) &&
mmc_card wake sdio irqg(host)) {
+ if (mmc_card keep power (host) && mmc card wake sdio irqg(host)) {

/* We may have switched to 1-bit mode during suspend */

err = sdio enable 4bit bus (host->card);

11.9 Wi-Fi or Ethernet UDP Packet Loss Rate Test Is Abnormal

Verify by the following modifications:

The maximum buffer for data transmission of each TCP socket, in bytes;

echo 1048576 > /proc/sys/net/core/rmem max

echo 12582912 > /proc/sys/net/core/wmem max #Modify to 12M

echo 2097152 > /proc/sys/net/core/wmem default #Modify to 2M

echo 65535 > /proc/sys/net/core/netdev_max backlog

#netdev_max backlog represents the backlog of the network card device, because
the speed of network card receives packets is much faster than the speed of
kernel processes these packets, so the backlog of the network card device

appears.

11.10 Network Issues Troubleshooting Steps

11.10.1 Stuck or Frame Loss Issue Troubleshooting

#Using an Network cable to check when using Ethernet

Use tcpdump to capture packets to confirm whether there is packet loss,

If it is UDP+RTP, it can be confirmed by the RTP sequence number;

If there is no packet loss, the packet loss may be caused by the application
layer not receiving packets in time. You can use netstat to check the data cached
at the tcp/ip layer to confirm

netstat -n -t -u

Turn off gro to confirm:
ethtool -K ethO gro off

af://n899
af://n901
af://n902

Increase cpu frequency to the highest to confirm

echo "performance" > /sys/devices/system/cpu/cpuO/cpufreq/scaling governor

Increase the tcp/ip cache buf size to confirm

#With the unit of bytes, the size of the receiving buffer area, cache data
received from the other side, and will be read by the application later
echo "524288 1048576 2097152" > /proc/sys/net/ipv4/tcp rmem

echo 2097152 > /proc/sys/net/core/rmem max #

echo 2097152 > /proc/sys/net/core/rmem default
busybox ifconfig to check whether there is packet loss statistics

Video playback issues: after TCP may be stuck, and UDP may cause a blurry

screen;

11.10.2 Simple Verification of Network Protocol Stack Processing Packet Time

Write a standard echo network program, capture packets through tcpdump, and capture packets at the two yellow

circles in the figure below to calculate the time for the protocol stack to process packets.

user space

TCP Stack 2

kernel space

TCP Stack 1

= s

11.11 wpa_supplicant/hostapd Version Updated

The current SDK version is 2.6 + Solve the key reinstallation vulnerability of
WPA2

The corresponding introduction and address of the patch is in:

https://wl.fi/security/2017-1/wpa-packet-number-reuse-with-replayed-

messages.txt

If you need to update to other new versions, the way is as follows:

Go to the github official website to find the Buildroot repository, and go to
the following directory:
https://github.com/buildroot/buildroot/tree/master/package/

Find the two directories: wpa supplicant and hostapd respectively, and download

them locally:

af://n904
af://n907

wpa_supplicant

hostapd

Go to the SDK directory:
RK3XXX_ SDK: buildroot/package/
Directly replace the two directories wpa supplicant and hostapd with the new

version directory downloaded above;

The way to update the buid:

make wpa supplicant-dirclean && make wpa supplicant
make hostapd-dirclean && make hostapd

./build.sh rootfs

11.12 Debug Configuration of Driver Application

11.12.1 Wi-Fi Driver Debug

Sometimes, a more detailed log is needed to debug issues. For Realtek chips, please enable the following

options to enable the kernel to print a more complete driver log:

#Modify directory: kernel/drivers/net/wireless/rockchip wlan/rtl8xxx

#Newer driver:

Makefile

+CONFIG_RTW DEBUG = y

+CONFIG RTW LOG LEVEL = 2 #It is 2 by defaul, and it can be changed to 4 during

debugging to print more complete log information

#There is no this configuration in some old drivers , and enable the following
configuration:

include/autoconf.h

+#define CONFIG DEBUG /* DBG 871X, etc... */

11.12.2 TCPDUMP Capture Packet

Network Application issues: Sometimes you need to capture packet to confirm problems, open the

configuration, build and generate the tcpdump executable program, the packet capture command:

Choose the corresponding configuration BR2 PACKAGE TCPDUMP in buildrooot:
tcpdump -h
tcpdump -i wlan0 -w /data/xxxx.pcap

11.12.3 wpa_supplicant Debugging

e Sometimes the log of wpa_supplicant is needed to debug problems:

#Open the following configuration in Buildroot
#Remember to save by "make savedefconfig"

+ BR2 PACKAGE WPA SUPPLICANT DEBUG SYSLOG

af://n909
af://n910
af://n913
af://n916

#Rebuild
make wpa supplicant-dirclean

make wpa supplicant-rebuild

#When starting wpa supplicant, add the -s parameter so that the log will be
output to the /var/log/messages file
" -s = log output to syslog instead of stdout"

#-d print more logs

" -d = increase debugging verbosity (-dd even more)"

#Because there are many logs of wpa, but the size of the messages file is small,
you can change the following configuration to increase the file size
buildroot/package/busybox/S011logging

@@ -3,7 +3,7 @@

Start logging

#

-SYSLOGD_ARGS=-n

+SYSLOGD ARGS="-n -s 8192"

#Rebuild busybox
make busybox-dirclean

make busybox-rebuild

#Package again at last
./build.sh

#Enable wpa supplicant and add debug options such as -s -d

wpa supplicant -B -i wlan0 -c /xxx/wpa supplicant.conf -s -ddd

11.12.4 SDIO Driver Debugging

#Note: Different kernel versions, the structure has changed, add the patch

according to the actual kernel version

diff --git a/drivers/mmc/host/dw mmc.c b/drivers/mmc/host/dw mmc.c

old mode 100644

new mode 100755

index 0ed1854..3019413

--- a/drivers/mmc/host/dw_mmc.c

+++ b/drivers/mmc/host/dw_mmc.c

@@ -410,6 +410,9 Q@ static void dw mci start command(struct dw mci *host,
"start command: ARGR=0x%08x CMDR=0x%08x\n",
cmd->arg, cmd flags);

pr err("start command: ARGR=0x%08x CMDR=0x%08x\n", cmd->arg, cmd flags);

+ if (host->slot[0]->mmc->restrict caps & RESTRICT CARD TYPE SDIO) //kernel
4.4

+ if (host->slot->mmc->restrict caps & RESTRICT CARD TYPE SDIO) //kernel
4.19

+

+

mci writel (host, CMDARG, cmd->arg);

@@ -2529,6 +2532,9 @@ static irgreturn t dw mci interrupt (int irg, void *dev_id)
pending = mci readl (host, MINTSTS); /* read-only mask reg */

+ if (host->slot[0]->mmc->restrict caps & RESTRICT CARD TYPE SDIO)//kernel

af://n921

+ if (host->slot->mmc->restrict caps & RESTRICT CARD TYPE SDIO) //kernel

+ pr_err("=== dw mci interrupt: pending: Ox%x ===\n", pending);

/*
* DTO fix - version 2.10a and below, and only if internal DMA
* is configured.
@@ -2558,6 +2564,8 @@ static irgreturn t dw mci interrupt (int irqg, void *dev_id)
}
if (pending & DW MCI CMD ERROR FLAGS) {
+ if (host->slot[0]->mmc->restrict caps &
RESTRICT CARD TYPE SDIO)//kernel 4.4
+ if (host->slot->mmc->restrict caps &
RESTRICT CARD TYPE SDIO)//kernel 4.19
+ pr err ("=== CMD ERROR: 0x%x ===\n", pending);
spin lock irgsave (&host->irqg lock, irgflags);
del timer (&host->cto timer);
@@ -2573,6 +2581,8 @@ static irgreturn t dw mci_ interrupt (int irg, void *dev_id)
}
if (pending & DW MCI DATA ERROR FLAGS) |{
+ if (host->slot[0]->mmc->restrict caps &
RESTRICT CARD TYPE SDIO)//kernel 4.4

+ if (host->slot->mmc->restrict caps &
RESTRICT CARD TYPE SDIO)//kernel 4.19
+ pr_err ("=== DATA ERROR: 0x%x ===\n", pending);

/* if there is an error report DATA ERROR */
mci writel (host, RINTSTS, DW MCI DATA ERROR FLAGS);
host->data status = pending;
@@ -2582,6 +2592,8 @@ static irgreturn t dw mci interrupt (int irg, void *dev_id)
}
if (pending & SDMMC INT DATA OVER) {
+ if (host->slot[0]->mmc->restrict caps &

RESTRICT CARD TYPE SDIO)//kernel 4.4

+ if (host->slot->mmc->restrict caps &
RESTRICT CARD TYPE SDIO)//kernel 4.19
+ pr_err ("=== SDMMC INT DATA OVER: 0x%x ===\n", pending) ;

12. Application Development
Only applicable for Buildroot original systems!

12.1 Deviceio Introduction

Deviceio (external/deviceio_release) is an application development library, which eliminating underlying
complex Wi-Fi/BT operations such as wpa_supplicant/bluez/bsa, etc., and provides friendly application

development interfaces. Please refer to documents in the docs\Linux\Wifibt directory for details:

Rockchip Developer Guide DevicelIo WIFI CN.pdf #Wi-Fi development
Rockchip Developer Guide Devicelo Bluetooth CN.pdf #Bluetooth development
Rockchip Developer Guide Network Config CN.pdf #Network Config
development (BLE)

af://n923
af://n925

12.2 Configuration Build

Linux standard bluez protocol stack is used by Realtek Bluetooth: buildroot/packages/bluez5 utils;

AzureWave/AMPAK use the proprietary bsa protocol stack: external/broadcom bsa and
external/bluetooth bsa

Configurations of different modules:

e Realtek modules (such as rt18723ds) are configured as follows:

#kernel configuration
CONFIG BT HCIUART=n #Remember to turn off this configuration

#Buildroot
BRZiPACKAGEiRKWIFIBTiRTLS723DS:y
BR2_PACKAGE_DEVICEIO_RELEASEzy
BR2_PACKAGE BLUEZ ALSA=y
BRZﬁPACKAGEisBC=y
BRZiPACKAGEiBLUEZ57UTILS:y

¢ AMPAK modules such as ap6255

#kernel configuration

CONFIG BT HCIUART=y #Open this configuration

#Buildroot

BR2 PACKAGE RKWIFIBT AP6255=y

BR2 PACKAGE BROADCOM BSA=y #external/broadcom bsa
BR2 PACKAGE DEVICEIO RELEASE=y

e AzureWave modules such as AW-CM256

#kernel configuration
CONFIG BT HCIUART=y #Open this configuration

#Buildroot
BR2 PACKAGE RKWIFIBT AWCM256=y
BR2 PACKAGE CYPRESS BSA=y #external/bluetooth bsa’

BR2 PACKAGE DEVICEIO RELEASE=y

Compilation update:

make menuconfig, after modifying the configuration, you need to make savedefconfig to save the

configuration, please refer to Chapter 2.1.

AMPAK modules:
Build in the following order strictly:
make rkwifibt-dirclean && make rkwifibt-rebuild

make broadcom bsa-dirclean && make broadcom bsa-rebuild

make deviceio release-dirclean && make deviceio release

AzureWave modules:

af://n928

Build in the following order strictly:
make rkwifibt-dirclean && make rkwifibt-rebuild
make cypress bsa-dirclean && make cypress bsa-rebuild

make deviceio release-dirclean && make deviceio release

Realtek modules:

Build in the following order strictly:

make rkwifibt-dirclean && make rkwifibt-rebuild

make bluez5 utils-dirclean && make bluez5 utils-rebuild
make bluez-alsa-dirclean && make bluez-alsa-rebuild
make deviceio release-dirclean && make deviceio release

#Note: bluez-alsa is supported by bluez: A2DP and HFP functions

	Rockchip Linux Wi-Fi/BT Developer Guide
	Quick Start Guide
	Wi-Fi/BT Configuration
	Buildroot SDK Compilation and Configuration Guide
	DTS Configuration
	Wi-Fi Configuration
	Bluetooth Configuration
	IO Power Domain Configuration
	The 32.768K Configuration
	PCIE Wi-Fi Configuration

	SDMMC Interface Connected to Wi-Fi Chip
	Kernel Configuration
	Wi-Fi Configuration
	Bluetooth Configuration

	Buildroot Configuration

	Wi-Fi/BT Files and Compilation Update Introduction
	Compilation Files
	Compilation Rules
	Required Files and Their Paths during Wi-Fi/BT Running
	The Rules for Auto Loading Wi-Fi Driver KO when Startup
	Compilation Update

	Wi-Fi/BT Function Verification
	Wi-Fi STA Test
	Turn Wi-Fi On and Off
	Scan APs Nearby
	Connect to Router

	Wi-Fi AP Hotspot Verification
	BT Verification Test
	Wi-Fi Suspend and Resume
	Wi-Fi Monitor Mode
	Wi-Fi P2P Verification
	Connection Function

	Wi-Fi/BT Hardware RF Target
	Test Items
	Test Tools and Methods
	Realtek Test
	AP/CY Test

	Report

	Wi-Fi Performance Test
	Wi-Fi/BT Troubleshooting
	Brief Description of Wi-Fi Identification Process
	Wi-Fi Issues
	Wi-Fi Abnormal: SDIO Can Not Be Recognized
	USB Wi-Fi Troubleshooting
	Special Notice of Realtek Wi-Fi
	wlan0 Has Identified but Scan Abnormality
	Realtek Supports SDIO3.0

	Wlan0 of RV1109/1126 Platform Cannot Be Up
	Wi-Fi SDIO Card Is Recognized but Wlan0 Up Failed
	Wi-Fi with SDIO Interface Runs Abnormally After A Period of Time
	Wi-Fi Unable to Connect to Router for Disconnection or Unstable Connection
	Throughput Not As Expected
	IP Abnormal
	Resume and Suspend Abnormal
	PING Abnormal
	Customized Modification
	Wlan0 Is Normal, but No AP Can Be Scanned
	Dual Wi-Fi AP+RTL Abnormal
	iComm Wi-Fi Abnormal
	Hotspot of iPhone Can't be Connected in iOS15 System

	Bluetooth Issues

	New Module Porting or Old Module Driver Update
	Realtek Modules
	Wi-Fi Modules
	BT Modules
	UART Interface
	USB Interface

	AMPAK Modules
	HiSilicon Wi-Fi Porting

	Wi-Fi/BT of Debian and Other Third-Party Systems Adaptation Introduction
	System Adaptation Overview
	AMPAK Modules Adaptation Example
	Realtek Module Adaptation Example
	Adaptation Introduction
	Bluetooth Driver /rtk_hciattach Tool Compilation Introduction

	Automatic Installation Introduction

	Bluetooth Extension Functions
	Bluetooth with Low Power Consumption
	Bluetooth 5.0 Functional Verification (Currently only supported by RK3588 platform, more platforms will be supported in the future)

	Other Functions and Configurations Introduction
	RV1126 /RV1109 Connmand
	Set Static IP and Other Parameters at Boot Automatically
	DHCP Client
	Wi-Fi/BT MAC Address
	AMPAK Module Compatible Version (Debian/Ubuntu)
	Modify Realtek Wi-Fi Scan Time
	Wi-Fi Country Code
	Load and Unload Wi-Fi KO Mode Dynamically
	Wi-Fi or Ethernet UDP Packet Loss Rate Test Is Abnormal
	Network Issues Troubleshooting Steps
	Stuck or Frame Loss Issue Troubleshooting
	Simple Verification of Network Protocol Stack Processing Packet Time

	wpa_supplicant/hostapd Version Updated
	Debug Configuration of Driver Application
	Wi-Fi Driver Debug
	TCPDUMP Capture Packet
	wpa_supplicant Debugging
	SDIO Driver Debugging

	Application Development
	Deviceio Introduction
	Configuration Build

