
Rockchip RMSL Linux Developer Guide

ID: RK-KF-YF-355

Release Version: V1.0.1

Release Date: 2020-12-14

Security Level: □Top-Secret □Secret □Internal ■Public

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES
NOT PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH
RESPECT TO THE ACCURACY, RELIABILITY, COMPLETENESS,MERCHANTABILITY, FITNESS FOR
ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION
AND CONTENT IN THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS
DOCUMENT MAY BE UPDATED OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE
UPGRADES OF THE PRODUCT OR ANY OTHER REASONS.

Trademark Statement

"Rockchip", "瑞芯微", "瑞芯" shall be Rockchip’s registered trademarks and owned by Rockchip. All the other
trademarks or registered trademarks mentioned in this document shall be owned by their respective owners.

All rights reserved. ©2020. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in
any form in whole or in part without the written approval of Rockchip.

Rockchip Electronics Co., Ltd.

No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590

Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Date Version Author Revision History

2020-04-09 V1.0.0 zhengsq Initial version

2020-12-14 V1.0.1 Ruby Zhang Update the company name and document format

Preface

Overview

Rockchip Module Structured Light (RMSL) is a feature-rich 3D camera module based on structured light
technology. With integrated 30K speckles projector, 5M pixels RGB camera, 1M pixels global shutter IR camera
and Infrared Illuminator. RMSL is applicable for payment, entrance guard, gesture recognition and high-precision
3D modeling.

This document mainly presents the usage and development interface of Rockchip structured light module RMSL
under Linux SDK.

Intended Audience

This document (this guide) is mainly intended for:

Technical support engineers

Software development engineers

Revision History

Contents

Rockchip RMSL Linux Developer Guide
1. Introduction to RMSL Module Interface

1.1 Overview
1.2 RMSL Module
1.3 Configurations in Buildroot
1.4 Build and Run

2. Demo Code Introduction
2.1 RMSL Control Interface
2.2 Get Data Stream
2.3 Decoding
2.4 Display

2.4.1 Integration with QT application
3. FAQs

3.1 Device Disconnected after Opening Camera

Video
Max.
Resolution

Format
Frame
Rate

Description

Depth 640x480 YUYV 15fps
Output disparity image, which can be converted into
depth image or point cloud image according to the
algorithm

RGB 1920x1080 MJPG 30fps
Output RGB image, which can be decoded to NV12
format

IR 640x480 MJPG 15fps
Output Infrared image, which can be decoded to
NV12 format

Model Matching SN No. Interface

RMSL201-1301 R2011301xxxxxxxxx USB

1. Introduction to RMSL Module Interface

1.1 Overview

Rockchip RMSL module is an USB plug and play device, there are three outputs at the same time: Depth, RGB
and IR. Depth outputs YUYV data, RGB and IR output MJPG data.

1.2 RMSL Module

The model number of RK RMSL can be obtained from SN number. The currently supported RK structured light
models are as follows:

1.3 Configurations in Buildroot

In the Buildroot Linux SDK, the development interfaces and reference demos are located in the app/demo/rmsl
directory. The default SDK release version will not build the program. You have to enable the Buildroot
configuration BR2_PACKAGE_APP_DEMO_RMSL to enable building. The following application packages
that this program depends on should be enabled too:

BR2_PACKAGE_CAMERA_ENGINE_RKISP, used to get V4L2 data stream
BR2_PACKAGE_MPP, used to decode MJPG
BR2_PACKAGE_LINUX_RGA, used to process YUV data for display
BR2_PACKAGE_LIBDRM, used to display on the screen (optional)

Note：

If there is no macro switch or rmsl demo code, please update to the latest SDK or obtain it from the github
repository.

af://n48
af://n49
af://n76
af://n87
https://github.com/rockchip-linux/demo

external/camera_engine_rkisp/ should be updated to 86dc5bf1 apps: rkisp_api: add usb camera
supports . If the SDK is not updated to the latest version, it can be obtained through the github repository.

1.4 Build and Run

Enter the SDK directory, build the modules with the following command:

Please refer to the following command when need to rebuild:

After finishing the building, two executable binaries rmsl_linux_demo and rmsl_tool will be generated.

Because of the large number of dependencies, it is recommended to make a clean build after section 1.3.

Connecting the RMSL module, the rmsl_tool can display the device information.

Get node information of device

Note:

There are three video device nodes /dev/video6, /dev/video8, /dev/video10, they are DEPTH, RGB, IR
devices respectively.
It also displays other information such as USB device node, driver information

Search the SN Number and software version of the RMSL:

make app_demo1

make app_demo-dirclean

make app_demo

1

2

ls -1 /usr/bin/rmsl*

/usr/bin/rmsl_linux_demo

/usr/bin/rmsl_tool

1

2

3

rmsl_tool --list_devices

Device /dev/video6 info:

 usb interface: UVC DEPTH

 driver name: uvcvideo

 card type: RV1108

 bus_info: usb-ff340000.usb-1

Device /dev/video8 info:

 usb interface: UVC RGB

 driver name: uvcvideo

 card type: RV1108

 bus_info: usb-ff340000.usb-1

Device /dev/video10 info:

 usb interface: UVC IR

 driver name: uvcvideo

 card type: RV1108

 bus_info: usb-ff340000.usb-1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

https://github.com/rockchip-linux/camera_engine_rkisp
af://n104

The device should be initialized before getting data stream:

The device should be de-initialized after ending the data flow:

After ending the data flow, you can also reset the device

Once the RMSL was initialized, some open source tools such as v4l2-ctl and vlc are able to get the data stream,
but you have to pay attention to the format and size of the data stream.

Another tool rmsl_linux_demo provided in rmsl demo is used to demonstrate complete usage including init: get
data stream, decode, deinit, display and other functions. Because the rmsl_linux_demo has initialized the RMSL
properly, it is not necessary to use the rmsl_tool to do the initialization first.

The usage help of rmsl_linux_demo:

As shown above, rmsl_linux_demo provides the function of getting data stream, saving it as a file, and displaying
it on the screen. The display function is turned on by default, if you do not need display, use the --no-display
parameter to disable.

Display the image on the screen:

rmsl_tool --get_sn --get_version --device /dev/video6

SN: R2011301200801448

Version: 2.2.0

1

2

3

rmsl_tool --init --device /dev/video61

rmsl_tool --deinit --device /dev/video61

rmsl_tool --reset --device /dev/video61

rmsl_linux_demo --help

Usage of rmsl_linux_demo:

To display and/or save decode frames to files:

 --screen-width, screen width, required if need display

 --screen-height, screen height, required if need display

 --no-display, disable display, by default it's enabled

 --save-ir-to, path to save IR decoded frames in NV12

 --save-depth-to, path to save DEPTH decoded frames with bpp = 16

 --save-rgb-to, path to save RGB decoded frames in NV12

1

2

3

4

5

6

7

8

9

rmsl_linux_demo --screen-width 1536 --screen-height 2048

UVC DEPTH: /dev/video5: draw in (0, 480)[640 x 480]

UVC RGB: /dev/video7: draw in (320, 0)[640 x 480]

UVC IR: /dev/video9: draw in (640, 480)[640 x 480]

1

2

3

4

5

6

The pictures above show three images on RK3288 screen (1536x2048), from top to bottom and left to right, they
are RGB, DEPTH, IR respectively. The size are all 640x480, in which the depth image displays the disparity
image in RGB565 format directly.

Don't display the image, but save the frame after decoding

In the above example, the display function is disabled, and the three frame data are saved to files.

ir.bin, save 640x480 NV12 frame data
rgb.bin, save 640x480 NV12 frame data
depth.bin, save 640x480 depth data, 2 bytes per pixel

In the above three examples, the data stream size is 640 * 480 by default, but the RGB camera can support 1080p
output. YUVPlayer (windows environment) or mplayer (Linux environment) can be used to view the captured
files when they are on a PC. and please refer to the following commands for mplayer usage.

rmsl_linux_demo --no-display \

 --save-ir-to /tmp/ir.bin \

 --save-rgb-to /tmp/rgb.bin \

 --save-depth-to /tmp/depth.bin

1

2

3

4

mplayer /tmp/ir.bin -loop 0 -demuxer rawvideo -fps 15 \

 -rawvideo w=640:h=480:size=$((640*480*3/2)):format=nv12

mplayer /tmp/rgb.bin -loop 0 -demuxer rawvideo -fps 15 \

 -rawvideo w=640:h=480:size=$((640*480*3/2)):format=nv12

mplayer /tmp/depth.bin -loop 0 -demuxer rawvideo -fps 15 \

 -rawvideo w=640:h=480:size=$((640*480*2)):format=rgb16

1

2

3

4

5

6

7

8

2. Demo Code Introduction

The source code is located in the app/demo/rmsl/ directory, which contains RMSL settings, querying interface,
getting data stream and decoding and display functions.

2.1 RMSL Control Interface

Get the version:

Explanation of each parameter:

fd, the file descriptor of the /dev/video node
ver, the returned version number
size, the size of the ver array, should not be less than RMSL_DATA_SIZE_QUERY

Return 0 on success, or error value if an error occurred.

Get SN number:

Explanation of each parameter:

fd, the file descriptor of the /dev/video node
sn, the returned SN number
size, the size of the sn array, should not be less than RMSL_DATA_SIZE_QUERY

Return 0 on success, or error value if an error occurred.

Initialize/de-initialize the device:

Initialize or de-initialize the device so that the video node will output data.

tree app/demo/rmsl/

app/demo/rmsl/

├── CMakeLists.txt

├── main.c # main of rmsl_linux_demo

├── rkdrm_display.c # use DRM to display directly on Overlay Plane of

Rockchip devices

├── rkdrm_display.h

├── rmsl_api.h # RMSL API Definition

├── rmsl_ctrl.c # Implementation of rmsl control, query and other

routines

├── rmsl_depth.c # Implementation of depth image conversion

├── rmsl_tool.c # The rmsl_tool source code

├── vpu_decode.c # vpu jpeg hardware decoding interface

└── vpu_decode.h

1

2

3

4

5

6

7

8

9

10

11

12

int rmsl_get_version(int fd, char *ver, int size);1

int rmsl_get_sn(int fd, char *sn, int size);1

int rmsl_init_device(int fd);

int rmsl_deinit_device(int fd);

1

2

af://n150
af://n153

Explanation of each parameter:

fd, the file descriptor of the /dev/video node

Return 0 on success, or error value if an error occurred.

Reset the device

Explanation of each parameter:

fd, the file descriptor of the /dev/video node

Return 0 on success, or error value if an error occurred.

Enter suspend mode:

Explanation of each parameter:

fd, the file descriptor of the /dev/video node

Return 0 on success, or error value if an error occurred.

Get the file path of video devices:

Get the file path of three video devices, such as /dev/video6, /dev/video8, etc.

Explanation of each parameter:

dev_depth, return the path of the Depth device
dev_ir, return the path of the IR device
dev_rgb, return the path of the RGB device
silent, 1 means no log output; 0 will print some logs

Return 0 on success, or error value if an error occurred.

Convert Depth frame data to point cloud image and depth image:

Convert to point cloud image and depth image according to disparity image.

Explanation of each parameter:

pIn, disparity image frame data from Depth device, and the BPP is 16
pc_out, output point cloud image. If NULL, the point cloud image is not calculated
depth_out, output depth image. If NULL, the depth image is not calculated
width, the width of the image
height, the height of the image

Return values:

int rmsl_reset_device(int fd);1

int rmsl_suspend_device(int fd);1

int rmsl_get_devices(char *dev_depth, char *dev_ir, char *dev_rgb, int

silent);

1

int rmsl_get_point_cloud_depth(const uint16_t *pIn, struct rmsl_pc *pc_out,

 uint16_t *depth_out, int width, int height);

1

2

0 means successful calculation
A negative means error
A positive 0 means that the original frame data of the module is already a depth image and no calculation is
required. (No such case currently)

2.2 Get Data Stream

The rkisp_api.so is used to get data stream in the rmsl_linux_demo. Compared with the common USB Camera
module, one more initialization operation is required.

For more details about rkisp_api.so interface, please refer to
"Rockchip_Developer_Guide_Linux_Camera_EN.pdf".

2.3 Decoding

The Rockchip MPP library is used to decode MJPG in this demo. Which will send the data stream got from
rkisp_api to MPP for decoding. Because the decoded buffer may be resized/copied by RGA and then display on
screen, this demo allocate buffer from RGA as decoded buffer.

Source code for decoding:

Note:

decoder, is vpu decoding handle
rga_bo_fd, is RGA buffer handle
rga_bo.ptr, is virtual address of RGA buffer

2.4 Display

In order to process the data stream as efficiently as possible and take the characteristics of different Rockchip
chips into account, the display of rmsl_linux_demo directly uses the libdrm interface, and the three images are
copied to the specific offset of the target buffer through RGA, and finally sent to the overlay Plane of Rockchip
VOP.

The main process is shown below.

 ret = vpu_decode_jpeg_init(&ctx->decoder, ctx->width, ctx->height);

 while (has new frame)

 vpu_decode_jpeg_doing(&ctx->decoder, ctx->cur_frame->buf,

 ctx->cur_frame->size, ctx->rga_bo_fd, ctx->rga_bo.ptr);

 vpu_decode_jpeg_done(&ctx->decoder);

1

2

3

4

5

af://n235
af://n238
af://n250

Algorithm calculation Algorithm calculation RGA copy

MPP decode MPP decode

RGA transcode to rgb565 and copy RGA transcode to rgb565 and copy

Depth camera frame

Depth image Point cloud image Display buffer after three images merge

RGB camera MJPG frame

RGB NV12 frame

IR camera MJPG frame

Infrared NV12 frame

VOP overlay level display

There are two assumptions here:

Suppose only one overlay layer is available. So use RGA to copy images to different offsets of the target
buffer. For example, there is only one overlay layer in px30/rk3326
Display the disparity image as RGB565 which is just for demonstration, the BPP of Depth happens to be 16
as RGB565 is. The outline of the Depth frame is quite clear if display in RGB565 format.

Although there is an additional step of RGA transcoding and copying, the RGA hardware acceleration make it
efficiently. The demo can be displayed at 15fps on px30, rk3288, and rk3399 platforms. Because IR and Depth
Camera are only 15fps, the maximum frame rate is only 15fps. The following methods can be considered to
optimize performance:

If multiple overlay layers are available, NV12 format can be displayed in a separate plane directly. A total
of three overlay layers are required, two for RGB and infrared NV12 frame display, and the other for depth
image display. In this way, RGA transcoding and/or copying steps can be skipped. RGB Camera can also
reach a frame rate of 30fps.
Multithreading can improve concurrency, especially when needing to process point cloud images, which
involving floating-point operations.

2.4.1 Integration with QT application

If you need QT applications to draw UI components such as menus and buttons, a video area can be reserved on
main UI for video overlay plane.

It should be noted that the overlay layer (video) is always above UI, so if there is a pop-up dialog, menu,
etc. that overlaps with the video area, we can hide the video overlay plane temporarily.

The above is just to provide a kind of idea, please make your own design as need.

af://n266

3. FAQs

3.1 Device Disconnected after Opening Camera

The reason is that the power supply is insufficient. Please connect to the USB hub of an external power supply.

af://n270
af://n271

	Rockchip RMSL Linux Developer Guide
	Introduction to RMSL Module Interface
	Overview
	RMSL Module
	Configurations in Buildroot
	Build and Run

	Demo Code Introduction
	RMSL Control Interface
	Get Data Stream
	Decoding
	Display
	Integration with QT application

	FAQs
	Device Disconnected after Opening Camera

