/* SPDX-License-Identifier: GPL-2.0 */ /* * Broadcom Dongle Host Driver (DHD), Linux-specific network interface * Basically selected code segments from usb-cdc.c and usb-rndis.c * * Copyright (C) 1999-2019, Broadcom Corporation * * Unless you and Broadcom execute a separate written software license * agreement governing use of this software, this software is licensed to you * under the terms of the GNU General Public License version 2 (the "GPL"), * available at http://www.broadcom.com/licenses/GPLv2.php, with the * following added to such license: * * As a special exception, the copyright holders of this software give you * permission to link this software with independent modules, and to copy and * distribute the resulting executable under terms of your choice, provided that * you also meet, for each linked independent module, the terms and conditions of * the license of that module. An independent module is a module which is not * derived from this software. The special exception does not apply to any * modifications of the software. * * Notwithstanding the above, under no circumstances may you combine this * software in any way with any other Broadcom software provided under a license * other than the GPL, without Broadcom's express prior written consent. * * * <> * * $Id: dhd_linux.c 715966 2019-05-30 02:36:59Z $ */ #include #include #include #ifdef SHOW_LOGTRACE #include #include #endif /* SHOW_LOGTRACE */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef ENABLE_ADAPTIVE_SCHED #include #endif /* ENABLE_ADAPTIVE_SCHED */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 11, 0)) #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DHD_WET #include #endif /* DHD_WET */ #ifdef PCIE_FULL_DONGLE #include #endif #include #include #include #ifdef CONFIG_HAS_WAKELOCK #include #endif #ifdef WL_CFG80211 #include #endif #ifdef PNO_SUPPORT #include #endif #ifdef RTT_SUPPORT #include #endif #ifdef CONFIG_COMPAT #include #endif #ifdef DHD_WMF #include #endif /* DHD_WMF */ #ifdef DHD_L2_FILTER #include #include #include #endif /* DHD_L2_FILTER */ #ifdef DHD_PSTA #include #endif /* DHD_PSTA */ #ifdef DHDTCPACK_SUPPRESS #include #endif /* DHDTCPACK_SUPPRESS */ #ifdef DHD_DEBUG_PAGEALLOC typedef void (*page_corrupt_cb_t)(void *handle, void *addr_corrupt, size_t len); void dhd_page_corrupt_cb(void *handle, void *addr_corrupt, size_t len); extern void register_page_corrupt_cb(page_corrupt_cb_t cb, void* handle); #endif /* DHD_DEBUG_PAGEALLOC */ static void dhd_tcp_dump(char *ifname, uint8 *pktdata, bool tx); #if defined(DHD_LB) /* Dynamic CPU selection for load balancing */ #include #include #include #include #include #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0)) #include #endif #if !defined(DHD_LB_PRIMARY_CPUS) #define DHD_LB_PRIMARY_CPUS 0x0 /* Big CPU coreids mask */ #endif #if !defined(DHD_LB_SECONDARY_CPUS) #define DHD_LB_SECONDARY_CPUS 0xFE /* Little CPU coreids mask */ #endif #if (NR_CPUS > 8) #undef NR_CPUS #define NR_CPUS 8 #endif #define HIST_BIN_SIZE 8 #if defined(DHD_LB_RXP) static void dhd_rx_napi_dispatcher_fn(struct work_struct * work); #endif /* DHD_LB_RXP */ #endif /* DHD_LB */ #ifdef WLMEDIA_HTSF #include #include #define HTSF_MINLEN 200 /* min. packet length to timestamp */ #define HTSF_BUS_DELAY 150 /* assume a fix propagation in us */ #define TSMAX 1000 /* max no. of timing record kept */ #define NUMBIN 34 static uint32 tsidx = 0; static uint32 htsf_seqnum = 0; uint32 tsfsync; struct timeval tsync; static uint32 tsport = 5010; typedef struct histo_ { uint32 bin[NUMBIN]; } histo_t; #if !ISPOWEROF2(DHD_SDALIGN) #error DHD_SDALIGN is not a power of 2! #endif static histo_t vi_d1, vi_d2, vi_d3, vi_d4; #endif /* WLMEDIA_HTSF */ #ifdef STBLINUX #ifdef quote_str #undef quote_str #endif /* quote_str */ #ifdef to_str #undef to_str #endif /* quote_str */ #define to_str(s) #s #define quote_str(s) to_str(s) static char *driver_target = "driver_target: "quote_str(BRCM_DRIVER_TARGET); #endif /* STBLINUX */ #if defined(SOFTAP) extern bool ap_cfg_running; extern bool ap_fw_loaded; #endif #ifdef SET_RANDOM_MAC_SOFTAP #ifndef CONFIG_DHD_SET_RANDOM_MAC_VAL #define CONFIG_DHD_SET_RANDOM_MAC_VAL 0x001A11 #endif static u32 vendor_oui = CONFIG_DHD_SET_RANDOM_MAC_VAL; #endif /* SET_RANDOM_MAC_SOFTAP */ #ifdef ENABLE_ADAPTIVE_SCHED #define DEFAULT_CPUFREQ_THRESH 1000000 /* threshold frequency : 1000000 = 1GHz */ #ifndef CUSTOM_CPUFREQ_THRESH #define CUSTOM_CPUFREQ_THRESH DEFAULT_CPUFREQ_THRESH #endif /* CUSTOM_CPUFREQ_THRESH */ #endif /* ENABLE_ADAPTIVE_SCHED */ /* enable HOSTIP cache update from the host side when an eth0:N is up */ #define AOE_IP_ALIAS_SUPPORT 1 #ifdef BCM_FD_AGGR #include #include #endif #ifdef PROP_TXSTATUS #include #include #endif #include /* Maximum STA per radio */ #define DHD_MAX_STA 32 #ifdef HOST_FLAG int hostsleep = 0; #endif const uint8 wme_fifo2ac[] = { 0, 1, 2, 3, 1, 1 }; const uint8 prio2fifo[8] = { 1, 0, 0, 1, 2, 2, 3, 3 }; #define WME_PRIO2AC(prio) wme_fifo2ac[prio2fifo[(prio)]] #ifdef ARP_OFFLOAD_SUPPORT void aoe_update_host_ipv4_table(dhd_pub_t *dhd_pub, u32 ipa, bool add, int idx); static int dhd_inetaddr_notifier_call(struct notifier_block *this, unsigned long event, void *ptr); static struct notifier_block dhd_inetaddr_notifier = { .notifier_call = dhd_inetaddr_notifier_call }; /* to make sure we won't register the same notifier twice, otherwise a loop is likely to be * created in kernel notifier link list (with 'next' pointing to itself) */ static bool dhd_inetaddr_notifier_registered = FALSE; #endif /* ARP_OFFLOAD_SUPPORT */ #if defined(CONFIG_IPV6) static int dhd_inet6addr_notifier_call(struct notifier_block *this, unsigned long event, void *ptr); static struct notifier_block dhd_inet6addr_notifier = { .notifier_call = dhd_inet6addr_notifier_call }; /* to make sure we won't register the same notifier twice, otherwise a loop is likely to be * created in kernel notifier link list (with 'next' pointing to itself) */ static bool dhd_inet6addr_notifier_registered = FALSE; #endif /* OEM_ANDROID && CONFIG_IPV6 */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) && defined(CONFIG_PM_SLEEP) #include volatile bool dhd_mmc_suspend = FALSE; DECLARE_WAIT_QUEUE_HEAD(dhd_dpc_wait); #endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) && defined(CONFIG_PM_SLEEP) */ #if defined(OOB_INTR_ONLY) extern void dhd_enable_oob_intr(struct dhd_bus *bus, bool enable); #endif #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) static void dhd_hang_process(void *dhd_info, void *event_data, u8 event); #endif #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0)) MODULE_LICENSE("GPL and additional rights"); #endif /* LinuxVer */ #ifdef BCMDBUS #include extern int dhd_bus_init(dhd_pub_t *dhdp, bool enforce_mutex); extern void dhd_bus_stop(struct dhd_bus *bus, bool enforce_mutex); extern void dhd_bus_unregister(void); #ifdef BCMSDIO extern bool dhd_bus_dpc(struct dhd_bus *bus); #endif /* BCMSDIO */ #else #include #endif /* BCMDBUS */ #ifdef DHD_ULP #include #endif /* DHD_ULP */ #ifdef BCM_FD_AGGR #define DBUS_RX_BUFFER_SIZE_DHD(net) (BCM_RPC_TP_DNGL_AGG_MAX_BYTE) #else #ifndef PROP_TXSTATUS #define DBUS_RX_BUFFER_SIZE_DHD(net) (net->mtu + net->hard_header_len + dhd->pub.hdrlen) #else #define DBUS_RX_BUFFER_SIZE_DHD(net) (net->mtu + net->hard_header_len + dhd->pub.hdrlen + 128) #endif #endif /* BCM_FD_AGGR */ #ifdef PROP_TXSTATUS extern bool dhd_wlfc_skip_fc(void); extern void dhd_wlfc_plat_init(void *dhd); extern void dhd_wlfc_plat_deinit(void *dhd); #endif /* PROP_TXSTATUS */ #if LINUX_VERSION_CODE == KERNEL_VERSION(2, 6, 15) const char * print_tainted() { return ""; } #endif /* LINUX_VERSION_CODE == KERNEL_VERSION(2, 6, 15) */ /* Linux wireless extension support */ #if defined(WL_WIRELESS_EXT) #include extern wl_iw_extra_params_t g_wl_iw_params; #endif /* defined(WL_WIRELESS_EXT) */ #if defined(CONFIG_HAS_EARLYSUSPEND) && defined(DHD_USE_EARLYSUSPEND) #include #endif /* defined(CONFIG_HAS_EARLYSUSPEND) && defined(DHD_USE_EARLYSUSPEND) */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0)) #include #endif /* OEM_ANDROID && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0)) */ extern int dhd_get_suspend_bcn_li_dtim(dhd_pub_t *dhd); #ifdef PKT_FILTER_SUPPORT extern void dhd_pktfilter_offload_set(dhd_pub_t * dhd, char *arg); extern void dhd_pktfilter_offload_enable(dhd_pub_t * dhd, char *arg, int enable, int master_mode); extern void dhd_pktfilter_offload_delete(dhd_pub_t *dhd, int id); #endif #ifdef READ_MACADDR extern int dhd_read_macaddr(struct dhd_info *dhd); #else static inline int dhd_read_macaddr(struct dhd_info *dhd) { return 0; } #endif #ifdef WRITE_MACADDR extern int dhd_write_macaddr(struct ether_addr *mac); #else static inline int dhd_write_macaddr(struct ether_addr *mac) { return 0; } #endif #if defined(TRAFFIC_MGMT_DWM) void traffic_mgmt_pkt_set_prio(dhd_pub_t *dhdp, void * pktbuf); #endif #ifdef DHD_FW_COREDUMP static void dhd_mem_dump(void *dhd_info, void *event_info, u8 event); int dhd_os_socram_dump(struct net_device *dev, uint32 *dump_size); #endif /* DHD_FW_COREDUMP */ static int dhd_reboot_callback(struct notifier_block *this, unsigned long code, void *unused); static struct notifier_block dhd_reboot_notifier = { .notifier_call = dhd_reboot_callback, .priority = 1, }; #ifdef BCMPCIE static int is_reboot = 0; #endif /* BCMPCIE */ typedef struct dhd_if_event { struct list_head list; wl_event_data_if_t event; char name[IFNAMSIZ+1]; uint8 mac[ETHER_ADDR_LEN]; } dhd_if_event_t; /* Interface control information */ typedef struct dhd_if { struct dhd_info *info; /* back pointer to dhd_info */ /* OS/stack specifics */ struct net_device *net; int idx; /* iface idx in dongle */ uint subunit; /* subunit */ uint8 mac_addr[ETHER_ADDR_LEN]; /* assigned MAC address */ bool set_macaddress; bool set_multicast; uint8 bssidx; /* bsscfg index for the interface */ bool attached; /* Delayed attachment when unset */ bool txflowcontrol; /* Per interface flow control indicator */ char name[IFNAMSIZ+1]; /* linux interface name */ char dngl_name[IFNAMSIZ+1]; /* corresponding dongle interface name */ struct net_device_stats stats; #ifdef DHD_WMF dhd_wmf_t wmf; /* per bsscfg wmf setting */ bool wmf_psta_disable; /* enable/disable MC pkt to each mac * of MC group behind PSTA */ #endif /* DHD_WMF */ #ifdef PCIE_FULL_DONGLE struct list_head sta_list; /* sll of associated stations */ #if !defined(BCM_GMAC3) spinlock_t sta_list_lock; /* lock for manipulating sll */ #endif /* ! BCM_GMAC3 */ #endif /* PCIE_FULL_DONGLE */ uint32 ap_isolate; /* ap-isolation settings */ #ifdef DHD_L2_FILTER bool parp_enable; bool parp_discard; bool parp_allnode; arp_table_t *phnd_arp_table; /* for Per BSS modification */ bool dhcp_unicast; bool block_ping; bool grat_arp; #endif /* DHD_L2_FILTER */ #ifdef DHD_MCAST_REGEN bool mcast_regen_bss_enable; #endif bool rx_pkt_chainable; /* set all rx packet to chainable config by default */ cumm_ctr_t cumm_ctr; /* cummulative queue length of child flowrings */ } dhd_if_t; #ifdef WLMEDIA_HTSF typedef struct { uint32 low; uint32 high; } tsf_t; typedef struct { uint32 last_cycle; uint32 last_sec; uint32 last_tsf; uint32 coef; /* scaling factor */ uint32 coefdec1; /* first decimal */ uint32 coefdec2; /* second decimal */ } htsf_t; typedef struct { uint32 t1; uint32 t2; uint32 t3; uint32 t4; } tstamp_t; static tstamp_t ts[TSMAX]; static tstamp_t maxdelayts; static uint32 maxdelay = 0, tspktcnt = 0, maxdelaypktno = 0; #endif /* WLMEDIA_HTSF */ struct ipv6_work_info_t { uint8 if_idx; char ipv6_addr[16]; unsigned long event; }; #ifdef DHD_DEBUG typedef struct dhd_dump { uint8 *buf; int bufsize; } dhd_dump_t; #endif /* DHD_DEBUG */ /* When Perimeter locks are deployed, any blocking calls must be preceeded * with a PERIM UNLOCK and followed by a PERIM LOCK. * Examples of blocking calls are: schedule_timeout(), down_interruptible(), * wait_event_timeout(). */ /* Local private structure (extension of pub) */ typedef struct dhd_info { #if defined(WL_WIRELESS_EXT) wl_iw_t iw; /* wireless extensions state (must be first) */ #endif /* defined(WL_WIRELESS_EXT) */ dhd_pub_t pub; dhd_if_t *iflist[DHD_MAX_IFS]; /* for supporting multiple interfaces */ void *adapter; /* adapter information, interrupt, fw path etc. */ char fw_path[PATH_MAX]; /* path to firmware image */ char nv_path[PATH_MAX]; /* path to nvram vars file */ struct semaphore proto_sem; #ifdef PROP_TXSTATUS spinlock_t wlfc_spinlock; #ifdef BCMDBUS ulong wlfc_lock_flags; ulong wlfc_pub_lock_flags; #endif #endif /* PROP_TXSTATUS */ #ifdef WLMEDIA_HTSF htsf_t htsf; #endif wait_queue_head_t ioctl_resp_wait; wait_queue_head_t d3ack_wait; wait_queue_head_t dhd_bus_busy_state_wait; uint32 default_wd_interval; struct timer_list timer; bool wd_timer_valid; struct tasklet_struct tasklet; spinlock_t sdlock; spinlock_t txqlock; spinlock_t dhd_lock; #ifdef BCMDBUS ulong txqlock_flags; #else struct semaphore sdsem; tsk_ctl_t thr_dpc_ctl; tsk_ctl_t thr_wdt_ctl; #endif /* BCMDBUS */ tsk_ctl_t thr_rxf_ctl; spinlock_t rxf_lock; bool rxthread_enabled; /* Wakelocks */ #if defined(CONFIG_HAS_WAKELOCK) && (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) struct wake_lock wl_wifi; /* Wifi wakelock */ struct wake_lock wl_rxwake; /* Wifi rx wakelock */ struct wake_lock wl_ctrlwake; /* Wifi ctrl wakelock */ struct wake_lock wl_wdwake; /* Wifi wd wakelock */ struct wake_lock wl_evtwake; /* Wifi event wakelock */ struct wake_lock wl_txflwake; /* Wifi tx flow wakelock*/ #ifdef BCMPCIE_OOB_HOST_WAKE struct wake_lock wl_intrwake; /* Host wakeup wakelock */ #endif /* BCMPCIE_OOB_HOST_WAKE */ #ifdef DHD_USE_SCAN_WAKELOCK struct wake_lock wl_scanwake; /* Wifi scan wakelock */ #endif /* DHD_USE_SCAN_WAKELOCK */ #endif /* CONFIG_HAS_WAKELOCK && LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27) */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) /* net_device interface lock, prevent race conditions among net_dev interface * calls and wifi_on or wifi_off */ struct mutex dhd_net_if_mutex; struct mutex dhd_suspend_mutex; #endif spinlock_t wakelock_spinlock; uint32 wakelock_counter; int wakelock_wd_counter; int wakelock_rx_timeout_enable; int wakelock_ctrl_timeout_enable; bool waive_wakelock; uint32 wakelock_before_waive; /* Thread to issue ioctl for multicast */ wait_queue_head_t ctrl_wait; atomic_t pend_8021x_cnt; dhd_attach_states_t dhd_state; #ifdef SHOW_LOGTRACE dhd_event_log_t event_data; #endif /* SHOW_LOGTRACE */ #if defined(CONFIG_HAS_EARLYSUSPEND) && defined(DHD_USE_EARLYSUSPEND) struct early_suspend early_suspend; #endif /* CONFIG_HAS_EARLYSUSPEND && DHD_USE_EARLYSUSPEND */ #ifdef ARP_OFFLOAD_SUPPORT u32 pend_ipaddr; #endif /* ARP_OFFLOAD_SUPPORT */ #ifdef BCM_FD_AGGR void *rpc_th; void *rpc_osh; struct timer_list rpcth_timer; bool rpcth_timer_active; uint8 fdaggr; #endif #ifdef DHDTCPACK_SUPPRESS spinlock_t tcpack_lock; #endif /* DHDTCPACK_SUPPRESS */ void *dhd_deferred_wq; #ifdef DEBUG_CPU_FREQ struct notifier_block freq_trans; int __percpu *new_freq; #endif unsigned int unit; struct notifier_block pm_notifier; #ifdef DHD_PSTA uint32 psta_mode; /* PSTA or PSR */ #endif /* DHD_PSTA */ #ifdef DHD_WET uint32 wet_mode; #endif /* DHD_PSTA */ #ifdef DHD_DEBUG dhd_dump_t *dump; struct timer_list join_timer; u32 join_timeout_val; bool join_timer_active; uint scan_time_count; struct timer_list scan_timer; bool scan_timer_active; #endif #if defined(DHD_LB) /* CPU Load Balance dynamic CPU selection */ /* Variable that tracks the currect CPUs available for candidacy */ cpumask_var_t cpumask_curr_avail; /* Primary and secondary CPU mask */ cpumask_var_t cpumask_primary, cpumask_secondary; /* configuration */ cpumask_var_t cpumask_primary_new, cpumask_secondary_new; /* temp */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0)) struct hlist_node node_online; #else struct notifier_block cpu_notifier; #endif /* Tasklet to handle Tx Completion packet freeing */ struct tasklet_struct tx_compl_tasklet; atomic_t tx_compl_cpu; /* Tasklet to handle RxBuf Post during Rx completion */ struct tasklet_struct rx_compl_tasklet; atomic_t rx_compl_cpu; /* Napi struct for handling rx packet sendup. Packets are removed from * H2D RxCompl ring and placed into rx_pend_queue. rx_pend_queue is then * appended to rx_napi_queue (w/ lock) and the rx_napi_struct is scheduled * to run to rx_napi_cpu. */ struct sk_buff_head rx_pend_queue ____cacheline_aligned; struct sk_buff_head rx_napi_queue ____cacheline_aligned; struct napi_struct rx_napi_struct ____cacheline_aligned; atomic_t rx_napi_cpu; /* cpu on which the napi is dispatched */ struct net_device *rx_napi_netdev; /* netdev of primary interface */ struct work_struct rx_napi_dispatcher_work; struct work_struct tx_compl_dispatcher_work; struct work_struct rx_compl_dispatcher_work; /* Number of times DPC Tasklet ran */ uint32 dhd_dpc_cnt; /* Number of times NAPI processing got scheduled */ uint32 napi_sched_cnt; /* Number of times NAPI processing ran on each available core */ uint32 napi_percpu_run_cnt[NR_CPUS]; /* Number of times RX Completions got scheduled */ uint32 rxc_sched_cnt; /* Number of times RX Completion ran on each available core */ uint32 rxc_percpu_run_cnt[NR_CPUS]; /* Number of times TX Completions got scheduled */ uint32 txc_sched_cnt; /* Number of times TX Completions ran on each available core */ uint32 txc_percpu_run_cnt[NR_CPUS]; /* CPU status */ /* Number of times each CPU came online */ uint32 cpu_online_cnt[NR_CPUS]; /* Number of times each CPU went offline */ uint32 cpu_offline_cnt[NR_CPUS]; /* * Consumer Histogram - NAPI RX Packet processing * ----------------------------------------------- * On Each CPU, when the NAPI RX Packet processing call back was invoked * how many packets were processed is captured in this data structure. * Now its difficult to capture the "exact" number of packets processed. * So considering the packet counter to be a 32 bit one, we have a * bucket with 8 bins (2^1, 2^2 ... 2^8). The "number" of packets * processed is rounded off to the next power of 2 and put in the * approriate "bin" the value in the bin gets incremented. * For example, assume that in CPU 1 if NAPI Rx runs 3 times * and the packet count processed is as follows (assume the bin counters are 0) * iteration 1 - 10 (the bin counter 2^4 increments to 1) * iteration 2 - 30 (the bin counter 2^5 increments to 1) * iteration 3 - 15 (the bin counter 2^4 increments by 1 to become 2) */ uint32 napi_rx_hist[NR_CPUS][HIST_BIN_SIZE]; uint32 txc_hist[NR_CPUS][HIST_BIN_SIZE]; uint32 rxc_hist[NR_CPUS][HIST_BIN_SIZE]; #endif /* DHD_LB */ #if defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) #if defined(BCMDBUS) struct task_struct *fw_download_task; struct semaphore fw_download_lock; #endif /* BCMDBUS */ #endif /* defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) */ struct net_device *monitor_dev; /* monitor pseudo device */ uint monitor_type; /* monitor pseudo device */ } dhd_info_t; #define DHDIF_FWDER(dhdif) FALSE /* Flag to indicate if we should download firmware on driver load */ uint dhd_download_fw_on_driverload = TRUE; /* Flag to indicate if driver is initialized */ uint dhd_driver_init_done = FALSE; /* Definitions to provide path to the firmware and nvram * example nvram_path[MOD_PARAM_PATHLEN]="/projects/wlan/nvram.txt" */ char firmware_path[MOD_PARAM_PATHLEN]; char nvram_path[MOD_PARAM_PATHLEN]; /* backup buffer for firmware and nvram path */ char fw_bak_path[MOD_PARAM_PATHLEN]; char nv_bak_path[MOD_PARAM_PATHLEN]; char clm_path[MOD_PARAM_PATHLEN]; module_param_string(clm_path, clm_path, MOD_PARAM_PATHLEN, 0660); /* information string to keep firmware, chio, cheip version info visiable from log */ char info_string[MOD_PARAM_INFOLEN]; module_param_string(info_string, info_string, MOD_PARAM_INFOLEN, 0444); int op_mode = 0; int disable_proptx = 0; module_param(op_mode, int, 0644); #if defined(DHD_LB_RXP) static int dhd_napi_weight = 32; module_param(dhd_napi_weight, int, 0644); #endif /* DHD_LB_RXP */ extern int wl_control_wl_start(struct net_device *dev); #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) && defined(BCMLXSDMMC) struct semaphore dhd_registration_sem; #endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) */ /* deferred handlers */ static void dhd_ifadd_event_handler(void *handle, void *event_info, u8 event); static void dhd_ifdel_event_handler(void *handle, void *event_info, u8 event); static void dhd_set_mac_addr_handler(void *handle, void *event_info, u8 event); static void dhd_set_mcast_list_handler(void *handle, void *event_info, u8 event); #if defined(CONFIG_IPV6) static void dhd_inet6_work_handler(void *dhd_info, void *event_data, u8 event); #endif /* OEM_ANDROID && CONFIG_IPV6 */ #ifdef WL_CFG80211 extern void dhd_netdev_free(struct net_device *ndev); #endif /* WL_CFG80211 */ #if (defined(DHD_WET) || defined(DHD_MCAST_REGEN) || defined(DHD_L2_FILTER)) /* update rx_pkt_chainable state of dhd interface */ static void dhd_update_rx_pkt_chainable_state(dhd_pub_t* dhdp, uint32 idx); #endif /* DHD_WET || DHD_MCAST_REGEN || DHD_L2_FILTER */ /* Error bits */ module_param(dhd_msg_level, int, 0664); #ifdef ARP_OFFLOAD_SUPPORT /* ARP offload enable */ uint dhd_arp_enable = TRUE; module_param(dhd_arp_enable, uint, 0); /* ARP offload agent mode : Enable ARP Host Auto-Reply and ARP Peer Auto-Reply */ uint dhd_arp_mode = ARP_OL_AGENT | ARP_OL_PEER_AUTO_REPLY; module_param(dhd_arp_mode, uint, 0); #endif /* ARP_OFFLOAD_SUPPORT */ /* Disable Prop tx */ module_param(disable_proptx, int, 0644); /* load firmware and/or nvram values from the filesystem */ module_param_string(firmware_path, firmware_path, MOD_PARAM_PATHLEN, 0660); module_param_string(nvram_path, nvram_path, MOD_PARAM_PATHLEN, 0660); /* Watchdog interval */ /* extend watchdog expiration to 2 seconds when DPC is running */ #define WATCHDOG_EXTEND_INTERVAL (2000) uint dhd_watchdog_ms = CUSTOM_DHD_WATCHDOG_MS; module_param(dhd_watchdog_ms, uint, 0); #if defined(DHD_DEBUG) /* Console poll interval */ uint dhd_console_ms = 0; module_param(dhd_console_ms, uint, 0644); #endif /* defined(DHD_DEBUG) */ uint dhd_slpauto = TRUE; module_param(dhd_slpauto, uint, 0); #ifdef PKT_FILTER_SUPPORT /* Global Pkt filter enable control */ uint dhd_pkt_filter_enable = TRUE; module_param(dhd_pkt_filter_enable, uint, 0); #endif /* Pkt filter init setup */ uint dhd_pkt_filter_init = 0; module_param(dhd_pkt_filter_init, uint, 0); /* Pkt filter mode control */ uint dhd_master_mode = TRUE; module_param(dhd_master_mode, uint, 0); int dhd_watchdog_prio = 0; module_param(dhd_watchdog_prio, int, 0); /* DPC thread priority */ int dhd_dpc_prio = CUSTOM_DPC_PRIO_SETTING; module_param(dhd_dpc_prio, int, 0); /* RX frame thread priority */ int dhd_rxf_prio = CUSTOM_RXF_PRIO_SETTING; module_param(dhd_rxf_prio, int, 0); #if !defined(BCMDHDUSB) extern int dhd_dongle_ramsize; module_param(dhd_dongle_ramsize, int, 0); #endif /* BCMDHDUSB */ #ifdef WL_CFG80211 int passive_channel_skip = 0; module_param(passive_channel_skip, int, (S_IRUSR|S_IWUSR)); #endif /* WL_CFG80211 */ /* Keep track of number of instances */ static int dhd_found = 0; static int instance_base = 0; /* Starting instance number */ module_param(instance_base, int, 0644); #ifdef DHD_DHCP_DUMP struct bootp_fmt { struct iphdr ip_header; struct udphdr udp_header; uint8 op; uint8 htype; uint8 hlen; uint8 hops; uint32 transaction_id; uint16 secs; uint16 flags; uint32 client_ip; uint32 assigned_ip; uint32 server_ip; uint32 relay_ip; uint8 hw_address[16]; uint8 server_name[64]; uint8 file_name[128]; uint8 options[312]; }; static const uint8 bootp_magic_cookie[4] = { 99, 130, 83, 99 }; static const char dhcp_ops[][10] = { "NA", "REQUEST", "REPLY" }; static const char dhcp_types[][10] = { "NA", "DISCOVER", "OFFER", "REQUEST", "DECLINE", "ACK", "NAK", "RELEASE", "INFORM" }; static void dhd_dhcp_dump(uint8 *pktdata, bool tx); #endif /* DHD_DHCP_DUMP */ #if defined(DHD_LB) static void dhd_lb_set_default_cpus(dhd_info_t *dhd) { /* Default CPU allocation for the jobs */ atomic_set(&dhd->rx_napi_cpu, 1); atomic_set(&dhd->rx_compl_cpu, 2); atomic_set(&dhd->tx_compl_cpu, 2); } static void dhd_cpumasks_deinit(dhd_info_t *dhd) { free_cpumask_var(dhd->cpumask_curr_avail); free_cpumask_var(dhd->cpumask_primary); free_cpumask_var(dhd->cpumask_primary_new); free_cpumask_var(dhd->cpumask_secondary); free_cpumask_var(dhd->cpumask_secondary_new); } static int dhd_cpumasks_init(dhd_info_t *dhd) { int id; uint32 cpus; int ret = 0; if (!alloc_cpumask_var(&dhd->cpumask_curr_avail, GFP_KERNEL) || !alloc_cpumask_var(&dhd->cpumask_primary, GFP_KERNEL) || !alloc_cpumask_var(&dhd->cpumask_primary_new, GFP_KERNEL) || !alloc_cpumask_var(&dhd->cpumask_secondary, GFP_KERNEL) || !alloc_cpumask_var(&dhd->cpumask_secondary_new, GFP_KERNEL)) { DHD_ERROR(("%s Failed to init cpumasks\n", __FUNCTION__)); ret = -ENOMEM; goto fail; } cpumask_copy(dhd->cpumask_curr_avail, cpu_online_mask); cpumask_clear(dhd->cpumask_primary); cpumask_clear(dhd->cpumask_secondary); cpus = DHD_LB_PRIMARY_CPUS; for (id = 0; id < NR_CPUS; id++) { if (isset(&cpus, id)) cpumask_set_cpu(id, dhd->cpumask_primary); } cpus = DHD_LB_SECONDARY_CPUS; for (id = 0; id < NR_CPUS; id++) { if (isset(&cpus, id)) cpumask_set_cpu(id, dhd->cpumask_secondary); } return ret; fail: dhd_cpumasks_deinit(dhd); return ret; } /* * The CPU Candidacy Algorithm * ~~~~~~~~~~~~~~~~~~~~~~~~~~~ * The available CPUs for selection are divided into two groups * Primary Set - A CPU mask that carries the First Choice CPUs * Secondary Set - A CPU mask that carries the Second Choice CPUs. * * There are two types of Job, that needs to be assigned to * the CPUs, from one of the above mentioned CPU group. The Jobs are * 1) Rx Packet Processing - napi_cpu * 2) Completion Processiong (Tx, RX) - compl_cpu * * To begin with both napi_cpu and compl_cpu are on CPU0. Whenever a CPU goes * on-line/off-line the CPU candidacy algorithm is triggerd. The candidacy * algo tries to pickup the first available non boot CPU (CPU0) for napi_cpu. * If there are more processors free, it assigns one to compl_cpu. * It also tries to ensure that both napi_cpu and compl_cpu are not on the same * CPU, as much as possible. * * By design, both Tx and Rx completion jobs are run on the same CPU core, as it * would allow Tx completion skb's to be released into a local free pool from * which the rx buffer posts could have been serviced. it is important to note * that a Tx packet may not have a large enough buffer for rx posting. */ void dhd_select_cpu_candidacy(dhd_info_t *dhd) { uint32 primary_available_cpus; /* count of primary available cpus */ uint32 secondary_available_cpus; /* count of secondary available cpus */ uint32 napi_cpu = 0; /* cpu selected for napi rx processing */ uint32 compl_cpu = 0; /* cpu selected for completion jobs */ cpumask_clear(dhd->cpumask_primary_new); cpumask_clear(dhd->cpumask_secondary_new); /* * Now select from the primary mask. Even if a Job is * already running on a CPU in secondary group, we still move * to primary CPU. So no conditional checks. */ cpumask_and(dhd->cpumask_primary_new, dhd->cpumask_primary, dhd->cpumask_curr_avail); cpumask_and(dhd->cpumask_secondary_new, dhd->cpumask_secondary, dhd->cpumask_curr_avail); primary_available_cpus = cpumask_weight(dhd->cpumask_primary_new); if (primary_available_cpus > 0) { napi_cpu = cpumask_first(dhd->cpumask_primary_new); /* If no further CPU is available, * cpumask_next returns >= nr_cpu_ids */ compl_cpu = cpumask_next(napi_cpu, dhd->cpumask_primary_new); if (compl_cpu >= nr_cpu_ids) compl_cpu = 0; } DHD_INFO(("%s After primary CPU check napi_cpu %d compl_cpu %d\n", __FUNCTION__, napi_cpu, compl_cpu)); /* -- Now check for the CPUs from the secondary mask -- */ secondary_available_cpus = cpumask_weight(dhd->cpumask_secondary_new); DHD_INFO(("%s Available secondary cpus %d nr_cpu_ids %d\n", __FUNCTION__, secondary_available_cpus, nr_cpu_ids)); if (secondary_available_cpus > 0) { /* At this point if napi_cpu is unassigned it means no CPU * is online from Primary Group */ if (napi_cpu == 0) { napi_cpu = cpumask_first(dhd->cpumask_secondary_new); compl_cpu = cpumask_next(napi_cpu, dhd->cpumask_secondary_new); } else if (compl_cpu == 0) { compl_cpu = cpumask_first(dhd->cpumask_secondary_new); } /* If no CPU was available for completion, choose CPU 0 */ if (compl_cpu >= nr_cpu_ids) compl_cpu = 0; } if ((primary_available_cpus == 0) && (secondary_available_cpus == 0)) { /* No CPUs available from primary or secondary mask */ napi_cpu = 0; compl_cpu = 0; } DHD_INFO(("%s After secondary CPU check napi_cpu %d compl_cpu %d\n", __FUNCTION__, napi_cpu, compl_cpu)); ASSERT(napi_cpu < nr_cpu_ids); ASSERT(compl_cpu < nr_cpu_ids); atomic_set(&dhd->rx_napi_cpu, napi_cpu); atomic_set(&dhd->tx_compl_cpu, compl_cpu); atomic_set(&dhd->rx_compl_cpu, compl_cpu); return; } #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0)) int dhd_cpuhp_online(unsigned int cpu, struct hlist_node *node) { dhd_info_t *dhd = hlist_entry_safe(node, dhd_info_t, node_online); DHD_INFO(("%s: cpu=%d\n", __func__, cpu)); DHD_LB_STATS_INCR(dhd->cpu_online_cnt[cpu]); cpumask_set_cpu(cpu, dhd->cpumask_curr_avail); dhd_select_cpu_candidacy(dhd); return 0; } int dhd_cpuhp_dead(unsigned int cpu, struct hlist_node *node) { dhd_info_t *dhd = hlist_entry_safe(node, dhd_info_t, node_online); DHD_INFO(("%s: cpu=%d\n", __func__, cpu)); DHD_LB_STATS_INCR(dhd->cpu_offline_cnt[cpu]); cpumask_clear_cpu(cpu, dhd->cpumask_curr_avail); dhd_select_cpu_candidacy(dhd); return 0; } #else /* * Function to handle CPU Hotplug notifications. * One of the task it does is to trigger the CPU Candidacy algorithm * for load balancing. */ int dhd_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned int)(long)hcpu; dhd_info_t *dhd = container_of(nfb, dhd_info_t, cpu_notifier); switch (action) { case CPU_ONLINE: DHD_LB_STATS_INCR(dhd->cpu_online_cnt[cpu]); cpumask_set_cpu(cpu, dhd->cpumask_curr_avail); dhd_select_cpu_candidacy(dhd); break; case CPU_DOWN_PREPARE: case CPU_DOWN_PREPARE_FROZEN: DHD_LB_STATS_INCR(dhd->cpu_offline_cnt[cpu]); cpumask_clear_cpu(cpu, dhd->cpumask_curr_avail); dhd_select_cpu_candidacy(dhd); break; default: break; } return NOTIFY_OK; } #endif #if defined(DHD_LB_STATS) void dhd_lb_stats_init(dhd_pub_t *dhdp) { dhd_info_t *dhd; int i, j; if (dhdp == NULL) { DHD_ERROR(("%s(): Invalid argument dhdp is NULL \n", __FUNCTION__)); return; } dhd = dhdp->info; if (dhd == NULL) { DHD_ERROR(("%s(): DHD pointer is NULL \n", __FUNCTION__)); return; } DHD_LB_STATS_CLR(dhd->dhd_dpc_cnt); DHD_LB_STATS_CLR(dhd->napi_sched_cnt); DHD_LB_STATS_CLR(dhd->rxc_sched_cnt); DHD_LB_STATS_CLR(dhd->txc_sched_cnt); for (i = 0; i < NR_CPUS; i++) { DHD_LB_STATS_CLR(dhd->napi_percpu_run_cnt[i]); DHD_LB_STATS_CLR(dhd->rxc_percpu_run_cnt[i]); DHD_LB_STATS_CLR(dhd->txc_percpu_run_cnt[i]); DHD_LB_STATS_CLR(dhd->cpu_online_cnt[i]); DHD_LB_STATS_CLR(dhd->cpu_offline_cnt[i]); } for (i = 0; i < NR_CPUS; i++) { for (j = 0; j < HIST_BIN_SIZE; j++) { DHD_LB_STATS_CLR(dhd->napi_rx_hist[i][j]); DHD_LB_STATS_CLR(dhd->txc_hist[i][j]); DHD_LB_STATS_CLR(dhd->rxc_hist[i][j]); } } return; } static void dhd_lb_stats_dump_histo( struct bcmstrbuf *strbuf, uint32 (*hist)[HIST_BIN_SIZE]) { int i, j; uint32 per_cpu_total[NR_CPUS] = {0}; uint32 total = 0; bcm_bprintf(strbuf, "CPU: \t\t"); for (i = 0; i < num_possible_cpus(); i++) bcm_bprintf(strbuf, "%d\t", i); bcm_bprintf(strbuf, "\nBin\n"); for (i = 0; i < HIST_BIN_SIZE; i++) { bcm_bprintf(strbuf, "%d:\t\t", 1<<(i+1)); for (j = 0; j < num_possible_cpus(); j++) { bcm_bprintf(strbuf, "%d\t", hist[j][i]); } bcm_bprintf(strbuf, "\n"); } bcm_bprintf(strbuf, "Per CPU Total \t"); total = 0; for (i = 0; i < num_possible_cpus(); i++) { for (j = 0; j < HIST_BIN_SIZE; j++) { per_cpu_total[i] += (hist[i][j] * (1<<(j+1))); } bcm_bprintf(strbuf, "%d\t", per_cpu_total[i]); total += per_cpu_total[i]; } bcm_bprintf(strbuf, "\nTotal\t\t%d \n", total); return; } static inline void dhd_lb_stats_dump_cpu_array(struct bcmstrbuf *strbuf, uint32 *p) { int i; bcm_bprintf(strbuf, "CPU: \t"); for (i = 0; i < num_possible_cpus(); i++) bcm_bprintf(strbuf, "%d\t", i); bcm_bprintf(strbuf, "\n"); bcm_bprintf(strbuf, "Val: \t"); for (i = 0; i < num_possible_cpus(); i++) bcm_bprintf(strbuf, "%u\t", *(p+i)); bcm_bprintf(strbuf, "\n"); return; } void dhd_lb_stats_dump(dhd_pub_t *dhdp, struct bcmstrbuf *strbuf) { dhd_info_t *dhd; if (dhdp == NULL || strbuf == NULL) { DHD_ERROR(("%s(): Invalid argument dhdp %p strbuf %p \n", __FUNCTION__, dhdp, strbuf)); return; } dhd = dhdp->info; if (dhd == NULL) { DHD_ERROR(("%s(): DHD pointer is NULL \n", __FUNCTION__)); return; } bcm_bprintf(strbuf, "\ncpu_online_cnt:\n"); dhd_lb_stats_dump_cpu_array(strbuf, dhd->cpu_online_cnt); bcm_bprintf(strbuf, "cpu_offline_cnt:\n"); dhd_lb_stats_dump_cpu_array(strbuf, dhd->cpu_offline_cnt); bcm_bprintf(strbuf, "\nsched_cnt: dhd_dpc %u napi %u rxc %u txc %u\n", dhd->dhd_dpc_cnt, dhd->napi_sched_cnt, dhd->rxc_sched_cnt, dhd->txc_sched_cnt); #ifdef DHD_LB_RXP bcm_bprintf(strbuf, "napi_percpu_run_cnt:\n"); dhd_lb_stats_dump_cpu_array(strbuf, dhd->napi_percpu_run_cnt); bcm_bprintf(strbuf, "\nNAPI Packets Received Histogram:\n"); dhd_lb_stats_dump_histo(strbuf, dhd->napi_rx_hist); #endif /* DHD_LB_RXP */ #ifdef DHD_LB_RXC bcm_bprintf(strbuf, "rxc_percpu_run_cnt:\n"); dhd_lb_stats_dump_cpu_array(strbuf, dhd->rxc_percpu_run_cnt); bcm_bprintf(strbuf, "\nRX Completions (Buffer Post) Histogram:\n"); dhd_lb_stats_dump_histo(strbuf, dhd->rxc_hist); #endif /* DHD_LB_RXC */ #ifdef DHD_LB_TXC bcm_bprintf(strbuf, "txc_percpu_run_cnt:\n"); dhd_lb_stats_dump_cpu_array(strbuf, dhd->txc_percpu_run_cnt); bcm_bprintf(strbuf, "\nTX Completions (Buffer Free) Histogram:\n"); dhd_lb_stats_dump_histo(strbuf, dhd->txc_hist); #endif /* DHD_LB_TXC */ } static void dhd_lb_stats_update_histo(uint32 *bin, uint32 count) { uint32 bin_power; uint32 *p = NULL; bin_power = next_larger_power2(count); switch (bin_power) { case 0: break; case 1: /* Fall through intentionally */ case 2: p = bin + 0; break; case 4: p = bin + 1; break; case 8: p = bin + 2; break; case 16: p = bin + 3; break; case 32: p = bin + 4; break; case 64: p = bin + 5; break; case 128: p = bin + 6; break; default : p = bin + 7; break; } if (p) *p = *p + 1; return; } extern void dhd_lb_stats_update_napi_histo(dhd_pub_t *dhdp, uint32 count) { int cpu; dhd_info_t *dhd = dhdp->info; cpu = get_cpu(); put_cpu(); dhd_lb_stats_update_histo(&dhd->napi_rx_hist[cpu][0], count); return; } extern void dhd_lb_stats_update_txc_histo(dhd_pub_t *dhdp, uint32 count) { int cpu; dhd_info_t *dhd = dhdp->info; cpu = get_cpu(); put_cpu(); dhd_lb_stats_update_histo(&dhd->txc_hist[cpu][0], count); return; } extern void dhd_lb_stats_update_rxc_histo(dhd_pub_t *dhdp, uint32 count) { int cpu; dhd_info_t *dhd = dhdp->info; cpu = get_cpu(); put_cpu(); dhd_lb_stats_update_histo(&dhd->rxc_hist[cpu][0], count); return; } extern void dhd_lb_stats_txc_percpu_cnt_incr(dhd_pub_t *dhdp) { dhd_info_t *dhd = dhdp->info; DHD_LB_STATS_PERCPU_ARR_INCR(dhd->txc_percpu_run_cnt); } extern void dhd_lb_stats_rxc_percpu_cnt_incr(dhd_pub_t *dhdp) { dhd_info_t *dhd = dhdp->info; DHD_LB_STATS_PERCPU_ARR_INCR(dhd->rxc_percpu_run_cnt); } #endif /* DHD_LB_STATS */ #endif /* DHD_LB */ static int dhd_get_pend_8021x_cnt(dhd_info_t *dhd); /* DHD Perimiter lock only used in router with bypass forwarding. */ #define DHD_PERIM_RADIO_INIT() do { /* noop */ } while (0) #define DHD_PERIM_LOCK_TRY(unit, flag) do { /* noop */ } while (0) #define DHD_PERIM_UNLOCK_TRY(unit, flag) do { /* noop */ } while (0) #ifdef PCIE_FULL_DONGLE #if defined(BCM_GMAC3) #define DHD_IF_STA_LIST_LOCK_INIT(ifp) do { /* noop */ } while (0) #define DHD_IF_STA_LIST_LOCK(ifp, flags) ({ BCM_REFERENCE(flags); }) #define DHD_IF_STA_LIST_UNLOCK(ifp, flags) ({ BCM_REFERENCE(flags); }) #if defined(DHD_IGMP_UCQUERY) || defined(DHD_UCAST_UPNP) #define DHD_IF_WMF_UCFORWARD_LOCK(dhd, ifp, slist) ({ BCM_REFERENCE(slist); &(ifp)->sta_list; }) #define DHD_IF_WMF_UCFORWARD_UNLOCK(dhd, slist) ({ BCM_REFERENCE(slist); }) #endif /* DHD_IGMP_UCQUERY || DHD_UCAST_UPNP */ #else /* ! BCM_GMAC3 */ #define DHD_IF_STA_LIST_LOCK_INIT(ifp) spin_lock_init(&(ifp)->sta_list_lock) #define DHD_IF_STA_LIST_LOCK(ifp, flags) \ spin_lock_irqsave(&(ifp)->sta_list_lock, (flags)) #define DHD_IF_STA_LIST_UNLOCK(ifp, flags) \ spin_unlock_irqrestore(&(ifp)->sta_list_lock, (flags)) #if defined(DHD_IGMP_UCQUERY) || defined(DHD_UCAST_UPNP) static struct list_head * dhd_sta_list_snapshot(dhd_info_t *dhd, dhd_if_t *ifp, struct list_head *snapshot_list); static void dhd_sta_list_snapshot_free(dhd_info_t *dhd, struct list_head *snapshot_list); #define DHD_IF_WMF_UCFORWARD_LOCK(dhd, ifp, slist) ({ dhd_sta_list_snapshot(dhd, ifp, slist); }) #define DHD_IF_WMF_UCFORWARD_UNLOCK(dhd, slist) ({ dhd_sta_list_snapshot_free(dhd, slist); }) #endif /* DHD_IGMP_UCQUERY || DHD_UCAST_UPNP */ #endif /* ! BCM_GMAC3 */ #endif /* PCIE_FULL_DONGLE */ /* Control fw roaming */ uint dhd_roam_disable = 0; #ifdef BCMDBGFS extern int dhd_dbg_init(dhd_pub_t *dhdp); extern void dhd_dbg_remove(void); #endif /* Control radio state */ uint dhd_radio_up = 1; /* Network inteface name */ char iface_name[IFNAMSIZ] = {'\0'}; module_param_string(iface_name, iface_name, IFNAMSIZ, 0); /* The following are specific to the SDIO dongle */ /* IOCTL response timeout */ int dhd_ioctl_timeout_msec = IOCTL_RESP_TIMEOUT; /* Idle timeout for backplane clock */ int dhd_idletime = DHD_IDLETIME_TICKS; module_param(dhd_idletime, int, 0); /* Use polling */ uint dhd_poll = FALSE; module_param(dhd_poll, uint, 0); /* Use interrupts */ uint dhd_intr = TRUE; module_param(dhd_intr, uint, 0); /* SDIO Drive Strength (in milliamps) */ uint dhd_sdiod_drive_strength = 6; module_param(dhd_sdiod_drive_strength, uint, 0); #ifdef BCMSDIO /* Tx/Rx bounds */ extern uint dhd_txbound; extern uint dhd_rxbound; module_param(dhd_txbound, uint, 0); module_param(dhd_rxbound, uint, 0); /* Deferred transmits */ extern uint dhd_deferred_tx; module_param(dhd_deferred_tx, uint, 0); #endif /* BCMSDIO */ #ifdef SDTEST /* Echo packet generator (pkts/s) */ uint dhd_pktgen = 0; module_param(dhd_pktgen, uint, 0); /* Echo packet len (0 => sawtooth, max 2040) */ uint dhd_pktgen_len = 0; module_param(dhd_pktgen_len, uint, 0); #endif /* SDTEST */ #ifndef BCMDBUS /* Allow delayed firmware download for debug purpose */ int allow_delay_fwdl = FALSE; module_param(allow_delay_fwdl, int, 0); #endif /* !BCMDBUS */ /* Flag to indicate whether FW download has succeeded */ bool dhd_fw_downloaded = FALSE; extern char dhd_version[]; int dhd_net_bus_devreset(struct net_device *dev, uint8 flag); static void dhd_net_if_lock_local(dhd_info_t *dhd); static void dhd_net_if_unlock_local(dhd_info_t *dhd); static void dhd_suspend_lock(dhd_pub_t *dhdp); static void dhd_suspend_unlock(dhd_pub_t *dhdp); #ifdef WLMEDIA_HTSF void htsf_update(dhd_info_t *dhd, void *data); tsf_t prev_tsf, cur_tsf; uint32 dhd_get_htsf(dhd_info_t *dhd, int ifidx); static int dhd_ioctl_htsf_get(dhd_info_t *dhd, int ifidx); static void dhd_dump_latency(void); static void dhd_htsf_addtxts(dhd_pub_t *dhdp, void *pktbuf); static void dhd_htsf_addrxts(dhd_pub_t *dhdp, void *pktbuf); static void dhd_dump_htsfhisto(histo_t *his, char *s); #endif /* WLMEDIA_HTSF */ /* Monitor interface */ int dhd_monitor_init(void *dhd_pub); int dhd_monitor_uninit(void); #if defined(WL_WIRELESS_EXT) struct iw_statistics *dhd_get_wireless_stats(struct net_device *dev); #endif /* defined(WL_WIRELESS_EXT) */ #ifndef BCMDBUS static void dhd_dpc(ulong data); #endif /* forward decl */ extern int dhd_wait_pend8021x(struct net_device *dev); void dhd_os_wd_timer_extend(void *bus, bool extend); #ifdef TOE #ifndef BDC #error TOE requires BDC #endif /* !BDC */ static int dhd_toe_get(dhd_info_t *dhd, int idx, uint32 *toe_ol); static int dhd_toe_set(dhd_info_t *dhd, int idx, uint32 toe_ol); #endif /* TOE */ #ifdef BCMDBUS int dhd_dbus_txdata(dhd_pub_t *dhdp, void *pktbuf); #endif static int dhd_wl_host_event(dhd_info_t *dhd, int *ifidx, void *pktdata, uint16 pktlen, wl_event_msg_t *event_ptr, void **data_ptr); #if defined(CONFIG_PM_SLEEP) static int dhd_pm_callback(struct notifier_block *nfb, unsigned long action, void *ignored) { int ret = NOTIFY_DONE; bool suspend = FALSE; dhd_info_t *dhdinfo = (dhd_info_t*)container_of(nfb, struct dhd_info, pm_notifier); BCM_REFERENCE(dhdinfo); switch (action) { case PM_HIBERNATION_PREPARE: case PM_SUSPEND_PREPARE: suspend = TRUE; break; case PM_POST_HIBERNATION: case PM_POST_SUSPEND: suspend = FALSE; break; } #if defined(SUPPORT_P2P_GO_PS) #ifdef PROP_TXSTATUS if (suspend) { DHD_OS_WAKE_LOCK_WAIVE(&dhdinfo->pub); dhd_wlfc_suspend(&dhdinfo->pub); DHD_OS_WAKE_LOCK_RESTORE(&dhdinfo->pub); } else dhd_wlfc_resume(&dhdinfo->pub); #endif #endif /* defined(SUPPORT_P2P_GO_PS) */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) && (LINUX_VERSION_CODE <= \ KERNEL_VERSION(2, 6, 39)) dhd_mmc_suspend = suspend; smp_mb(); #endif return ret; } /* to make sure we won't register the same notifier twice, otherwise a loop is likely to be * created in kernel notifier link list (with 'next' pointing to itself) */ static bool dhd_pm_notifier_registered = FALSE; extern int register_pm_notifier(struct notifier_block *nb); extern int unregister_pm_notifier(struct notifier_block *nb); #endif /* CONFIG_PM_SLEEP */ /* Request scheduling of the bus rx frame */ static void dhd_sched_rxf(dhd_pub_t *dhdp, void *skb); static void dhd_os_rxflock(dhd_pub_t *pub); static void dhd_os_rxfunlock(dhd_pub_t *pub); /** priv_link is the link between netdev and the dhdif and dhd_info structs. */ typedef struct dhd_dev_priv { dhd_info_t * dhd; /* cached pointer to dhd_info in netdevice priv */ dhd_if_t * ifp; /* cached pointer to dhd_if in netdevice priv */ int ifidx; /* interface index */ void * lkup; } dhd_dev_priv_t; #define DHD_DEV_PRIV_SIZE (sizeof(dhd_dev_priv_t)) #define DHD_DEV_PRIV(dev) ((dhd_dev_priv_t *)DEV_PRIV(dev)) #define DHD_DEV_INFO(dev) (((dhd_dev_priv_t *)DEV_PRIV(dev))->dhd) #define DHD_DEV_IFP(dev) (((dhd_dev_priv_t *)DEV_PRIV(dev))->ifp) #define DHD_DEV_IFIDX(dev) (((dhd_dev_priv_t *)DEV_PRIV(dev))->ifidx) #define DHD_DEV_LKUP(dev) (((dhd_dev_priv_t *)DEV_PRIV(dev))->lkup) /** Clear the dhd net_device's private structure. */ static inline void dhd_dev_priv_clear(struct net_device * dev) { dhd_dev_priv_t * dev_priv; ASSERT(dev != (struct net_device *)NULL); dev_priv = DHD_DEV_PRIV(dev); dev_priv->dhd = (dhd_info_t *)NULL; dev_priv->ifp = (dhd_if_t *)NULL; dev_priv->ifidx = DHD_BAD_IF; dev_priv->lkup = (void *)NULL; } /** Setup the dhd net_device's private structure. */ static inline void dhd_dev_priv_save(struct net_device * dev, dhd_info_t * dhd, dhd_if_t * ifp, int ifidx) { dhd_dev_priv_t * dev_priv; ASSERT(dev != (struct net_device *)NULL); dev_priv = DHD_DEV_PRIV(dev); dev_priv->dhd = dhd; dev_priv->ifp = ifp; dev_priv->ifidx = ifidx; } #ifdef PCIE_FULL_DONGLE /** Dummy objects are defined with state representing bad|down. * Performance gains from reducing branch conditionals, instruction parallelism, * dual issue, reducing load shadows, avail of larger pipelines. * Use DHD_XXX_NULL instead of (dhd_xxx_t *)NULL, whenever an object pointer * is accessed via the dhd_sta_t. */ /* Dummy dhd_info object */ dhd_info_t dhd_info_null = { #if defined(BCM_GMAC3) .fwdh = FWDER_NULL, #endif .pub = { .info = &dhd_info_null, #ifdef DHDTCPACK_SUPPRESS .tcpack_sup_mode = TCPACK_SUP_REPLACE, #endif /* DHDTCPACK_SUPPRESS */ #if defined(TRAFFIC_MGMT_DWM) .dhd_tm_dwm_tbl = { .dhd_dwm_enabled = TRUE }, #endif .up = FALSE, .busstate = DHD_BUS_DOWN } }; #define DHD_INFO_NULL (&dhd_info_null) #define DHD_PUB_NULL (&dhd_info_null.pub) /* Dummy netdevice object */ struct net_device dhd_net_dev_null = { .reg_state = NETREG_UNREGISTERED }; #define DHD_NET_DEV_NULL (&dhd_net_dev_null) /* Dummy dhd_if object */ dhd_if_t dhd_if_null = { #if defined(BCM_GMAC3) .fwdh = FWDER_NULL, #endif #ifdef WMF .wmf = { .wmf_enable = TRUE }, #endif .info = DHD_INFO_NULL, .net = DHD_NET_DEV_NULL, .idx = DHD_BAD_IF }; #define DHD_IF_NULL (&dhd_if_null) #define DHD_STA_NULL ((dhd_sta_t *)NULL) /** Interface STA list management. */ /** Fetch the dhd_if object, given the interface index in the dhd. */ static inline dhd_if_t *dhd_get_ifp(dhd_pub_t *dhdp, uint32 ifidx); /** Alloc/Free a dhd_sta object from the dhd instances' sta_pool. */ static void dhd_sta_free(dhd_pub_t *pub, dhd_sta_t *sta); static dhd_sta_t * dhd_sta_alloc(dhd_pub_t * dhdp); /* Delete a dhd_sta or flush all dhd_sta in an interface's sta_list. */ static void dhd_if_del_sta_list(dhd_if_t * ifp); static void dhd_if_flush_sta(dhd_if_t * ifp); /* Construct/Destruct a sta pool. */ static int dhd_sta_pool_init(dhd_pub_t *dhdp, int max_sta); static void dhd_sta_pool_fini(dhd_pub_t *dhdp, int max_sta); /* Clear the pool of dhd_sta_t objects for built-in type driver */ static void dhd_sta_pool_clear(dhd_pub_t *dhdp, int max_sta); /* Return interface pointer */ static inline dhd_if_t *dhd_get_ifp(dhd_pub_t *dhdp, uint32 ifidx) { ASSERT(ifidx < DHD_MAX_IFS); if (ifidx >= DHD_MAX_IFS) return NULL; return dhdp->info->iflist[ifidx]; } /** Reset a dhd_sta object and free into the dhd pool. */ static void dhd_sta_free(dhd_pub_t * dhdp, dhd_sta_t * sta) { int prio; ASSERT((sta != DHD_STA_NULL) && (sta->idx != ID16_INVALID)); ASSERT((dhdp->staid_allocator != NULL) && (dhdp->sta_pool != NULL)); /* * Flush and free all packets in all flowring's queues belonging to sta. * Packets in flow ring will be flushed later. */ for (prio = 0; prio < (int)NUMPRIO; prio++) { uint16 flowid = sta->flowid[prio]; if (flowid != FLOWID_INVALID) { unsigned long flags; flow_queue_t * queue = dhd_flow_queue(dhdp, flowid); flow_ring_node_t * flow_ring_node; #ifdef DHDTCPACK_SUPPRESS /* Clean tcp_ack_info_tbl in order to prevent access to flushed pkt, * when there is a newly coming packet from network stack. */ dhd_tcpack_info_tbl_clean(dhdp); #endif /* DHDTCPACK_SUPPRESS */ flow_ring_node = dhd_flow_ring_node(dhdp, flowid); DHD_FLOWRING_LOCK(flow_ring_node->lock, flags); flow_ring_node->status = FLOW_RING_STATUS_STA_FREEING; if (!DHD_FLOW_QUEUE_EMPTY(queue)) { void * pkt; while ((pkt = dhd_flow_queue_dequeue(dhdp, queue)) != NULL) { PKTFREE(dhdp->osh, pkt, TRUE); } } DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags); ASSERT(DHD_FLOW_QUEUE_EMPTY(queue)); } sta->flowid[prio] = FLOWID_INVALID; } id16_map_free(dhdp->staid_allocator, sta->idx); DHD_CUMM_CTR_INIT(&sta->cumm_ctr); sta->ifp = DHD_IF_NULL; /* dummy dhd_if object */ sta->ifidx = DHD_BAD_IF; bzero(sta->ea.octet, ETHER_ADDR_LEN); INIT_LIST_HEAD(&sta->list); sta->idx = ID16_INVALID; /* implying free */ } /** Allocate a dhd_sta object from the dhd pool. */ static dhd_sta_t * dhd_sta_alloc(dhd_pub_t * dhdp) { uint16 idx; dhd_sta_t * sta; dhd_sta_pool_t * sta_pool; ASSERT((dhdp->staid_allocator != NULL) && (dhdp->sta_pool != NULL)); idx = id16_map_alloc(dhdp->staid_allocator); if (idx == ID16_INVALID) { DHD_ERROR(("%s: cannot get free staid\n", __FUNCTION__)); return DHD_STA_NULL; } sta_pool = (dhd_sta_pool_t *)(dhdp->sta_pool); sta = &sta_pool[idx]; ASSERT((sta->idx == ID16_INVALID) && (sta->ifp == DHD_IF_NULL) && (sta->ifidx == DHD_BAD_IF)); DHD_CUMM_CTR_INIT(&sta->cumm_ctr); sta->idx = idx; /* implying allocated */ return sta; } /** Delete all STAs in an interface's STA list. */ static void dhd_if_del_sta_list(dhd_if_t *ifp) { dhd_sta_t *sta, *next; unsigned long flags; DHD_IF_STA_LIST_LOCK(ifp, flags); list_for_each_entry_safe(sta, next, &ifp->sta_list, list) { #if defined(BCM_GMAC3) if (ifp->fwdh) { /* Remove sta from WOFA forwarder. */ fwder_deassoc(ifp->fwdh, (uint16 *)(sta->ea.octet), (uintptr_t)sta); } #endif /* BCM_GMAC3 */ list_del(&sta->list); dhd_sta_free(&ifp->info->pub, sta); } DHD_IF_STA_LIST_UNLOCK(ifp, flags); return; } /** Router/GMAC3: Flush all station entries in the forwarder's WOFA database. */ static void dhd_if_flush_sta(dhd_if_t * ifp) { #if defined(BCM_GMAC3) if (ifp && (ifp->fwdh != FWDER_NULL)) { dhd_sta_t *sta, *next; unsigned long flags; DHD_IF_STA_LIST_LOCK(ifp, flags); list_for_each_entry_safe(sta, next, &ifp->sta_list, list) { /* Remove any sta entry from WOFA forwarder. */ fwder_flush(ifp->fwdh, (uintptr_t)sta); } DHD_IF_STA_LIST_UNLOCK(ifp, flags); } #endif /* BCM_GMAC3 */ } /** Construct a pool of dhd_sta_t objects to be used by interfaces. */ static int dhd_sta_pool_init(dhd_pub_t *dhdp, int max_sta) { int idx, prio, sta_pool_memsz; dhd_sta_t * sta; dhd_sta_pool_t * sta_pool; void * staid_allocator; ASSERT(dhdp != (dhd_pub_t *)NULL); ASSERT((dhdp->staid_allocator == NULL) && (dhdp->sta_pool == NULL)); /* dhd_sta objects per radio are managed in a table. id#0 reserved. */ staid_allocator = id16_map_init(dhdp->osh, max_sta, 1); if (staid_allocator == NULL) { DHD_ERROR(("%s: sta id allocator init failure\n", __FUNCTION__)); return BCME_ERROR; } /* Pre allocate a pool of dhd_sta objects (one extra). */ sta_pool_memsz = ((max_sta + 1) * sizeof(dhd_sta_t)); /* skip idx 0 */ sta_pool = (dhd_sta_pool_t *)MALLOC(dhdp->osh, sta_pool_memsz); if (sta_pool == NULL) { DHD_ERROR(("%s: sta table alloc failure\n", __FUNCTION__)); id16_map_fini(dhdp->osh, staid_allocator); return BCME_ERROR; } dhdp->sta_pool = sta_pool; dhdp->staid_allocator = staid_allocator; /* Initialize all sta(s) for the pre-allocated free pool. */ bzero((uchar *)sta_pool, sta_pool_memsz); for (idx = max_sta; idx >= 1; idx--) { /* skip sta_pool[0] */ sta = &sta_pool[idx]; sta->idx = id16_map_alloc(staid_allocator); ASSERT(sta->idx <= max_sta); } /* Now place them into the pre-allocated free pool. */ for (idx = 1; idx <= max_sta; idx++) { sta = &sta_pool[idx]; for (prio = 0; prio < (int)NUMPRIO; prio++) { sta->flowid[prio] = FLOWID_INVALID; /* Flow rings do not exist */ } dhd_sta_free(dhdp, sta); } return BCME_OK; } /** Destruct the pool of dhd_sta_t objects. * Caller must ensure that no STA objects are currently associated with an if. */ static void dhd_sta_pool_fini(dhd_pub_t *dhdp, int max_sta) { dhd_sta_pool_t * sta_pool = (dhd_sta_pool_t *)dhdp->sta_pool; if (sta_pool) { int idx; int sta_pool_memsz = ((max_sta + 1) * sizeof(dhd_sta_t)); for (idx = 1; idx <= max_sta; idx++) { ASSERT(sta_pool[idx].ifp == DHD_IF_NULL); ASSERT(sta_pool[idx].idx == ID16_INVALID); } MFREE(dhdp->osh, dhdp->sta_pool, sta_pool_memsz); dhdp->sta_pool = NULL; } id16_map_fini(dhdp->osh, dhdp->staid_allocator); dhdp->staid_allocator = NULL; } /* Clear the pool of dhd_sta_t objects for built-in type driver */ static void dhd_sta_pool_clear(dhd_pub_t *dhdp, int max_sta) { int idx, prio, sta_pool_memsz; dhd_sta_t * sta; dhd_sta_pool_t * sta_pool; void *staid_allocator; if (!dhdp) { DHD_ERROR(("%s: dhdp is NULL\n", __FUNCTION__)); return; } sta_pool = (dhd_sta_pool_t *)dhdp->sta_pool; staid_allocator = dhdp->staid_allocator; if (!sta_pool) { DHD_ERROR(("%s: sta_pool is NULL\n", __FUNCTION__)); return; } if (!staid_allocator) { DHD_ERROR(("%s: staid_allocator is NULL\n", __FUNCTION__)); return; } /* clear free pool */ sta_pool_memsz = ((max_sta + 1) * sizeof(dhd_sta_t)); bzero((uchar *)sta_pool, sta_pool_memsz); /* dhd_sta objects per radio are managed in a table. id#0 reserved. */ id16_map_clear(staid_allocator, max_sta, 1); /* Initialize all sta(s) for the pre-allocated free pool. */ for (idx = max_sta; idx >= 1; idx--) { /* skip sta_pool[0] */ sta = &sta_pool[idx]; sta->idx = id16_map_alloc(staid_allocator); ASSERT(sta->idx <= max_sta); } /* Now place them into the pre-allocated free pool. */ for (idx = 1; idx <= max_sta; idx++) { sta = &sta_pool[idx]; for (prio = 0; prio < (int)NUMPRIO; prio++) { sta->flowid[prio] = FLOWID_INVALID; /* Flow rings do not exist */ } dhd_sta_free(dhdp, sta); } } /** Find STA with MAC address ea in an interface's STA list. */ dhd_sta_t * dhd_find_sta(void *pub, int ifidx, void *ea) { dhd_sta_t *sta; dhd_if_t *ifp; unsigned long flags; ASSERT(ea != NULL); ifp = dhd_get_ifp((dhd_pub_t *)pub, ifidx); if (ifp == NULL) return DHD_STA_NULL; DHD_IF_STA_LIST_LOCK(ifp, flags); list_for_each_entry(sta, &ifp->sta_list, list) { if (!memcmp(sta->ea.octet, ea, ETHER_ADDR_LEN)) { DHD_IF_STA_LIST_UNLOCK(ifp, flags); return sta; } } DHD_IF_STA_LIST_UNLOCK(ifp, flags); return DHD_STA_NULL; } /** Add STA into the interface's STA list. */ dhd_sta_t * dhd_add_sta(void *pub, int ifidx, void *ea) { dhd_sta_t *sta; dhd_if_t *ifp; unsigned long flags; ASSERT(ea != NULL); ifp = dhd_get_ifp((dhd_pub_t *)pub, ifidx); if (ifp == NULL) return DHD_STA_NULL; sta = dhd_sta_alloc((dhd_pub_t *)pub); if (sta == DHD_STA_NULL) { DHD_ERROR(("%s: Alloc failed\n", __FUNCTION__)); return DHD_STA_NULL; } memcpy(sta->ea.octet, ea, ETHER_ADDR_LEN); /* link the sta and the dhd interface */ sta->ifp = ifp; sta->ifidx = ifidx; #ifdef DHD_WMF sta->psta_prim = NULL; #endif INIT_LIST_HEAD(&sta->list); DHD_IF_STA_LIST_LOCK(ifp, flags); list_add_tail(&sta->list, &ifp->sta_list); #if defined(BCM_GMAC3) if (ifp->fwdh) { ASSERT(ISALIGNED(ea, 2)); /* Add sta to WOFA forwarder. */ fwder_reassoc(ifp->fwdh, (uint16 *)ea, (uintptr_t)sta); } #endif /* BCM_GMAC3 */ DHD_IF_STA_LIST_UNLOCK(ifp, flags); return sta; } /** Delete STA from the interface's STA list. */ void dhd_del_sta(void *pub, int ifidx, void *ea) { dhd_sta_t *sta, *next; dhd_if_t *ifp; unsigned long flags; ASSERT(ea != NULL); ifp = dhd_get_ifp((dhd_pub_t *)pub, ifidx); if (ifp == NULL) return; DHD_IF_STA_LIST_LOCK(ifp, flags); list_for_each_entry_safe(sta, next, &ifp->sta_list, list) { if (!memcmp(sta->ea.octet, ea, ETHER_ADDR_LEN)) { #if defined(BCM_GMAC3) if (ifp->fwdh) { /* Found a sta, remove from WOFA forwarder. */ ASSERT(ISALIGNED(ea, 2)); fwder_deassoc(ifp->fwdh, (uint16 *)ea, (uintptr_t)sta); } #endif /* BCM_GMAC3 */ list_del(&sta->list); dhd_sta_free(&ifp->info->pub, sta); } } DHD_IF_STA_LIST_UNLOCK(ifp, flags); #ifdef DHD_L2_FILTER if (ifp->parp_enable) { /* clear Proxy ARP cache of specific Ethernet Address */ bcm_l2_filter_arp_table_update(((dhd_pub_t*)pub)->osh, ifp->phnd_arp_table, FALSE, ea, FALSE, ((dhd_pub_t*)pub)->tickcnt); } #endif /* DHD_L2_FILTER */ return; } /** Add STA if it doesn't exist. Not reentrant. */ dhd_sta_t* dhd_findadd_sta(void *pub, int ifidx, void *ea) { dhd_sta_t *sta; sta = dhd_find_sta(pub, ifidx, ea); if (!sta) { /* Add entry */ sta = dhd_add_sta(pub, ifidx, ea); } return sta; } #if defined(DHD_IGMP_UCQUERY) || defined(DHD_UCAST_UPNP) #if !defined(BCM_GMAC3) static struct list_head * dhd_sta_list_snapshot(dhd_info_t *dhd, dhd_if_t *ifp, struct list_head *snapshot_list) { unsigned long flags; dhd_sta_t *sta, *snapshot; INIT_LIST_HEAD(snapshot_list); DHD_IF_STA_LIST_LOCK(ifp, flags); list_for_each_entry(sta, &ifp->sta_list, list) { /* allocate one and add to snapshot */ snapshot = (dhd_sta_t *)MALLOC(dhd->pub.osh, sizeof(dhd_sta_t)); if (snapshot == NULL) { DHD_ERROR(("%s: Cannot allocate memory\n", __FUNCTION__)); continue; } memcpy(snapshot->ea.octet, sta->ea.octet, ETHER_ADDR_LEN); INIT_LIST_HEAD(&snapshot->list); list_add_tail(&snapshot->list, snapshot_list); } DHD_IF_STA_LIST_UNLOCK(ifp, flags); return snapshot_list; } static void dhd_sta_list_snapshot_free(dhd_info_t *dhd, struct list_head *snapshot_list) { dhd_sta_t *sta, *next; list_for_each_entry_safe(sta, next, snapshot_list, list) { list_del(&sta->list); MFREE(dhd->pub.osh, sta, sizeof(dhd_sta_t)); } } #endif /* !BCM_GMAC3 */ #endif /* DHD_IGMP_UCQUERY || DHD_UCAST_UPNP */ #else static inline void dhd_if_flush_sta(dhd_if_t * ifp) { } static inline void dhd_if_del_sta_list(dhd_if_t *ifp) {} static inline int dhd_sta_pool_init(dhd_pub_t *dhdp, int max_sta) { return BCME_OK; } static inline void dhd_sta_pool_fini(dhd_pub_t *dhdp, int max_sta) {} static inline void dhd_sta_pool_clear(dhd_pub_t *dhdp, int max_sta) {} dhd_sta_t *dhd_findadd_sta(void *pub, int ifidx, void *ea) { return NULL; } void dhd_del_sta(void *pub, int ifidx, void *ea) {} #endif /* PCIE_FULL_DONGLE */ #if defined(DHD_LB) #if defined(DHD_LB_TXC) || defined(DHD_LB_RXC) /** * dhd_tasklet_schedule - Function that runs in IPI context of the destination * CPU and schedules a tasklet. * @tasklet: opaque pointer to the tasklet */ static INLINE void dhd_tasklet_schedule(void *tasklet) { tasklet_schedule((struct tasklet_struct *)tasklet); } /** * dhd_tasklet_schedule_on - Executes the passed takslet in a given CPU * @tasklet: tasklet to be scheduled * @on_cpu: cpu core id * * If the requested cpu is online, then an IPI is sent to this cpu via the * smp_call_function_single with no wait and the tasklet_schedule function * will be invoked to schedule the specified tasklet on the requested CPU. */ static void dhd_tasklet_schedule_on(struct tasklet_struct *tasklet, int on_cpu) { const int wait = 0; smp_call_function_single(on_cpu, dhd_tasklet_schedule, (void *)tasklet, wait); } #endif /* DHD_LB_TXC || DHD_LB_RXC */ #if defined(DHD_LB_TXC) /** * dhd_lb_tx_compl_dispatch - load balance by dispatching the tx_compl_tasklet * on another cpu. The tx_compl_tasklet will take care of DMA unmapping and * freeing the packets placed in the tx_compl workq */ void dhd_lb_tx_compl_dispatch(dhd_pub_t *dhdp) { dhd_info_t *dhd = dhdp->info; int curr_cpu, on_cpu; if (dhd->rx_napi_netdev == NULL) { DHD_ERROR(("%s: dhd->rx_napi_netdev is NULL\n", __FUNCTION__)); return; } DHD_LB_STATS_INCR(dhd->txc_sched_cnt); /* * If the destination CPU is NOT online or is same as current CPU * no need to schedule the work */ curr_cpu = get_cpu(); put_cpu(); on_cpu = atomic_read(&dhd->tx_compl_cpu); if ((on_cpu == curr_cpu) || (!cpu_online(on_cpu))) { dhd_tasklet_schedule(&dhd->tx_compl_tasklet); } else { schedule_work(&dhd->tx_compl_dispatcher_work); } } static void dhd_tx_compl_dispatcher_fn(struct work_struct * work) { struct dhd_info *dhd = container_of(work, struct dhd_info, tx_compl_dispatcher_work); int cpu; get_online_cpus(); cpu = atomic_read(&dhd->tx_compl_cpu); if (!cpu_online(cpu)) dhd_tasklet_schedule(&dhd->tx_compl_tasklet); else dhd_tasklet_schedule_on(&dhd->tx_compl_tasklet, cpu); put_online_cpus(); } #endif /* DHD_LB_TXC */ #if defined(DHD_LB_RXC) /** * dhd_lb_rx_compl_dispatch - load balance by dispatching the rx_compl_tasklet * on another cpu. The rx_compl_tasklet will take care of reposting rx buffers * in the H2D RxBuffer Post common ring, by using the recycled pktids that were * placed in the rx_compl workq. * * @dhdp: pointer to dhd_pub object */ void dhd_lb_rx_compl_dispatch(dhd_pub_t *dhdp) { dhd_info_t *dhd = dhdp->info; int curr_cpu, on_cpu; if (dhd->rx_napi_netdev == NULL) { DHD_ERROR(("%s: dhd->rx_napi_netdev is NULL\n", __FUNCTION__)); return; } DHD_LB_STATS_INCR(dhd->rxc_sched_cnt); /* * If the destination CPU is NOT online or is same as current CPU * no need to schedule the work */ curr_cpu = get_cpu(); put_cpu(); on_cpu = atomic_read(&dhd->rx_compl_cpu); if ((on_cpu == curr_cpu) || (!cpu_online(on_cpu))) { dhd_tasklet_schedule(&dhd->rx_compl_tasklet); } else { schedule_work(&dhd->rx_compl_dispatcher_work); } } static void dhd_rx_compl_dispatcher_fn(struct work_struct * work) { struct dhd_info *dhd = container_of(work, struct dhd_info, rx_compl_dispatcher_work); int cpu; get_online_cpus(); cpu = atomic_read(&dhd->tx_compl_cpu); if (!cpu_online(cpu)) dhd_tasklet_schedule(&dhd->rx_compl_tasklet); else dhd_tasklet_schedule_on(&dhd->rx_compl_tasklet, cpu); put_online_cpus(); } #endif /* DHD_LB_RXC */ #if defined(DHD_LB_RXP) /** * dhd_napi_poll - Load balance napi poll function to process received * packets and send up the network stack using netif_receive_skb() * * @napi: napi object in which context this poll function is invoked * @budget: number of packets to be processed. * * Fetch the dhd_info given the rx_napi_struct. Move all packets from the * rx_napi_queue into a local rx_process_queue (lock and queue move and unlock). * Dequeue each packet from head of rx_process_queue, fetch the ifid from the * packet tag and sendup. */ static int dhd_napi_poll(struct napi_struct *napi, int budget) { int ifid; const int pkt_count = 1; const int chan = 0; struct sk_buff * skb; unsigned long flags; struct dhd_info *dhd; int processed = 0; struct sk_buff_head rx_process_queue; dhd = container_of(napi, struct dhd_info, rx_napi_struct); DHD_INFO(("%s napi_queue<%d> budget<%d>\n", __FUNCTION__, skb_queue_len(&dhd->rx_napi_queue), budget)); __skb_queue_head_init(&rx_process_queue); /* extract the entire rx_napi_queue into local rx_process_queue */ spin_lock_irqsave(&dhd->rx_napi_queue.lock, flags); skb_queue_splice_tail_init(&dhd->rx_napi_queue, &rx_process_queue); spin_unlock_irqrestore(&dhd->rx_napi_queue.lock, flags); while ((skb = __skb_dequeue(&rx_process_queue)) != NULL) { OSL_PREFETCH(skb->data); ifid = DHD_PKTTAG_IFID((dhd_pkttag_fr_t *)PKTTAG(skb)); DHD_INFO(("%s dhd_rx_frame pkt<%p> ifid<%d>\n", __FUNCTION__, skb, ifid)); dhd_rx_frame(&dhd->pub, ifid, skb, pkt_count, chan); processed++; } DHD_LB_STATS_UPDATE_NAPI_HISTO(&dhd->pub, processed); DHD_INFO(("%s processed %d\n", __FUNCTION__, processed)); napi_complete(napi); return budget - 1; } /** * dhd_napi_schedule - Place the napi struct into the current cpus softnet napi * poll list. This function may be invoked via the smp_call_function_single * from a remote CPU. * * This function will essentially invoke __raise_softirq_irqoff(NET_RX_SOFTIRQ) * after the napi_struct is added to the softnet data's poll_list * * @info: pointer to a dhd_info struct */ static void dhd_napi_schedule(void *info) { dhd_info_t *dhd = (dhd_info_t *)info; DHD_INFO(("%s rx_napi_struct<%p> on cpu<%d>\n", __FUNCTION__, &dhd->rx_napi_struct, atomic_read(&dhd->rx_napi_cpu))); /* add napi_struct to softnet data poll list and raise NET_RX_SOFTIRQ */ if (napi_schedule_prep(&dhd->rx_napi_struct)) { __napi_schedule(&dhd->rx_napi_struct); DHD_LB_STATS_PERCPU_ARR_INCR(dhd->napi_percpu_run_cnt); } /* * If the rx_napi_struct was already running, then we let it complete * processing all its packets. The rx_napi_struct may only run on one * core at a time, to avoid out-of-order handling. */ } /** * dhd_napi_schedule_on - API to schedule on a desired CPU core a NET_RX_SOFTIRQ * action after placing the dhd's rx_process napi object in the the remote CPU's * softnet data's poll_list. * * @dhd: dhd_info which has the rx_process napi object * @on_cpu: desired remote CPU id */ static INLINE int dhd_napi_schedule_on(dhd_info_t *dhd, int on_cpu) { int wait = 0; /* asynchronous IPI */ DHD_INFO(("%s dhd<%p> napi<%p> on_cpu<%d>\n", __FUNCTION__, dhd, &dhd->rx_napi_struct, on_cpu)); if (smp_call_function_single(on_cpu, dhd_napi_schedule, dhd, wait)) { DHD_ERROR(("%s smp_call_function_single on_cpu<%d> failed\n", __FUNCTION__, on_cpu)); } DHD_LB_STATS_INCR(dhd->napi_sched_cnt); return 0; } /* * Call get_online_cpus/put_online_cpus around dhd_napi_schedule_on * Why should we do this? * The candidacy algorithm is run from the call back function * registered to CPU hotplug notifier. This call back happens from Worker * context. The dhd_napi_schedule_on is also from worker context. * Note that both of this can run on two different CPUs at the same time. * So we can possibly have a window where a given CPUn is being brought * down from CPUm while we try to run a function on CPUn. * To prevent this its better have the whole code to execute an SMP * function under get_online_cpus. * This function call ensures that hotplug mechanism does not kick-in * until we are done dealing with online CPUs * If the hotplug worker is already running, no worries because the * candidacy algo would then reflect the same in dhd->rx_napi_cpu. * * The below mentioned code structure is proposed in * https://www.kernel.org/doc/Documentation/cpu-hotplug.txt * for the question * Q: I need to ensure that a particular cpu is not removed when there is some * work specific to this cpu is in progress * * According to the documentation calling get_online_cpus is NOT required, if * we are running from tasklet context. Since dhd_rx_napi_dispatcher_fn can * run from Work Queue context we have to call these functions */ static void dhd_rx_napi_dispatcher_fn(struct work_struct * work) { struct dhd_info *dhd = container_of(work, struct dhd_info, rx_napi_dispatcher_work); int cpu; get_online_cpus(); cpu = atomic_read(&dhd->rx_napi_cpu); if (!cpu_online(cpu)) dhd_napi_schedule(dhd); else dhd_napi_schedule_on(dhd, cpu); put_online_cpus(); } /** * dhd_lb_rx_napi_dispatch - load balance by dispatching the rx_napi_struct * to run on another CPU. The rx_napi_struct's poll function will retrieve all * the packets enqueued into the rx_napi_queue and sendup. * The producer's rx packet queue is appended to the rx_napi_queue before * dispatching the rx_napi_struct. */ void dhd_lb_rx_napi_dispatch(dhd_pub_t *dhdp) { unsigned long flags; dhd_info_t *dhd = dhdp->info; int curr_cpu; int on_cpu; if (dhd->rx_napi_netdev == NULL) { DHD_ERROR(("%s: dhd->rx_napi_netdev is NULL\n", __FUNCTION__)); return; } DHD_INFO(("%s append napi_queue<%d> pend_queue<%d>\n", __FUNCTION__, skb_queue_len(&dhd->rx_napi_queue), skb_queue_len(&dhd->rx_pend_queue))); /* append the producer's queue of packets to the napi's rx process queue */ spin_lock_irqsave(&dhd->rx_napi_queue.lock, flags); skb_queue_splice_tail_init(&dhd->rx_pend_queue, &dhd->rx_napi_queue); spin_unlock_irqrestore(&dhd->rx_napi_queue.lock, flags); /* * If the destination CPU is NOT online or is same as current CPU * no need to schedule the work */ curr_cpu = get_cpu(); put_cpu(); on_cpu = atomic_read(&dhd->rx_napi_cpu); if ((on_cpu == curr_cpu) || (!cpu_online(on_cpu))) { dhd_napi_schedule(dhd); } else { schedule_work(&dhd->rx_napi_dispatcher_work); } } /** * dhd_lb_rx_pkt_enqueue - Enqueue the packet into the producer's queue */ void dhd_lb_rx_pkt_enqueue(dhd_pub_t *dhdp, void *pkt, int ifidx) { dhd_info_t *dhd = dhdp->info; DHD_INFO(("%s enqueue pkt<%p> ifidx<%d> pend_queue<%d>\n", __FUNCTION__, pkt, ifidx, skb_queue_len(&dhd->rx_pend_queue))); DHD_PKTTAG_SET_IFID((dhd_pkttag_fr_t *)PKTTAG(pkt), ifidx); __skb_queue_tail(&dhd->rx_pend_queue, pkt); } #endif /* DHD_LB_RXP */ #endif /* DHD_LB */ /** Returns dhd iflist index corresponding the the bssidx provided by apps */ int dhd_bssidx2idx(dhd_pub_t *dhdp, uint32 bssidx) { dhd_if_t *ifp; dhd_info_t *dhd = dhdp->info; int i; ASSERT(bssidx < DHD_MAX_IFS); ASSERT(dhdp); for (i = 0; i < DHD_MAX_IFS; i++) { ifp = dhd->iflist[i]; if (ifp && (ifp->bssidx == bssidx)) { DHD_TRACE(("Index manipulated for %s from %d to %d\n", ifp->name, bssidx, i)); break; } } return i; } static inline int dhd_rxf_enqueue(dhd_pub_t *dhdp, void* skb) { uint32 store_idx; uint32 sent_idx; if (!skb) { DHD_ERROR(("dhd_rxf_enqueue: NULL skb!!!\n")); return BCME_ERROR; } dhd_os_rxflock(dhdp); store_idx = dhdp->store_idx; sent_idx = dhdp->sent_idx; if (dhdp->skbbuf[store_idx] != NULL) { /* Make sure the previous packets are processed */ dhd_os_rxfunlock(dhdp); #ifdef RXF_DEQUEUE_ON_BUSY DHD_TRACE(("dhd_rxf_enqueue: pktbuf not consumed %p, store idx %d sent idx %d\n", skb, store_idx, sent_idx)); return BCME_BUSY; #else /* RXF_DEQUEUE_ON_BUSY */ DHD_ERROR(("dhd_rxf_enqueue: pktbuf not consumed %p, store idx %d sent idx %d\n", skb, store_idx, sent_idx)); /* removed msleep here, should use wait_event_timeout if we * want to give rx frame thread a chance to run */ #if defined(WAIT_DEQUEUE) OSL_SLEEP(1); #endif return BCME_ERROR; #endif /* RXF_DEQUEUE_ON_BUSY */ } DHD_TRACE(("dhd_rxf_enqueue: Store SKB %p. idx %d -> %d\n", skb, store_idx, (store_idx + 1) & (MAXSKBPEND - 1))); dhdp->skbbuf[store_idx] = skb; dhdp->store_idx = (store_idx + 1) & (MAXSKBPEND - 1); dhd_os_rxfunlock(dhdp); return BCME_OK; } static inline void* dhd_rxf_dequeue(dhd_pub_t *dhdp) { uint32 store_idx; uint32 sent_idx; void *skb; dhd_os_rxflock(dhdp); store_idx = dhdp->store_idx; sent_idx = dhdp->sent_idx; skb = dhdp->skbbuf[sent_idx]; if (skb == NULL) { dhd_os_rxfunlock(dhdp); DHD_ERROR(("dhd_rxf_dequeue: Dequeued packet is NULL, store idx %d sent idx %d\n", store_idx, sent_idx)); return NULL; } dhdp->skbbuf[sent_idx] = NULL; dhdp->sent_idx = (sent_idx + 1) & (MAXSKBPEND - 1); DHD_TRACE(("dhd_rxf_dequeue: netif_rx_ni(%p), sent idx %d\n", skb, sent_idx)); dhd_os_rxfunlock(dhdp); return skb; } int dhd_process_cid_mac(dhd_pub_t *dhdp, bool prepost) { dhd_info_t *dhd = (dhd_info_t *)dhdp->info; if (prepost) { /* pre process */ dhd_read_macaddr(dhd); } else { /* post process */ dhd_write_macaddr(&dhd->pub.mac); } return 0; } #if defined(PKT_FILTER_SUPPORT) && !defined(GAN_LITE_NAT_KEEPALIVE_FILTER) static bool _turn_on_arp_filter(dhd_pub_t *dhd, int op_mode) { bool _apply = FALSE; /* In case of IBSS mode, apply arp pkt filter */ if (op_mode & DHD_FLAG_IBSS_MODE) { _apply = TRUE; goto exit; } #ifndef STBLINUX /* In case of P2P GO or GC, apply pkt filter to pass arp pkt to host */ if ((dhd->arp_version == 1) && (op_mode & (DHD_FLAG_P2P_GC_MODE | DHD_FLAG_P2P_GO_MODE))) { _apply = TRUE; goto exit; } #endif /* STBLINUX */ exit: return _apply; } #endif /* PKT_FILTER_SUPPORT && !GAN_LITE_NAT_KEEPALIVE_FILTER */ void dhd_set_packet_filter(dhd_pub_t *dhd) { #ifdef PKT_FILTER_SUPPORT int i; DHD_TRACE(("%s: enter\n", __FUNCTION__)); if (dhd_pkt_filter_enable) { for (i = 0; i < dhd->pktfilter_count; i++) { dhd_pktfilter_offload_set(dhd, dhd->pktfilter[i]); } } #endif /* PKT_FILTER_SUPPORT */ } void dhd_enable_packet_filter(int value, dhd_pub_t *dhd) { #ifdef PKT_FILTER_SUPPORT int i; DHD_TRACE(("%s: enter, value = %d\n", __FUNCTION__, value)); /* 1 - Enable packet filter, only allow unicast packet to send up */ /* 0 - Disable packet filter */ if (dhd_pkt_filter_enable && (!value || (dhd_support_sta_mode(dhd) && !dhd->dhcp_in_progress))) { for (i = 0; i < dhd->pktfilter_count; i++) { #ifndef GAN_LITE_NAT_KEEPALIVE_FILTER if (value && (i == DHD_ARP_FILTER_NUM) && !_turn_on_arp_filter(dhd, dhd->op_mode)) { DHD_TRACE(("Do not turn on ARP white list pkt filter:" "val %d, cnt %d, op_mode 0x%x\n", value, i, dhd->op_mode)); continue; } #endif /* !GAN_LITE_NAT_KEEPALIVE_FILTER */ dhd_pktfilter_offload_enable(dhd, dhd->pktfilter[i], value, dhd_master_mode); } } #endif /* PKT_FILTER_SUPPORT */ } static int dhd_set_suspend(int value, dhd_pub_t *dhd) { #ifndef SUPPORT_PM2_ONLY int power_mode = PM_MAX; #endif /* SUPPORT_PM2_ONLY */ /* wl_pkt_filter_enable_t enable_parm; */ int bcn_li_dtim = 0; /* Default bcn_li_dtim in resume mode is 0 */ #ifdef CUSTOM_BCN_TIMEOUT_IN_SUSPEND int bcn_timeout = 0; #endif /* CUSTOM_BCN_TIMEOUT_IN_SUSPEND */ #ifdef CUSTOM_ROAM_TIME_THRESH_IN_SUSPEND int roam_time_thresh = 0; /* (ms) */ #endif /* CUSTOM_ROAM_TIME_THRESH_IN_SUSPEND */ #ifndef ENABLE_FW_ROAM_SUSPEND uint roamvar = 1; #endif /* ENABLE_FW_ROAM_SUSPEND */ uint nd_ra_filter = 0; int ret = 0; #ifdef DYNAMIC_SWOOB_DURATION #ifndef CUSTOM_INTR_WIDTH #define CUSTOM_INTR_WIDTH 100 int intr_width = 0; #endif /* CUSTOM_INTR_WIDTH */ #endif /* DYNAMIC_SWOOB_DURATION */ if (!dhd) return -ENODEV; DHD_TRACE(("%s: enter, value = %d in_suspend=%d\n", __FUNCTION__, value, dhd->in_suspend)); dhd_suspend_lock(dhd); #ifdef CUSTOM_SET_CPUCORE DHD_TRACE(("%s set cpucore(suspend%d)\n", __FUNCTION__, value)); /* set specific cpucore */ dhd_set_cpucore(dhd, TRUE); #endif /* CUSTOM_SET_CPUCORE */ if (dhd->up) { if (value && dhd->in_suspend) { #ifdef PKT_FILTER_SUPPORT dhd->early_suspended = 1; #endif /* Kernel suspended */ DHD_ERROR(("%s: force extra Suspend setting \n", __FUNCTION__)); #ifndef SUPPORT_PM2_ONLY dhd_wl_ioctl_cmd(dhd, WLC_SET_PM, (char *)&power_mode, sizeof(power_mode), TRUE, 0); #endif /* SUPPORT_PM2_ONLY */ #ifdef WL_VIRTUAL_APSTA /* Softap shouldn't enable packet filter in STA+SoftAP mode */ if (!(dhd->op_mode & DHD_FLAG_HOSTAP_MODE)) #endif /* WL_VIRTUAL_APSTA */ { /* Enable packet filter, * only allow unicast packet to send up */ dhd_enable_packet_filter(1, dhd); } /* If DTIM skip is set up as default, force it to wake * each third DTIM for better power savings. Note that * one side effect is a chance to miss BC/MC packet. */ #ifdef WLTDLS /* Do not set bcn_li_ditm on WFD mode */ if (dhd->tdls_mode) { bcn_li_dtim = 0; } else #endif /* WLTDLS */ bcn_li_dtim = dhd_get_suspend_bcn_li_dtim(dhd); if (dhd_iovar(dhd, 0, "bcn_li_dtim", (char *)&bcn_li_dtim, sizeof(bcn_li_dtim), NULL, 0, TRUE) < 0) DHD_ERROR(("%s: set dtim failed\n", __FUNCTION__)); #ifdef CUSTOM_BCN_TIMEOUT_IN_SUSPEND bcn_timeout = CUSTOM_BCN_TIMEOUT_IN_SUSPEND; dhd_iovar(dhd, 0, "bcn_timeout", (char *)&bcn_timeout, sizeof(bcn_timeout), NULL, 0, TRUE); #endif /* CUSTOM_BCN_TIMEOUT_IN_SUSPEND */ #ifdef CUSTOM_ROAM_TIME_THRESH_IN_SUSPEND roam_time_thresh = CUSTOM_ROAM_TIME_THRESH_IN_SUSPEND; dhd_iovar(dhd, 0, "roam_time_thresh", (char *)&roam_time_thresh, sizeof(roam_time_thresh), NULL, 0, TRUE); #endif /* CUSTOM_ROAM_TIME_THRESH_IN_SUSPEND */ #ifndef ENABLE_FW_ROAM_SUSPEND /* Disable firmware roaming during suspend */ dhd_iovar(dhd, 0, "roam_off", (char *)&roamvar, sizeof(roamvar), NULL, 0, TRUE); #endif /* ENABLE_FW_ROAM_SUSPEND */ if (FW_SUPPORTED(dhd, ndoe)) { /* enable IPv6 RA filter in firmware during suspend */ nd_ra_filter = 1; ret = dhd_iovar(dhd, 0, "nd_ra_filter_enable", (char *)&nd_ra_filter, sizeof(nd_ra_filter), NULL, 0, TRUE); if (ret < 0) DHD_ERROR(("failed to set nd_ra_filter (%d)\n", ret)); } dhd_os_suppress_logging(dhd, TRUE); #ifdef DYNAMIC_SWOOB_DURATION intr_width = CUSTOM_INTR_WIDTH; ret = dhd_iovar(dhd, 0, "bus:intr_width", (char *)&intr_width, sizeof(intr_width), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("failed to set intr_width (%d)\n", ret)); } #endif /* DYNAMIC_SWOOB_DURATION */ } else { #ifdef PKT_FILTER_SUPPORT dhd->early_suspended = 0; #endif /* Kernel resumed */ DHD_ERROR(("%s: Remove extra suspend setting \n", __FUNCTION__)); #ifdef DYNAMIC_SWOOB_DURATION intr_width = 0; ret = dhd_iovar(dhd, 0, "bus:intr_width", (char *)&intr_width, sizeof(intr_width), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("failed to set intr_width (%d)\n", ret)); } #endif /* DYNAMIC_SWOOB_DURATION */ #ifndef SUPPORT_PM2_ONLY power_mode = PM_FAST; dhd_wl_ioctl_cmd(dhd, WLC_SET_PM, (char *)&power_mode, sizeof(power_mode), TRUE, 0); #endif /* SUPPORT_PM2_ONLY */ #ifdef PKT_FILTER_SUPPORT /* disable pkt filter */ dhd_enable_packet_filter(0, dhd); #endif /* PKT_FILTER_SUPPORT */ /* restore pre-suspend setting for dtim_skip */ dhd_iovar(dhd, 0, "bcn_li_dtim", (char *)&bcn_li_dtim, sizeof(bcn_li_dtim), NULL, 0, TRUE); #ifdef CUSTOM_BCN_TIMEOUT_IN_SUSPEND bcn_timeout = CUSTOM_BCN_TIMEOUT; dhd_iovar(dhd, 0, "bcn_timeout", (char *)&bcn_timeout, sizeof(bcn_timeout), NULL, 0, TRUE); #endif /* CUSTOM_BCN_TIMEOUT_IN_SUSPEND */ #ifdef CUSTOM_ROAM_TIME_THRESH_IN_SUSPEND roam_time_thresh = 2000; dhd_iovar(dhd, 0, "roam_time_thresh", (char *)&roam_time_thresh, sizeof(roam_time_thresh), NULL, 0, TRUE); #endif /* CUSTOM_ROAM_TIME_THRESH_IN_SUSPEND */ #ifndef ENABLE_FW_ROAM_SUSPEND roamvar = dhd_roam_disable; dhd_iovar(dhd, 0, "roam_off", (char *)&roamvar, sizeof(roamvar), NULL, 0, TRUE); #endif /* ENABLE_FW_ROAM_SUSPEND */ if (FW_SUPPORTED(dhd, ndoe)) { /* disable IPv6 RA filter in firmware during suspend */ nd_ra_filter = 0; ret = dhd_iovar(dhd, 0, "nd_ra_filter_enable", (char *)&nd_ra_filter, sizeof(nd_ra_filter), NULL, 0, TRUE); if (ret < 0) DHD_ERROR(("nd_ra_filter: %d\n", ret)); } dhd_os_suppress_logging(dhd, FALSE); } } dhd_suspend_unlock(dhd); return 0; } static int dhd_suspend_resume_helper(struct dhd_info *dhd, int val, int force) { dhd_pub_t *dhdp = &dhd->pub; int ret = 0; DHD_OS_WAKE_LOCK(dhdp); DHD_PERIM_LOCK(dhdp); /* Set flag when early suspend was called */ dhdp->in_suspend = val; if ((force || !dhdp->suspend_disable_flag) && dhd_support_sta_mode(dhdp)) { ret = dhd_set_suspend(val, dhdp); } DHD_PERIM_UNLOCK(dhdp); DHD_OS_WAKE_UNLOCK(dhdp); return ret; } #if defined(CONFIG_HAS_EARLYSUSPEND) && defined(DHD_USE_EARLYSUSPEND) static void dhd_early_suspend(struct early_suspend *h) { struct dhd_info *dhd = container_of(h, struct dhd_info, early_suspend); DHD_TRACE_HW4(("%s: enter\n", __FUNCTION__)); if (dhd) dhd_suspend_resume_helper(dhd, 1, 0); } static void dhd_late_resume(struct early_suspend *h) { struct dhd_info *dhd = container_of(h, struct dhd_info, early_suspend); DHD_TRACE_HW4(("%s: enter\n", __FUNCTION__)); if (dhd) dhd_suspend_resume_helper(dhd, 0, 0); } #endif /* CONFIG_HAS_EARLYSUSPEND && DHD_USE_EARLYSUSPEND */ /* * Generalized timeout mechanism. Uses spin sleep with exponential back-off until * the sleep time reaches one jiffy, then switches over to task delay. Usage: * * dhd_timeout_start(&tmo, usec); * while (!dhd_timeout_expired(&tmo)) * if (poll_something()) * break; * if (dhd_timeout_expired(&tmo)) * fatal(); */ void dhd_timeout_start(dhd_timeout_t *tmo, uint usec) { tmo->limit = usec; tmo->increment = 0; tmo->elapsed = 0; tmo->tick = jiffies_to_usecs(1); } int dhd_timeout_expired(dhd_timeout_t *tmo) { /* Does nothing the first call */ if (tmo->increment == 0) { tmo->increment = 1; return 0; } if (tmo->elapsed >= tmo->limit) return 1; /* Add the delay that's about to take place */ tmo->elapsed += tmo->increment; if ((!CAN_SLEEP()) || tmo->increment < tmo->tick) { OSL_DELAY(tmo->increment); tmo->increment *= 2; if (tmo->increment > tmo->tick) tmo->increment = tmo->tick; } else { wait_queue_head_t delay_wait; DECLARE_WAITQUEUE(wait, current); init_waitqueue_head(&delay_wait); add_wait_queue(&delay_wait, &wait); set_current_state(TASK_INTERRUPTIBLE); (void)schedule_timeout(1); remove_wait_queue(&delay_wait, &wait); set_current_state(TASK_RUNNING); } return 0; } int dhd_net2idx(dhd_info_t *dhd, struct net_device *net) { int i = 0; if (!dhd) { DHD_ERROR(("%s : DHD_BAD_IF return\n", __FUNCTION__)); return DHD_BAD_IF; } while (i < DHD_MAX_IFS) { if (dhd->iflist[i] && dhd->iflist[i]->net && (dhd->iflist[i]->net == net)) return i; i++; } return DHD_BAD_IF; } struct net_device * dhd_idx2net(void *pub, int ifidx) { struct dhd_pub *dhd_pub = (struct dhd_pub *)pub; struct dhd_info *dhd_info; if (!dhd_pub || ifidx < 0 || ifidx >= DHD_MAX_IFS) return NULL; dhd_info = dhd_pub->info; if (dhd_info && dhd_info->iflist[ifidx]) return dhd_info->iflist[ifidx]->net; return NULL; } int dhd_ifname2idx(dhd_info_t *dhd, char *name) { int i = DHD_MAX_IFS; ASSERT(dhd); if (name == NULL || *name == '\0') return 0; while (--i > 0) if (dhd->iflist[i] && !strncmp(dhd->iflist[i]->dngl_name, name, IFNAMSIZ)) break; DHD_TRACE(("%s: return idx %d for \"%s\"\n", __FUNCTION__, i, name)); return i; /* default - the primary interface */ } char * dhd_ifname(dhd_pub_t *dhdp, int ifidx) { dhd_info_t *dhd = (dhd_info_t *)dhdp->info; ASSERT(dhd); if (ifidx < 0 || ifidx >= DHD_MAX_IFS) { DHD_ERROR(("%s: ifidx %d out of range\n", __FUNCTION__, ifidx)); return ""; } if (dhd->iflist[ifidx] == NULL) { DHD_ERROR(("%s: null i/f %d\n", __FUNCTION__, ifidx)); return ""; } if (dhd->iflist[ifidx]->net) return dhd->iflist[ifidx]->net->name; return ""; } uint8 * dhd_bssidx2bssid(dhd_pub_t *dhdp, int idx) { int i; dhd_info_t *dhd = (dhd_info_t *)dhdp; ASSERT(dhd); for (i = 0; i < DHD_MAX_IFS; i++) if (dhd->iflist[i] && dhd->iflist[i]->bssidx == idx) return dhd->iflist[i]->mac_addr; return NULL; } #ifdef BCMDBUS #define DBUS_NRXQ 50 #define DBUS_NTXQ 100 static void dhd_dbus_send_complete(void *handle, void *info, int status) { dhd_info_t *dhd = (dhd_info_t *)handle; void *pkt = info; if ((dhd == NULL) || (pkt == NULL)) return; if (status == DBUS_OK) { dhd->pub.dstats.tx_packets++; } else { DHD_ERROR(("TX error=%d\n", status)); dhd->pub.dstats.tx_errors++; } #ifdef PROP_TXSTATUS if (DHD_PKTTAG_WLFCPKT(PKTTAG(pkt)) && (dhd_wlfc_txcomplete(&dhd->pub, pkt, status == 0) != WLFC_UNSUPPORTED)) { return; } #endif /* PROP_TXSTATUS */ PKTFREE(dhd->pub.osh, pkt, TRUE); } static void dhd_dbus_recv_pkt(void *handle, void *pkt) { uchar reorder_info_buf[WLHOST_REORDERDATA_TOTLEN]; uint reorder_info_len; uint pkt_count; dhd_info_t *dhd = (dhd_info_t *)handle; int ifidx = 0; if (dhd == NULL) return; /* If the protocol uses a data header, check and remove it */ if (dhd_prot_hdrpull(&dhd->pub, &ifidx, pkt, reorder_info_buf, &reorder_info_len) != 0) { DHD_ERROR(("rx protocol error\n")); PKTFREE(dhd->pub.osh, pkt, FALSE); dhd->pub.rx_errors++; return; } if (reorder_info_len) { /* Reordering info from the firmware */ dhd_process_pkt_reorder_info(&dhd->pub, reorder_info_buf, reorder_info_len, &pkt, &pkt_count); if (pkt_count == 0) return; } else { pkt_count = 1; } dhd_rx_frame(&dhd->pub, ifidx, pkt, pkt_count, 0); } static void dhd_dbus_recv_buf(void *handle, uint8 *buf, int len) { dhd_info_t *dhd = (dhd_info_t *)handle; void *pkt; if (dhd == NULL) return; if ((pkt = PKTGET(dhd->pub.osh, len, FALSE)) == NULL) { DHD_ERROR(("PKTGET (rx) failed=%d\n", len)); return; } bcopy(buf, PKTDATA(dhd->pub.osh, pkt), len); dhd_dbus_recv_pkt(dhd, pkt); } static void dhd_dbus_txflowcontrol(void *handle, bool onoff) { dhd_info_t *dhd = (dhd_info_t *)handle; bool wlfc_enabled = FALSE; if (dhd == NULL) return; #ifdef PROP_TXSTATUS wlfc_enabled = (dhd_wlfc_flowcontrol(&dhd->pub, onoff, !onoff) != WLFC_UNSUPPORTED); #endif if (!wlfc_enabled) { dhd_txflowcontrol(&dhd->pub, ALL_INTERFACES, onoff); } } static void dhd_dbus_errhandler(void *handle, int err) { } static void dhd_dbus_ctl_complete(void *handle, int type, int status) { dhd_info_t *dhd = (dhd_info_t *)handle; if (dhd == NULL) return; if (type == DBUS_CBCTL_READ) { if (status == DBUS_OK) dhd->pub.rx_ctlpkts++; else dhd->pub.rx_ctlerrs++; } else if (type == DBUS_CBCTL_WRITE) { if (status == DBUS_OK) dhd->pub.tx_ctlpkts++; else dhd->pub.tx_ctlerrs++; } dhd_prot_ctl_complete(&dhd->pub); } static void dhd_dbus_state_change(void *handle, int state) { dhd_info_t *dhd = (dhd_info_t *)handle; if (dhd == NULL) return; switch (state) { case DBUS_STATE_DL_NEEDED: #if defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) #if defined(BCMDBUS) DHD_TRACE(("%s: firmware request\n", __FUNCTION__)); up(&dhd->fw_download_lock); #endif /* BCMDBUS */ #else DHD_ERROR(("%s: firmware request cannot be handled\n", __FUNCTION__)); #endif /* defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) */ break; case DBUS_STATE_DOWN: DHD_TRACE(("%s: DBUS is down\n", __FUNCTION__)); dhd->pub.busstate = DHD_BUS_DOWN; break; case DBUS_STATE_UP: DHD_TRACE(("%s: DBUS is up\n", __FUNCTION__)); dhd->pub.busstate = DHD_BUS_DATA; break; default: break; } DHD_TRACE(("%s: DBUS current state=%d\n", __FUNCTION__, state)); } static void * dhd_dbus_pktget(void *handle, uint len, bool send) { dhd_info_t *dhd = (dhd_info_t *)handle; void *p = NULL; if (dhd == NULL) return NULL; if (send == TRUE) { dhd_os_sdlock_txq(&dhd->pub); p = PKTGET(dhd->pub.osh, len, TRUE); dhd_os_sdunlock_txq(&dhd->pub); } else { dhd_os_sdlock_rxq(&dhd->pub); p = PKTGET(dhd->pub.osh, len, FALSE); dhd_os_sdunlock_rxq(&dhd->pub); } return p; } static void dhd_dbus_pktfree(void *handle, void *p, bool send) { dhd_info_t *dhd = (dhd_info_t *)handle; if (dhd == NULL) return; if (send == TRUE) { #ifdef PROP_TXSTATUS if (DHD_PKTTAG_WLFCPKT(PKTTAG(p)) && (dhd_wlfc_txcomplete(&dhd->pub, p, FALSE) != WLFC_UNSUPPORTED)) { return; } #endif /* PROP_TXSTATUS */ dhd_os_sdlock_txq(&dhd->pub); PKTFREE(dhd->pub.osh, p, TRUE); dhd_os_sdunlock_txq(&dhd->pub); } else { dhd_os_sdlock_rxq(&dhd->pub); PKTFREE(dhd->pub.osh, p, FALSE); dhd_os_sdunlock_rxq(&dhd->pub); } } #ifdef BCM_FD_AGGR static void dbus_rpcth_tx_complete(void *ctx, void *pktbuf, int status) { dhd_info_t *dhd = (dhd_info_t *)ctx; void *tmp; while (pktbuf && dhd) { tmp = PKTNEXT(dhd->pub.osh, pktbuf); PKTSETNEXT(dhd->pub.osh, pktbuf, NULL); dhd_dbus_send_complete(ctx, pktbuf, status); pktbuf = tmp; } } static void dbus_rpcth_rx_pkt(void *context, rpc_buf_t *rpc_buf) { dhd_dbus_recv_pkt(context, rpc_buf); } static void dbus_rpcth_rx_aggrpkt(void *context, void *rpc_buf) { dhd_info_t *dhd = (dhd_info_t *)context; if (dhd == NULL) return; /* all the de-aggregated packets are delivered back to function dbus_rpcth_rx_pkt() * as cloned packets */ bcm_rpc_dbus_recv_aggrpkt(dhd->rpc_th, rpc_buf, bcm_rpc_buf_len_get(dhd->rpc_th, rpc_buf)); /* free the original packet */ dhd_dbus_pktfree(context, rpc_buf, FALSE); } static void dbus_rpcth_rx_aggrbuf(void *context, uint8 *buf, int len) { dhd_info_t *dhd = (dhd_info_t *)context; if (dhd == NULL) return; if (dhd->fdaggr & BCM_FDAGGR_D2H_ENABLED) { bcm_rpc_dbus_recv_aggrbuf(dhd->rpc_th, buf, len); } else { dhd_dbus_recv_buf(context, buf, len); } } static void #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 15, 0)) dhd_rpcth_watchdog(struct timer_list *t) { dhd_info_t *dhd = from_timer(dhd, t, rpcth_timer); #else dhd_rpcth_watchdog(ulong data) { dhd_info_t *dhd = (dhd_info_t *)data; #endif if (dhd->pub.dongle_reset) { return; } dhd->rpcth_timer_active = FALSE; /* release packets in the aggregation queue */ bcm_rpc_tp_watchdog(dhd->rpc_th); } static int dhd_fdaggr_ioctl(dhd_pub_t *dhd_pub, int ifindex, wl_ioctl_t *ioc, void *buf, int len) { int bcmerror = 0; void *rpc_th; rpc_th = dhd_pub->info->rpc_th; if (!strcmp("rpc_agg", ioc->buf)) { uint32 rpc_agg; uint32 rpc_agg_host; uint32 rpc_agg_dngl; if (ioc->set) { memcpy(&rpc_agg, ioc->buf + strlen("rpc_agg") + 1, sizeof(uint32)); rpc_agg_host = rpc_agg & BCM_RPC_TP_HOST_AGG_MASK; if (rpc_agg_host) bcm_rpc_tp_agg_set(rpc_th, rpc_agg_host, TRUE); else bcm_rpc_tp_agg_set(rpc_th, BCM_RPC_TP_HOST_AGG_MASK, FALSE); bcmerror = dhd_wl_ioctl(dhd_pub, ifindex, ioc, buf, len); if (bcmerror < 0) { DHD_ERROR(("usb aggregation not supported\n")); } else { dhd_pub->info->fdaggr = 0; if (rpc_agg & BCM_RPC_TP_HOST_AGG_MASK) dhd_pub->info->fdaggr |= BCM_FDAGGR_H2D_ENABLED; if (rpc_agg & BCM_RPC_TP_DNGL_AGG_MASK) dhd_pub->info->fdaggr |= BCM_FDAGGR_D2H_ENABLED; } } else { rpc_agg_host = bcm_rpc_tp_agg_get(rpc_th); bcmerror = dhd_wl_ioctl(dhd_pub, ifindex, ioc, buf, len); if (!bcmerror) { memcpy(&rpc_agg_dngl, buf, sizeof(uint32)); rpc_agg = (rpc_agg_host & BCM_RPC_TP_HOST_AGG_MASK) | (rpc_agg_dngl & BCM_RPC_TP_DNGL_AGG_MASK); memcpy(buf, &rpc_agg, sizeof(uint32)); } } } else if (!strcmp("rpc_host_agglimit", ioc->buf)) { uint8 sf; uint16 bytes; uint32 agglimit; if (ioc->set) { memcpy(&agglimit, ioc->buf + strlen("rpc_host_agglimit") + 1, sizeof(uint32)); sf = agglimit >> 16; bytes = agglimit & 0xFFFF; bcm_rpc_tp_agg_limit_set(rpc_th, sf, bytes); } else { bcm_rpc_tp_agg_limit_get(rpc_th, &sf, &bytes); agglimit = (uint32)((sf << 16) + bytes); memcpy(buf, &agglimit, sizeof(uint32)); } } else { bcmerror = dhd_wl_ioctl(dhd_pub, ifindex, ioc, buf, len); } return bcmerror; } #endif /* BCM_FD_AGGR */ static dbus_callbacks_t dhd_dbus_cbs = { #ifdef BCM_FD_AGGR dbus_rpcth_tx_complete, dbus_rpcth_rx_aggrbuf, dbus_rpcth_rx_aggrpkt, #else dhd_dbus_send_complete, dhd_dbus_recv_buf, dhd_dbus_recv_pkt, #endif dhd_dbus_txflowcontrol, dhd_dbus_errhandler, dhd_dbus_ctl_complete, dhd_dbus_state_change, dhd_dbus_pktget, dhd_dbus_pktfree }; void dhd_bus_dump(dhd_pub_t *dhdp, struct bcmstrbuf *strbuf) { bcm_bprintf(strbuf, "Bus USB\n"); } void dhd_bus_clearcounts(dhd_pub_t *dhdp) { } bool dhd_bus_dpc(struct dhd_bus *bus) { return FALSE; } int dhd_dbus_txdata(dhd_pub_t *dhdp, void *pktbuf) { if (dhdp->txoff) return BCME_EPERM; #ifdef BCM_FD_AGGR if (((dhd_info_t *)(dhdp->info))->fdaggr & BCM_FDAGGR_H2D_ENABLED) { dhd_info_t *dhd; int ret; dhd = (dhd_info_t *)(dhdp->info); ret = bcm_rpc_tp_buf_send(dhd->rpc_th, pktbuf); if (dhd->rpcth_timer_active == FALSE) { dhd->rpcth_timer_active = TRUE; mod_timer(&dhd->rpcth_timer, jiffies + BCM_RPC_TP_HOST_TMOUT * HZ / 1000); } return ret; } else #endif /* BCM_FD_AGGR */ return dbus_send_txdata(dhdp->dbus, pktbuf); } #endif /* BCMDBUS */ static void _dhd_set_multicast_list(dhd_info_t *dhd, int ifidx) { struct net_device *dev; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35) struct netdev_hw_addr *ha; #else struct dev_mc_list *mclist; #endif uint32 allmulti, cnt; wl_ioctl_t ioc; char *buf, *bufp; uint buflen; int ret; if (!dhd->iflist[ifidx]) { DHD_ERROR(("%s : dhd->iflist[%d] was NULL\n", __FUNCTION__, ifidx)); return; } dev = dhd->iflist[ifidx]->net; if (!dev) return; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27) netif_addr_lock_bh(dev); #endif /* LINUX >= 2.6.27 */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35) cnt = netdev_mc_count(dev); #else cnt = dev->mc_count; #endif /* LINUX >= 2.6.35 */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27) netif_addr_unlock_bh(dev); #endif /* LINUX >= 2.6.27 */ /* Determine initial value of allmulti flag */ allmulti = (dev->flags & IFF_ALLMULTI) ? TRUE : FALSE; /* Send down the multicast list first. */ buflen = sizeof("mcast_list") + sizeof(cnt) + (cnt * ETHER_ADDR_LEN); if (!(bufp = buf = MALLOC(dhd->pub.osh, buflen))) { DHD_ERROR(("%s: out of memory for mcast_list, cnt %d\n", dhd_ifname(&dhd->pub, ifidx), cnt)); return; } strncpy(bufp, "mcast_list", buflen - 1); bufp[buflen - 1] = '\0'; bufp += strlen("mcast_list") + 1; cnt = htol32(cnt); memcpy(bufp, &cnt, sizeof(cnt)); bufp += sizeof(cnt); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27) netif_addr_lock_bh(dev); #endif /* LINUX >= 2.6.27 */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35) netdev_for_each_mc_addr(ha, dev) { if (!cnt) break; memcpy(bufp, ha->addr, ETHER_ADDR_LEN); bufp += ETHER_ADDR_LEN; cnt--; } #else /* LINUX < 2.6.35 */ for (mclist = dev->mc_list; (mclist && (cnt > 0)); cnt--, mclist = mclist->next) { memcpy(bufp, (void *)mclist->dmi_addr, ETHER_ADDR_LEN); bufp += ETHER_ADDR_LEN; } #endif /* LINUX >= 2.6.35 */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27) netif_addr_unlock_bh(dev); #endif /* LINUX >= 2.6.27 */ memset(&ioc, 0, sizeof(ioc)); ioc.cmd = WLC_SET_VAR; ioc.buf = buf; ioc.len = buflen; ioc.set = TRUE; ret = dhd_wl_ioctl(&dhd->pub, ifidx, &ioc, ioc.buf, ioc.len); if (ret < 0) { DHD_ERROR(("%s: set mcast_list failed, cnt %d\n", dhd_ifname(&dhd->pub, ifidx), cnt)); allmulti = cnt ? TRUE : allmulti; } MFREE(dhd->pub.osh, buf, buflen); /* Now send the allmulti setting. This is based on the setting in the * net_device flags, but might be modified above to be turned on if we * were trying to set some addresses and dongle rejected it... */ allmulti = htol32(allmulti); ret = dhd_iovar(&dhd->pub, ifidx, "allmulti", (char *)&allmulti, sizeof(allmulti), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: set allmulti %d failed\n", dhd_ifname(&dhd->pub, ifidx), ltoh32(allmulti))); } /* Finally, pick up the PROMISC flag as well, like the NIC driver does */ allmulti = (dev->flags & IFF_PROMISC) ? TRUE : FALSE; allmulti = htol32(allmulti); memset(&ioc, 0, sizeof(ioc)); ioc.cmd = WLC_SET_PROMISC; ioc.buf = &allmulti; ioc.len = sizeof(allmulti); ioc.set = TRUE; ret = dhd_wl_ioctl(&dhd->pub, ifidx, &ioc, ioc.buf, ioc.len); if (ret < 0) { DHD_ERROR(("%s: set promisc %d failed\n", dhd_ifname(&dhd->pub, ifidx), ltoh32(allmulti))); } } int _dhd_set_mac_address(dhd_info_t *dhd, int ifidx, uint8 *addr) { int ret; ret = dhd_iovar(&dhd->pub, ifidx, "cur_etheraddr", (char *)addr, ETHER_ADDR_LEN, NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: set cur_etheraddr failed\n", dhd_ifname(&dhd->pub, ifidx))); } else { memcpy(dhd->iflist[ifidx]->net->dev_addr, addr, ETHER_ADDR_LEN); if (ifidx == 0) memcpy(dhd->pub.mac.octet, addr, ETHER_ADDR_LEN); } return ret; } #ifdef SOFTAP extern struct net_device *ap_net_dev; extern tsk_ctl_t ap_eth_ctl; /* ap netdev heper thread ctl */ #endif #ifdef DHD_WMF void dhd_update_psta_interface_for_sta(dhd_pub_t* dhdp, char* ifname, void* ea, void* event_data) { struct wl_psta_primary_intf_event *psta_prim_event = (struct wl_psta_primary_intf_event*)event_data; dhd_sta_t *psta_interface = NULL; dhd_sta_t *sta = NULL; uint8 ifindex; ASSERT(ifname); ASSERT(psta_prim_event); ASSERT(ea); ifindex = (uint8)dhd_ifname2idx(dhdp->info, ifname); sta = dhd_find_sta(dhdp, ifindex, ea); if (sta != NULL) { psta_interface = dhd_find_sta(dhdp, ifindex, (void *)(psta_prim_event->prim_ea.octet)); if (psta_interface != NULL) { sta->psta_prim = psta_interface; } } } /* Get wmf_psta_disable configuration configuration */ int dhd_get_wmf_psta_disable(dhd_pub_t *dhdp, uint32 idx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; return ifp->wmf_psta_disable; } /* Set wmf_psta_disable configuration configuration */ int dhd_set_wmf_psta_disable(dhd_pub_t *dhdp, uint32 idx, int val) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; ifp->wmf_psta_disable = val; return 0; } #endif /* DHD_WMF */ #ifdef DHD_PSTA /* Get psta/psr configuration configuration */ int dhd_get_psta_mode(dhd_pub_t *dhdp) { dhd_info_t *dhd = dhdp->info; return (int)dhd->psta_mode; } /* Set psta/psr configuration configuration */ int dhd_set_psta_mode(dhd_pub_t *dhdp, uint32 val) { dhd_info_t *dhd = dhdp->info; dhd->psta_mode = val; return 0; } #endif /* DHD_PSTA */ #if (defined(DHD_WET) || defined(DHD_MCAST_REGEN) || defined(DHD_L2_FILTER)) static void dhd_update_rx_pkt_chainable_state(dhd_pub_t* dhdp, uint32 idx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; if ( #ifdef DHD_L2_FILTER (ifp->block_ping) || #endif #ifdef DHD_WET (dhd->wet_mode) || #endif #ifdef DHD_MCAST_REGEN (ifp->mcast_regen_bss_enable) || #endif FALSE) { ifp->rx_pkt_chainable = FALSE; } } #endif /* DHD_WET || DHD_MCAST_REGEN || DHD_L2_FILTER */ #ifdef DHD_WET /* Get wet configuration configuration */ int dhd_get_wet_mode(dhd_pub_t *dhdp) { dhd_info_t *dhd = dhdp->info; return (int)dhd->wet_mode; } /* Set wet configuration configuration */ int dhd_set_wet_mode(dhd_pub_t *dhdp, uint32 val) { dhd_info_t *dhd = dhdp->info; dhd->wet_mode = val; /* disable rx_pkt_chainable stae for dhd interface, if WET is enabled */ dhd_update_rx_pkt_chainable_state(dhdp, 0); return 0; } #endif /* DHD_WET */ #if (LINUX_VERSION_CODE > KERNEL_VERSION(3, 11, 0)) int32 dhd_role_to_nl80211_iftype(int32 role) { switch (role) { case WLC_E_IF_ROLE_STA: return NL80211_IFTYPE_STATION; case WLC_E_IF_ROLE_AP: return NL80211_IFTYPE_AP; case WLC_E_IF_ROLE_WDS: return NL80211_IFTYPE_WDS; case WLC_E_IF_ROLE_P2P_GO: return NL80211_IFTYPE_P2P_GO; case WLC_E_IF_ROLE_P2P_CLIENT: return NL80211_IFTYPE_P2P_CLIENT; case WLC_E_IF_ROLE_IBSS: return NL80211_IFTYPE_ADHOC; default: return NL80211_IFTYPE_UNSPECIFIED; } } #endif /* OEM_ANDROID && (LINUX_VERSION_CODE > KERNEL_VERSION(3, 11, 0)) */ static void dhd_ifadd_event_handler(void *handle, void *event_info, u8 event) { dhd_info_t *dhd = handle; dhd_if_event_t *if_event = event_info; struct net_device *ndev; int ifidx, bssidx; int ret; #if (LINUX_VERSION_CODE > KERNEL_VERSION(3, 11, 0)) struct wireless_dev *vwdev, *primary_wdev; struct net_device *primary_ndev; #endif /* OEM_ANDROID && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0)) */ if (event != DHD_WQ_WORK_IF_ADD) { DHD_ERROR(("%s: unexpected event \n", __FUNCTION__)); return; } if (!dhd) { DHD_ERROR(("%s: dhd info not available \n", __FUNCTION__)); return; } if (!if_event) { DHD_ERROR(("%s: event data is null \n", __FUNCTION__)); return; } dhd_net_if_lock_local(dhd); DHD_OS_WAKE_LOCK(&dhd->pub); DHD_PERIM_LOCK(&dhd->pub); ifidx = if_event->event.ifidx; bssidx = if_event->event.bssidx; DHD_TRACE(("%s: registering if with ifidx %d\n", __FUNCTION__, ifidx)); /* This path is for non-android case */ /* The interface name in host and in event msg are same */ /* if name in event msg is used to create dongle if list on host */ ndev = dhd_allocate_if(&dhd->pub, ifidx, if_event->name, if_event->mac, bssidx, TRUE, if_event->name); if (!ndev) { DHD_ERROR(("%s: net device alloc failed \n", __FUNCTION__)); goto done; } #if (LINUX_VERSION_CODE > KERNEL_VERSION(3, 11, 0)) vwdev = kzalloc(sizeof(*vwdev), GFP_KERNEL); if (unlikely(!vwdev)) { DHD_ERROR(("Could not allocate wireless device\n")); goto done; } primary_ndev = dhd->pub.info->iflist[0]->net; primary_wdev = ndev_to_wdev(primary_ndev); vwdev->wiphy = primary_wdev->wiphy; vwdev->iftype = dhd_role_to_nl80211_iftype(if_event->event.role); vwdev->netdev = ndev; ndev->ieee80211_ptr = vwdev; SET_NETDEV_DEV(ndev, wiphy_dev(vwdev->wiphy)); DHD_ERROR(("virtual interface(%s) is created\n", if_event->name)); #endif /* OEM_ANDROID && (LINUX_VERSION_CODE > KERNEL_VERSION(3, 11, 0)) */ DHD_PERIM_UNLOCK(&dhd->pub); ret = dhd_register_if(&dhd->pub, ifidx, TRUE); DHD_PERIM_LOCK(&dhd->pub); if (ret != BCME_OK) { DHD_ERROR(("%s: dhd_register_if failed\n", __FUNCTION__)); dhd_remove_if(&dhd->pub, ifidx, TRUE); goto done; } #ifndef PCIE_FULL_DONGLE /* Turn on AP isolation in the firmware for interfaces operating in AP mode */ if (FW_SUPPORTED((&dhd->pub), ap) && (if_event->event.role != WLC_E_IF_ROLE_STA)) { uint32 var_int = 1; ret = dhd_iovar(&dhd->pub, ifidx, "ap_isolate", (char *)&var_int, sizeof(var_int), NULL, 0, TRUE); if (ret != BCME_OK) { DHD_ERROR(("%s: Failed to set ap_isolate to dongle\n", __FUNCTION__)); dhd_remove_if(&dhd->pub, ifidx, TRUE); } } #endif /* PCIE_FULL_DONGLE */ done: MFREE(dhd->pub.osh, if_event, sizeof(dhd_if_event_t)); DHD_PERIM_UNLOCK(&dhd->pub); DHD_OS_WAKE_UNLOCK(&dhd->pub); dhd_net_if_unlock_local(dhd); } static void dhd_ifdel_event_handler(void *handle, void *event_info, u8 event) { dhd_info_t *dhd = handle; int ifidx; dhd_if_event_t *if_event = event_info; if (event != DHD_WQ_WORK_IF_DEL) { DHD_ERROR(("%s: unexpected event \n", __FUNCTION__)); return; } if (!dhd) { DHD_ERROR(("%s: dhd info not available \n", __FUNCTION__)); return; } if (!if_event) { DHD_ERROR(("%s: event data is null \n", __FUNCTION__)); return; } dhd_net_if_lock_local(dhd); DHD_OS_WAKE_LOCK(&dhd->pub); DHD_PERIM_LOCK(&dhd->pub); ifidx = if_event->event.ifidx; DHD_TRACE(("Removing interface with idx %d\n", ifidx)); DHD_PERIM_UNLOCK(&dhd->pub); dhd_remove_if(&dhd->pub, ifidx, TRUE); DHD_PERIM_LOCK(&dhd->pub); MFREE(dhd->pub.osh, if_event, sizeof(dhd_if_event_t)); DHD_PERIM_UNLOCK(&dhd->pub); DHD_OS_WAKE_UNLOCK(&dhd->pub); dhd_net_if_unlock_local(dhd); } static void dhd_set_mac_addr_handler(void *handle, void *event_info, u8 event) { dhd_info_t *dhd = handle; dhd_if_t *ifp = event_info; if (event != DHD_WQ_WORK_SET_MAC) { DHD_ERROR(("%s: unexpected event \n", __FUNCTION__)); } if (!dhd) { DHD_ERROR(("%s: dhd info not available \n", __FUNCTION__)); return; } dhd_net_if_lock_local(dhd); DHD_OS_WAKE_LOCK(&dhd->pub); DHD_PERIM_LOCK(&dhd->pub); #ifdef SOFTAP { unsigned long flags; bool in_ap = FALSE; DHD_GENERAL_LOCK(&dhd->pub, flags); in_ap = (ap_net_dev != NULL); DHD_GENERAL_UNLOCK(&dhd->pub, flags); if (in_ap) { DHD_ERROR(("attempt to set MAC for %s in AP Mode, blocked. \n", ifp->net->name)); goto done; } } #endif /* SOFTAP */ if (ifp == NULL || !dhd->pub.up) { DHD_ERROR(("%s: interface info not available/down \n", __FUNCTION__)); goto done; } DHD_ERROR(("%s: MACID is overwritten\n", __FUNCTION__)); ifp->set_macaddress = FALSE; if (_dhd_set_mac_address(dhd, ifp->idx, ifp->mac_addr) == 0) DHD_INFO(("%s: MACID is overwritten\n", __FUNCTION__)); else DHD_ERROR(("%s: _dhd_set_mac_address() failed\n", __FUNCTION__)); done: DHD_PERIM_UNLOCK(&dhd->pub); DHD_OS_WAKE_UNLOCK(&dhd->pub); dhd_net_if_unlock_local(dhd); } static void dhd_set_mcast_list_handler(void *handle, void *event_info, u8 event) { dhd_info_t *dhd = handle; dhd_if_t *ifp = event_info; int ifidx; if (event != DHD_WQ_WORK_SET_MCAST_LIST) { DHD_ERROR(("%s: unexpected event \n", __FUNCTION__)); return; } if (!dhd) { DHD_ERROR(("%s: dhd info not available \n", __FUNCTION__)); return; } dhd_net_if_lock_local(dhd); DHD_OS_WAKE_LOCK(&dhd->pub); DHD_PERIM_LOCK(&dhd->pub); #ifdef SOFTAP { bool in_ap = FALSE; unsigned long flags; DHD_GENERAL_LOCK(&dhd->pub, flags); in_ap = (ap_net_dev != NULL); DHD_GENERAL_UNLOCK(&dhd->pub, flags); if (in_ap) { DHD_ERROR(("set MULTICAST list for %s in AP Mode, blocked. \n", ifp->net->name)); ifp->set_multicast = FALSE; goto done; } } #endif /* SOFTAP */ if (ifp == NULL || !dhd->pub.up) { DHD_ERROR(("%s: interface info not available/down \n", __FUNCTION__)); goto done; } ifidx = ifp->idx; _dhd_set_multicast_list(dhd, ifidx); DHD_INFO(("%s: set multicast list for if %d\n", __FUNCTION__, ifidx)); done: DHD_PERIM_UNLOCK(&dhd->pub); DHD_OS_WAKE_UNLOCK(&dhd->pub); dhd_net_if_unlock_local(dhd); } static int dhd_set_mac_address(struct net_device *dev, void *addr) { int ret = 0; dhd_info_t *dhd = DHD_DEV_INFO(dev); struct sockaddr *sa = (struct sockaddr *)addr; int ifidx; dhd_if_t *dhdif; ifidx = dhd_net2idx(dhd, dev); if (ifidx == DHD_BAD_IF) return -1; dhdif = dhd->iflist[ifidx]; dhd_net_if_lock_local(dhd); memcpy(dhdif->mac_addr, sa->sa_data, ETHER_ADDR_LEN); dhdif->set_macaddress = TRUE; dhd_net_if_unlock_local(dhd); dhd_deferred_schedule_work(dhd->dhd_deferred_wq, (void *)dhdif, DHD_WQ_WORK_SET_MAC, dhd_set_mac_addr_handler, DHD_WORK_PRIORITY_LOW); return ret; } static void dhd_set_multicast_list(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); int ifidx; ifidx = dhd_net2idx(dhd, dev); if (ifidx == DHD_BAD_IF) return; dhd->iflist[ifidx]->set_multicast = TRUE; dhd_deferred_schedule_work(dhd->dhd_deferred_wq, (void *)dhd->iflist[ifidx], DHD_WQ_WORK_SET_MCAST_LIST, dhd_set_mcast_list_handler, DHD_WORK_PRIORITY_LOW); } #ifdef PROP_TXSTATUS int dhd_os_wlfc_block(dhd_pub_t *pub) { dhd_info_t *di = (dhd_info_t *)(pub->info); ASSERT(di != NULL); #ifdef BCMDBUS spin_lock_irqsave(&di->wlfc_spinlock, di->wlfc_lock_flags); #else spin_lock_bh(&di->wlfc_spinlock); #endif return 1; } int dhd_os_wlfc_unblock(dhd_pub_t *pub) { dhd_info_t *di = (dhd_info_t *)(pub->info); ASSERT(di != NULL); #ifdef BCMDBUS spin_unlock_irqrestore(&di->wlfc_spinlock, di->wlfc_lock_flags); #else spin_unlock_bh(&di->wlfc_spinlock); #endif return 1; } #endif /* PROP_TXSTATUS */ #if defined(DHD_8021X_DUMP) void dhd_tx_dump(osl_t *osh, void *pkt) { uint8 *dump_data; uint16 protocol; dump_data = PKTDATA(osh, pkt); protocol = (dump_data[12] << 8) | dump_data[13]; if (protocol == ETHER_TYPE_802_1X) { DHD_ERROR(("ETHER_TYPE_802_1X [TX]: ver %d, type %d, replay %d\n", dump_data[14], dump_data[15], dump_data[30])); } } #endif /* DHD_8021X_DUMP */ /* This routine do not support Packet chain feature, Currently tested for * proxy arp feature */ int dhd_sendup(dhd_pub_t *dhdp, int ifidx, void *p) { struct sk_buff *skb; void *skbhead = NULL; void *skbprev = NULL; dhd_if_t *ifp; ASSERT(!PKTISCHAINED(p)); skb = PKTTONATIVE(dhdp->osh, p); ifp = dhdp->info->iflist[ifidx]; skb->dev = ifp->net; #if defined(BCM_GMAC3) /* Forwarder capable interfaces use WOFA based forwarding */ if (ifp->fwdh) { struct ether_header *eh = (struct ether_header *)PKTDATA(dhdp->osh, p); uint16 * da = (uint16 *)(eh->ether_dhost); uintptr_t wofa_data; ASSERT(ISALIGNED(da, 2)); wofa_data = fwder_lookup(ifp->fwdh->mate, da, ifp->idx); if (wofa_data == WOFA_DATA_INVALID) { /* Unknown MAC address */ if (fwder_transmit(ifp->fwdh, skb, 1, skb->dev) == FWDER_SUCCESS) { return BCME_OK; } } PKTFRMNATIVE(dhdp->osh, p); PKTFREE(dhdp->osh, p, FALSE); return BCME_OK; } #endif /* BCM_GMAC3 */ skb->protocol = eth_type_trans(skb, skb->dev); if (in_interrupt()) { bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__); netif_rx(skb); } else { if (dhdp->info->rxthread_enabled) { if (!skbhead) { skbhead = skb; } else { PKTSETNEXT(dhdp->osh, skbprev, skb); } skbprev = skb; } else { /* If the receive is not processed inside an ISR, * the softirqd must be woken explicitly to service * the NET_RX_SOFTIRQ. In 2.6 kernels, this is handled * by netif_rx_ni(), but in earlier kernels, we need * to do it manually. */ bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) netif_rx_ni(skb); #else ulong flags; netif_rx(skb); local_irq_save(flags); RAISE_RX_SOFTIRQ(); local_irq_restore(flags); #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) */ } } if (dhdp->info->rxthread_enabled && skbhead) dhd_sched_rxf(dhdp, skbhead); return BCME_OK; } int BCMFASTPATH __dhd_sendpkt(dhd_pub_t *dhdp, int ifidx, void *pktbuf) { int ret = BCME_OK; dhd_info_t *dhd = (dhd_info_t *)(dhdp->info); struct ether_header *eh = NULL; #if defined(DHD_L2_FILTER) dhd_if_t *ifp = dhd_get_ifp(dhdp, ifidx); #endif /* Reject if down */ if (!dhdp->up || (dhdp->busstate == DHD_BUS_DOWN)) { /* free the packet here since the caller won't */ PKTCFREE(dhdp->osh, pktbuf, TRUE); return -ENODEV; } #ifdef PCIE_FULL_DONGLE if (dhdp->busstate == DHD_BUS_SUSPEND) { DHD_ERROR(("%s : pcie is still in suspend state!!\n", __FUNCTION__)); PKTFREE(dhdp->osh, pktbuf, TRUE); return -EBUSY; } #endif /* PCIE_FULL_DONGLE */ #ifdef DHD_L2_FILTER /* if dhcp_unicast is enabled, we need to convert the */ /* broadcast DHCP ACK/REPLY packets to Unicast. */ if (ifp->dhcp_unicast) { uint8* mac_addr; uint8* ehptr = NULL; int ret; ret = bcm_l2_filter_get_mac_addr_dhcp_pkt(dhdp->osh, pktbuf, ifidx, &mac_addr); if (ret == BCME_OK) { /* if given mac address having valid entry in sta list * copy the given mac address, and return with BCME_OK */ if (dhd_find_sta(dhdp, ifidx, mac_addr)) { ehptr = PKTDATA(dhdp->osh, pktbuf); bcopy(mac_addr, ehptr + ETHER_DEST_OFFSET, ETHER_ADDR_LEN); } } } if (ifp->grat_arp && DHD_IF_ROLE_AP(dhdp, ifidx)) { if (bcm_l2_filter_gratuitous_arp(dhdp->osh, pktbuf) == BCME_OK) { PKTCFREE(dhdp->osh, pktbuf, TRUE); return BCME_ERROR; } } if (ifp->parp_enable && DHD_IF_ROLE_AP(dhdp, ifidx)) { ret = dhd_l2_filter_pkt_handle(dhdp, ifidx, pktbuf, TRUE); /* Drop the packets if l2 filter has processed it already * otherwise continue with the normal path */ if (ret == BCME_OK) { PKTCFREE(dhdp->osh, pktbuf, TRUE); return BCME_ERROR; } } #endif /* DHD_L2_FILTER */ /* Update multicast statistic */ if (PKTLEN(dhdp->osh, pktbuf) >= ETHER_HDR_LEN) { uint8 *pktdata = (uint8 *)PKTDATA(dhdp->osh, pktbuf); eh = (struct ether_header *)pktdata; if (ETHER_ISMULTI(eh->ether_dhost)) dhdp->tx_multicast++; if (ntoh16(eh->ether_type) == ETHER_TYPE_802_1X) { DBG_EVENT_LOG(dhdp, WIFI_EVENT_DRIVER_EAPOL_FRAME_TRANSMIT_REQUESTED); atomic_inc(&dhd->pend_8021x_cnt); } #ifdef DHD_DHCP_DUMP if (ntoh16(eh->ether_type) == ETHER_TYPE_IP) { dhd_dhcp_dump(pktdata, TRUE); dhd_tcp_dump(dhd_ifname(dhdp, ifidx), pktdata, TRUE); } #endif /* DHD_DHCP_DUMP */ } else { PKTCFREE(dhdp->osh, pktbuf, TRUE); return BCME_ERROR; } { /* Look into the packet and update the packet priority */ #ifndef PKTPRIO_OVERRIDE if (PKTPRIO(pktbuf) == 0) #endif { #if defined(QOS_MAP_SET) pktsetprio_qms(pktbuf, wl_get_up_table(), FALSE); #else pktsetprio(pktbuf, FALSE); #endif /* QOS_MAP_SET */ } } #if defined(TRAFFIC_MGMT_DWM) traffic_mgmt_pkt_set_prio(dhdp, pktbuf); #ifdef BCM_GMAC3 DHD_PKT_SET_DATAOFF(pktbuf, 0); #endif /* BCM_GMAC3 */ #endif #ifdef PCIE_FULL_DONGLE /* * Lkup the per interface hash table, for a matching flowring. If one is not * available, allocate a unique flowid and add a flowring entry. * The found or newly created flowid is placed into the pktbuf's tag. */ ret = dhd_flowid_update(dhdp, ifidx, dhdp->flow_prio_map[(PKTPRIO(pktbuf))], pktbuf); if (ret != BCME_OK) { PKTCFREE(dhd->pub.osh, pktbuf, TRUE); return ret; } #endif #ifdef PROP_TXSTATUS if (dhd_wlfc_is_supported(dhdp)) { /* store the interface ID */ DHD_PKTTAG_SETIF(PKTTAG(pktbuf), ifidx); /* store destination MAC in the tag as well */ DHD_PKTTAG_SETDSTN(PKTTAG(pktbuf), eh->ether_dhost); /* decide which FIFO this packet belongs to */ if (ETHER_ISMULTI(eh->ether_dhost)) /* one additional queue index (highest AC + 1) is used for bc/mc queue */ DHD_PKTTAG_SETFIFO(PKTTAG(pktbuf), AC_COUNT); else DHD_PKTTAG_SETFIFO(PKTTAG(pktbuf), WME_PRIO2AC(PKTPRIO(pktbuf))); } else #endif /* PROP_TXSTATUS */ { /* If the protocol uses a data header, apply it */ dhd_prot_hdrpush(dhdp, ifidx, pktbuf); } /* Use bus module to send data frame */ #ifdef WLMEDIA_HTSF dhd_htsf_addtxts(dhdp, pktbuf); #endif #if defined(DHD_8021X_DUMP) dhd_tx_dump(dhdp->osh, pktbuf); #endif #ifdef BCMDBUS #ifdef PROP_TXSTATUS if (dhd_wlfc_commit_packets(dhdp, (f_commitpkt_t)dhd_dbus_txdata, dhdp, pktbuf, TRUE) == WLFC_UNSUPPORTED) { /* non-proptxstatus way */ ret = dhd_dbus_txdata(dhdp, pktbuf); } #else ret = dhd_dbus_txdata(dhdp, pktbuf); #endif /* PROP_TXSTATUS */ if (ret) PKTCFREE(dhdp->osh, pktbuf, TRUE); #else #ifdef PROP_TXSTATUS { if (dhd_wlfc_commit_packets(dhdp, (f_commitpkt_t)dhd_bus_txdata, dhdp->bus, pktbuf, TRUE) == WLFC_UNSUPPORTED) { /* non-proptxstatus way */ #ifdef BCMPCIE ret = dhd_bus_txdata(dhdp->bus, pktbuf, (uint8)ifidx); #else ret = dhd_bus_txdata(dhdp->bus, pktbuf); #endif /* BCMPCIE */ } } #else #ifdef BCMPCIE ret = dhd_bus_txdata(dhdp->bus, pktbuf, (uint8)ifidx); #else ret = dhd_bus_txdata(dhdp->bus, pktbuf); #endif /* BCMPCIE */ #endif /* PROP_TXSTATUS */ #endif /* BCMDBUS */ return ret; } int BCMFASTPATH dhd_sendpkt(dhd_pub_t *dhdp, int ifidx, void *pktbuf) { int ret = 0; unsigned long flags; DHD_GENERAL_LOCK(dhdp, flags); if (dhdp->busstate == DHD_BUS_DOWN || dhdp->busstate == DHD_BUS_DOWN_IN_PROGRESS) { DHD_ERROR(("%s: returning as busstate=%d\n", __FUNCTION__, dhdp->busstate)); DHD_GENERAL_UNLOCK(dhdp, flags); PKTCFREE(dhdp->osh, pktbuf, TRUE); return -ENODEV; } dhdp->dhd_bus_busy_state |= DHD_BUS_BUSY_IN_SEND_PKT; DHD_GENERAL_UNLOCK(dhdp, flags); ret = __dhd_sendpkt(dhdp, ifidx, pktbuf); DHD_GENERAL_LOCK(dhdp, flags); dhdp->dhd_bus_busy_state &= ~DHD_BUS_BUSY_IN_SEND_PKT; DHD_GENERAL_UNLOCK(dhdp, flags); return ret; } int BCMFASTPATH dhd_start_xmit(struct sk_buff *skb, struct net_device *net) { int ret; uint datalen; void *pktbuf; dhd_info_t *dhd = DHD_DEV_INFO(net); dhd_if_t *ifp = NULL; int ifidx; unsigned long flags; #ifdef WLMEDIA_HTSF uint8 htsfdlystat_sz = dhd->pub.htsfdlystat_sz; #else uint8 htsfdlystat_sz = 0; #endif #ifdef DHD_WMF struct ether_header *eh; uint8 *iph; #endif /* DHD_WMF */ DHD_TRACE(("%s: Enter\n", __FUNCTION__)); DHD_GENERAL_LOCK(&dhd->pub, flags); if (dhd->pub.busstate == DHD_BUS_SUSPEND) { DHD_ERROR(("%s : pcie is still in suspend state!!\n", __FUNCTION__)); dev_kfree_skb(skb); ifp = DHD_DEV_IFP(net); ifp->stats.tx_dropped++; dhd->pub.tx_dropped++; DHD_GENERAL_UNLOCK(&dhd->pub, flags); return -EBUSY; } DHD_OS_WAKE_LOCK(&dhd->pub); DHD_PERIM_LOCK_TRY(DHD_FWDER_UNIT(dhd), lock_taken); /* Reject if down */ if (dhd->pub.hang_was_sent || dhd->pub.busstate == DHD_BUS_DOWN || dhd->pub.busstate == DHD_BUS_DOWN_IN_PROGRESS) { DHD_ERROR(("%s: xmit rejected pub.up=%d busstate=%d \n", __FUNCTION__, dhd->pub.up, dhd->pub.busstate)); netif_stop_queue(net); /* Send Event when bus down detected during data session */ if (dhd->pub.up) { DHD_ERROR(("%s: Event HANG sent up\n", __FUNCTION__)); net_os_send_hang_message(net); } DHD_GENERAL_UNLOCK(&dhd->pub, flags); DHD_PERIM_UNLOCK_TRY(DHD_FWDER_UNIT(dhd), lock_taken); DHD_OS_WAKE_UNLOCK(&dhd->pub); #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)) return -ENODEV; #else return NETDEV_TX_BUSY; #endif } ifp = DHD_DEV_IFP(net); ifidx = DHD_DEV_IFIDX(net); BUZZZ_LOG(START_XMIT_BGN, 2, (uint32)ifidx, (uintptr)skb); if (ifidx == DHD_BAD_IF) { DHD_ERROR(("%s: bad ifidx %d\n", __FUNCTION__, ifidx)); netif_stop_queue(net); DHD_PERIM_UNLOCK_TRY(DHD_FWDER_UNIT(dhd), lock_taken); DHD_OS_WAKE_UNLOCK(&dhd->pub); #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)) return -ENODEV; #else return NETDEV_TX_BUSY; #endif } dhd->pub.dhd_bus_busy_state |= DHD_BUS_BUSY_IN_TX; DHD_GENERAL_UNLOCK(&dhd->pub, flags); ASSERT(ifidx == dhd_net2idx(dhd, net)); ASSERT((ifp != NULL) && ((ifidx < DHD_MAX_IFS) && (ifp == dhd->iflist[ifidx]))); bcm_object_trace_opr(skb, BCM_OBJDBG_ADD_PKT, __FUNCTION__, __LINE__); /* re-align socket buffer if "skb->data" is odd address */ if (((unsigned long)(skb->data)) & 0x1) { unsigned char *data = skb->data; uint32 length = skb->len; PKTPUSH(dhd->pub.osh, skb, 1); memmove(skb->data, data, length); PKTSETLEN(dhd->pub.osh, skb, length); } datalen = PKTLEN(dhd->pub.osh, skb); /* Make sure there's enough room for any header */ if (skb_headroom(skb) < dhd->pub.hdrlen + htsfdlystat_sz) { struct sk_buff *skb2; DHD_INFO(("%s: insufficient headroom\n", dhd_ifname(&dhd->pub, ifidx))); dhd->pub.tx_realloc++; bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__); skb2 = skb_realloc_headroom(skb, dhd->pub.hdrlen + htsfdlystat_sz); dev_kfree_skb(skb); if ((skb = skb2) == NULL) { DHD_ERROR(("%s: skb_realloc_headroom failed\n", dhd_ifname(&dhd->pub, ifidx))); ret = -ENOMEM; goto done; } bcm_object_trace_opr(skb, BCM_OBJDBG_ADD_PKT, __FUNCTION__, __LINE__); } /* Convert to packet */ if (!(pktbuf = PKTFRMNATIVE(dhd->pub.osh, skb))) { DHD_ERROR(("%s: PKTFRMNATIVE failed\n", dhd_ifname(&dhd->pub, ifidx))); bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__); dev_kfree_skb_any(skb); ret = -ENOMEM; goto done; } #if defined(WLMEDIA_HTSF) if (htsfdlystat_sz && PKTLEN(dhd->pub.osh, pktbuf) >= ETHER_ADDR_LEN) { uint8 *pktdata = (uint8 *)PKTDATA(dhd->pub.osh, pktbuf); struct ether_header *eh = (struct ether_header *)pktdata; if (!ETHER_ISMULTI(eh->ether_dhost) && (ntoh16(eh->ether_type) == ETHER_TYPE_IP)) { eh->ether_type = hton16(ETHER_TYPE_BRCM_PKTDLYSTATS); } } #endif #ifdef DHD_WET /* wet related packet proto manipulation should be done in DHD * since dongle doesn't have complete payload */ if (WET_ENABLED(&dhd->pub) && (dhd_wet_send_proc(dhd->pub.wet_info, pktbuf, &pktbuf) < 0)) { DHD_INFO(("%s:%s: wet send proc failed\n", __FUNCTION__, dhd_ifname(&dhd->pub, ifidx))); PKTFREE(dhd->pub.osh, pktbuf, FALSE); ret = -EFAULT; goto done; } #endif /* DHD_WET */ #ifdef DHD_WMF eh = (struct ether_header *)PKTDATA(dhd->pub.osh, pktbuf); iph = (uint8 *)eh + ETHER_HDR_LEN; /* WMF processing for multicast packets * Only IPv4 packets are handled */ if (ifp->wmf.wmf_enable && (ntoh16(eh->ether_type) == ETHER_TYPE_IP) && (IP_VER(iph) == IP_VER_4) && (ETHER_ISMULTI(eh->ether_dhost) || ((IPV4_PROT(iph) == IP_PROT_IGMP) && dhd->pub.wmf_ucast_igmp))) { #if defined(DHD_IGMP_UCQUERY) || defined(DHD_UCAST_UPNP) void *sdu_clone; bool ucast_convert = FALSE; #ifdef DHD_UCAST_UPNP uint32 dest_ip; dest_ip = ntoh32(*((uint32 *)(iph + IPV4_DEST_IP_OFFSET))); ucast_convert = dhd->pub.wmf_ucast_upnp && MCAST_ADDR_UPNP_SSDP(dest_ip); #endif /* DHD_UCAST_UPNP */ #ifdef DHD_IGMP_UCQUERY ucast_convert |= dhd->pub.wmf_ucast_igmp_query && (IPV4_PROT(iph) == IP_PROT_IGMP) && (*(iph + IPV4_HLEN(iph)) == IGMPV2_HOST_MEMBERSHIP_QUERY); #endif /* DHD_IGMP_UCQUERY */ if (ucast_convert) { dhd_sta_t *sta; unsigned long flags; struct list_head snapshot_list; struct list_head *wmf_ucforward_list; ret = NETDEV_TX_OK; /* For non BCM_GMAC3 platform we need a snapshot sta_list to * resolve double DHD_IF_STA_LIST_LOCK call deadlock issue. */ wmf_ucforward_list = DHD_IF_WMF_UCFORWARD_LOCK(dhd, ifp, &snapshot_list); /* Convert upnp/igmp query to unicast for each assoc STA */ list_for_each_entry(sta, wmf_ucforward_list, list) { /* Skip sending to proxy interfaces of proxySTA */ if (sta->psta_prim != NULL && !ifp->wmf_psta_disable) { continue; } if ((sdu_clone = PKTDUP(dhd->pub.osh, pktbuf)) == NULL) { ret = WMF_NOP; break; } dhd_wmf_forward(ifp->wmf.wmfh, sdu_clone, 0, sta, 1); } DHD_IF_WMF_UCFORWARD_UNLOCK(dhd, wmf_ucforward_list); DHD_GENERAL_LOCK(&dhd->pub, flags); dhd->pub.dhd_bus_busy_state &= ~DHD_BUS_BUSY_IN_TX; dhd_os_busbusy_wake(&dhd->pub); DHD_GENERAL_UNLOCK(&dhd->pub, flags); DHD_PERIM_UNLOCK_TRY(DHD_FWDER_UNIT(dhd), lock_taken); DHD_OS_WAKE_UNLOCK(&dhd->pub); if (ret == NETDEV_TX_OK) PKTFREE(dhd->pub.osh, pktbuf, TRUE); return ret; } else #endif /* defined(DHD_IGMP_UCQUERY) || defined(DHD_UCAST_UPNP) */ { /* There will be no STA info if the packet is coming from LAN host * Pass as NULL */ ret = dhd_wmf_packets_handle(&dhd->pub, pktbuf, NULL, ifidx, 0); switch (ret) { case WMF_TAKEN: case WMF_DROP: /* Either taken by WMF or we should drop it. * Exiting send path */ DHD_GENERAL_LOCK(&dhd->pub, flags); dhd->pub.dhd_bus_busy_state &= ~DHD_BUS_BUSY_IN_TX; dhd_os_busbusy_wake(&dhd->pub); DHD_GENERAL_UNLOCK(&dhd->pub, flags); DHD_PERIM_UNLOCK_TRY(DHD_FWDER_UNIT(dhd), lock_taken); DHD_OS_WAKE_UNLOCK(&dhd->pub); return NETDEV_TX_OK; default: /* Continue the transmit path */ break; } } } #endif /* DHD_WMF */ #ifdef DHD_PSTA /* PSR related packet proto manipulation should be done in DHD * since dongle doesn't have complete payload */ if (PSR_ENABLED(&dhd->pub) && (dhd_psta_proc(&dhd->pub, ifidx, &pktbuf, TRUE) < 0)) { DHD_ERROR(("%s:%s: psta send proc failed\n", __FUNCTION__, dhd_ifname(&dhd->pub, ifidx))); } #endif /* DHD_PSTA */ #ifdef DHDTCPACK_SUPPRESS if (dhd->pub.tcpack_sup_mode == TCPACK_SUP_HOLD) { /* If this packet has been hold or got freed, just return */ if (dhd_tcpack_hold(&dhd->pub, pktbuf, ifidx)) { ret = 0; goto done; } } else { /* If this packet has replaced another packet and got freed, just return */ if (dhd_tcpack_suppress(&dhd->pub, pktbuf)) { ret = 0; goto done; } } #endif /* DHDTCPACK_SUPPRESS */ #ifdef HOST_FLAG if (hostsleep) { printf("%s (%d): hostsleep = %d, tx_dropped = %lu\n",__FUNCTION__, __LINE__, hostsleep, ifp->stats.tx_dropped); PKTFREE(dhd->pub.osh, pktbuf, TRUE); ret = BCME_TXFAIL; goto done; } #endif ret = __dhd_sendpkt(&dhd->pub, ifidx, pktbuf); done: if (ret) { ifp->stats.tx_dropped++; dhd->pub.tx_dropped++; } else { #ifdef PROP_TXSTATUS /* tx_packets counter can counted only when wlfc is disabled */ if (!dhd_wlfc_is_supported(&dhd->pub)) #endif { dhd->pub.tx_packets++; ifp->stats.tx_packets++; ifp->stats.tx_bytes += datalen; } } DHD_GENERAL_LOCK(&dhd->pub, flags); dhd->pub.dhd_bus_busy_state &= ~DHD_BUS_BUSY_IN_TX; dhd_os_busbusy_wake(&dhd->pub); DHD_GENERAL_UNLOCK(&dhd->pub, flags); DHD_PERIM_UNLOCK_TRY(DHD_FWDER_UNIT(dhd), lock_taken); DHD_OS_WAKE_UNLOCK(&dhd->pub); BUZZZ_LOG(START_XMIT_END, 0); /* Return ok: we always eat the packet */ #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)) return 0; #else return NETDEV_TX_OK; #endif } void dhd_txflowcontrol(dhd_pub_t *dhdp, int ifidx, bool state) { struct net_device *net; dhd_info_t *dhd = dhdp->info; int i; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); ASSERT(dhd); #ifdef DHD_LOSSLESS_ROAMING /* block flowcontrol during roaming */ if ((dhdp->dequeue_prec_map == 1 << PRIO_8021D_NC) && state == ON) { return; } #endif if (ifidx == ALL_INTERFACES) { /* Flow control on all active interfaces */ dhdp->txoff = state; for (i = 0; i < DHD_MAX_IFS; i++) { if (dhd->iflist[i]) { net = dhd->iflist[i]->net; if (state == ON) netif_stop_queue(net); else netif_wake_queue(net); } } } else { if (dhd->iflist[ifidx]) { net = dhd->iflist[ifidx]->net; if (state == ON) netif_stop_queue(net); else netif_wake_queue(net); } } } #ifdef DHD_RX_DUMP typedef struct { uint16 type; const char *str; } PKTTYPE_INFO; static const PKTTYPE_INFO packet_type_info[] = { { ETHER_TYPE_IP, "IP" }, { ETHER_TYPE_ARP, "ARP" }, { ETHER_TYPE_BRCM, "BRCM" }, { ETHER_TYPE_802_1X, "802.1X" }, { ETHER_TYPE_WAI, "WAPI" }, { 0, ""} }; static const char *_get_packet_type_str(uint16 type) { int i; int n = sizeof(packet_type_info)/sizeof(packet_type_info[1]) - 1; for (i = 0; i < n; i++) { if (packet_type_info[i].type == type) return packet_type_info[i].str; } return packet_type_info[n].str; } #endif /* DHD_RX_DUMP */ #ifdef DHD_WMF bool dhd_is_rxthread_enabled(dhd_pub_t *dhdp) { dhd_info_t *dhd = dhdp->info; return dhd->rxthread_enabled; } #endif /* DHD_WMF */ void dhd_rx_mon_pkt(dhd_pub_t *dhdp, void *pkt, int ifidx) { dhd_info_t *dhd = (dhd_info_t *)dhdp->info; struct sk_buff *skb; skb = PKTTONATIVE(dhdp->osh, pkt); if (dhd->monitor_type && dhd->monitor_dev) skb->dev = dhd->monitor_dev; else { PKTFREE(dhdp->osh, pkt, FALSE); return; } skb->protocol = eth_type_trans(skb, skb->dev); if (in_interrupt()) { bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__); DHD_PERIM_UNLOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); netif_rx(skb); DHD_PERIM_LOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); } else { /* If the receive is not processed inside an ISR, * the softirqd must be woken explicitly to service * the NET_RX_SOFTIRQ. In 2.6 kernels, this is handled * by netif_rx_ni(), but in earlier kernels, we need * to do it manually. */ bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) DHD_PERIM_UNLOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); netif_rx_ni(skb); DHD_PERIM_LOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); #else ulong flags; DHD_PERIM_UNLOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); netif_rx(skb); DHD_PERIM_LOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); local_irq_save(flags); RAISE_RX_SOFTIRQ(); local_irq_restore(flags); #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) */ } } #ifdef DHD_MCAST_REGEN /* * Description: This function is called to do the reverse translation * * Input eh - pointer to the ethernet header */ int32 dhd_mcast_reverse_translation(struct ether_header *eh) { uint8 *iph; uint32 dest_ip; iph = (uint8 *)eh + ETHER_HDR_LEN; dest_ip = ntoh32(*((uint32 *)(iph + IPV4_DEST_IP_OFFSET))); /* Only IP packets are handled */ if (eh->ether_type != hton16(ETHER_TYPE_IP)) return BCME_ERROR; /* Non-IPv4 multicast packets are not handled */ if (IP_VER(iph) != IP_VER_4) return BCME_ERROR; /* * The packet has a multicast IP and unicast MAC. That means * we have to do the reverse translation */ if (IPV4_ISMULTI(dest_ip) && !ETHER_ISMULTI(&eh->ether_dhost)) { ETHER_FILL_MCAST_ADDR_FROM_IP(eh->ether_dhost, dest_ip); return BCME_OK; } return BCME_ERROR; } #endif /* MCAST_REGEN */ /** Called when a frame is received by the dongle on interface 'ifidx' */ void dhd_rx_frame(dhd_pub_t *dhdp, int ifidx, void *pktbuf, int numpkt, uint8 chan) { dhd_info_t *dhd = (dhd_info_t *)dhdp->info; struct sk_buff *skb; uchar *eth; uint len; void *data, *pnext = NULL; int i; dhd_if_t *ifp; wl_event_msg_t event; int tout_rx = 0; int tout_ctrl = 0; void *skbhead = NULL; void *skbprev = NULL; uint16 protocol; #if defined(DHD_RX_DUMP) || defined(DHD_8021X_DUMP) char *dump_data; #endif /* DHD_RX_DUMP || DHD_8021X_DUMP */ #ifdef DHD_MCAST_REGEN uint8 interface_role; if_flow_lkup_t *if_flow_lkup; unsigned long flags; #endif DHD_TRACE(("%s: Enter\n", __FUNCTION__)); for (i = 0; pktbuf && i < numpkt; i++, pktbuf = pnext) { struct ether_header *eh; pnext = PKTNEXT(dhdp->osh, pktbuf); PKTSETNEXT(dhdp->osh, pktbuf, NULL); ifp = dhd->iflist[ifidx]; if (ifp == NULL) { DHD_ERROR(("%s: ifp is NULL. drop packet\n", __FUNCTION__)); PKTCFREE(dhdp->osh, pktbuf, FALSE); continue; } eh = (struct ether_header *)PKTDATA(dhdp->osh, pktbuf); /* Dropping only data packets before registering net device to avoid kernel panic */ #ifndef PROP_TXSTATUS_VSDB if ((!ifp->net || ifp->net->reg_state != NETREG_REGISTERED) && (ntoh16(eh->ether_type) != ETHER_TYPE_BRCM)) { #else if ((!ifp->net || ifp->net->reg_state != NETREG_REGISTERED || !dhd->pub.up) && (ntoh16(eh->ether_type) != ETHER_TYPE_BRCM)) { #endif /* PROP_TXSTATUS_VSDB */ DHD_ERROR(("%s: net device is NOT registered yet. drop packet\n", __FUNCTION__)); PKTCFREE(dhdp->osh, pktbuf, FALSE); continue; } #ifdef PROP_TXSTATUS if (dhd_wlfc_is_header_only_pkt(dhdp, pktbuf)) { /* WLFC may send header only packet when there is an urgent message but no packet to piggy-back on */ PKTCFREE(dhdp->osh, pktbuf, FALSE); continue; } #endif #ifdef DHD_L2_FILTER /* If block_ping is enabled drop the ping packet */ if (ifp->block_ping) { if (bcm_l2_filter_block_ping(dhdp->osh, pktbuf) == BCME_OK) { PKTCFREE(dhdp->osh, pktbuf, FALSE); continue; } } if (ifp->grat_arp && DHD_IF_ROLE_STA(dhdp, ifidx)) { if (bcm_l2_filter_gratuitous_arp(dhdp->osh, pktbuf) == BCME_OK) { PKTCFREE(dhdp->osh, pktbuf, FALSE); continue; } } if (ifp->parp_enable && DHD_IF_ROLE_AP(dhdp, ifidx)) { int ret = dhd_l2_filter_pkt_handle(dhdp, ifidx, pktbuf, FALSE); /* Drop the packets if l2 filter has processed it already * otherwise continue with the normal path */ if (ret == BCME_OK) { PKTCFREE(dhdp->osh, pktbuf, TRUE); continue; } } #endif /* DHD_L2_FILTER */ #ifdef DHD_MCAST_REGEN DHD_FLOWID_LOCK(dhdp->flowid_lock, flags); if_flow_lkup = (if_flow_lkup_t *)dhdp->if_flow_lkup; ASSERT(if_flow_lkup); interface_role = if_flow_lkup[ifidx].role; DHD_FLOWID_UNLOCK(dhdp->flowid_lock, flags); if (ifp->mcast_regen_bss_enable && (interface_role != WLC_E_IF_ROLE_WDS) && !DHD_IF_ROLE_AP(dhdp, ifidx) && ETHER_ISUCAST(eh->ether_dhost)) { if (dhd_mcast_reverse_translation(eh) == BCME_OK) { #ifdef DHD_PSTA /* Change bsscfg to primary bsscfg for unicast-multicast packets */ if ((dhd_get_psta_mode(dhdp) == DHD_MODE_PSTA) || (dhd_get_psta_mode(dhdp) == DHD_MODE_PSR)) { if (ifidx != 0) { /* Let the primary in PSTA interface handle this * frame after unicast to Multicast conversion */ ifp = dhd_get_ifp(dhdp, 0); ASSERT(ifp); } } } #endif /* PSTA */ } #endif /* MCAST_REGEN */ #ifdef DHD_WMF /* WMF processing for multicast packets */ if (ifp->wmf.wmf_enable && (ETHER_ISMULTI(eh->ether_dhost))) { dhd_sta_t *sta; int ret; sta = dhd_find_sta(dhdp, ifidx, (void *)eh->ether_shost); ret = dhd_wmf_packets_handle(dhdp, pktbuf, sta, ifidx, 1); switch (ret) { case WMF_TAKEN: /* The packet is taken by WMF. Continue to next iteration */ continue; case WMF_DROP: /* Packet DROP decision by WMF. Toss it */ DHD_ERROR(("%s: WMF decides to drop packet\n", __FUNCTION__)); PKTCFREE(dhdp->osh, pktbuf, FALSE); continue; default: /* Continue the transmit path */ break; } } #endif /* DHD_WMF */ #ifdef DHDTCPACK_SUPPRESS dhd_tcpdata_info_get(dhdp, pktbuf); #endif skb = PKTTONATIVE(dhdp->osh, pktbuf); ASSERT(ifp); skb->dev = ifp->net; #ifdef DHD_WET /* wet related packet proto manipulation should be done in DHD * since dongle doesn't have complete payload */ if (WET_ENABLED(&dhd->pub) && (dhd_wet_recv_proc(dhd->pub.wet_info, pktbuf) < 0)) { DHD_INFO(("%s:%s: wet recv proc failed\n", __FUNCTION__, dhd_ifname(dhdp, ifidx))); } #endif /* DHD_WET */ #ifdef DHD_PSTA if (PSR_ENABLED(dhdp) && (dhd_psta_proc(dhdp, ifidx, &pktbuf, FALSE) < 0)) { DHD_ERROR(("%s:%s: psta recv proc failed\n", __FUNCTION__, dhd_ifname(dhdp, ifidx))); } #endif /* DHD_PSTA */ #ifdef PCIE_FULL_DONGLE if ((DHD_IF_ROLE_AP(dhdp, ifidx) || DHD_IF_ROLE_P2PGO(dhdp, ifidx)) && (!ifp->ap_isolate)) { eh = (struct ether_header *)PKTDATA(dhdp->osh, pktbuf); if (ETHER_ISUCAST(eh->ether_dhost)) { if (dhd_find_sta(dhdp, ifidx, (void *)eh->ether_dhost)) { dhd_sendpkt(dhdp, ifidx, pktbuf); continue; } } else { void *npktbuf = PKTDUP(dhdp->osh, pktbuf); if (npktbuf) dhd_sendpkt(dhdp, ifidx, npktbuf); } } #endif /* PCIE_FULL_DONGLE */ /* Get the protocol, maintain skb around eth_type_trans() * The main reason for this hack is for the limitation of * Linux 2.4 where 'eth_type_trans' uses the 'net->hard_header_len' * to perform skb_pull inside vs ETH_HLEN. Since to avoid * coping of the packet coming from the network stack to add * BDC, Hardware header etc, during network interface registration * we set the 'net->hard_header_len' to ETH_HLEN + extra space required * for BDC, Hardware header etc. and not just the ETH_HLEN */ eth = skb->data; len = skb->len; #if defined(DHD_RX_DUMP) || defined(DHD_8021X_DUMP) || defined(DHD_DHCP_DUMP) dump_data = skb->data; #endif /* DHD_RX_DUMP || DHD_8021X_DUMP || DHD_DHCP_DUMP */ protocol = (skb->data[12] << 8) | skb->data[13]; if (protocol == ETHER_TYPE_802_1X) { DBG_EVENT_LOG(dhdp, WIFI_EVENT_DRIVER_EAPOL_FRAME_RECEIVED); #ifdef DHD_8021X_DUMP DHD_ERROR(("ETHER_TYPE_802_1X [RX]: " "ver %d, type %d, replay %d\n", dump_data[14], dump_data[15], dump_data[30])); #endif /* DHD_8021X_DUMP */ } #ifdef DHD_DHCP_DUMP if (protocol != ETHER_TYPE_BRCM && protocol == ETHER_TYPE_IP) { dhd_dhcp_dump(dump_data, FALSE); dhd_tcp_dump(dhd_ifname(dhdp, ifidx), dump_data, FALSE); } #endif /* DHD_DHCP_DUMP */ #if defined(DHD_RX_DUMP) DHD_ERROR(("RX DUMP - %s\n", _get_packet_type_str(protocol))); if (protocol != ETHER_TYPE_BRCM) { if (dump_data[0] == 0xFF) { DHD_ERROR(("%s: BROADCAST\n", __FUNCTION__)); if ((dump_data[12] == 8) && (dump_data[13] == 6)) { DHD_ERROR(("%s: ARP %d\n", __FUNCTION__, dump_data[0x15])); } } else if (dump_data[0] & 1) { DHD_ERROR(("%s: MULTICAST: " MACDBG "\n", __FUNCTION__, MAC2STRDBG(dump_data))); } #ifdef DHD_RX_FULL_DUMP { int k; for (k = 0; k < skb->len; k++) { DHD_ERROR(("%02X ", dump_data[k])); if ((k & 15) == 15) DHD_ERROR(("\n")); } DHD_ERROR(("\n")); } #endif /* DHD_RX_FULL_DUMP */ } #endif /* DHD_RX_DUMP */ skb->protocol = eth_type_trans(skb, skb->dev); if (skb->pkt_type == PACKET_MULTICAST) { dhd->pub.rx_multicast++; ifp->stats.multicast++; } skb->data = eth; skb->len = len; #ifdef WLMEDIA_HTSF dhd_htsf_addrxts(dhdp, pktbuf); #endif /* Strip header, count, deliver upward */ skb_pull(skb, ETH_HLEN); /* Process special event packets and then discard them */ memset(&event, 0, sizeof(event)); if (ntoh16(skb->protocol) == ETHER_TYPE_BRCM) { dhd_wl_host_event(dhd, &ifidx, #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22) skb_mac_header(skb), #else skb->mac.raw, #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22) */ len, &event, &data); wl_event_to_host_order(&event); if (!tout_ctrl) tout_ctrl = DHD_PACKET_TIMEOUT_MS; #if defined(PNO_SUPPORT) if (event.event_type == WLC_E_PFN_NET_FOUND) { /* enforce custom wake lock to garantee that Kernel not suspended */ tout_ctrl = CUSTOM_PNO_EVENT_LOCK_xTIME * DHD_PACKET_TIMEOUT_MS; } #endif /* PNO_SUPPORT */ if (DHD_DBG_BCNRX_ON()) { if (event.event_type == WLC_E_BCNRX_MSG) { prhex("Received beacon packet:", data, event.datalen); } } if (numpkt != 1) { DHD_ERROR(("%s: Got BRCM event packet in a chained packet.\n", __FUNCTION__)); } #ifdef DHD_DONOT_FORWARD_BCMEVENT_AS_NETWORK_PKT #ifdef DHD_USE_STATIC_CTRLBUF PKTFREE_STATIC(dhdp->osh, pktbuf, FALSE); #else PKTFREE(dhdp->osh, pktbuf, FALSE); #endif /* DHD_USE_STATIC_CTRLBUF */ continue; #else /* * For the event packets, there is a possibility * of ifidx getting modifed.Thus update the ifp * once again. */ ASSERT(ifidx < DHD_MAX_IFS && dhd->iflist[ifidx]); ifp = dhd->iflist[ifidx]; #ifndef PROP_TXSTATUS_VSDB if (!(ifp && ifp->net && (ifp->net->reg_state == NETREG_REGISTERED))) { #else if (!(ifp && ifp->net && (ifp->net->reg_state == NETREG_REGISTERED) && dhd->pub.up)) { #endif /* PROP_TXSTATUS_VSDB */ DHD_ERROR(("%s: net device is NOT registered. drop event packet\n", __FUNCTION__)); PKTFREE(dhdp->osh, pktbuf, FALSE); continue; } #endif /* DHD_DONOT_FORWARD_BCMEVENT_AS_NETWORK_PKT */ } else { tout_rx = DHD_PACKET_TIMEOUT_MS; #ifdef PROP_TXSTATUS dhd_wlfc_save_rxpath_ac_time(dhdp, (uint8)PKTPRIO(skb)); #endif /* PROP_TXSTATUS */ } #if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 11, 0)) /* It is useless for network stack any more, and we do not use it */ if (ifp->net) ifp->net->last_rx = jiffies; #endif if (ntoh16(skb->protocol) != ETHER_TYPE_BRCM) { dhdp->dstats.rx_bytes += skb->len; dhdp->rx_packets++; /* Local count */ ifp->stats.rx_bytes += skb->len; ifp->stats.rx_packets++; } if (in_interrupt()) { bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__); DHD_PERIM_UNLOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); #if defined(DHD_LB) && defined(DHD_LB_RXP) netif_receive_skb(skb); #else netif_rx(skb); #endif /* !defined(DHD_LB) && !defined(DHD_LB_RXP) */ DHD_PERIM_LOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); } else { if (dhd->rxthread_enabled) { if (!skbhead) skbhead = skb; else PKTSETNEXT(dhdp->osh, skbprev, skb); skbprev = skb; } else { /* If the receive is not processed inside an ISR, * the softirqd must be woken explicitly to service * the NET_RX_SOFTIRQ. In 2.6 kernels, this is handled * by netif_rx_ni(), but in earlier kernels, we need * to do it manually. */ bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__); #if defined(DHD_LB) && defined(DHD_LB_RXP) DHD_PERIM_UNLOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); netif_receive_skb(skb); DHD_PERIM_LOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); #else #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) DHD_PERIM_UNLOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); netif_rx_ni(skb); DHD_PERIM_LOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); #else ulong flags; DHD_PERIM_UNLOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); netif_rx(skb); DHD_PERIM_LOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT)); local_irq_save(flags); RAISE_RX_SOFTIRQ(); local_irq_restore(flags); #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) */ #endif /* !defined(DHD_LB) && !defined(DHD_LB_RXP) */ } } } if (dhd->rxthread_enabled && skbhead) dhd_sched_rxf(dhdp, skbhead); DHD_OS_WAKE_LOCK_RX_TIMEOUT_ENABLE(dhdp, tout_rx); DHD_OS_WAKE_LOCK_CTRL_TIMEOUT_ENABLE(dhdp, tout_ctrl); } void dhd_event(struct dhd_info *dhd, char *evpkt, int evlen, int ifidx) { /* Linux version has nothing to do */ return; } void dhd_txcomplete(dhd_pub_t *dhdp, void *txp, bool success) { dhd_info_t *dhd = (dhd_info_t *)(dhdp->info); struct ether_header *eh; uint16 type; dhd_prot_hdrpull(dhdp, NULL, txp, NULL, NULL); eh = (struct ether_header *)PKTDATA(dhdp->osh, txp); type = ntoh16(eh->ether_type); if ((type == ETHER_TYPE_802_1X) && (dhd_get_pend_8021x_cnt(dhd) > 0)) atomic_dec(&dhd->pend_8021x_cnt); #ifdef PROP_TXSTATUS if (dhdp->wlfc_state && (dhdp->proptxstatus_mode != WLFC_FCMODE_NONE)) { dhd_if_t *ifp = dhd->iflist[DHD_PKTTAG_IF(PKTTAG(txp))]; uint datalen = PKTLEN(dhd->pub.osh, txp); if (ifp != NULL) { if (success) { dhd->pub.tx_packets++; ifp->stats.tx_packets++; ifp->stats.tx_bytes += datalen; } else { ifp->stats.tx_dropped++; } } } #endif } static struct net_device_stats * dhd_get_stats(struct net_device *net) { dhd_info_t *dhd = DHD_DEV_INFO(net); dhd_if_t *ifp; int ifidx; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); ifidx = dhd_net2idx(dhd, net); if (ifidx == DHD_BAD_IF) { DHD_ERROR(("%s: BAD_IF\n", __FUNCTION__)); memset(&net->stats, 0, sizeof(net->stats)); return &net->stats; } ifp = dhd->iflist[ifidx]; ASSERT(dhd && ifp); if (dhd->pub.up) { /* Use the protocol to get dongle stats */ dhd_prot_dstats(&dhd->pub); } return &ifp->stats; } #ifndef BCMDBUS static int dhd_watchdog_thread(void *data) { tsk_ctl_t *tsk = (tsk_ctl_t *)data; dhd_info_t *dhd = (dhd_info_t *)tsk->parent; /* This thread doesn't need any user-level access, * so get rid of all our resources */ if (dhd_watchdog_prio > 0) { struct sched_param param; param.sched_priority = (dhd_watchdog_prio < MAX_RT_PRIO)? dhd_watchdog_prio:(MAX_RT_PRIO-1); setScheduler(current, SCHED_FIFO, ¶m); } while (1) { if (down_interruptible (&tsk->sema) == 0) { unsigned long flags; unsigned long jiffies_at_start = jiffies; unsigned long time_lapse; DHD_OS_WD_WAKE_LOCK(&dhd->pub); SMP_RD_BARRIER_DEPENDS(); if (tsk->terminated) { break; } if (dhd->pub.dongle_reset == FALSE) { DHD_TIMER(("%s:\n", __FUNCTION__)); dhd_bus_watchdog(&dhd->pub); DHD_GENERAL_LOCK(&dhd->pub, flags); /* Count the tick for reference */ dhd->pub.tickcnt++; #ifdef DHD_L2_FILTER dhd_l2_filter_watchdog(&dhd->pub); #endif /* DHD_L2_FILTER */ time_lapse = jiffies - jiffies_at_start; /* Reschedule the watchdog */ if (dhd->wd_timer_valid) { mod_timer(&dhd->timer, jiffies + msecs_to_jiffies(dhd_watchdog_ms) - min(msecs_to_jiffies(dhd_watchdog_ms), time_lapse)); } DHD_GENERAL_UNLOCK(&dhd->pub, flags); } DHD_OS_WD_WAKE_UNLOCK(&dhd->pub); } else { break; } } complete_and_exit(&tsk->completed, 0); } #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 15, 0)) static void dhd_watchdog(struct timer_list *t) { dhd_info_t *dhd = from_timer(dhd, t, timer); #else static void dhd_watchdog(ulong data) { dhd_info_t *dhd = (dhd_info_t *)data; #endif unsigned long flags; if (dhd->pub.dongle_reset) { return; } if (dhd->pub.busstate == DHD_BUS_SUSPEND) { DHD_ERROR(("%s wd while suspend in progress \n", __FUNCTION__)); return; } if (dhd->thr_wdt_ctl.thr_pid >= 0) { up(&dhd->thr_wdt_ctl.sema); return; } DHD_OS_WD_WAKE_LOCK(&dhd->pub); /* Call the bus module watchdog */ dhd_bus_watchdog(&dhd->pub); DHD_GENERAL_LOCK(&dhd->pub, flags); /* Count the tick for reference */ dhd->pub.tickcnt++; #ifdef DHD_L2_FILTER dhd_l2_filter_watchdog(&dhd->pub); #endif /* DHD_L2_FILTER */ /* Reschedule the watchdog */ if (dhd->wd_timer_valid) mod_timer(&dhd->timer, jiffies + msecs_to_jiffies(dhd_watchdog_ms)); DHD_GENERAL_UNLOCK(&dhd->pub, flags); DHD_OS_WD_WAKE_UNLOCK(&dhd->pub); } #ifdef ENABLE_ADAPTIVE_SCHED static void dhd_sched_policy(int prio) { struct sched_param param; if (cpufreq_quick_get(0) <= CUSTOM_CPUFREQ_THRESH) { param.sched_priority = 0; setScheduler(current, SCHED_NORMAL, ¶m); } else { if (get_scheduler_policy(current) != SCHED_FIFO) { param.sched_priority = (prio < MAX_RT_PRIO)? prio : (MAX_RT_PRIO-1); setScheduler(current, SCHED_FIFO, ¶m); } } } #endif /* ENABLE_ADAPTIVE_SCHED */ #ifdef DEBUG_CPU_FREQ static int dhd_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data) { dhd_info_t *dhd = container_of(nb, struct dhd_info, freq_trans); struct cpufreq_freqs *freq = data; if (dhd) { if (!dhd->new_freq) goto exit; if (val == CPUFREQ_POSTCHANGE) { DHD_ERROR(("cpu freq is changed to %u kHZ on CPU %d\n", freq->new, freq->cpu)); *per_cpu_ptr(dhd->new_freq, freq->cpu) = freq->new; } } exit: return 0; } #endif /* DEBUG_CPU_FREQ */ static int dhd_dpc_thread(void *data) { tsk_ctl_t *tsk = (tsk_ctl_t *)data; dhd_info_t *dhd = (dhd_info_t *)tsk->parent; /* This thread doesn't need any user-level access, * so get rid of all our resources */ if (dhd_dpc_prio > 0) { struct sched_param param; param.sched_priority = (dhd_dpc_prio < MAX_RT_PRIO)?dhd_dpc_prio:(MAX_RT_PRIO-1); setScheduler(current, SCHED_FIFO, ¶m); } #ifdef CUSTOM_DPC_CPUCORE set_cpus_allowed_ptr(current, cpumask_of(CUSTOM_DPC_CPUCORE)); #endif #ifdef CUSTOM_SET_CPUCORE dhd->pub.current_dpc = current; #endif /* CUSTOM_SET_CPUCORE */ /* Run until signal received */ while (1) { if (!binary_sema_down(tsk)) { #ifdef ENABLE_ADAPTIVE_SCHED dhd_sched_policy(dhd_dpc_prio); #endif /* ENABLE_ADAPTIVE_SCHED */ SMP_RD_BARRIER_DEPENDS(); if (tsk->terminated) { break; } /* Call bus dpc unless it indicated down (then clean stop) */ if (dhd->pub.busstate != DHD_BUS_DOWN) { /* * Enable this to prevent CPU loading too high on some platforms */ #if defined(CUSTOMER_IPCAM) int resched_cnt = 0; #endif dhd_os_wd_timer_extend(&dhd->pub, TRUE); while (dhd_bus_dpc(dhd->pub.bus)) { /* process all data */ #if defined(CUSTOMER_IPCAM) resched_cnt++; if (resched_cnt > MAX_RESCHED_CNT) { DHD_INFO(("%s Calling msleep to" "let other processes run. \n", __FUNCTION__)); #ifndef CUSTOMER_IPCAM dhd->pub.dhd_bug_on = true; #endif resched_cnt = 0; OSL_SLEEP(1); } #endif } dhd_os_wd_timer_extend(&dhd->pub, FALSE); DHD_OS_WAKE_UNLOCK(&dhd->pub); } else { if (dhd->pub.up) dhd_bus_stop(dhd->pub.bus, TRUE); DHD_OS_WAKE_UNLOCK(&dhd->pub); } } else { break; } } complete_and_exit(&tsk->completed, 0); } static int dhd_rxf_thread(void *data) { tsk_ctl_t *tsk = (tsk_ctl_t *)data; dhd_info_t *dhd = (dhd_info_t *)tsk->parent; #if defined(WAIT_DEQUEUE) #define RXF_WATCHDOG_TIME 250 /* BARK_TIME(1000) / */ ulong watchdogTime = OSL_SYSUPTIME(); /* msec */ #endif dhd_pub_t *pub = &dhd->pub; /* This thread doesn't need any user-level access, * so get rid of all our resources */ if (dhd_rxf_prio > 0) { struct sched_param param; param.sched_priority = (dhd_rxf_prio < MAX_RT_PRIO)?dhd_rxf_prio:(MAX_RT_PRIO-1); setScheduler(current, SCHED_FIFO, ¶m); } DAEMONIZE("dhd_rxf"); /* DHD_OS_WAKE_LOCK is called in dhd_sched_dpc[dhd_linux.c] down below */ /* signal: thread has started */ complete(&tsk->completed); #ifdef CUSTOM_SET_CPUCORE dhd->pub.current_rxf = current; #endif /* CUSTOM_SET_CPUCORE */ /* Run until signal received */ while (1) { if (down_interruptible(&tsk->sema) == 0) { void *skb; #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) ulong flags; #endif #ifdef ENABLE_ADAPTIVE_SCHED dhd_sched_policy(dhd_rxf_prio); #endif /* ENABLE_ADAPTIVE_SCHED */ SMP_RD_BARRIER_DEPENDS(); if (tsk->terminated) { break; } skb = dhd_rxf_dequeue(pub); if (skb == NULL) { continue; } while (skb) { void *skbnext = PKTNEXT(pub->osh, skb); PKTSETNEXT(pub->osh, skb, NULL); bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) netif_rx_ni(skb); #else netif_rx(skb); local_irq_save(flags); RAISE_RX_SOFTIRQ(); local_irq_restore(flags); #endif skb = skbnext; } #if defined(WAIT_DEQUEUE) if (OSL_SYSUPTIME() - watchdogTime > RXF_WATCHDOG_TIME) { OSL_SLEEP(1); watchdogTime = OSL_SYSUPTIME(); } #endif DHD_OS_WAKE_UNLOCK(pub); } else { break; } } complete_and_exit(&tsk->completed, 0); } #ifdef BCMPCIE void dhd_dpc_enable(dhd_pub_t *dhdp) { dhd_info_t *dhd; if (!dhdp || !dhdp->info) return; dhd = dhdp->info; #ifdef DHD_LB #ifdef DHD_LB_RXP __skb_queue_head_init(&dhd->rx_pend_queue); #endif /* DHD_LB_RXP */ #ifdef DHD_LB_TXC if (atomic_read(&dhd->tx_compl_tasklet.count) == 1) tasklet_enable(&dhd->tx_compl_tasklet); #endif /* DHD_LB_TXC */ #ifdef DHD_LB_RXC if (atomic_read(&dhd->rx_compl_tasklet.count) == 1) tasklet_enable(&dhd->rx_compl_tasklet); #endif /* DHD_LB_RXC */ #endif /* DHD_LB */ if (atomic_read(&dhd->tasklet.count) == 1) tasklet_enable(&dhd->tasklet); } #endif /* BCMPCIE */ #ifdef BCMPCIE void dhd_dpc_kill(dhd_pub_t *dhdp) { dhd_info_t *dhd; if (!dhdp) { return; } dhd = dhdp->info; if (!dhd) { return; } if (dhd->thr_dpc_ctl.thr_pid < 0) { tasklet_disable(&dhd->tasklet); tasklet_kill(&dhd->tasklet); DHD_ERROR(("%s: tasklet disabled\n", __FUNCTION__)); } #if defined(DHD_LB) #ifdef DHD_LB_RXP __skb_queue_purge(&dhd->rx_pend_queue); #endif /* DHD_LB_RXP */ /* Kill the Load Balancing Tasklets */ #if defined(DHD_LB_TXC) tasklet_disable(&dhd->tx_compl_tasklet); tasklet_kill(&dhd->tx_compl_tasklet); #endif /* DHD_LB_TXC */ #if defined(DHD_LB_RXC) tasklet_disable(&dhd->rx_compl_tasklet); tasklet_kill(&dhd->rx_compl_tasklet); #endif /* DHD_LB_RXC */ #endif /* DHD_LB */ } #endif /* BCMPCIE */ static void dhd_dpc(ulong data) { dhd_info_t *dhd; dhd = (dhd_info_t *)data; DHD_OS_WAKE_LOCK(&dhd->pub); /* this (tasklet) can be scheduled in dhd_sched_dpc[dhd_linux.c] * down below , wake lock is set, * the tasklet is initialized in dhd_attach() */ /* Call bus dpc unless it indicated down (then clean stop) */ if (dhd->pub.busstate != DHD_BUS_DOWN) { if (dhd_bus_dpc(dhd->pub.bus)) { DHD_LB_STATS_INCR(dhd->dhd_dpc_cnt); tasklet_schedule(&dhd->tasklet); } } else { dhd_bus_stop(dhd->pub.bus, TRUE); } DHD_OS_WAKE_UNLOCK(&dhd->pub); } void dhd_sched_dpc(dhd_pub_t *dhdp) { dhd_info_t *dhd = (dhd_info_t *)dhdp->info; if (dhd->thr_dpc_ctl.thr_pid >= 0) { DHD_OS_WAKE_LOCK(dhdp); /* If the semaphore does not get up, * wake unlock should be done here */ if (!binary_sema_up(&dhd->thr_dpc_ctl)) { DHD_OS_WAKE_UNLOCK(dhdp); } return; } else { if (!test_bit(TASKLET_STATE_SCHED, &dhd->tasklet.state)) { DHD_OS_WAKE_LOCK(dhdp); } tasklet_schedule(&dhd->tasklet); DHD_OS_WAKE_UNLOCK(dhdp); } } #endif /* BCMDBUS */ static void dhd_sched_rxf(dhd_pub_t *dhdp, void *skb) { dhd_info_t *dhd = (dhd_info_t *)dhdp->info; #ifdef RXF_DEQUEUE_ON_BUSY int ret = BCME_OK; int retry = 2; #endif /* RXF_DEQUEUE_ON_BUSY */ DHD_OS_WAKE_LOCK(dhdp); DHD_TRACE(("dhd_sched_rxf: Enter\n")); #ifdef RXF_DEQUEUE_ON_BUSY do { ret = dhd_rxf_enqueue(dhdp, skb); if (ret == BCME_OK || ret == BCME_ERROR) break; else OSL_SLEEP(50); /* waiting for dequeueing */ } while (retry-- > 0); if (retry <= 0 && ret == BCME_BUSY) { void *skbp = skb; while (skbp) { void *skbnext = PKTNEXT(dhdp->osh, skbp); PKTSETNEXT(dhdp->osh, skbp, NULL); bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__); netif_rx_ni(skbp); skbp = skbnext; } DHD_ERROR(("send skb to kernel backlog without rxf_thread\n")); } else { if (dhd->thr_rxf_ctl.thr_pid >= 0) { up(&dhd->thr_rxf_ctl.sema); } } #else /* RXF_DEQUEUE_ON_BUSY */ do { if (dhd_rxf_enqueue(dhdp, skb) == BCME_OK) break; } while (1); if (dhd->thr_rxf_ctl.thr_pid >= 0) { up(&dhd->thr_rxf_ctl.sema); } return; #endif /* RXF_DEQUEUE_ON_BUSY */ } #if defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) #if defined(BCMDBUS) static int fw_download_thread_func(void *data) { dhd_info_t *dhd = (dhd_info_t *)data; int ret; while (1) { /* Wait for start trigger */ if (down_interruptible(&dhd->fw_download_lock) != 0) return -ERESTARTSYS; if (kthread_should_stop()) break; DHD_TRACE(("%s: initiating firmware check and download\n", __FUNCTION__)); if (dbus_download_firmware(dhd->pub.dbus) == DBUS_OK) { if ((ret = dbus_up(dhd->pub.dbus)) == 0) { #ifdef PROP_TXSTATUS /* Need to deinitialise WLFC to allow re-initialisation later. */ dhd_wlfc_deinit(&dhd->pub); #endif /* PROP_TXSTATUS */ /* Resynchronise with the dongle. This also re-initialises WLFC. */ if ((ret = dhd_sync_with_dongle(&dhd->pub)) < 0) { DHD_ERROR(("%s: failed with code %d\n", __FUNCTION__, ret)); } } } } return 0; } #endif /* BCMDBUS */ #endif /* defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) */ #ifdef TOE /* Retrieve current toe component enables, which are kept as a bitmap in toe_ol iovar */ static int dhd_toe_get(dhd_info_t *dhd, int ifidx, uint32 *toe_ol) { char buf[32]; int ret; ret = dhd_iovar(&dhd->pub, ifidx, "toe_ol", NULL, 0, (char *)&buf, sizeof(buf), FALSE); if (ret < 0) { if (ret == -EIO) { DHD_ERROR(("%s: toe not supported by device\n", dhd_ifname(&dhd->pub, ifidx))); return -EOPNOTSUPP; } DHD_INFO(("%s: could not get toe_ol: ret=%d\n", dhd_ifname(&dhd->pub, ifidx), ret)); return ret; } memcpy(toe_ol, buf, sizeof(uint32)); return 0; } /* Set current toe component enables in toe_ol iovar, and set toe global enable iovar */ static int dhd_toe_set(dhd_info_t *dhd, int ifidx, uint32 toe_ol) { int toe, ret; /* Set toe_ol as requested */ ret = dhd_iovar(&dhd->pub, ifidx, "toe_ol", (char *)&toe_ol, sizeof(toe_ol), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: could not set toe_ol: ret=%d\n", dhd_ifname(&dhd->pub, ifidx), ret)); return ret; } /* Enable toe globally only if any components are enabled. */ toe = (toe_ol != 0); ret = dhd_iovar(&dhd->pub, ifidx, "toe", (char *)&toe, sizeof(toe), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: could not set toe: ret=%d\n", dhd_ifname(&dhd->pub, ifidx), ret)); return ret; } return 0; } #endif /* TOE */ #if defined(WL_CFG80211) && defined(NUM_SCB_MAX_PROBE) void dhd_set_scb_probe(dhd_pub_t *dhd) { wl_scb_probe_t scb_probe; char iovbuf[WL_EVENTING_MASK_LEN + sizeof(wl_scb_probe_t)]; int ret; if (dhd->op_mode & DHD_FLAG_HOSTAP_MODE) { return; } ret = dhd_iovar(dhd, 0, "scb_probe", NULL, 0, iovbuf, sizeof(iovbuf), FALSE); if (ret < 0) { DHD_ERROR(("%s: GET max_scb_probe failed\n", __FUNCTION__)); } memcpy(&scb_probe, iovbuf, sizeof(wl_scb_probe_t)); scb_probe.scb_max_probe = NUM_SCB_MAX_PROBE; ret = dhd_iovar(dhd, 0, "scb_probe", (char *)&scb_probe, sizeof(wl_scb_probe_t), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: max_scb_probe setting failed\n", __FUNCTION__)); return; } } #endif /* WL_CFG80211 && NUM_SCB_MAX_PROBE */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24) static void dhd_ethtool_get_drvinfo(struct net_device *net, struct ethtool_drvinfo *info) { dhd_info_t *dhd = DHD_DEV_INFO(net); snprintf(info->driver, sizeof(info->driver), "wl"); snprintf(info->version, sizeof(info->version), "%lu", dhd->pub.drv_version); } struct ethtool_ops dhd_ethtool_ops = { .get_drvinfo = dhd_ethtool_get_drvinfo }; #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24) */ #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 4, 2) static int dhd_ethtool(dhd_info_t *dhd, void *uaddr) { struct ethtool_drvinfo info; char drvname[sizeof(info.driver)]; uint32 cmd; #ifdef TOE struct ethtool_value edata; uint32 toe_cmpnt, csum_dir; int ret; #endif DHD_TRACE(("%s: Enter\n", __FUNCTION__)); /* all ethtool calls start with a cmd word */ if (copy_from_user(&cmd, uaddr, sizeof (uint32))) return -EFAULT; switch (cmd) { case ETHTOOL_GDRVINFO: /* Copy out any request driver name */ if (copy_from_user(&info, uaddr, sizeof(info))) return -EFAULT; strncpy(drvname, info.driver, sizeof(info.driver)); drvname[sizeof(info.driver)-1] = '\0'; /* clear struct for return */ memset(&info, 0, sizeof(info)); info.cmd = cmd; /* if dhd requested, identify ourselves */ if (strcmp(drvname, "?dhd") == 0) { snprintf(info.driver, sizeof(info.driver), "dhd"); strncpy(info.version, EPI_VERSION_STR, sizeof(info.version) - 1); info.version[sizeof(info.version) - 1] = '\0'; } /* otherwise, require dongle to be up */ else if (!dhd->pub.up) { DHD_ERROR(("%s: dongle is not up\n", __FUNCTION__)); return -ENODEV; } /* finally, report dongle driver type */ else if (dhd->pub.iswl) snprintf(info.driver, sizeof(info.driver), "wl"); else snprintf(info.driver, sizeof(info.driver), "xx"); snprintf(info.version, sizeof(info.version), "%lu", dhd->pub.drv_version); if (copy_to_user(uaddr, &info, sizeof(info))) return -EFAULT; DHD_CTL(("%s: given %*s, returning %s\n", __FUNCTION__, (int)sizeof(drvname), drvname, info.driver)); break; #ifdef TOE /* Get toe offload components from dongle */ case ETHTOOL_GRXCSUM: case ETHTOOL_GTXCSUM: if ((ret = dhd_toe_get(dhd, 0, &toe_cmpnt)) < 0) return ret; csum_dir = (cmd == ETHTOOL_GTXCSUM) ? TOE_TX_CSUM_OL : TOE_RX_CSUM_OL; edata.cmd = cmd; edata.data = (toe_cmpnt & csum_dir) ? 1 : 0; if (copy_to_user(uaddr, &edata, sizeof(edata))) return -EFAULT; break; /* Set toe offload components in dongle */ case ETHTOOL_SRXCSUM: case ETHTOOL_STXCSUM: if (copy_from_user(&edata, uaddr, sizeof(edata))) return -EFAULT; /* Read the current settings, update and write back */ if ((ret = dhd_toe_get(dhd, 0, &toe_cmpnt)) < 0) return ret; csum_dir = (cmd == ETHTOOL_STXCSUM) ? TOE_TX_CSUM_OL : TOE_RX_CSUM_OL; if (edata.data != 0) toe_cmpnt |= csum_dir; else toe_cmpnt &= ~csum_dir; if ((ret = dhd_toe_set(dhd, 0, toe_cmpnt)) < 0) return ret; /* If setting TX checksum mode, tell Linux the new mode */ if (cmd == ETHTOOL_STXCSUM) { if (edata.data) dhd->iflist[0]->net->features |= NETIF_F_IP_CSUM; else dhd->iflist[0]->net->features &= ~NETIF_F_IP_CSUM; } break; #endif /* TOE */ default: return -EOPNOTSUPP; } return 0; } #endif /* LINUX_VERSION_CODE > KERNEL_VERSION(2, 4, 2) */ static bool dhd_check_hang(struct net_device *net, dhd_pub_t *dhdp, int error) { dhd_info_t *dhd; #ifdef DHD_FW_COREDUMP int dump_len = 0; #endif /* DHD_FW_COREDUMP */ if (!dhdp) { DHD_ERROR(("%s: dhdp is NULL\n", __FUNCTION__)); return FALSE; } if (!dhdp->up) return FALSE; dhd = (dhd_info_t *)dhdp->info; #if (!defined(BCMDBUS) && !defined(BCMPCIE)) if (dhd->thr_dpc_ctl.thr_pid < 0) { DHD_ERROR(("%s : skipped due to negative pid - unloading?\n", __FUNCTION__)); return FALSE; } #endif /* BCMDBUS */ #ifdef DHD_FW_COREDUMP if (error == -ETIMEDOUT && dhdp->busstate != DHD_BUS_DOWN) { if (dhd_os_socram_dump(net, &dump_len) == BCME_OK) { dhd_dbg_send_urgent_evt(dhdp, NULL, 0); } } #endif /* DHD_FW_COREDUMP */ if ((error == -ETIMEDOUT) || (error == -EREMOTEIO) || ((dhdp->busstate == DHD_BUS_DOWN) && (!dhdp->dongle_reset))) { #ifdef BCMPCIE DHD_ERROR(("%s: Event HANG send up due to re=%d te=%d d3acke=%d e=%d s=%d\n", __FUNCTION__, dhdp->rxcnt_timeout, dhdp->txcnt_timeout, dhdp->d3ackcnt_timeout, error, dhdp->busstate)); #else DHD_ERROR(("%s: Event HANG send up due to re=%d te=%d e=%d s=%d\n", __FUNCTION__, dhdp->rxcnt_timeout, dhdp->txcnt_timeout, error, dhdp->busstate)); #endif /* BCMPCIE */ net_os_send_hang_message(net); return TRUE; } return FALSE; } int dhd_ioctl_process(dhd_pub_t *pub, int ifidx, dhd_ioctl_t *ioc, void *data_buf) { int bcmerror = BCME_OK; int buflen = 0; struct net_device *net; net = dhd_idx2net(pub, ifidx); if (!net) { bcmerror = BCME_BADARG; goto done; } if (data_buf) buflen = MIN(ioc->len, DHD_IOCTL_MAXLEN); /* check for local dhd ioctl and handle it */ if (ioc->driver == DHD_IOCTL_MAGIC) { bcmerror = dhd_ioctl((void *)pub, ioc, data_buf, buflen); if (bcmerror) pub->bcmerror = bcmerror; goto done; } #ifndef BCMDBUS /* send to dongle (must be up, and wl). */ if (pub->busstate == DHD_BUS_DOWN || pub->busstate == DHD_BUS_LOAD) { if (allow_delay_fwdl) { int ret = dhd_bus_start(pub); if (ret != 0) { DHD_ERROR(("%s: failed with code %d\n", __FUNCTION__, ret)); bcmerror = BCME_DONGLE_DOWN; goto done; } } else { bcmerror = BCME_DONGLE_DOWN; goto done; } } if (!pub->iswl) { bcmerror = BCME_DONGLE_DOWN; goto done; } #endif /* BCMDBUS */ /* * Flush the TX queue if required for proper message serialization: * Intercept WLC_SET_KEY IOCTL - serialize M4 send and set key IOCTL to * prevent M4 encryption and * intercept WLC_DISASSOC IOCTL - serialize WPS-DONE and WLC_DISASSOC IOCTL to * prevent disassoc frame being sent before WPS-DONE frame. */ if (ioc->cmd == WLC_SET_KEY || (ioc->cmd == WLC_SET_VAR && data_buf != NULL && strncmp("wsec_key", data_buf, 9) == 0) || (ioc->cmd == WLC_SET_VAR && data_buf != NULL && strncmp("bsscfg:wsec_key", data_buf, 15) == 0) || ioc->cmd == WLC_DISASSOC) dhd_wait_pend8021x(net); #ifdef WLMEDIA_HTSF if (data_buf) { /* short cut wl ioctl calls here */ if (strcmp("htsf", data_buf) == 0) { dhd_ioctl_htsf_get(dhd, 0); return BCME_OK; } if (strcmp("htsflate", data_buf) == 0) { if (ioc->set) { memset(ts, 0, sizeof(tstamp_t)*TSMAX); memset(&maxdelayts, 0, sizeof(tstamp_t)); maxdelay = 0; tspktcnt = 0; maxdelaypktno = 0; memset(&vi_d1.bin, 0, sizeof(uint32)*NUMBIN); memset(&vi_d2.bin, 0, sizeof(uint32)*NUMBIN); memset(&vi_d3.bin, 0, sizeof(uint32)*NUMBIN); memset(&vi_d4.bin, 0, sizeof(uint32)*NUMBIN); } else { dhd_dump_latency(); } return BCME_OK; } if (strcmp("htsfclear", data_buf) == 0) { memset(&vi_d1.bin, 0, sizeof(uint32)*NUMBIN); memset(&vi_d2.bin, 0, sizeof(uint32)*NUMBIN); memset(&vi_d3.bin, 0, sizeof(uint32)*NUMBIN); memset(&vi_d4.bin, 0, sizeof(uint32)*NUMBIN); htsf_seqnum = 0; return BCME_OK; } if (strcmp("htsfhis", data_buf) == 0) { dhd_dump_htsfhisto(&vi_d1, "H to D"); dhd_dump_htsfhisto(&vi_d2, "D to D"); dhd_dump_htsfhisto(&vi_d3, "D to H"); dhd_dump_htsfhisto(&vi_d4, "H to H"); return BCME_OK; } if (strcmp("tsport", data_buf) == 0) { if (ioc->set) { memcpy(&tsport, data_buf + 7, 4); } else { DHD_ERROR(("current timestamp port: %d \n", tsport)); } return BCME_OK; } } #endif /* WLMEDIA_HTSF */ if ((ioc->cmd == WLC_SET_VAR || ioc->cmd == WLC_GET_VAR) && data_buf != NULL && strncmp("rpc_", data_buf, 4) == 0) { #ifdef BCM_FD_AGGR bcmerror = dhd_fdaggr_ioctl(pub, ifidx, (wl_ioctl_t *)ioc, data_buf, buflen); #else bcmerror = BCME_UNSUPPORTED; #endif goto done; } bcmerror = dhd_wl_ioctl(pub, ifidx, (wl_ioctl_t *)ioc, data_buf, buflen); /* Intercept monitor ioctl here, add/del monitor if */ if (bcmerror == BCME_OK && ioc->cmd == WLC_SET_MONITOR) { dhd_set_monitor(pub, ifidx, *(int32*)data_buf); } done: dhd_check_hang(net, pub, bcmerror); return bcmerror; } static int dhd_ioctl_entry(struct net_device *net, struct ifreq *ifr, int cmd) { dhd_info_t *dhd = DHD_DEV_INFO(net); dhd_ioctl_t ioc; int ifidx; int ret; void *local_buf = NULL; u16 buflen = 0; DHD_OS_WAKE_LOCK(&dhd->pub); DHD_PERIM_LOCK(&dhd->pub); /* Interface up check for built-in type */ if (!dhd_download_fw_on_driverload && dhd->pub.up == FALSE) { DHD_TRACE(("%s: Interface is down \n", __FUNCTION__)); ret = BCME_NOTUP; goto exit; } /* send to dongle only if we are not waiting for reload already */ if (dhd->pub.hang_was_sent) { DHD_TRACE(("%s: HANG was sent up earlier\n", __FUNCTION__)); DHD_OS_WAKE_LOCK_CTRL_TIMEOUT_ENABLE(&dhd->pub, DHD_EVENT_TIMEOUT_MS); ret = BCME_DONGLE_DOWN; goto exit; } ifidx = dhd_net2idx(dhd, net); DHD_TRACE(("%s: ifidx %d, cmd 0x%04x\n", __FUNCTION__, ifidx, cmd)); if (ifidx == DHD_BAD_IF) { DHD_ERROR(("%s: BAD IF\n", __FUNCTION__)); ret = -1; goto exit; } #if defined(WL_WIRELESS_EXT) /* linux wireless extensions */ if ((cmd >= SIOCIWFIRST) && (cmd <= SIOCIWLAST)) { /* may recurse, do NOT lock */ ret = wl_iw_ioctl(net, ifr, cmd); goto exit; } #endif /* defined(WL_WIRELESS_EXT) */ #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 4, 2) if (cmd == SIOCETHTOOL) { ret = dhd_ethtool(dhd, (void*)ifr->ifr_data); goto exit; } #endif /* LINUX_VERSION_CODE > KERNEL_VERSION(2, 4, 2) */ if (cmd == SIOCDEVPRIVATE+1) { ret = wl_android_priv_cmd(net, ifr, cmd); dhd_check_hang(net, &dhd->pub, ret); goto exit; } if (cmd != SIOCDEVPRIVATE) { ret = -EOPNOTSUPP; goto exit; } memset(&ioc, 0, sizeof(ioc)); #ifdef CONFIG_COMPAT #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 6, 0)) if (in_compat_syscall()) { #else if (is_compat_task()) { #endif compat_wl_ioctl_t compat_ioc; if (copy_from_user(&compat_ioc, ifr->ifr_data, sizeof(compat_wl_ioctl_t))) { ret = BCME_BADADDR; goto done; } ioc.cmd = compat_ioc.cmd; ioc.buf = compat_ptr(compat_ioc.buf); ioc.len = compat_ioc.len; ioc.set = compat_ioc.set; ioc.used = compat_ioc.used; ioc.needed = compat_ioc.needed; /* To differentiate between wl and dhd read 4 more byes */ if ((copy_from_user(&ioc.driver, (char *)ifr->ifr_data + sizeof(compat_wl_ioctl_t), sizeof(uint)) != 0)) { ret = BCME_BADADDR; goto done; } } else #endif /* CONFIG_COMPAT */ { /* Copy the ioc control structure part of ioctl request */ if (copy_from_user(&ioc, ifr->ifr_data, sizeof(wl_ioctl_t))) { ret = BCME_BADADDR; goto done; } /* To differentiate between wl and dhd read 4 more byes */ if ((copy_from_user(&ioc.driver, (char *)ifr->ifr_data + sizeof(wl_ioctl_t), sizeof(uint)) != 0)) { ret = BCME_BADADDR; goto done; } } if (!capable(CAP_NET_ADMIN)) { ret = BCME_EPERM; goto done; } if (ioc.len > 0) { buflen = MIN(ioc.len, DHD_IOCTL_MAXLEN); if (!(local_buf = MALLOC(dhd->pub.osh, buflen+1))) { ret = BCME_NOMEM; goto done; } DHD_PERIM_UNLOCK(&dhd->pub); if (copy_from_user(local_buf, ioc.buf, buflen)) { DHD_PERIM_LOCK(&dhd->pub); ret = BCME_BADADDR; goto done; } DHD_PERIM_LOCK(&dhd->pub); *(char *)(local_buf + buflen) = '\0'; } ret = dhd_ioctl_process(&dhd->pub, ifidx, &ioc, local_buf); if (!ret && buflen && local_buf && ioc.buf) { DHD_PERIM_UNLOCK(&dhd->pub); if (copy_to_user(ioc.buf, local_buf, buflen)) ret = -EFAULT; DHD_PERIM_LOCK(&dhd->pub); } done: if (local_buf) MFREE(dhd->pub.osh, local_buf, buflen+1); exit: DHD_PERIM_UNLOCK(&dhd->pub); DHD_OS_WAKE_UNLOCK(&dhd->pub); return OSL_ERROR(ret); } static int dhd_stop(struct net_device *net) { int ifidx = 0; #ifdef WL_CFG80211 unsigned long flags = 0; #endif dhd_info_t *dhd = DHD_DEV_INFO(net); DHD_OS_WAKE_LOCK(&dhd->pub); DHD_PERIM_LOCK(&dhd->pub); DHD_TRACE(("%s: Enter %p\n", __FUNCTION__, net)); dhd->pub.rxcnt_timeout = 0; dhd->pub.txcnt_timeout = 0; #ifdef BCMPCIE dhd->pub.d3ackcnt_timeout = 0; #endif /* BCMPCIE */ if (dhd->pub.up == 0) { goto exit; } dhd_if_flush_sta(DHD_DEV_IFP(net)); ifidx = dhd_net2idx(dhd, net); BCM_REFERENCE(ifidx); /* Set state and stop OS transmissions */ netif_stop_queue(net); #ifdef WL_CFG80211 spin_lock_irqsave(&dhd->pub.up_lock, flags); dhd->pub.up = 0; spin_unlock_irqrestore(&dhd->pub.up_lock, flags); #else dhd->pub.up = 0; #endif #ifdef WL_CFG80211 if (ifidx == 0) { dhd_if_t *ifp; wl_cfg80211_down(NULL); ifp = dhd->iflist[0]; ASSERT(ifp && ifp->net); /* * For CFG80211: Clean up all the left over virtual interfaces * when the primary Interface is brought down. [ifconfig wlan0 down] */ if (!dhd_download_fw_on_driverload) { if ((dhd->dhd_state & DHD_ATTACH_STATE_ADD_IF) && (dhd->dhd_state & DHD_ATTACH_STATE_CFG80211)) { int i; #ifdef WL_CFG80211_P2P_DEV_IF wl_cfg80211_del_p2p_wdev(); #endif /* WL_CFG80211_P2P_DEV_IF */ dhd_net_if_lock_local(dhd); for (i = 1; i < DHD_MAX_IFS; i++) dhd_remove_if(&dhd->pub, i, FALSE); if (ifp && ifp->net) { dhd_if_del_sta_list(ifp); } #ifdef ARP_OFFLOAD_SUPPORT if (dhd_inetaddr_notifier_registered) { dhd_inetaddr_notifier_registered = FALSE; unregister_inetaddr_notifier(&dhd_inetaddr_notifier); } #endif /* ARP_OFFLOAD_SUPPORT */ #if defined(CONFIG_IPV6) if (dhd_inet6addr_notifier_registered) { dhd_inet6addr_notifier_registered = FALSE; unregister_inet6addr_notifier(&dhd_inet6addr_notifier); } #endif /* OEM_ANDROID && CONFIG_IPV6 */ dhd_net_if_unlock_local(dhd); } //remove this to prevent dev_close get stuck in dhd_hang_process //cancel_work_sync(dhd->dhd_deferred_wq); #if defined(DHD_LB) && defined(DHD_LB_RXP) __skb_queue_purge(&dhd->rx_pend_queue); #endif /* DHD_LB && DHD_LB_RXP */ } #if defined(BCMPCIE) && defined(DHDTCPACK_SUPPRESS) dhd_tcpack_suppress_set(&dhd->pub, TCPACK_SUP_OFF); #endif /* BCMPCIE && DHDTCPACK_SUPPRESS */ #if defined(DHD_LB) && defined(DHD_LB_RXP) if (ifp->net == dhd->rx_napi_netdev) { DHD_INFO(("%s napi<%p> disabled ifp->net<%p,%s>\n", __FUNCTION__, &dhd->rx_napi_struct, net, net->name)); skb_queue_purge(&dhd->rx_napi_queue); napi_disable(&dhd->rx_napi_struct); netif_napi_del(&dhd->rx_napi_struct); dhd->rx_napi_netdev = NULL; } #endif /* DHD_LB && DHD_LB_RXP */ } #endif /* WL_CFG80211 */ #ifdef PROP_TXSTATUS dhd_wlfc_cleanup(&dhd->pub, NULL, 0); #endif /* Stop the protocol module */ dhd_prot_stop(&dhd->pub); OLD_MOD_DEC_USE_COUNT; exit: #if defined(WL_CFG80211) if (ifidx == 0 && !dhd_download_fw_on_driverload) wl_android_wifi_off(net, TRUE); #endif dhd->pub.hang_was_sent = 0; /* Clear country spec for for built-in type driver */ if (!dhd_download_fw_on_driverload) { dhd->pub.dhd_cspec.country_abbrev[0] = 0x00; dhd->pub.dhd_cspec.rev = 0; dhd->pub.dhd_cspec.ccode[0] = 0x00; } #ifdef BCMDBGFS dhd_dbg_remove(); #endif DHD_PERIM_UNLOCK(&dhd->pub); DHD_OS_WAKE_UNLOCK(&dhd->pub); /* Destroy wakelock */ if (!dhd_download_fw_on_driverload && (dhd->dhd_state & DHD_ATTACH_STATE_WAKELOCKS_INIT)) { DHD_OS_WAKE_LOCK_DESTROY(dhd); dhd->dhd_state &= ~DHD_ATTACH_STATE_WAKELOCKS_INIT; } printf("%s: Exit\n", __FUNCTION__); return 0; } #if defined(WL_CFG80211) && defined(USE_INITIAL_SHORT_DWELL_TIME) extern bool g_first_broadcast_scan; #endif #ifdef WL11U static int dhd_interworking_enable(dhd_pub_t *dhd) { uint32 enable = true; int ret = BCME_OK; ret = dhd_iovar(dhd, 0, "interworking", (char *)&enable, sizeof(enable), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: enableing interworking failed, ret=%d\n", __FUNCTION__, ret)); } if (ret == BCME_OK) { /* basic capabilities for HS20 REL2 */ uint32 cap = WL_WNM_BSSTRANS | WL_WNM_NOTIF; ret = dhd_iovar(dhd, 0, "wnm", (char *)&cap, sizeof(cap), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: failed to set WNM info, ret=%d\n", __FUNCTION__, ret)); } } return ret; } #endif /* WL11u */ static int dhd_open(struct net_device *net) { dhd_info_t *dhd = DHD_DEV_INFO(net); #ifdef TOE uint32 toe_ol; #endif #ifdef BCM_FD_AGGR char iovbuf[WLC_IOCTL_SMLEN]; dbus_config_t config; uint32 agglimit = 0; uint32 rpc_agg = BCM_RPC_TP_DNGL_AGG_DPC; /* host aggr not enabled yet */ #endif /* BCM_FD_AGGR */ int ifidx; int32 ret = 0; if (!dhd_download_fw_on_driverload && !dhd_driver_init_done) { DHD_ERROR(("%s: WLAN driver is not initialized\n", __FUNCTION__)); return -1; } if (!dhd_download_fw_on_driverload) { if (!(dhd->dhd_state & DHD_ATTACH_STATE_WAKELOCKS_INIT)) { DHD_OS_WAKE_LOCK_INIT(dhd); dhd->dhd_state |= DHD_ATTACH_STATE_WAKELOCKS_INIT; } } DHD_OS_WAKE_LOCK(&dhd->pub); DHD_PERIM_LOCK(&dhd->pub); dhd->pub.dongle_trap_occured = 0; dhd->pub.hang_was_sent = 0; #ifdef DHD_LOSSLESS_ROAMING dhd->pub.dequeue_prec_map = ALLPRIO; #endif #if !defined(WL_CFG80211) /* * Force start if ifconfig_up gets called before START command * We keep WEXT's wl_control_wl_start to provide backward compatibility * This should be removed in the future */ ret = wl_control_wl_start(net); if (ret != 0) { DHD_ERROR(("%s: failed with code %d\n", __FUNCTION__, ret)); ret = -1; goto exit; } #endif ifidx = dhd_net2idx(dhd, net); DHD_TRACE(("%s: ifidx %d\n", __FUNCTION__, ifidx)); if (ifidx < 0) { DHD_ERROR(("%s: Error: called with invalid IF\n", __FUNCTION__)); ret = -1; goto exit; } if (!dhd->iflist[ifidx]) { DHD_ERROR(("%s: Error: called when IF already deleted\n", __FUNCTION__)); ret = -1; goto exit; } if (ifidx == 0) { atomic_set(&dhd->pend_8021x_cnt, 0); #if defined(WL_CFG80211) if (!dhd_download_fw_on_driverload) { DHD_ERROR(("\n%s\n", dhd_version)); #if defined(USE_INITIAL_SHORT_DWELL_TIME) g_first_broadcast_scan = TRUE; #endif ret = wl_android_wifi_on(net); if (ret != 0) { DHD_ERROR(("%s : wl_android_wifi_on failed (%d)\n", __FUNCTION__, ret)); ret = -1; goto exit; } } #endif if (dhd->pub.busstate != DHD_BUS_DATA) { #ifndef BCMDBUS /* try to bring up bus */ DHD_PERIM_UNLOCK(&dhd->pub); ret = dhd_bus_start(&dhd->pub); DHD_PERIM_LOCK(&dhd->pub); if (ret) { DHD_ERROR(("%s: failed with code %d\n", __FUNCTION__, ret)); ret = -1; goto exit; } #else /* BCMDBUS */ if ((ret = dbus_up(dhd->pub.dbus)) != 0) { goto exit; } else { dhd->pub.busstate = DHD_BUS_DATA; } if ((ret = dhd_sync_with_dongle(&dhd->pub)) < 0) { DHD_ERROR(("%s: failed with code %d\n", __FUNCTION__, ret)); goto exit; } #endif /* BCMDBUS */ } #ifdef BCM_FD_AGGR config.config_id = DBUS_CONFIG_ID_AGGR_LIMIT; memset(iovbuf, 0, sizeof(iovbuf)); if (!dhd_iovar(&dhd->pub, ifidx, "rpc_dngl_agglimit", NULL, 0, (char *)iovbuf, sizeof(iovbuf), FALSE)) { agglimit = *(uint32 *)iovbuf; config.aggr_param.maxrxsf = agglimit >> BCM_RPC_TP_AGG_SF_SHIFT; config.aggr_param.maxrxsize = agglimit & BCM_RPC_TP_AGG_BYTES_MASK; DHD_ERROR(("rpc_dngl_agglimit %x : sf_limit %d bytes_limit %d\n", agglimit, config.aggr_param.maxrxsf, config.aggr_param.maxrxsize)); if (bcm_rpc_tp_set_config(dhd->pub.info->rpc_th, &config)) { DHD_ERROR(("set tx/rx queue size and buffersize failed\n")); } } else { DHD_ERROR(("get rpc_dngl_agglimit failed\n")); rpc_agg &= ~BCM_RPC_TP_DNGL_AGG_DPC; } /* Set aggregation for TX */ bcm_rpc_tp_agg_set(dhd->pub.info->rpc_th, BCM_RPC_TP_HOST_AGG_MASK, rpc_agg & BCM_RPC_TP_HOST_AGG_MASK); /* Set aggregation for RX */ if (!dhd_iovar(&dhd->pub, ifidx, "rpc_agg", (char *)&rpc_agg, sizeof(rpc_agg), NULL, 0, TRUE)) { dhd->pub.info->fdaggr = 0; if (rpc_agg & BCM_RPC_TP_HOST_AGG_MASK) dhd->pub.info->fdaggr |= BCM_FDAGGR_H2D_ENABLED; if (rpc_agg & BCM_RPC_TP_DNGL_AGG_MASK) dhd->pub.info->fdaggr |= BCM_FDAGGR_D2H_ENABLED; } else { DHD_ERROR(("%s(): Setting RX aggregation failed %d\n", __FUNCTION__, ret)); } #endif /* BCM_FD_AGGR */ /* dhd_sync_with_dongle has been called in dhd_bus_start or wl_android_wifi_on */ memcpy(net->dev_addr, dhd->pub.mac.octet, ETHER_ADDR_LEN); #ifdef TOE /* Get current TOE mode from dongle */ if (dhd_toe_get(dhd, ifidx, &toe_ol) >= 0 && (toe_ol & TOE_TX_CSUM_OL) != 0) { dhd->iflist[ifidx]->net->features |= NETIF_F_IP_CSUM; } else { dhd->iflist[ifidx]->net->features &= ~NETIF_F_IP_CSUM; } #endif /* TOE */ #if defined(WL_CFG80211) if (unlikely(wl_cfg80211_up(NULL))) { DHD_ERROR(("%s: failed to bring up cfg80211\n", __FUNCTION__)); ret = -1; goto exit; } if (!dhd_download_fw_on_driverload) { #ifdef ARP_OFFLOAD_SUPPORT dhd->pend_ipaddr = 0; if (!dhd_inetaddr_notifier_registered) { dhd_inetaddr_notifier_registered = TRUE; register_inetaddr_notifier(&dhd_inetaddr_notifier); } #endif /* ARP_OFFLOAD_SUPPORT */ #if defined(CONFIG_IPV6) if (!dhd_inet6addr_notifier_registered) { dhd_inet6addr_notifier_registered = TRUE; register_inet6addr_notifier(&dhd_inet6addr_notifier); } #endif /* OEM_ANDROID && CONFIG_IPV6 */ #ifdef DHD_LB DHD_LB_STATS_INIT(&dhd->pub); #ifdef DHD_LB_RXP __skb_queue_head_init(&dhd->rx_pend_queue); #endif /* DHD_LB_RXP */ #endif /* DHD_LB */ } #if defined(BCMPCIE) && defined(DHDTCPACK_SUPPRESS) #if defined(SET_RPS_CPUS) dhd_tcpack_suppress_set(&dhd->pub, TCPACK_SUP_OFF); #else dhd_tcpack_suppress_set(&dhd->pub, TCPACK_SUP_HOLD); #endif #endif /* BCMPCIE && DHDTCPACK_SUPPRESS */ #if defined(DHD_LB) && defined(DHD_LB_RXP) if (dhd->rx_napi_netdev == NULL) { dhd->rx_napi_netdev = dhd->iflist[ifidx]->net; memset(&dhd->rx_napi_struct, 0, sizeof(struct napi_struct)); netif_napi_add(dhd->rx_napi_netdev, &dhd->rx_napi_struct, dhd_napi_poll, dhd_napi_weight); DHD_INFO(("%s napi<%p> enabled ifp->net<%p,%s>\n", __FUNCTION__, &dhd->rx_napi_struct, net, net->name)); napi_enable(&dhd->rx_napi_struct); DHD_INFO(("%s load balance init rx_napi_struct\n", __FUNCTION__)); skb_queue_head_init(&dhd->rx_napi_queue); } #endif /* DHD_LB && DHD_LB_RXP */ #if defined(NUM_SCB_MAX_PROBE) dhd_set_scb_probe(&dhd->pub); #endif /* NUM_SCB_MAX_PROBE */ #endif /* WL_CFG80211 */ } /* Allow transmit calls */ netif_start_queue(net); dhd->pub.up = 1; OLD_MOD_INC_USE_COUNT; #ifdef BCMDBGFS dhd_dbg_init(&dhd->pub); #endif exit: if (ret) { dhd_stop(net); } DHD_PERIM_UNLOCK(&dhd->pub); DHD_OS_WAKE_UNLOCK(&dhd->pub); return ret; } int dhd_do_driver_init(struct net_device *net) { dhd_info_t *dhd = NULL; if (!net) { DHD_ERROR(("Primary Interface not initialized \n")); return -EINVAL; } /* && defined(OEM_ANDROID) && defined(BCMSDIO) */ dhd = DHD_DEV_INFO(net); /* If driver is already initialized, do nothing */ if (dhd->pub.busstate == DHD_BUS_DATA) { DHD_TRACE(("Driver already Inititalized. Nothing to do")); return 0; } if (dhd_open(net) < 0) { DHD_ERROR(("Driver Init Failed \n")); return -1; } return 0; } int dhd_event_ifadd(dhd_info_t *dhdinfo, wl_event_data_if_t *ifevent, char *name, uint8 *mac) { #ifdef WL_CFG80211 if (wl_cfg80211_notify_ifadd(ifevent->ifidx, name, mac, ifevent->bssidx) == BCME_OK) return BCME_OK; #endif /* handle IF event caused by wl commands, SoftAP, WEXT and * anything else. This has to be done asynchronously otherwise * DPC will be blocked (and iovars will timeout as DPC has no chance * to read the response back) */ if (ifevent->ifidx > 0) { dhd_if_event_t *if_event = MALLOC(dhdinfo->pub.osh, sizeof(dhd_if_event_t)); if (if_event == NULL) { DHD_ERROR(("dhd_event_ifadd: Failed MALLOC, malloced %d bytes", MALLOCED(dhdinfo->pub.osh))); return BCME_NOMEM; } memcpy(&if_event->event, ifevent, sizeof(if_event->event)); memcpy(if_event->mac, mac, ETHER_ADDR_LEN); strncpy(if_event->name, name, IFNAMSIZ); if_event->name[IFNAMSIZ - 1] = '\0'; dhd_deferred_schedule_work(dhdinfo->dhd_deferred_wq, (void *)if_event, DHD_WQ_WORK_IF_ADD, dhd_ifadd_event_handler, DHD_WORK_PRIORITY_LOW); } return BCME_OK; } int dhd_event_ifdel(dhd_info_t *dhdinfo, wl_event_data_if_t *ifevent, char *name, uint8 *mac) { dhd_if_event_t *if_event; #ifdef WL_CFG80211 if (wl_cfg80211_notify_ifdel(ifevent->ifidx, name, mac, ifevent->bssidx) == BCME_OK) return BCME_OK; #endif /* WL_CFG80211 */ /* handle IF event caused by wl commands, SoftAP, WEXT and * anything else */ if_event = MALLOC(dhdinfo->pub.osh, sizeof(dhd_if_event_t)); if (if_event == NULL) { DHD_ERROR(("dhd_event_ifdel: malloc failed for if_event, malloced %d bytes", MALLOCED(dhdinfo->pub.osh))); return BCME_NOMEM; } memcpy(&if_event->event, ifevent, sizeof(if_event->event)); memcpy(if_event->mac, mac, ETHER_ADDR_LEN); strncpy(if_event->name, name, IFNAMSIZ); if_event->name[IFNAMSIZ - 1] = '\0'; dhd_deferred_schedule_work(dhdinfo->dhd_deferred_wq, (void *)if_event, DHD_WQ_WORK_IF_DEL, dhd_ifdel_event_handler, DHD_WORK_PRIORITY_LOW); return BCME_OK; } /* unregister and free the existing net_device interface (if any) in iflist and * allocate a new one. the slot is reused. this function does NOT register the * new interface to linux kernel. dhd_register_if does the job */ struct net_device* dhd_allocate_if(dhd_pub_t *dhdpub, int ifidx, char *name, uint8 *mac, uint8 bssidx, bool need_rtnl_lock, char *dngl_name) { dhd_info_t *dhdinfo = (dhd_info_t *)dhdpub->info; dhd_if_t *ifp; ASSERT(dhdinfo && (ifidx < DHD_MAX_IFS)); ifp = dhdinfo->iflist[ifidx]; if (ifp != NULL) { if (ifp->net != NULL) { DHD_ERROR(("%s: free existing IF %s\n", __FUNCTION__, ifp->net->name)); dhd_dev_priv_clear(ifp->net); /* clear net_device private */ /* in unregister_netdev case, the interface gets freed by net->destructor * (which is set to free_netdev) */ if (ifp->net->reg_state == NETREG_UNINITIALIZED) { free_netdev(ifp->net); } else { netif_stop_queue(ifp->net); if (need_rtnl_lock) unregister_netdev(ifp->net); else unregister_netdevice(ifp->net); } ifp->net = NULL; } } else { ifp = MALLOC(dhdinfo->pub.osh, sizeof(dhd_if_t)); if (ifp == NULL) { DHD_ERROR(("%s: OOM - dhd_if_t(%zu)\n", __FUNCTION__, sizeof(dhd_if_t))); return NULL; } } memset(ifp, 0, sizeof(dhd_if_t)); ifp->info = dhdinfo; ifp->idx = ifidx; ifp->bssidx = bssidx; #ifdef DHD_MCAST_REGEN ifp->mcast_regen_bss_enable = FALSE; #endif /* set to TRUE rx_pkt_chainable at alloc time */ ifp->rx_pkt_chainable = TRUE; if (mac != NULL) memcpy(&ifp->mac_addr, mac, ETHER_ADDR_LEN); /* Allocate etherdev, including space for private structure */ ifp->net = alloc_etherdev(DHD_DEV_PRIV_SIZE); if (ifp->net == NULL) { DHD_ERROR(("%s: OOM - alloc_etherdev(%zu)\n", __FUNCTION__, sizeof(dhdinfo))); goto fail; } /* Setup the dhd interface's netdevice private structure. */ dhd_dev_priv_save(ifp->net, dhdinfo, ifp, ifidx); if (name && name[0]) { strncpy(ifp->net->name, name, IFNAMSIZ); ifp->net->name[IFNAMSIZ - 1] = '\0'; } #ifdef WL_CFG80211 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)) if (ifidx == 0) { ifp->net->priv_destructor = free_netdev; } else { ifp->net->priv_destructor = dhd_netdev_free; } #else if (ifidx == 0) ifp->net->destructor = free_netdev; else ifp->net->destructor = dhd_netdev_free; #endif #else #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)) ifp->net->priv_destructor = free_netdev; #else ifp->net->destructor = free_netdev; #endif #endif /* WL_CFG80211 */ strncpy(ifp->name, ifp->net->name, IFNAMSIZ); ifp->name[IFNAMSIZ - 1] = '\0'; dhdinfo->iflist[ifidx] = ifp; /* initialize the dongle provided if name */ if (dngl_name) strncpy(ifp->dngl_name, dngl_name, IFNAMSIZ); else strncpy(ifp->dngl_name, name, IFNAMSIZ); #ifdef PCIE_FULL_DONGLE /* Initialize STA info list */ INIT_LIST_HEAD(&ifp->sta_list); DHD_IF_STA_LIST_LOCK_INIT(ifp); #endif /* PCIE_FULL_DONGLE */ #ifdef DHD_L2_FILTER ifp->phnd_arp_table = init_l2_filter_arp_table(dhdpub->osh); ifp->parp_allnode = TRUE; #endif /* DHD_L2_FILTER */ DHD_CUMM_CTR_INIT(&ifp->cumm_ctr); return ifp->net; fail: if (ifp != NULL) { if (ifp->net != NULL) { dhd_dev_priv_clear(ifp->net); free_netdev(ifp->net); ifp->net = NULL; } MFREE(dhdinfo->pub.osh, ifp, sizeof(*ifp)); ifp = NULL; } dhdinfo->iflist[ifidx] = NULL; return NULL; } /* unregister and free the the net_device interface associated with the indexed * slot, also free the slot memory and set the slot pointer to NULL */ int dhd_remove_if(dhd_pub_t *dhdpub, int ifidx, bool need_rtnl_lock) { dhd_info_t *dhdinfo = (dhd_info_t *)dhdpub->info; dhd_if_t *ifp; #ifdef PCIE_FULL_DONGLE if_flow_lkup_t *if_flow_lkup = (if_flow_lkup_t *)dhdpub->if_flow_lkup; #endif /* PCIE_FULL_DONGLE */ ifp = dhdinfo->iflist[ifidx]; if (ifp != NULL) { if (ifp->net != NULL) { DHD_ERROR(("deleting interface '%s' idx %d\n", ifp->net->name, ifp->idx)); /* in unregister_netdev case, the interface gets freed by net->destructor * (which is set to free_netdev) */ if (ifp->net->reg_state == NETREG_UNINITIALIZED) { free_netdev(ifp->net); } else { netif_tx_disable(ifp->net); #if defined(SET_RPS_CPUS) custom_rps_map_clear(ifp->net->_rx); #endif /* SET_RPS_CPUS */ #if defined(SET_RPS_CPUS) #if (defined(DHDTCPACK_SUPPRESS) && defined(BCMPCIE)) dhd_tcpack_suppress_set(dhdpub, TCPACK_SUP_OFF); #endif /* DHDTCPACK_SUPPRESS && BCMPCIE */ #endif if (need_rtnl_lock) unregister_netdev(ifp->net); else unregister_netdevice(ifp->net); } ifp->net = NULL; } #ifdef DHD_WMF dhd_wmf_cleanup(dhdpub, ifidx); #endif /* DHD_WMF */ #ifdef DHD_L2_FILTER bcm_l2_filter_arp_table_update(dhdpub->osh, ifp->phnd_arp_table, TRUE, NULL, FALSE, dhdpub->tickcnt); deinit_l2_filter_arp_table(dhdpub->osh, ifp->phnd_arp_table); ifp->phnd_arp_table = NULL; #endif /* DHD_L2_FILTER */ dhd_if_del_sta_list(ifp); #ifdef PCIE_FULL_DONGLE /* Delete flowrings of WDS interface */ if (if_flow_lkup[ifidx].role == WLC_E_IF_ROLE_WDS) { dhd_flow_rings_delete(dhdpub, ifidx); } #endif /* PCIE_FULL_DONGLE */ DHD_CUMM_CTR_INIT(&ifp->cumm_ctr); dhdinfo->iflist[ifidx] = NULL; MFREE(dhdinfo->pub.osh, ifp, sizeof(*ifp)); } return BCME_OK; } #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 31)) static struct net_device_ops dhd_ops_pri = { .ndo_open = dhd_open, .ndo_stop = dhd_stop, .ndo_get_stats = dhd_get_stats, .ndo_do_ioctl = dhd_ioctl_entry, .ndo_start_xmit = dhd_start_xmit, .ndo_set_mac_address = dhd_set_mac_address, #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 2, 0)) .ndo_set_rx_mode = dhd_set_multicast_list, #else .ndo_set_multicast_list = dhd_set_multicast_list, #endif }; static struct net_device_ops dhd_ops_virt = { .ndo_get_stats = dhd_get_stats, .ndo_do_ioctl = dhd_ioctl_entry, .ndo_start_xmit = dhd_start_xmit, .ndo_set_mac_address = dhd_set_mac_address, #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 2, 0)) .ndo_set_rx_mode = dhd_set_multicast_list, #else .ndo_set_multicast_list = dhd_set_multicast_list, #endif }; #endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 31)) */ #ifdef DEBUGGER extern void debugger_init(void *bus_handle); #endif #ifdef SHOW_LOGTRACE static char *logstrs_path = "/root/logstrs.bin"; static char *st_str_file_path = "/root/rtecdc.bin"; static char *map_file_path = "/root/rtecdc.map"; static char *rom_st_str_file_path = "/root/roml.bin"; static char *rom_map_file_path = "/root/roml.map"; #define BYTES_AHEAD_NUM 11 /* address in map file is before these many bytes */ #define READ_NUM_BYTES 1000 /* read map file each time this No. of bytes */ #define GO_BACK_FILE_POS_NUM_BYTES 100 /* set file pos back to cur pos */ static char *ramstart_str = "text_start"; /* string in mapfile has addr ramstart */ static char *rodata_start_str = "rodata_start"; /* string in mapfile has addr rodata start */ static char *rodata_end_str = "rodata_end"; /* string in mapfile has addr rodata end */ static char *ram_file_str = "rtecdc"; static char *rom_file_str = "roml"; #define RAMSTART_BIT 0x01 #define RDSTART_BIT 0x02 #define RDEND_BIT 0x04 #define ALL_MAP_VAL (RAMSTART_BIT | RDSTART_BIT | RDEND_BIT) module_param(logstrs_path, charp, S_IRUGO); module_param(st_str_file_path, charp, S_IRUGO); module_param(map_file_path, charp, S_IRUGO); module_param(rom_st_str_file_path, charp, S_IRUGO); module_param(rom_map_file_path, charp, S_IRUGO); static void dhd_init_logstrs_array(dhd_event_log_t *temp) { struct file *filep = NULL; struct kstat stat; mm_segment_t fs; char *raw_fmts = NULL; int logstrs_size = 0; logstr_header_t *hdr = NULL; uint32 *lognums = NULL; char *logstrs = NULL; int ram_index = 0; char **fmts; int num_fmts = 0; uint32 i = 0; int error = 0; fs = get_fs(); set_fs(KERNEL_DS); filep = filp_open(logstrs_path, O_RDONLY, 0); if (IS_ERR(filep)) { DHD_ERROR(("%s: Failed to open the file %s \n", __FUNCTION__, logstrs_path)); goto fail; } error = vfs_stat(logstrs_path, &stat); if (error) { DHD_ERROR(("%s: Failed to stat file %s \n", __FUNCTION__, logstrs_path)); goto fail; } logstrs_size = (int) stat.size; raw_fmts = kmalloc(logstrs_size, GFP_KERNEL); if (raw_fmts == NULL) { DHD_ERROR(("%s: Failed to allocate memory \n", __FUNCTION__)); goto fail; } if (vfs_read(filep, raw_fmts, logstrs_size, &filep->f_pos) != logstrs_size) { DHD_ERROR(("%s: Failed to read file %s", __FUNCTION__, logstrs_path)); goto fail; } /* Remember header from the logstrs.bin file */ hdr = (logstr_header_t *) (raw_fmts + logstrs_size - sizeof(logstr_header_t)); if (hdr->log_magic == LOGSTRS_MAGIC) { /* * logstrs.bin start with header. */ num_fmts = hdr->rom_logstrs_offset / sizeof(uint32); ram_index = (hdr->ram_lognums_offset - hdr->rom_lognums_offset) / sizeof(uint32); lognums = (uint32 *) &raw_fmts[hdr->rom_lognums_offset]; logstrs = (char *) &raw_fmts[hdr->rom_logstrs_offset]; } else { /* * Legacy logstrs.bin format without header. */ num_fmts = *((uint32 *) (raw_fmts)) / sizeof(uint32); if (num_fmts == 0) { /* Legacy ROM/RAM logstrs.bin format: * - ROM 'lognums' section * - RAM 'lognums' section * - ROM 'logstrs' section. * - RAM 'logstrs' section. * * 'lognums' is an array of indexes for the strings in the * 'logstrs' section. The first uint32 is 0 (index of first * string in ROM 'logstrs' section). * * The 4324b5 is the only ROM that uses this legacy format. Use the * fixed number of ROM fmtnums to find the start of the RAM * 'lognums' section. Use the fixed first ROM string ("Con\n") to * find the ROM 'logstrs' section. */ #define NUM_4324B5_ROM_FMTS 186 #define FIRST_4324B5_ROM_LOGSTR "Con\n" ram_index = NUM_4324B5_ROM_FMTS; lognums = (uint32 *) raw_fmts; num_fmts = ram_index; logstrs = (char *) &raw_fmts[num_fmts << 2]; while (strncmp(FIRST_4324B5_ROM_LOGSTR, logstrs, 4)) { num_fmts++; logstrs = (char *) &raw_fmts[num_fmts << 2]; } } else { /* Legacy RAM-only logstrs.bin format: * - RAM 'lognums' section * - RAM 'logstrs' section. * * 'lognums' is an array of indexes for the strings in the * 'logstrs' section. The first uint32 is an index to the * start of 'logstrs'. Therefore, if this index is divided * by 'sizeof(uint32)' it provides the number of logstr * entries. */ ram_index = 0; lognums = (uint32 *) raw_fmts; logstrs = (char *) &raw_fmts[num_fmts << 2]; } } fmts = kmalloc(num_fmts * sizeof(char *), GFP_KERNEL); if (fmts == NULL) { DHD_ERROR(("Failed to allocate fmts memory")); goto fail; } for (i = 0; i < num_fmts; i++) { /* ROM lognums index into logstrs using 'rom_logstrs_offset' as a base * (they are 0-indexed relative to 'rom_logstrs_offset'). * * RAM lognums are already indexed to point to the correct RAM logstrs (they * are 0-indexed relative to the start of the logstrs.bin file). */ if (i == ram_index) { logstrs = raw_fmts; } fmts[i] = &logstrs[lognums[i]]; } temp->fmts = fmts; temp->raw_fmts = raw_fmts; temp->num_fmts = num_fmts; filp_close(filep, NULL); set_fs(fs); return; fail: if (raw_fmts) { kfree(raw_fmts); raw_fmts = NULL; } if (!IS_ERR(filep)) filp_close(filep, NULL); set_fs(fs); temp->fmts = NULL; return; } static int dhd_read_map(char *fname, uint32 *ramstart, uint32 *rodata_start, uint32 *rodata_end) { struct file *filep = NULL; mm_segment_t fs; char *raw_fmts = NULL; uint32 read_size = READ_NUM_BYTES; int error = 0; char * cptr = NULL; char c; uint8 count = 0; *ramstart = 0; *rodata_start = 0; *rodata_end = 0; if (fname == NULL) { DHD_ERROR(("%s: ERROR fname is NULL \n", __FUNCTION__)); return BCME_ERROR; } fs = get_fs(); set_fs(KERNEL_DS); filep = filp_open(fname, O_RDONLY, 0); if (IS_ERR(filep)) { DHD_ERROR(("%s: Failed to open %s \n", __FUNCTION__, fname)); goto fail; } /* Allocate 1 byte more than read_size to terminate it with NULL */ raw_fmts = kmalloc(read_size + 1, GFP_KERNEL); if (raw_fmts == NULL) { DHD_ERROR(("%s: Failed to allocate raw_fmts memory \n", __FUNCTION__)); goto fail; } /* read ram start, rodata_start and rodata_end values from map file */ while (count != ALL_MAP_VAL) { error = vfs_read(filep, raw_fmts, read_size, (&filep->f_pos)); if (error < 0) { DHD_ERROR(("%s: read failed %s err:%d \n", __FUNCTION__, map_file_path, error)); goto fail; } if (error < read_size) { /* * since we reset file pos back to earlier pos by * GO_BACK_FILE_POS_NUM_BYTES bytes we won't reach EOF. * So if ret value is less than read_size, reached EOF don't read further */ break; } /* End raw_fmts with NULL as strstr expects NULL terminated strings */ raw_fmts[read_size] = '\0'; /* Get ramstart address */ if ((cptr = strstr(raw_fmts, ramstart_str))) { cptr = cptr - BYTES_AHEAD_NUM; sscanf(cptr, "%x %c text_start", ramstart, &c); count |= RAMSTART_BIT; } /* Get ram rodata start address */ if ((cptr = strstr(raw_fmts, rodata_start_str))) { cptr = cptr - BYTES_AHEAD_NUM; sscanf(cptr, "%x %c rodata_start", rodata_start, &c); count |= RDSTART_BIT; } /* Get ram rodata end address */ if ((cptr = strstr(raw_fmts, rodata_end_str))) { cptr = cptr - BYTES_AHEAD_NUM; sscanf(cptr, "%x %c rodata_end", rodata_end, &c); count |= RDEND_BIT; } memset(raw_fmts, 0, read_size); /* * go back to predefined NUM of bytes so that we won't miss * the string and addr even if it comes as splited in next read. */ filep->f_pos = filep->f_pos - GO_BACK_FILE_POS_NUM_BYTES; } DHD_ERROR(("---ramstart: 0x%x, rodata_start: 0x%x, rodata_end:0x%x\n", *ramstart, *rodata_start, *rodata_end)); DHD_ERROR(("readmap over \n")); fail: if (raw_fmts) { kfree(raw_fmts); raw_fmts = NULL; } if (!IS_ERR(filep)) filp_close(filep, NULL); set_fs(fs); if (count == ALL_MAP_VAL) { return BCME_OK; } DHD_ERROR(("readmap error 0X%x \n", count)); return BCME_ERROR; } static void dhd_init_static_strs_array(dhd_event_log_t *temp, char *str_file, char *map_file) { struct file *filep = NULL; mm_segment_t fs; char *raw_fmts = NULL; uint32 logstrs_size = 0; int error = 0; uint32 ramstart = 0; uint32 rodata_start = 0; uint32 rodata_end = 0; uint32 logfilebase = 0; error = dhd_read_map(map_file, &ramstart, &rodata_start, &rodata_end); if (error == BCME_ERROR) { DHD_ERROR(("readmap Error!! \n")); /* don't do event log parsing in actual case */ temp->raw_sstr = NULL; return; } DHD_ERROR(("ramstart: 0x%x, rodata_start: 0x%x, rodata_end:0x%x\n", ramstart, rodata_start, rodata_end)); fs = get_fs(); set_fs(KERNEL_DS); filep = filp_open(str_file, O_RDONLY, 0); if (IS_ERR(filep)) { DHD_ERROR(("%s: Failed to open the file %s \n", __FUNCTION__, str_file)); goto fail; } /* Full file size is huge. Just read required part */ logstrs_size = rodata_end - rodata_start; raw_fmts = kmalloc(logstrs_size, GFP_KERNEL); if (raw_fmts == NULL) { DHD_ERROR(("%s: Failed to allocate raw_fmts memory \n", __FUNCTION__)); goto fail; } logfilebase = rodata_start - ramstart; error = generic_file_llseek(filep, logfilebase, SEEK_SET); if (error < 0) { DHD_ERROR(("%s: %s llseek failed %d \n", __FUNCTION__, str_file, error)); goto fail; } error = vfs_read(filep, raw_fmts, logstrs_size, (&filep->f_pos)); if (error != logstrs_size) { DHD_ERROR(("%s: %s read failed %d \n", __FUNCTION__, str_file, error)); goto fail; } if (strstr(str_file, ram_file_str) != NULL) { temp->raw_sstr = raw_fmts; temp->ramstart = ramstart; temp->rodata_start = rodata_start; temp->rodata_end = rodata_end; } else if (strstr(str_file, rom_file_str) != NULL) { temp->rom_raw_sstr = raw_fmts; temp->rom_ramstart = ramstart; temp->rom_rodata_start = rodata_start; temp->rom_rodata_end = rodata_end; } filp_close(filep, NULL); set_fs(fs); return; fail: if (raw_fmts) { kfree(raw_fmts); raw_fmts = NULL; } if (!IS_ERR(filep)) filp_close(filep, NULL); set_fs(fs); if (strstr(str_file, ram_file_str) != NULL) { temp->raw_sstr = NULL; } else if (strstr(str_file, rom_file_str) != NULL) { temp->rom_raw_sstr = NULL; } return; } #endif /* SHOW_LOGTRACE */ #ifdef DHD_LB #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0)) static enum cpuhp_state dhd_cpuhp_online_state; static int dhd_cpuhp_init(osl_t *osh, dhd_info_t *dhd) { int ret = 0; ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/wireless/dhd:online", dhd_cpuhp_online, dhd_cpuhp_dead); if (ret < 0) { DHD_ERROR(("%s(): cpuhp_setup_state_multi() online failed, ret=%d\n", __FUNCTION__, ret)); return ret; } dhd_cpuhp_online_state = ret; cpuhp_state_add_instance_nocalls(dhd_cpuhp_online_state, &dhd->node_online); return ret; } #endif #endif dhd_pub_t * dhd_attach(osl_t *osh, struct dhd_bus *bus, uint bus_hdrlen) { dhd_info_t *dhd = NULL; struct net_device *net = NULL; char if_name[IFNAMSIZ] = {'\0'}; uint32 bus_type = -1; uint32 bus_num = -1; uint32 slot_num = -1; wifi_adapter_info_t *adapter = NULL; dhd_attach_states_t dhd_state = DHD_ATTACH_STATE_INIT; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); #ifdef STBLINUX DHD_ERROR(("%s\n", driver_target)); #endif /* STBLINUX */ /* will implement get_ids for DBUS later */ #if !defined(BCMDBUS) && defined(BCMSDIO) dhd_bus_get_ids(bus, &bus_type, &bus_num, &slot_num); #endif /* !defined(BCMDBUS) && defined(BCMSDIO) */ adapter = dhd_wifi_platform_get_adapter(bus_type, bus_num, slot_num); /* Allocate primary dhd_info */ dhd = wifi_platform_prealloc(adapter, DHD_PREALLOC_DHD_INFO, sizeof(dhd_info_t)); if (dhd == NULL) { dhd = MALLOC(osh, sizeof(dhd_info_t)); if (dhd == NULL) { DHD_ERROR(("%s: OOM - alloc dhd_info\n", __FUNCTION__)); goto fail; } } memset(dhd, 0, sizeof(dhd_info_t)); dhd_state |= DHD_ATTACH_STATE_DHD_ALLOC; dhd->unit = dhd_found + instance_base; /* do not increment dhd_found, yet */ dhd->pub.osh = osh; dhd->adapter = adapter; #ifdef GET_CUSTOM_MAC_ENABLE wifi_platform_get_mac_addr(dhd->adapter, dhd->pub.mac.octet); #endif /* GET_CUSTOM_MAC_ENABLE */ #ifdef CUSTOM_FORCE_NODFS_FLAG dhd->pub.dhd_cflags |= WLAN_PLAT_NODFS_FLAG; dhd->pub.force_country_change = TRUE; #endif /* CUSTOM_FORCE_NODFS_FLAG */ #ifdef CUSTOM_COUNTRY_CODE get_customized_country_code(dhd->adapter, dhd->pub.dhd_cspec.country_abbrev, &dhd->pub.dhd_cspec, dhd->pub.dhd_cflags); #endif /* CUSTOM_COUNTRY_CODE */ #ifndef BCMDBUS dhd->thr_dpc_ctl.thr_pid = DHD_PID_KT_TL_INVALID; dhd->thr_wdt_ctl.thr_pid = DHD_PID_KT_INVALID; #ifdef DHD_WET dhd->pub.wet_info = dhd_get_wet_info(&dhd->pub); #endif /* Initialize thread based operation and lock */ sema_init(&dhd->sdsem, 1); /* Some DHD modules (e.g. cfg80211) configures operation mode based on firmware name. * This is indeed a hack but we have to make it work properly before we have a better * solution */ dhd_update_fw_nv_path(dhd); #endif /* BCMDBUS */ /* Link to info module */ dhd->pub.info = dhd; /* Link to bus module */ dhd->pub.bus = bus; dhd->pub.hdrlen = bus_hdrlen; /* Set network interface name if it was provided as module parameter */ if (iface_name[0]) { int len; char ch; strncpy(if_name, iface_name, IFNAMSIZ); if_name[IFNAMSIZ - 1] = 0; len = strlen(if_name); ch = if_name[len - 1]; if ((ch > '9' || ch < '0') && (len < IFNAMSIZ - 2)) strcat(if_name, "%d"); } /* Passing NULL to dngl_name to ensure host gets if_name in dngl_name member */ net = dhd_allocate_if(&dhd->pub, 0, if_name, NULL, 0, TRUE, NULL); if (net == NULL) { goto fail; } dhd_state |= DHD_ATTACH_STATE_ADD_IF; #ifdef DHD_L2_FILTER /* initialize the l2_filter_cnt */ dhd->pub.l2_filter_cnt = 0; #endif #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31)) net->open = NULL; #else net->netdev_ops = NULL; #endif sema_init(&dhd->proto_sem, 1); #ifdef DHD_ULP if (!(dhd_ulp_init(osh, &dhd->pub))) goto fail; #endif /* DHD_ULP */ #ifdef PROP_TXSTATUS spin_lock_init(&dhd->wlfc_spinlock); dhd->pub.skip_fc = dhd_wlfc_skip_fc; dhd->pub.plat_init = dhd_wlfc_plat_init; dhd->pub.plat_deinit = dhd_wlfc_plat_deinit; #ifdef DHD_WLFC_THREAD init_waitqueue_head(&dhd->pub.wlfc_wqhead); dhd->pub.wlfc_thread = kthread_create(dhd_wlfc_transfer_packets, &dhd->pub, "wlfc-thread"); if (IS_ERR(dhd->pub.wlfc_thread)) { DHD_ERROR(("create wlfc thread failed\n")); goto fail; } else { wake_up_process(dhd->pub.wlfc_thread); } #endif /* DHD_WLFC_THREAD */ #endif /* PROP_TXSTATUS */ /* Initialize other structure content */ init_waitqueue_head(&dhd->ioctl_resp_wait); init_waitqueue_head(&dhd->d3ack_wait); init_waitqueue_head(&dhd->ctrl_wait); init_waitqueue_head(&dhd->dhd_bus_busy_state_wait); dhd->pub.dhd_bus_busy_state = 0; /* Initialize the spinlocks */ spin_lock_init(&dhd->sdlock); spin_lock_init(&dhd->txqlock); spin_lock_init(&dhd->dhd_lock); spin_lock_init(&dhd->rxf_lock); #if defined(RXFRAME_THREAD) dhd->rxthread_enabled = TRUE; #endif /* defined(RXFRAME_THREAD) */ #ifdef DHDTCPACK_SUPPRESS spin_lock_init(&dhd->tcpack_lock); #endif /* DHDTCPACK_SUPPRESS */ /* Initialize Wakelock stuff */ spin_lock_init(&dhd->wakelock_spinlock); dhd->wakelock_counter = 0; dhd->wakelock_wd_counter = 0; #ifdef CONFIG_HAS_WAKELOCK wake_lock_init(&dhd->wl_wifi, WAKE_LOCK_SUSPEND, "wlan_wake"); wake_lock_init(&dhd->wl_wdwake, WAKE_LOCK_SUSPEND, "wlan_wd_wake"); DHD_OS_WAKE_LOCK_INIT(dhd); #endif #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) mutex_init(&dhd->dhd_net_if_mutex); mutex_init(&dhd->dhd_suspend_mutex); #endif dhd_state |= DHD_ATTACH_STATE_WAKELOCKS_INIT; /* Attach and link in the protocol */ if (dhd_prot_attach(&dhd->pub) != 0) { DHD_ERROR(("dhd_prot_attach failed\n")); goto fail; } dhd_state |= DHD_ATTACH_STATE_PROT_ATTACH; #ifdef WL_CFG80211 spin_lock_init(&dhd->pub.up_lock); /* Attach and link in the cfg80211 */ if (unlikely(wl_cfg80211_attach(net, &dhd->pub))) { DHD_ERROR(("wl_cfg80211_attach failed\n")); goto fail; } dhd_monitor_init(&dhd->pub); dhd_state |= DHD_ATTACH_STATE_CFG80211; #endif #if defined(WL_WIRELESS_EXT) /* Attach and link in the iw */ if (!(dhd_state & DHD_ATTACH_STATE_CFG80211)) { if (wl_iw_attach(net, (void *)&dhd->pub) != 0) { DHD_ERROR(("wl_iw_attach failed\n")); goto fail; } dhd_state |= DHD_ATTACH_STATE_WL_ATTACH; } #endif /* defined(WL_WIRELESS_EXT) */ #ifdef SHOW_LOGTRACE dhd_init_logstrs_array(&dhd->event_data); dhd_init_static_strs_array(&dhd->event_data, st_str_file_path, map_file_path); dhd_init_static_strs_array(&dhd->event_data, rom_st_str_file_path, rom_map_file_path); /* attach debug if support */ if (dhd_os_dbg_attach(&dhd->pub)) { DHD_ERROR(("%s debug module attach failed\n", __FUNCTION__)); goto fail; } #endif /* SHOW_LOGTRACE */ if (dhd_sta_pool_init(&dhd->pub, DHD_MAX_STA) != BCME_OK) { DHD_ERROR(("%s: Initializing %u sta\n", __FUNCTION__, DHD_MAX_STA)); goto fail; } #ifndef BCMDBUS /* Set up the watchdog timer */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 15, 0)) timer_setup(&dhd->timer, dhd_watchdog, 0); #else init_timer(&dhd->timer); dhd->timer.data = (ulong)dhd; dhd->timer.function = dhd_watchdog; #endif dhd->default_wd_interval = dhd_watchdog_ms; if (dhd_watchdog_prio >= 0) { /* Initialize watchdog thread */ PROC_START(dhd_watchdog_thread, dhd, &dhd->thr_wdt_ctl, 0, "dhd_watchdog_thread"); } else { dhd->thr_wdt_ctl.thr_pid = -1; } #ifdef DEBUGGER debugger_init((void *) bus); #endif /* Set up the bottom half handler */ if (dhd_dpc_prio >= 0) { /* Initialize DPC thread */ PROC_START(dhd_dpc_thread, dhd, &dhd->thr_dpc_ctl, 0, "dhd_dpc"); } else { /* use tasklet for dpc */ tasklet_init(&dhd->tasklet, dhd_dpc, (ulong)dhd); dhd->thr_dpc_ctl.thr_pid = -1; } if (dhd->rxthread_enabled) { bzero(&dhd->pub.skbbuf[0], sizeof(void *) * MAXSKBPEND); /* Initialize RXF thread */ PROC_START(dhd_rxf_thread, dhd, &dhd->thr_rxf_ctl, 0, "dhd_rxf"); } #endif /* BCMDBUS */ dhd_state |= DHD_ATTACH_STATE_THREADS_CREATED; #if defined(CONFIG_PM_SLEEP) if (!dhd_pm_notifier_registered) { dhd_pm_notifier_registered = TRUE; dhd->pm_notifier.notifier_call = dhd_pm_callback; dhd->pm_notifier.priority = 10; register_pm_notifier(&dhd->pm_notifier); } #endif /* CONFIG_PM_SLEEP */ #if defined(CONFIG_HAS_EARLYSUSPEND) && defined(DHD_USE_EARLYSUSPEND) dhd->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN + 20; dhd->early_suspend.suspend = dhd_early_suspend; dhd->early_suspend.resume = dhd_late_resume; register_early_suspend(&dhd->early_suspend); dhd_state |= DHD_ATTACH_STATE_EARLYSUSPEND_DONE; #endif /* CONFIG_HAS_EARLYSUSPEND && DHD_USE_EARLYSUSPEND */ #ifdef ARP_OFFLOAD_SUPPORT dhd->pend_ipaddr = 0; if (!dhd_inetaddr_notifier_registered) { dhd_inetaddr_notifier_registered = TRUE; register_inetaddr_notifier(&dhd_inetaddr_notifier); } #endif /* ARP_OFFLOAD_SUPPORT */ #if defined(CONFIG_IPV6) if (!dhd_inet6addr_notifier_registered) { dhd_inet6addr_notifier_registered = TRUE; register_inet6addr_notifier(&dhd_inet6addr_notifier); } #endif /* OEM_ANDROID && CONFIG_IPV6 */ dhd->dhd_deferred_wq = dhd_deferred_work_init((void *)dhd); #ifdef DEBUG_CPU_FREQ dhd->new_freq = alloc_percpu(int); dhd->freq_trans.notifier_call = dhd_cpufreq_notifier; cpufreq_register_notifier(&dhd->freq_trans, CPUFREQ_TRANSITION_NOTIFIER); #endif #ifdef DHDTCPACK_SUPPRESS #ifdef BCMSDIO dhd_tcpack_suppress_set(&dhd->pub, TCPACK_SUP_DELAYTX); #elif defined(BCMPCIE) dhd_tcpack_suppress_set(&dhd->pub, TCPACK_SUP_HOLD); #else dhd_tcpack_suppress_set(&dhd->pub, TCPACK_SUP_OFF); #endif /* BCMSDIO */ #endif /* DHDTCPACK_SUPPRESS */ #if defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) #if defined(BCMDBUS) sema_init(&dhd->fw_download_lock, 0); dhd->fw_download_task = kthread_run(fw_download_thread_func, dhd, "fwdl-thread"); #endif /* BCMDBUS */ #endif /* defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) */ dhd_state |= DHD_ATTACH_STATE_DONE; dhd->dhd_state = dhd_state; dhd_found++; #ifdef DHD_DEBUG_PAGEALLOC register_page_corrupt_cb(dhd_page_corrupt_cb, &dhd->pub); #endif /* DHD_DEBUG_PAGEALLOC */ #if defined(DHD_LB) DHD_ERROR(("DHD LOAD BALANCING Enabled\n")); dhd_lb_set_default_cpus(dhd); /* Initialize the CPU Masks */ if (dhd_cpumasks_init(dhd) == 0) { /* Now we have the current CPU maps, run through candidacy */ dhd_select_cpu_candidacy(dhd); /* * If we are able to initialize CPU masks, lets register to the * CPU Hotplug framework to change the CPU for each job dynamically * using candidacy algorithm. */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0)) dhd_cpuhp_init(osh, dhd); #else dhd->cpu_notifier.notifier_call = dhd_cpu_callback; register_cpu_notifier(&dhd->cpu_notifier); /* Register a callback */ #endif } else { /* * We are unable to initialize CPU masks, so candidacy algorithm * won't run, but still Load Balancing will be honoured based * on the CPUs allocated for a given job statically during init */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0)) #else dhd->cpu_notifier.notifier_call = NULL; DHD_ERROR(("%s(): dhd_cpumasks_init failed CPUs for JOB would be static\n", __FUNCTION__)); #endif } DHD_LB_STATS_INIT(&dhd->pub); /* Initialize the Load Balancing Tasklets and Napi object */ #if defined(DHD_LB_TXC) tasklet_init(&dhd->tx_compl_tasklet, dhd_lb_tx_compl_handler, (ulong)(&dhd->pub)); INIT_WORK(&dhd->tx_compl_dispatcher_work, dhd_tx_compl_dispatcher_fn); DHD_INFO(("%s load balance init tx_compl_tasklet\n", __FUNCTION__)); #endif /* DHD_LB_TXC */ #if defined(DHD_LB_RXC) tasklet_init(&dhd->rx_compl_tasklet, dhd_lb_rx_compl_handler, (ulong)(&dhd->pub)); INIT_WORK(&dhd->rx_compl_dispatcher_work, dhd_rx_compl_dispatcher_fn); DHD_INFO(("%s load balance init rx_compl_tasklet\n", __FUNCTION__)); #endif /* DHD_LB_RXC */ #if defined(DHD_LB_RXP) __skb_queue_head_init(&dhd->rx_pend_queue); skb_queue_head_init(&dhd->rx_napi_queue); /* Initialize the work that dispatches NAPI job to a given core */ INIT_WORK(&dhd->rx_napi_dispatcher_work, dhd_rx_napi_dispatcher_fn); DHD_INFO(("%s load balance init rx_napi_queue\n", __FUNCTION__)); #endif /* DHD_LB_RXP */ #endif /* DHD_LB */ return &dhd->pub; fail: if (dhd_state >= DHD_ATTACH_STATE_DHD_ALLOC) { DHD_TRACE(("%s: Calling dhd_detach dhd_state 0x%x &dhd->pub %p\n", __FUNCTION__, dhd_state, &dhd->pub)); dhd->dhd_state = dhd_state; dhd_detach(&dhd->pub); dhd_free(&dhd->pub); } return NULL; } int dhd_get_fw_mode(dhd_info_t *dhdinfo) { if (strstr(dhdinfo->fw_path, "_apsta") != NULL) return DHD_FLAG_HOSTAP_MODE; if (strstr(dhdinfo->fw_path, "_p2p") != NULL) return DHD_FLAG_P2P_MODE; if (strstr(dhdinfo->fw_path, "_ibss") != NULL) return DHD_FLAG_IBSS_MODE; if (strstr(dhdinfo->fw_path, "_mfg") != NULL) return DHD_FLAG_MFG_MODE; return DHD_FLAG_STA_MODE; } #ifndef BCMDBUS int cis_chipvendor = 0; unsigned short cis_device = 0; char fw_path[1024] = {0}; char nv_path[1024] = {0}; #define DEFAULT_BCMDHD_FW_PATH "/vendor/etc/firmware/" #define DEFAULT_BCMDHD_NVRAM_PATH "/vendor/etc/firmware/" #define FW_CYW43364 "fw_cyw43364.bin" #define FW_CYW43438 "fw_cyw43438.bin" #define FW_CYW43455 "fw_cyw43455.bin" #define FW_CYW4354 "fw_cyw4354.bin" #define NVRAM_CYW43364 "nvram_azw432.txt" #define NVRAM_CYW43438 "nvram_azw372.txt" #define NVRAM_CYW43455 "nvram_azw256.txt" #define NVRAM_CYW4354 "nvram_azw235.txt" bool dhd_update_fw_nv_path(dhd_info_t *dhdinfo) { int fw_len; int nv_len; const char *fw = NULL; const char *nv = NULL; wifi_adapter_info_t *adapter = dhdinfo->adapter; /* Update firmware and nvram path. The path may be from adapter info or module parameter * The path from adapter info is used for initialization only (as it won't change). * * The firmware_path/nvram_path module parameter may be changed by the system at run * time. When it changes we need to copy it to dhdinfo->fw_path. Also Android private * command may change dhdinfo->fw_path. As such we need to clear the path info in * module parameter after it is copied. We won't update the path until the module parameter * is changed again (first character is not '\0') */ /* set default firmware and nvram path for built-in type driver */ if (!dhd_download_fw_on_driverload) { #ifdef CONFIG_BCMDHD_FW_PATH fw = CONFIG_BCMDHD_FW_PATH; #endif /* CONFIG_BCMDHD_FW_PATH */ #ifdef CONFIG_BCMDHD_NVRAM_PATH nv = CONFIG_BCMDHD_NVRAM_PATH; #endif /* CONFIG_BCMDHD_NVRAM_PATH */ } /* check if we need to initialize the path */ if (dhdinfo->fw_path[0] == '\0') { if (adapter && adapter->fw_path && adapter->fw_path[0] != '\0') fw = adapter->fw_path; } if (dhdinfo->nv_path[0] == '\0') { if (adapter && adapter->nv_path && adapter->nv_path[0] != '\0') nv = adapter->nv_path; } /* Use module parameter if it is valid, EVEN IF the path has not been initialized * * TODO: need a solution for multi-chip, can't use the same firmware for all chips */ if (firmware_path[0] != '\0') fw = firmware_path; if (nvram_path[0] != '\0') nv = nvram_path; if (cis_device == BCM43455_CHIP_ID && cis_chipvendor == 0x81) { sprintf(fw_path, "%s%s", DEFAULT_BCMDHD_FW_PATH, FW_CYW43455); sprintf(nv_path, "%s%s", DEFAULT_BCMDHD_NVRAM_PATH, NVRAM_CYW43455); DHD_ERROR(("Adding CYW43455 firmware and NVRAM path by CIS\n" "\tfirmware path: %s\n" "\tNVRAM path: %s\n", fw_path, nv_path)); fw = fw_path; nv = nv_path; } else if (cis_device == BCM43430_CHIP_ID) { if (cis_chipvendor == 0x81) { sprintf(fw_path, "%s%s", DEFAULT_BCMDHD_FW_PATH, FW_CYW43438); sprintf(nv_path, "%s%s", DEFAULT_BCMDHD_NVRAM_PATH, NVRAM_CYW43438); DHD_ERROR(("Adding CYW43438 firmware and NVRAM path by CIS\n" "\tfirmware path: %s\n" "\tNVRAM path: %s\n", fw_path, nv_path)); fw = fw_path; nv = nv_path; } else { sprintf(fw_path, "%s%s", DEFAULT_BCMDHD_FW_PATH, FW_CYW43364); sprintf(nv_path, "%s%s", DEFAULT_BCMDHD_NVRAM_PATH, NVRAM_CYW43364); DHD_ERROR(("Adding CYW43364 firmware and NVRAM path by CIS\n" "\tfirmware path: %s\n" "\tNVRAM path: %s\n", fw_path, nv_path)); fw = fw_path; nv = nv_path; } } else if (cis_device == BCM4354_CHIP_ID) { sprintf(fw_path, "%s%s", DEFAULT_BCMDHD_FW_PATH, FW_CYW4354); sprintf(nv_path, "%s%s", DEFAULT_BCMDHD_NVRAM_PATH, NVRAM_CYW4354); DHD_ERROR(("Adding CYW4354 firmware and NVRAM path by CIS\n" "\tfirmware path: %s\n" "\tNVRAM path: %s\n", fw_path, nv_path)); fw = fw_path; nv = nv_path; } if (fw && fw[0] != '\0') { fw_len = strlen(fw); if (fw_len >= sizeof(dhdinfo->fw_path)) { DHD_ERROR(("fw path len exceeds max len of dhdinfo->fw_path\n")); return FALSE; } strncpy(dhdinfo->fw_path, fw, sizeof(dhdinfo->fw_path)); if (dhdinfo->fw_path[fw_len-1] == '\n') dhdinfo->fw_path[fw_len-1] = '\0'; } if (nv && nv[0] != '\0') { nv_len = strlen(nv); if (nv_len >= sizeof(dhdinfo->nv_path)) { DHD_ERROR(("nvram path len exceeds max len of dhdinfo->nv_path\n")); return FALSE; } strncpy(dhdinfo->nv_path, nv, sizeof(dhdinfo->nv_path)); if (dhdinfo->nv_path[nv_len-1] == '\n') dhdinfo->nv_path[nv_len-1] = '\0'; } /* clear the path in module parameter */ firmware_path[0] = '\0'; nvram_path[0] = '\0'; #ifndef BCMEMBEDIMAGE /* fw_path and nv_path are not mandatory for BCMEMBEDIMAGE */ if (dhdinfo->fw_path[0] == '\0') { DHD_ERROR(("firmware path not found\n")); return FALSE; } if (dhdinfo->nv_path[0] == '\0') { DHD_ERROR(("nvram path not found\n")); return FALSE; } #endif /* BCMEMBEDIMAGE */ return TRUE; } int dhd_bus_start(dhd_pub_t *dhdp) { int ret = -1; dhd_info_t *dhd = (dhd_info_t*)dhdp->info; unsigned long flags; ASSERT(dhd); DHD_TRACE(("Enter %s:\n", __FUNCTION__)); DHD_PERIM_LOCK(dhdp); /* try to download image and nvram to the dongle */ if (dhd->pub.busstate == DHD_BUS_DOWN && dhd_update_fw_nv_path(dhd)) { DHD_INFO(("%s download fw %s, nv %s\n", __FUNCTION__, dhd->fw_path, dhd->nv_path)); ret = dhd_bus_download_firmware(dhd->pub.bus, dhd->pub.osh, dhd->fw_path, dhd->nv_path); if (ret < 0) { DHD_ERROR(("%s: failed to download firmware %s\n", __FUNCTION__, dhd->fw_path)); DHD_PERIM_UNLOCK(dhdp); return ret; } /* Indicate FW Download has succeeded */ dhd_fw_downloaded = TRUE; } if (dhd->pub.busstate != DHD_BUS_LOAD) { DHD_PERIM_UNLOCK(dhdp); return -ENETDOWN; } dhd_os_sdlock(dhdp); /* Start the watchdog timer */ dhd->pub.tickcnt = 0; dhd_os_wd_timer(&dhd->pub, dhd_watchdog_ms); /* Bring up the bus */ if ((ret = dhd_bus_init(&dhd->pub, FALSE)) != 0) { DHD_ERROR(("%s, dhd_bus_init failed %d\n", __FUNCTION__, ret)); dhd_os_sdunlock(dhdp); DHD_PERIM_UNLOCK(dhdp); return ret; } #ifdef DHD_ULP dhd_ulp_set_ulp_state(dhdp, DHD_ULP_DISABLED); #endif /* DHD_ULP */ #if defined(OOB_INTR_ONLY) || defined(BCMPCIE_OOB_HOST_WAKE) #if defined(BCMPCIE_OOB_HOST_WAKE) dhd_os_sdunlock(dhdp); #endif /* BCMPCIE_OOB_HOST_WAKE */ /* Host registration for OOB interrupt */ if (dhd_bus_oob_intr_register(dhdp)) { /* deactivate timer and wait for the handler to finish */ #if !defined(BCMPCIE_OOB_HOST_WAKE) DHD_GENERAL_LOCK(&dhd->pub, flags); dhd->wd_timer_valid = FALSE; DHD_GENERAL_UNLOCK(&dhd->pub, flags); del_timer_sync(&dhd->timer); dhd_os_sdunlock(dhdp); #endif /* !BCMPCIE_OOB_HOST_WAKE */ DHD_PERIM_UNLOCK(dhdp); DHD_ERROR(("%s Host failed to register for OOB\n", __FUNCTION__)); return -ENODEV; } #if defined(BCMPCIE_OOB_HOST_WAKE) dhd_os_sdlock(dhdp); dhd_bus_oob_intr_set(dhdp, TRUE); #else /* Enable oob at firmware */ dhd_enable_oob_intr(dhd->pub.bus, TRUE); #endif /* BCMPCIE_OOB_HOST_WAKE */ #endif #ifdef PCIE_FULL_DONGLE { /* max_h2d_rings includes H2D common rings */ uint32 max_h2d_rings = dhd_bus_max_h2d_queues(dhd->pub.bus); DHD_ERROR(("%s: Initializing %u h2drings\n", __FUNCTION__, max_h2d_rings)); if ((ret = dhd_flow_rings_init(&dhd->pub, max_h2d_rings)) != BCME_OK) { dhd_os_sdunlock(dhdp); DHD_PERIM_UNLOCK(dhdp); return ret; } } #endif /* PCIE_FULL_DONGLE */ /* Do protocol initialization necessary for IOCTL/IOVAR */ #ifdef PCIE_FULL_DONGLE dhd_os_sdunlock(dhdp); #endif /* PCIE_FULL_DONGLE */ ret = dhd_prot_init(&dhd->pub); if (unlikely(ret) != BCME_OK) { DHD_PERIM_UNLOCK(dhdp); return ret; } #ifdef PCIE_FULL_DONGLE dhd_os_sdlock(dhdp); #endif /* PCIE_FULL_DONGLE */ /* If bus is not ready, can't come up */ if (dhd->pub.busstate != DHD_BUS_DATA) { DHD_GENERAL_LOCK(&dhd->pub, flags); dhd->wd_timer_valid = FALSE; DHD_GENERAL_UNLOCK(&dhd->pub, flags); del_timer_sync(&dhd->timer); DHD_ERROR(("%s failed bus is not ready\n", __FUNCTION__)); dhd_os_sdunlock(dhdp); DHD_PERIM_UNLOCK(dhdp); return -ENODEV; } dhd_os_sdunlock(dhdp); #ifdef HOST_FLAG { int enable = 0; if (dhd_wl_ioctl_set_intiovar(dhdp, "hostsleep", enable, WLC_SET_VAR, TRUE, 0)) { DHD_ERROR(("%s: Failed to set hostsleep 0\n", __FUNCTION__)); } } #endif /* HOST_FLAG */ /* Bus is ready, query any dongle information */ if ((ret = dhd_sync_with_dongle(&dhd->pub)) < 0) { DHD_GENERAL_LOCK(&dhd->pub, flags); dhd->wd_timer_valid = FALSE; DHD_GENERAL_UNLOCK(&dhd->pub, flags); del_timer_sync(&dhd->timer); DHD_ERROR(("%s failed to sync with dongle\n", __FUNCTION__)); DHD_PERIM_UNLOCK(dhdp); return ret; } #ifdef ARP_OFFLOAD_SUPPORT if (dhd->pend_ipaddr) { #ifdef AOE_IP_ALIAS_SUPPORT aoe_update_host_ipv4_table(&dhd->pub, dhd->pend_ipaddr, TRUE, 0); #endif /* AOE_IP_ALIAS_SUPPORT */ dhd->pend_ipaddr = 0; } #endif /* ARP_OFFLOAD_SUPPORT */ #if defined(TRAFFIC_MGMT_DWM) bzero(&dhd->pub.dhd_tm_dwm_tbl, sizeof(dhd_trf_mgmt_dwm_tbl_t)); #endif DHD_PERIM_UNLOCK(dhdp); return 0; } #endif /* BCMDBUS */ #ifdef WLTDLS int _dhd_tdls_enable(dhd_pub_t *dhd, bool tdls_on, bool auto_on, struct ether_addr *mac) { uint32 tdls = tdls_on; int ret = 0; uint32 tdls_auto_op = 0; uint32 tdls_idle_time = CUSTOM_TDLS_IDLE_MODE_SETTING; int32 tdls_rssi_high = CUSTOM_TDLS_RSSI_THRESHOLD_HIGH; int32 tdls_rssi_low = CUSTOM_TDLS_RSSI_THRESHOLD_LOW; BCM_REFERENCE(mac); if (!FW_SUPPORTED(dhd, tdls)) return BCME_ERROR; if (dhd->tdls_enable == tdls_on) goto auto_mode; ret = dhd_iovar(dhd, 0, "tdls_enable", (char *)&tdls, sizeof(tdls), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: tdls %d failed %d\n", __FUNCTION__, tdls, ret)); goto exit; } dhd->tdls_enable = tdls_on; auto_mode: tdls_auto_op = auto_on; ret = dhd_iovar(dhd, 0, "tdls_auto_op", (char *)&tdls_auto_op, sizeof(tdls_auto_op), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: tdls_auto_op failed %d\n", __FUNCTION__, ret)); goto exit; } if (tdls_auto_op) { ret = dhd_iovar(dhd, 0, "tdls_idle_time", (char *)&tdls_idle_time, sizeof(tdls_idle_time), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: tdls_idle_time failed %d\n", __FUNCTION__, ret)); goto exit; } ret = dhd_iovar(dhd, 0, "tdls_rssi_high", (char *)&tdls_rssi_high, sizeof(tdls_rssi_high), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: tdls_rssi_high failed %d\n", __FUNCTION__, ret)); goto exit; } ret = dhd_iovar(dhd, 0, "tdls_rssi_low", (char *)&tdls_rssi_low, sizeof(tdls_rssi_low), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: tdls_rssi_low failed %d\n", __FUNCTION__, ret)); goto exit; } } exit: return ret; } int dhd_tdls_enable(struct net_device *dev, bool tdls_on, bool auto_on, struct ether_addr *mac) { dhd_info_t *dhd = DHD_DEV_INFO(dev); int ret = 0; if (dhd) ret = _dhd_tdls_enable(&dhd->pub, tdls_on, auto_on, mac); else ret = BCME_ERROR; return ret; } int dhd_tdls_set_mode(dhd_pub_t *dhd, bool wfd_mode) { int ret = 0; bool auto_on = false; uint32 mode = wfd_mode; auto_on = false; ret = _dhd_tdls_enable(dhd, false, auto_on, NULL); if (ret < 0) { DHD_ERROR(("Disable tdls_auto_op failed. %d\n", ret)); return ret; } ret = dhd_iovar(dhd, 0, "tdls_wfd_mode", (char *)&mode, sizeof(mode), NULL, 0, TRUE); if ((ret < 0) && (ret != BCME_UNSUPPORTED)) { DHD_ERROR(("%s: tdls_wfd_mode faile_wfd_mode %d\n", __FUNCTION__, ret)); return ret; } ret = _dhd_tdls_enable(dhd, true, auto_on, NULL); if (ret < 0) { DHD_ERROR(("enable tdls_auto_op failed. %d\n", ret)); return ret; } dhd->tdls_mode = mode; return ret; } #ifdef PCIE_FULL_DONGLE void dhd_tdls_update_peer_info(struct net_device *dev, bool connect, uint8 *da) { dhd_info_t *dhd = DHD_DEV_INFO(dev); dhd_pub_t *dhdp = (dhd_pub_t *)&dhd->pub; tdls_peer_node_t *cur = dhdp->peer_tbl.node; tdls_peer_node_t *new = NULL, *prev = NULL; dhd_if_t *dhdif; uint8 sa[ETHER_ADDR_LEN]; int ifidx = dhd_net2idx(dhd, dev); if (ifidx == DHD_BAD_IF) return; dhdif = dhd->iflist[ifidx]; memcpy(sa, dhdif->mac_addr, ETHER_ADDR_LEN); if (connect) { while (cur != NULL) { if (!memcmp(da, cur->addr, ETHER_ADDR_LEN)) { DHD_ERROR(("%s: TDLS Peer exist already %d\n", __FUNCTION__, __LINE__)); return; } cur = cur->next; } new = MALLOC(dhdp->osh, sizeof(tdls_peer_node_t)); if (new == NULL) { DHD_ERROR(("%s: Failed to allocate memory\n", __FUNCTION__)); return; } memcpy(new->addr, da, ETHER_ADDR_LEN); new->next = dhdp->peer_tbl.node; dhdp->peer_tbl.node = new; dhdp->peer_tbl.tdls_peer_count++; } else { while (cur != NULL) { if (!memcmp(da, cur->addr, ETHER_ADDR_LEN)) { dhd_flow_rings_delete_for_peer(dhdp, ifidx, da); if (prev) prev->next = cur->next; else dhdp->peer_tbl.node = cur->next; MFREE(dhdp->osh, cur, sizeof(tdls_peer_node_t)); dhdp->peer_tbl.tdls_peer_count--; return; } prev = cur; cur = cur->next; } DHD_ERROR(("%s: TDLS Peer Entry Not found\n", __FUNCTION__)); } } #endif /* PCIE_FULL_DONGLE */ #endif /* BCMDBUS */ bool dhd_is_concurrent_mode(dhd_pub_t *dhd) { if (!dhd) return FALSE; if (dhd->op_mode & DHD_FLAG_CONCURR_MULTI_CHAN_MODE) return TRUE; else if ((dhd->op_mode & DHD_FLAG_CONCURR_SINGLE_CHAN_MODE) == DHD_FLAG_CONCURR_SINGLE_CHAN_MODE) return TRUE; else return FALSE; } #if !defined(AP) && defined(WLP2P) /* From Android JerryBean release, the concurrent mode is enabled by default and the firmware * name would be fw_bcmdhd.bin. So we need to determine whether P2P is enabled in the STA * firmware and accordingly enable concurrent mode (Apply P2P settings). SoftAP firmware * would still be named as fw_bcmdhd_apsta. */ uint32 dhd_get_concurrent_capabilites(dhd_pub_t *dhd) { int32 ret = 0; char buf[WLC_IOCTL_SMLEN]; bool mchan_supported = FALSE; /* if dhd->op_mode is already set for HOSTAP and Manufacturing * test mode, that means we only will use the mode as it is */ if (dhd->op_mode & (DHD_FLAG_HOSTAP_MODE | DHD_FLAG_MFG_MODE)) return 0; if (FW_SUPPORTED(dhd, vsdb)) { mchan_supported = TRUE; } if (!FW_SUPPORTED(dhd, p2p)) { DHD_TRACE(("Chip does not support p2p\n")); return 0; } else { /* Chip supports p2p but ensure that p2p is really implemented in firmware or not */ memset(buf, 0, sizeof(buf)); ret = dhd_iovar(dhd, 0, "p2p", NULL, 0, (char *)&buf, sizeof(buf), FALSE); if (ret < 0) { DHD_ERROR(("%s: Get P2P failed (error=%d)\n", __FUNCTION__, ret)); return 0; } else { if (buf[0] == 1) { /* By default, chip supports single chan concurrency, * now lets check for mchan */ ret = DHD_FLAG_CONCURR_SINGLE_CHAN_MODE; if (mchan_supported) ret |= DHD_FLAG_CONCURR_MULTI_CHAN_MODE; if (FW_SUPPORTED(dhd, rsdb)) { ret |= DHD_FLAG_RSDB_MODE; } if (FW_SUPPORTED(dhd, mp2p)) { ret |= DHD_FLAG_MP2P_MODE; } #if defined(WL_ENABLE_P2P_IF) || defined(WL_CFG80211_P2P_DEV_IF) /* For customer_hw4, although ICS, * we still support concurrent mode */ return ret; #else return 0; #endif } } } return 0; } #endif #ifdef SUPPORT_AP_POWERSAVE #define RXCHAIN_PWRSAVE_PPS 10 #define RXCHAIN_PWRSAVE_QUIET_TIME 10 #define RXCHAIN_PWRSAVE_STAS_ASSOC_CHECK 0 int dhd_set_ap_powersave(dhd_pub_t *dhdp, int ifidx, int enable) { char iovbuf[128]; int32 pps = RXCHAIN_PWRSAVE_PPS; int32 quiet_time = RXCHAIN_PWRSAVE_QUIET_TIME; int32 stas_assoc_check = RXCHAIN_PWRSAVE_STAS_ASSOC_CHECK; int ret; if (enable) { ret = dhd_iovar(dhdp, 0, "rxchain_pwrsave_enable", (char *)&enable, sizeof(enable), NULL, 0, TRUE); if (ret != BCME_OK) { DHD_ERROR(("Failed to enable AP power save")); } ret = dhd_iovar(dhdp, 0, "rxchain_pwrsave_pps", (char *)&pps, sizeof(pps), NULL, 0, TRUE); if (ret != BCME_OK) { DHD_ERROR(("Failed to set pps")); } ret = dhd_iovar(dhdp, 0, "rxchain_pwrsave_quiet_time", (char *)&quiet_time, sizeof(quiet_time), NULL, 0, TRUE); if (ret != BCME_OK) { DHD_ERROR(("Failed to set quiet time")); } ret = dhd_iovar(dhdp., 0, "rxchain_pwrsave_stas_assoc_check", (char *)&stas_assoc_check, sizeof(stas_assoc_check), NULL, 0, TRUE); if (ret != BCME_OK) { DHD_ERROR(("Failed to set stas assoc check")); } } else { ret = dhd_iovar(dhdp, 0, "rxchain_pwrsave_enable", (char *)&enable, sizeof(enable), NULL, 0, TRUE); if (ret != BCME_OK) { DHD_ERROR(("Failed to disable AP power save")); } } return 0; } #endif /* SUPPORT_AP_POWERSAVE */ int dhd_preinit_ioctls(dhd_pub_t *dhd) { int ret = 0; char eventmask[WL_EVENTING_MASK_LEN]; char iovbuf[WL_EVENTING_MASK_LEN + 12]; /* Room for "event_msgs" + '\0' + bitvec */ uint32 buf_key_b4_m4 = 1; uint8 msglen; eventmsgs_ext_t *eventmask_msg = NULL; char* iov_buf = NULL; int ret2 = 0; #if defined(CUSTOM_AMPDU_BA_WSIZE) uint32 ampdu_ba_wsize = 0; #endif #if defined(CUSTOM_AMPDU_MPDU) int32 ampdu_mpdu = 0; #endif #if defined(CUSTOM_AMPDU_RELEASE) int32 ampdu_release = 0; #endif #if defined(CUSTOM_AMSDU_AGGSF) int32 amsdu_aggsf = 0; #endif #if defined(BCMSDIO) || defined(BCMDBUS) #ifdef PROP_TXSTATUS int wlfc_enable = TRUE; #ifndef DISABLE_11N uint32 hostreorder = 1; #endif /* DISABLE_11N */ #endif /* PROP_TXSTATUS */ #endif /* defined(BCMSDIO) || defined(BCMDBUS) */ #ifndef PCIE_FULL_DONGLE uint32 wl_ap_isolate; #endif /* PCIE_FULL_DONGLE */ #if defined(BCMSDIO) || defined(DISABLE_FRAMEBURST) /* default frame burst enabled for PCIe, disabled for SDIO dongles and media targets */ uint32 frameburst = 0; #else uint32 frameburst = 1; #endif /* BCMSDIO */ #ifdef DHD_ENABLE_LPC uint32 lpc = 1; #endif /* DHD_ENABLE_LPC */ uint power_mode = PM_FAST; #if defined(BCMSDIO) uint32 dongle_align = DHD_SDALIGN; uint32 glom = CUSTOM_GLOM_SETTING; #endif /* defined(BCMSDIO) */ #if defined(CUSTOMER_HW2) && defined(USE_WL_CREDALL) uint32 credall = 1; #endif #if defined(VSDB) || defined(ROAM_ENABLE) uint bcn_timeout = CUSTOM_BCN_TIMEOUT; #else uint bcn_timeout = 4; #endif uint retry_max = CUSTOM_ASSOC_RETRY_MAX; #if defined(ARP_OFFLOAD_SUPPORT) int arpoe = 1; #endif int scan_assoc_time = DHD_SCAN_ASSOC_ACTIVE_TIME; int scan_unassoc_time = DHD_SCAN_UNASSOC_ACTIVE_TIME; int scan_passive_time = DHD_SCAN_PASSIVE_TIME; char buf[WLC_IOCTL_SMLEN]; char *ptr; uint32 listen_interval = CUSTOM_LISTEN_INTERVAL; /* Default Listen Interval in Beacons */ #ifdef ROAM_ENABLE uint roamvar = 0; int roam_trigger[2] = {CUSTOM_ROAM_TRIGGER_SETTING, WLC_BAND_ALL}; int roam_scan_period[2] = {10, WLC_BAND_ALL}; int roam_delta[2] = {CUSTOM_ROAM_DELTA_SETTING, WLC_BAND_ALL}; #ifdef FULL_ROAMING_SCAN_PERIOD_60_SEC int roam_fullscan_period = 60; #else /* FULL_ROAMING_SCAN_PERIOD_60_SEC */ int roam_fullscan_period = 120; #endif /* FULL_ROAMING_SCAN_PERIOD_60_SEC */ #else #ifdef DISABLE_BUILTIN_ROAM uint roamvar = 1; #endif /* DISABLE_BUILTIN_ROAM */ #endif /* ROAM_ENABLE */ #if defined(SOFTAP) uint dtim = 1; #endif #if (defined(AP) && !defined(WLP2P)) || (!defined(AP) && defined(WL_CFG80211)) uint32 mpc = 0; /* Turn MPC off for AP/APSTA mode */ struct ether_addr p2p_ea; #endif #ifdef SOFTAP_UAPSD_OFF uint32 wme_apsd = 0; #endif /* SOFTAP_UAPSD_OFF */ #if (defined(AP) || defined(WLP2P)) && !defined(SOFTAP_AND_GC) uint32 apsta = 1; /* Enable APSTA mode */ #elif defined(SOFTAP_AND_GC) uint32 apsta = 0; int ap_mode = 1; #endif /* (defined(AP) || defined(WLP2P)) && !defined(SOFTAP_AND_GC) */ #ifdef GET_CUSTOM_MAC_ENABLE struct ether_addr ea_addr; #endif /* GET_CUSTOM_MAC_ENABLE */ #ifdef DISABLE_11N uint32 nmode = 0; #endif /* DISABLE_11N */ #ifdef USE_WL_TXBF uint32 txbf = 1; #endif /* USE_WL_TXBF */ #ifdef DISABLE_TXBFR uint32 txbf_bfr_cap = 0; #endif /* DISABLE_TXBFR */ #if defined(PROP_TXSTATUS) #endif /* PROP_TXSTATUS */ #ifdef CUSTOM_PSPRETEND_THR uint32 pspretend_thr = CUSTOM_PSPRETEND_THR; #endif uint32 rsdb_mode = 0; #ifdef PKT_FILTER_SUPPORT dhd_pkt_filter_enable = TRUE; #endif /* PKT_FILTER_SUPPORT */ #ifdef WLTDLS dhd->tdls_enable = FALSE; dhd_tdls_set_mode(dhd, false); #endif /* WLTDLS */ dhd->suspend_bcn_li_dtim = CUSTOM_SUSPEND_BCN_LI_DTIM; DHD_TRACE(("Enter %s\n", __FUNCTION__)); dhd->op_mode = 0; if ((!op_mode && dhd_get_fw_mode(dhd->info) == DHD_FLAG_MFG_MODE) || (op_mode == DHD_FLAG_MFG_MODE)) { /* Check and adjust IOCTL response timeout for Manufactring firmware */ dhd_os_set_ioctl_resp_timeout(MFG_IOCTL_RESP_TIMEOUT); DHD_ERROR(("%s : Set IOCTL response time for Manufactring Firmware\n", __FUNCTION__)); } else { dhd_os_set_ioctl_resp_timeout(IOCTL_RESP_TIMEOUT); DHD_INFO(("%s : Set IOCTL response time.\n", __FUNCTION__)); } #ifdef GET_CUSTOM_MAC_ENABLE ret = wifi_platform_get_mac_addr(dhd->info->adapter, ea_addr.octet); if (!ret) { ret = dhd_iovar(dhd, 0, "cur_etheraddr", (char *)&ea_addr, ETHER_ADDR_LEN, NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: can't set MAC address , error=%d\n", __FUNCTION__, ret)); ret = BCME_NOTUP; goto done; } memcpy(dhd->mac.octet, ea_addr.octet, ETHER_ADDR_LEN); } else { #endif /* GET_CUSTOM_MAC_ENABLE */ /* Get the default device MAC address directly from firmware */ ret = dhd_iovar(dhd, 0, "cur_etheraddr", NULL, 0, (char *)&buf, sizeof(buf), FALSE); if (ret < 0) { DHD_ERROR(("%s: can't get MAC address , error=%d\n", __FUNCTION__, ret)); ret = BCME_NOTUP; goto done; } /* Update public MAC address after reading from Firmware */ memcpy(dhd->mac.octet, buf, ETHER_ADDR_LEN); #ifdef GET_CUSTOM_MAC_ENABLE } #endif /* GET_CUSTOM_MAC_ENABLE */ /* get a capabilities from firmware */ { uint32 cap_buf_size = sizeof(dhd->fw_capabilities); memset(dhd->fw_capabilities, 0, cap_buf_size); ret = dhd_iovar(dhd, 0, "cap", NULL, 0, dhd->fw_capabilities, (cap_buf_size - 1), FALSE); if (ret < 0) { DHD_ERROR(("%s: Get Capability failed (error=%d)\n", __FUNCTION__, ret)); return 0; } memmove(&dhd->fw_capabilities[1], dhd->fw_capabilities, (cap_buf_size - 1)); dhd->fw_capabilities[0] = ' '; dhd->fw_capabilities[cap_buf_size - 2] = ' '; dhd->fw_capabilities[cap_buf_size - 1] = '\0'; } if ((!op_mode && dhd_get_fw_mode(dhd->info) == DHD_FLAG_HOSTAP_MODE) || (op_mode == DHD_FLAG_HOSTAP_MODE)) { #ifdef SET_RANDOM_MAC_SOFTAP uint rand_mac; #endif /* SET_RANDOM_MAC_SOFTAP */ dhd->op_mode = DHD_FLAG_HOSTAP_MODE; #if defined(ARP_OFFLOAD_SUPPORT) arpoe = 0; #endif #ifdef PKT_FILTER_SUPPORT dhd_pkt_filter_enable = FALSE; #endif #ifdef SET_RANDOM_MAC_SOFTAP SRANDOM32((uint)jiffies); rand_mac = RANDOM32(); iovbuf[0] = (unsigned char)(vendor_oui >> 16) | 0x02; /* local admin bit */ iovbuf[1] = (unsigned char)(vendor_oui >> 8); iovbuf[2] = (unsigned char)vendor_oui; iovbuf[3] = (unsigned char)(rand_mac & 0x0F) | 0xF0; iovbuf[4] = (unsigned char)(rand_mac >> 8); iovbuf[5] = (unsigned char)(rand_mac >> 16); ret = dhd_iovar(dhd, 0, "cur_etheraddr", (char *)&iovbuf, ETHER_ADDR_LEN, NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: can't set MAC address , error=%d\n", __FUNCTION__, ret)); } else memcpy(dhd->mac.octet, iovbuf, ETHER_ADDR_LEN); #endif /* SET_RANDOM_MAC_SOFTAP */ #if !defined(AP) && defined(WL_CFG80211) /* Turn off MPC in AP mode */ ret = dhd_iovar(dhd, 0, "mpc", (char *)&mpc, sizeof(mpc), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s mpc for HostAPD failed %d\n", __FUNCTION__, ret)); } #endif #ifdef SUPPORT_AP_POWERSAVE dhd_set_ap_powersave(dhd, 0, TRUE); #endif /* SUPPORT_AP_POWERSAVE */ #ifdef SOFTAP_UAPSD_OFF ret = dhd_iovar(dhd, 0, "wme_apsd", (char *)&wme_apsd, sizeof(wme_apsd), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s: set wme_apsd 0 fail (error=%d)\n", __FUNCTION__, ret)); } #endif /* SOFTAP_UAPSD_OFF */ } else if ((!op_mode && dhd_get_fw_mode(dhd->info) == DHD_FLAG_MFG_MODE) || (op_mode == DHD_FLAG_MFG_MODE)) { #if defined(ARP_OFFLOAD_SUPPORT) arpoe = 0; #endif /* ARP_OFFLOAD_SUPPORT */ #ifdef PKT_FILTER_SUPPORT dhd_pkt_filter_enable = FALSE; #endif /* PKT_FILTER_SUPPORT */ dhd->op_mode = DHD_FLAG_MFG_MODE; if (FW_SUPPORTED(dhd, rsdb)) { rsdb_mode = 0; ret = dhd_iovar(dhd, 0, "rsdb_mode", (char *)&rsdb_mode, sizeof(rsdb_mode), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s Disable rsdb_mode is failed ret= %d\n", __FUNCTION__, ret)); } } } else { uint32 concurrent_mode = 0; if ((!op_mode && dhd_get_fw_mode(dhd->info) == DHD_FLAG_P2P_MODE) || (op_mode == DHD_FLAG_P2P_MODE)) { #if defined(ARP_OFFLOAD_SUPPORT) arpoe = 0; #endif #ifdef PKT_FILTER_SUPPORT dhd_pkt_filter_enable = FALSE; #endif dhd->op_mode = DHD_FLAG_P2P_MODE; } else if ((!op_mode && dhd_get_fw_mode(dhd->info) == DHD_FLAG_IBSS_MODE) || (op_mode == DHD_FLAG_IBSS_MODE)) { dhd->op_mode = DHD_FLAG_IBSS_MODE; } else dhd->op_mode = DHD_FLAG_STA_MODE; #if !defined(AP) && defined(WLP2P) if (dhd->op_mode != DHD_FLAG_IBSS_MODE && (concurrent_mode = dhd_get_concurrent_capabilites(dhd))) { #if defined(ARP_OFFLOAD_SUPPORT) arpoe = 1; #endif dhd->op_mode |= concurrent_mode; } /* Check if we are enabling p2p */ if (dhd->op_mode & DHD_FLAG_P2P_MODE) { ret = dhd_iovar(dhd, 0, "apsta", (char *)&apsta, sizeof(apsta), NULL, 0, TRUE); if (ret < 0) DHD_ERROR(("%s APSTA for P2P failed ret= %d\n", __FUNCTION__, ret)); #if defined(SOFTAP_AND_GC) if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_AP, (char *)&ap_mode, sizeof(ap_mode), TRUE, 0)) < 0) { DHD_ERROR(("%s WLC_SET_AP failed %d\n", __FUNCTION__, ret)); } #endif memcpy(&p2p_ea, &dhd->mac, ETHER_ADDR_LEN); ETHER_SET_LOCALADDR(&p2p_ea); ret = dhd_iovar(dhd, 0, "p2p_da_override", (char *)&p2p_ea, sizeof(p2p_ea), NULL, 0, TRUE); if (ret < 0) DHD_ERROR(("%s p2p_da_override ret= %d\n", __FUNCTION__, ret)); else DHD_INFO(("dhd_preinit_ioctls: p2p_da_override succeeded\n")); } #else (void)concurrent_mode; #endif } DHD_ERROR(("Firmware up: op_mode=0x%04x, MAC="MACDBG"\n", dhd->op_mode, MAC2STRDBG(dhd->mac.octet))); #if defined(RXFRAME_THREAD) && defined(RXTHREAD_ONLYSTA) if (dhd->op_mode == DHD_FLAG_HOSTAP_MODE) dhd->info->rxthread_enabled = FALSE; else dhd->info->rxthread_enabled = TRUE; #endif /* Set Country code */ if (dhd->dhd_cspec.ccode[0] != 0) { ret = dhd_iovar(dhd, 0, "country", (char *)&dhd->dhd_cspec, sizeof(wl_country_t), NULL, 0, TRUE); if (ret < 0) DHD_ERROR(("%s: country code setting failed\n", __FUNCTION__)); } /* Set Listen Interval */ ret = dhd_iovar(dhd, 0, "assoc_listen", (char *)&listen_interval, sizeof(listen_interval), NULL, 0, TRUE); if (ret < 0) DHD_ERROR(("%s assoc_listen failed %d\n", __FUNCTION__, ret)); #if defined(ROAM_ENABLE) || defined(DISABLE_BUILTIN_ROAM) /* Disable built-in roaming to allowed ext supplicant to take care of roaming */ dhd_iovar(dhd, 0, "roam_off", (char *)&roamvar, sizeof(roamvar), NULL, 0, TRUE); #endif /* ROAM_ENABLE || DISABLE_BUILTIN_ROAM */ #if defined(ROAM_ENABLE) if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_ROAM_TRIGGER, roam_trigger, sizeof(roam_trigger), TRUE, 0)) < 0) DHD_ERROR(("%s: roam trigger set failed %d\n", __FUNCTION__, ret)); if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_ROAM_SCAN_PERIOD, roam_scan_period, sizeof(roam_scan_period), TRUE, 0)) < 0) DHD_ERROR(("%s: roam scan period set failed %d\n", __FUNCTION__, ret)); if ((dhd_wl_ioctl_cmd(dhd, WLC_SET_ROAM_DELTA, roam_delta, sizeof(roam_delta), TRUE, 0)) < 0) DHD_ERROR(("%s: roam delta set failed %d\n", __FUNCTION__, ret)); if ((ret = dhd_iovar(dhd, 0, "fullroamperiod", (char *)&roam_fullscan_period, sizeof(roam_fullscan_period), NULL, 0, TRUE)) < 0) DHD_ERROR(("%s: roam fullscan period set failed %d\n", __FUNCTION__, ret)); #endif /* ROAM_ENABLE */ #ifdef WLTDLS /* by default TDLS on and auto mode off */ _dhd_tdls_enable(dhd, true, false, NULL); #endif /* WLTDLS */ #ifdef DHD_ENABLE_LPC /* Set lpc 1 */ ret = dhd_iovar(dhd, 0, "lpc", (char *)&lpc, sizeof(lpc), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s Set lpc failed %d\n", __FUNCTION__, ret)); } #endif /* DHD_ENABLE_LPC */ /* Set PowerSave mode */ dhd_wl_ioctl_cmd(dhd, WLC_SET_PM, (char *)&power_mode, sizeof(power_mode), TRUE, 0); #if defined(BCMSDIO) /* Match Host and Dongle rx alignment */ dhd_iovar(dhd, 0, "bus:txglomalign", (char *)&dongle_align, sizeof(dongle_align), NULL, 0, TRUE); #if defined(CUSTOMER_HW2) && defined(USE_WL_CREDALL) /* enable credall to reduce the chance of no bus credit happened. */ dhd_iovar(dhd, 0, "bus:credall", (char *)&credall, sizeof(credall), NULL, 0, TRUE); #endif if (glom != DEFAULT_GLOM_VALUE) { DHD_INFO(("%s set glom=0x%X\n", __FUNCTION__, glom)); dhd_iovar(dhd, 0, "bus:txglom", (char *)&glom, sizeof(glom), NULL, 0, TRUE); } #endif /* defined(BCMSDIO) */ /* Setup timeout if Beacons are lost and roam is off to report link down */ dhd_iovar(dhd, 0, "bcn_timeout", (char *)&bcn_timeout, sizeof(bcn_timeout), NULL, 0, TRUE); /* Setup assoc_retry_max count to reconnect target AP in dongle */ dhd_iovar(dhd, 0, "assoc_retry_max", (char *)&retry_max, sizeof(retry_max), NULL, 0, TRUE); #if defined(AP) && !defined(WLP2P) /* Turn off MPC in AP mode */ dhd_iovar(dhd, 0, "mpc", (char *)&mpc, sizeof(mpc), NULL, 0, TRUE); dhd_iovar(dhd, 0, "apsta", (char *)&apsta, sizeof(apsta), NULL, 0, TRUE); #endif /* defined(AP) && !defined(WLP2P) */ #if defined(SOFTAP) if (ap_fw_loaded == TRUE) { dhd_wl_ioctl_cmd(dhd, WLC_SET_DTIMPRD, (char *)&dtim, sizeof(dtim), TRUE, 0); } #endif #if defined(KEEP_ALIVE) { /* Set Keep Alive : be sure to use FW with -keepalive */ int res; #if defined(SOFTAP) if (ap_fw_loaded == FALSE) #endif if (!(dhd->op_mode & (DHD_FLAG_HOSTAP_MODE | DHD_FLAG_MFG_MODE))) { if ((res = dhd_keep_alive_onoff(dhd)) < 0) DHD_ERROR(("%s set keeplive failed %d\n", __FUNCTION__, res)); } } #endif /* defined(KEEP_ALIVE) */ if ((ret = dhd_apply_default_clm(dhd, clm_path)) < 0) { DHD_ERROR(("%s: CLM set failed. Abort initialization.\n", __FUNCTION__)); goto done; } #ifdef USE_WL_TXBF if ((ret = dhd_iovar(dhd, 0, "txbf", (char *)&txbf, sizeof(txbf), NULL, 0, TRUE)) < 0) { DHD_ERROR(("%s Set txbf failed %d\n", __FUNCTION__, ret)); } #endif /* USE_WL_TXBF */ #ifdef DISABLE_TXBFR bcm_mkiovar("txbf_bfr_cap", (char *)&txbf_bfr_cap, 4, iovbuf, sizeof(iovbuf)); if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0)) < 0) { DHD_ERROR(("%s Clear txbf_bfr_cap failed %d\n", __FUNCTION__, ret)); } #endif /* DISABLE_TXBFR */ #ifdef DISABLE_WL_FRAMEBURST_SOFTAP /* Disable Framebursting for SofAP */ if (dhd->op_mode & DHD_FLAG_HOSTAP_MODE) { frameburst = 0; } #endif /* DISABLE_WL_FRAMEBURST_SOFTAP */ /* Set frameburst to value */ if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_FAKEFRAG, (char *)&frameburst, sizeof(frameburst), TRUE, 0)) < 0) { DHD_INFO(("%s frameburst not supported %d\n", __FUNCTION__, ret)); } #if defined(CUSTOM_AMPDU_BA_WSIZE) /* Set ampdu ba wsize to 64 or 16 */ #ifdef CUSTOM_AMPDU_BA_WSIZE ampdu_ba_wsize = CUSTOM_AMPDU_BA_WSIZE; #endif if (ampdu_ba_wsize != 0) { ret = dhd_iovar(dhd, 0, "ampdu_ba_wsize", (char *)&du_ba_wsize, sizeof(ampdu_ba_wsize), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s Set ampdu_ba_wsize to %d failed %d\n", __FUNCTION__, ampdu_ba_wsize, ret)); } } #endif iov_buf = (char*)kmalloc(WLC_IOCTL_SMLEN, GFP_KERNEL); if (iov_buf == NULL) { DHD_ERROR(("failed to allocate %d bytes for iov_buf\n", WLC_IOCTL_SMLEN)); ret = BCME_NOMEM; goto done; } #if defined(CUSTOM_AMPDU_MPDU) ampdu_mpdu = CUSTOM_AMPDU_MPDU; if (ampdu_mpdu != 0 && (ampdu_mpdu <= ampdu_ba_wsize)) { ret = dhd_iovar(dhd, 0, "ampdu_mpdu", (char *)&du_mpdu, sizeof(ampdu_mpdu), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s Set ampdu_mpdu to %d failed %d\n", __FUNCTION__, CUSTOM_AMPDU_MPDU, ret)); } } #endif /* CUSTOM_AMPDU_MPDU */ #if defined(CUSTOM_AMPDU_RELEASE) ampdu_release = CUSTOM_AMPDU_RELEASE; if (ampdu_release != 0 && (ampdu_release <= ampdu_ba_wsize)) { ret = dhd_iovar(dhd, 0, "ampdu_release", (char *)&du_release, sizeof(ampdu_release), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s Set ampdu_release to %d failed %d\n", __FUNCTION__, CUSTOM_AMPDU_RELEASE, ret)); } } #endif /* CUSTOM_AMPDU_RELEASE */ #if defined(CUSTOM_AMSDU_AGGSF) amsdu_aggsf = CUSTOM_AMSDU_AGGSF; if (amsdu_aggsf != 0) { ret = dhd_iovar(dhd, 0, "amsdu_aggsf", (char *)&amsdu_aggsf, sizeof(amsdu_aggsf), NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s Set amsdu_aggsf to %d failed %d\n", __FUNCTION__, CUSTOM_AMSDU_AGGSF, ret)); } } #endif /* CUSTOM_AMSDU_AGGSF */ #ifdef CUSTOM_PSPRETEND_THR /* Turn off MPC in AP mode */ if ((ret = dhd_iovar(dhd, 0, "pspretend_threshold", (char *)&pspretend_thr, sizeof(pspretend_thr), NULL, 0, TRUE)) < 0) { DHD_ERROR(("%s pspretend_threshold for HostAPD failed %d\n", __FUNCTION__, ret)); } #endif if ((ret = dhd_iovar(dhd, 0, "buf_key_b4_m4", (char *)&buf_key_b4_m4, sizeof(buf_key_b4_m4), NULL, 0, TRUE)) < 0) { DHD_ERROR(("%s buf_key_b4_m4 set failed %d\n", __FUNCTION__, ret)); } /* Read event_msgs mask */ ret = dhd_iovar(dhd, 0, "event_msgs", eventmask, WL_EVENTING_MASK_LEN, iovbuf, sizeof(iovbuf), FALSE); if (ret < 0) { DHD_ERROR(("%s read Event mask failed %d\n", __FUNCTION__, ret)); goto done; } memcpy(eventmask, iovbuf, WL_EVENTING_MASK_LEN); /* Setup event_msgs */ setbit(eventmask, WLC_E_SET_SSID); setbit(eventmask, WLC_E_PRUNE); setbit(eventmask, WLC_E_AUTH); setbit(eventmask, WLC_E_AUTH_IND); setbit(eventmask, WLC_E_ASSOC); setbit(eventmask, WLC_E_REASSOC); setbit(eventmask, WLC_E_REASSOC_IND); if (!(dhd->op_mode & DHD_FLAG_IBSS_MODE)) setbit(eventmask, WLC_E_DEAUTH); setbit(eventmask, WLC_E_DEAUTH_IND); setbit(eventmask, WLC_E_DISASSOC_IND); setbit(eventmask, WLC_E_DISASSOC); setbit(eventmask, WLC_E_JOIN); setbit(eventmask, WLC_E_START); setbit(eventmask, WLC_E_ASSOC_IND); setbit(eventmask, WLC_E_PSK_SUP); setbit(eventmask, WLC_E_LINK); setbit(eventmask, WLC_E_MIC_ERROR); setbit(eventmask, WLC_E_ASSOC_REQ_IE); setbit(eventmask, WLC_E_ASSOC_RESP_IE); #ifdef LIMIT_BORROW setbit(eventmask, WLC_E_ALLOW_CREDIT_BORROW); #endif #ifndef WL_CFG80211 setbit(eventmask, WLC_E_PMKID_CACHE); setbit(eventmask, WLC_E_TXFAIL); #endif setbit(eventmask, WLC_E_JOIN_START); setbit(eventmask, WLC_E_SCAN_COMPLETE); #ifdef DHD_DEBUG setbit(eventmask, WLC_E_SCAN_CONFIRM_IND); #endif #ifdef WLMEDIA_HTSF setbit(eventmask, WLC_E_HTSFSYNC); #endif /* WLMEDIA_HTSF */ #ifdef PNO_SUPPORT setbit(eventmask, WLC_E_PFN_NET_FOUND); setbit(eventmask, WLC_E_PFN_BEST_BATCHING); setbit(eventmask, WLC_E_PFN_BSSID_NET_FOUND); setbit(eventmask, WLC_E_PFN_BSSID_NET_LOST); #endif /* PNO_SUPPORT */ /* enable dongle roaming event */ setbit(eventmask, WLC_E_ROAM); setbit(eventmask, WLC_E_BSSID); #ifdef WLTDLS setbit(eventmask, WLC_E_TDLS_PEER_EVENT); #endif /* WLTDLS */ #ifdef RTT_SUPPORT setbit(eventmask, WLC_E_PROXD); #endif /* RTT_SUPPORT */ #ifdef WL_CFG80211 setbit(eventmask, WLC_E_ESCAN_RESULT); if (dhd->op_mode & DHD_FLAG_P2P_MODE) { setbit(eventmask, WLC_E_ACTION_FRAME_RX); setbit(eventmask, WLC_E_P2P_DISC_LISTEN_COMPLETE); } #endif /* WL_CFG80211 */ setbit(eventmask, WLC_E_TRACE); setbit(eventmask, WLC_E_CSA_COMPLETE_IND); #ifdef DHD_LOSSLESS_ROAMING setbit(eventmask, WLC_E_ROAM_PREP); #endif #ifdef DHD_WMF setbit(eventmask, WLC_E_PSTA_PRIMARY_INTF_IND); #endif #if defined(PCIE_FULL_DONGLE) && defined(DHD_LOSSLESS_ROAMING) dhd_update_flow_prio_map(dhd, DHD_FLOW_PRIO_LLR_MAP); #endif /* defined(PCIE_FULL_DONGLE) && defined(DHD_LOSSLESS_ROAMING) */ /* Write updated Event mask */ ret = dhd_iovar(dhd, 0, "event_msgs", eventmask, WL_EVENTING_MASK_LEN, NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s Set Event mask failed %d\n", __FUNCTION__, ret)); goto done; } /* make up event mask ext message iovar for event larger than 128 */ msglen = ROUNDUP(WLC_E_LAST, NBBY)/NBBY + EVENTMSGS_EXT_STRUCT_SIZE; eventmask_msg = (eventmsgs_ext_t*)kmalloc(msglen, GFP_KERNEL); if (eventmask_msg == NULL) { DHD_ERROR(("failed to allocate %d bytes for event_msg_ext\n", msglen)); ret = BCME_NOMEM; goto done; } bzero(eventmask_msg, msglen); eventmask_msg->ver = EVENTMSGS_VER; eventmask_msg->len = ROUNDUP(WLC_E_LAST, NBBY)/NBBY; /* Read event_msgs_ext mask */ ret2 = dhd_iovar(dhd, 0, "event_msgs_ext", (char *)eventmask_msg, msglen, iov_buf, WLC_IOCTL_SMLEN, FALSE); if (ret2 != BCME_UNSUPPORTED) ret = ret2; if (ret2 == 0) { /* event_msgs_ext must be supported */ memcpy(eventmask_msg, iov_buf, msglen); #ifdef GSCAN_SUPPORT setbit(eventmask_msg->mask, WLC_E_PFN_GSCAN_FULL_RESULT); setbit(eventmask_msg->mask, WLC_E_PFN_SCAN_COMPLETE); setbit(eventmask_msg->mask, WLC_E_PFN_SWC); setbit(eventmask_msg->mask, WLC_E_PFN_SSID_EXT); setbit(eventmask_msg->mask, WLC_E_ROAM_EXP_EVENT); #endif /* GSCAN_SUPPORT */ setbit(eventmask_msg->mask, WLC_E_RSSI_LQM); #ifdef BT_WIFI_HANDOVER setbit(eventmask_msg->mask, WLC_E_BT_WIFI_HANDOVER_REQ); #endif /* BT_WIFI_HANDOVER */ #ifdef DHD_ULP setbit(eventmask_msg->mask, WLC_E_ULP); #endif /* Write updated Event mask */ eventmask_msg->ver = EVENTMSGS_VER; eventmask_msg->command = EVENTMSGS_SET_MASK; eventmask_msg->len = ROUNDUP(WLC_E_LAST, NBBY)/NBBY; ret = dhd_iovar(dhd, 0, "event_msgs_ext", (char *)eventmask_msg, msglen, NULL, 0, TRUE); if (ret < 0) { DHD_ERROR(("%s write event mask ext failed %d\n", __FUNCTION__, ret)); goto done; } } else if (ret2 < 0 && ret2 == BCME_VERSION) { DHD_ERROR(("%s Different Event version\n", __FUNCTION__)); } else if (ret2 < 0 && ret2 != BCME_UNSUPPORTED) { DHD_ERROR(("%s read event mask ext failed %d\n", __FUNCTION__, ret2)); goto done; } /* unsupported is ok */ dhd_wl_ioctl_cmd(dhd, WLC_SET_SCAN_CHANNEL_TIME, (char *)&scan_assoc_time, sizeof(scan_assoc_time), TRUE, 0); dhd_wl_ioctl_cmd(dhd, WLC_SET_SCAN_UNASSOC_TIME, (char *)&scan_unassoc_time, sizeof(scan_unassoc_time), TRUE, 0); dhd_wl_ioctl_cmd(dhd, WLC_SET_SCAN_PASSIVE_TIME, (char *)&scan_passive_time, sizeof(scan_passive_time), TRUE, 0); #ifdef ARP_OFFLOAD_SUPPORT /* Set and enable ARP offload feature for STA only */ #if defined(SOFTAP) if (arpoe && !ap_fw_loaded) { #else if (arpoe) { #endif dhd_arp_offload_enable(dhd, TRUE); dhd_arp_offload_set(dhd, dhd_arp_mode); } else { dhd_arp_offload_enable(dhd, FALSE); dhd_arp_offload_set(dhd, 0); } dhd_arp_enable = arpoe; #endif /* ARP_OFFLOAD_SUPPORT */ #ifdef PKT_FILTER_SUPPORT /* Setup default defintions for pktfilter , enable in suspend */ dhd->pktfilter_count = 6; /* Setup filter to allow only unicast */ dhd->pktfilter[DHD_UNICAST_FILTER_NUM] = "100 0 0 0 0x01 0x00"; dhd->pktfilter[DHD_BROADCAST_FILTER_NUM] = NULL; dhd->pktfilter[DHD_MULTICAST4_FILTER_NUM] = NULL; dhd->pktfilter[DHD_MULTICAST6_FILTER_NUM] = NULL; /* Add filter to pass multicastDNS packet and NOT filter out as Broadcast */ dhd->pktfilter[DHD_MDNS_FILTER_NUM] = "104 0 0 0 0xFFFFFFFFFFFF 0x01005E0000FB"; /* apply APP pktfilter */ dhd->pktfilter[DHD_ARP_FILTER_NUM] = "105 0 0 12 0xFFFF 0x0806"; #if defined(SOFTAP) if (ap_fw_loaded) { dhd_enable_packet_filter(0, dhd); } #endif /* defined(SOFTAP) */ dhd_set_packet_filter(dhd); #endif /* PKT_FILTER_SUPPORT */ #ifdef DISABLE_11N ret = dhd_iovar(dhd, 0, "nmode", (char *)&nmode, sizeof(nmode), NULL, 0, TRUE); if (ret < 0) DHD_ERROR(("%s wl nmode 0 failed %d\n", __FUNCTION__, ret)); #endif /* DISABLE_11N */ /* query for 'ver' to get version info from firmware */ memset(buf, 0, sizeof(buf)); ptr = buf; ret = dhd_iovar(dhd, 0, "ver", NULL, 0, (char *)&buf, sizeof(buf), FALSE); if (ret < 0) DHD_ERROR(("%s failed %d\n", __FUNCTION__, ret)); else { bcmstrtok(&ptr, "\n", 0); /* Print fw version info */ DHD_ERROR(("Firmware version = %s\n", buf)); #if defined(BCMSDIO) || defined(BCMPCIE) dhd_set_version_info(dhd, buf); #endif /* BCMSDIO || BCMPCIE */ } #if defined(BCMSDIO) dhd_txglom_enable(dhd, TRUE); #endif /* defined(BCMSDIO) */ #if defined(BCMSDIO) || defined(BCMDBUS) #ifdef PROP_TXSTATUS if (disable_proptx || #ifdef PROP_TXSTATUS_VSDB /* enable WLFC only if the firmware is VSDB when it is in STA mode */ (dhd->op_mode != DHD_FLAG_HOSTAP_MODE && dhd->op_mode != DHD_FLAG_IBSS_MODE) || #endif /* PROP_TXSTATUS_VSDB */ FALSE) { wlfc_enable = FALSE; } #if defined(PROP_TXSTATUS) #endif /* PROP_TXSTATUS */ #ifndef DISABLE_11N ret2 = dhd_iovar(dhd, 0, "ampdu_hostreorder", (char *)&hostreorder, sizeof(hostreorder), NULL, 0, TRUE); if (ret2 < 0) { DHD_ERROR(("%s wl ampdu_hostreorder failed %d\n", __FUNCTION__, ret2)); if (ret2 != BCME_UNSUPPORTED) ret = ret2; if (ret2 != BCME_OK) hostreorder = 0; } #endif /* DISABLE_11N */ if (wlfc_enable) dhd_wlfc_init(dhd); #ifndef DISABLE_11N else if (hostreorder) dhd_wlfc_hostreorder_init(dhd); #endif /* DISABLE_11N */ #endif /* PROP_TXSTATUS */ #endif /* BCMSDIO || BCMBUS */ #ifndef PCIE_FULL_DONGLE /* For FD we need all the packets at DHD to handle intra-BSS forwarding */ if (FW_SUPPORTED(dhd, ap)) { wl_ap_isolate = AP_ISOLATE_SENDUP_ALL; ret = dhd_iovar(dhd, 0, "ap_isolate", (char *)&wl_ap_isolate, sizeof(wl_ap_isolate), NULL, 0, TRUE); if (ret < 0) DHD_ERROR(("%s failed %d\n", __FUNCTION__, ret)); } #endif /* PCIE_FULL_DONGLE */ #ifdef PNO_SUPPORT if (!dhd->pno_state) { dhd_pno_init(dhd); } #endif #ifdef RTT_SUPPORT if (!dhd->rtt_state) { ret = dhd_rtt_init(dhd); if (ret < 0) { DHD_ERROR(("%s failed to initialize RTT\n", __FUNCTION__)); } } #endif #ifdef WL11U dhd_interworking_enable(dhd); #endif /* WL11U */ done: if (eventmask_msg) kfree(eventmask_msg); if (iov_buf) kfree(iov_buf); return ret; } #ifdef LOAD_DHD_WITH_FW_ALIVE int dhd_preinit_ioctls_alive(dhd_pub_t *dhd) { int ret = 0; char buf[WLC_IOCTL_SMLEN]; DHD_TRACE(("Enter %s\n", __FUNCTION__)); #if (0) char iovbuf[WL_EVENTING_MASK_LEN + 12]; /* Room for "event_msgs" + '\0' + bitvec */ #if defined(BCMSDIO) || defined(BCMDBUS) #ifdef PROP_TXSTATUS int wlfc_enable = TRUE; #endif /* PROP_TXSTATUS */ #endif /* defined(BCMSDIO) || defined(BCMDBUS) */ #if defined(ARP_OFFLOAD_SUPPORT) int arpoe = 1; #endif #if defined(SOFTAP) uint dtim = 1; #endif #ifdef WLTDLS dhd->tdls_enable = FALSE; dhd_tdls_set_mode(dhd, false); #endif /* WLTDLS */ dhd->suspend_bcn_li_dtim = CUSTOM_SUSPEND_BCN_LI_DTIM; DHD_TRACE(("Enter %s\n", __FUNCTION__)); dhd->op_mode = 0; #endif /* Get the default device MAC address directly from firmware */ ret = dhd_iovar(dhd, 0, "cur_etheraddr", NULL, 0, (char *)&buf, sizeof(buf), FALSE); if (ret < 0) { DHD_ERROR(("%s: can't get MAC address , error=%d\n", __FUNCTION__, ret)); ret = BCME_NOTUP; goto done; } /* Update public MAC address after reading from Firmware */ memcpy(dhd->mac.octet, buf, ETHER_ADDR_LEN); /* get a capabilities from firmware */ { uint32 cap_buf_size = sizeof(dhd->fw_capabilities); memset(dhd->fw_capabilities, 0, cap_buf_size); ret = dhd_iovar(dhd, 0, "cap", NULL, 0, dhd->fw_capabilities, (cap_buf_size - 1), FALSE); if (ret < 0) { DHD_ERROR(("%s: Get Capability failed (error=%d)\n", __FUNCTION__, ret)); return 0; } memmove(&dhd->fw_capabilities[1], dhd->fw_capabilities, (cap_buf_size - 1)); dhd->fw_capabilities[0] = ' '; dhd->fw_capabilities[cap_buf_size - 2] = ' '; dhd->fw_capabilities[cap_buf_size - 1] = '\0'; } dhd->op_mode = DHD_FLAG_STA_MODE; DHD_ERROR(("Firmware up: op_mode=0x%04x, MAC="MACDBG"\n", dhd->op_mode, MAC2STRDBG(dhd->mac.octet))); #if (0) #ifdef WLTDLS /* by default TDLS on and auto mode off */ _dhd_tdls_enable(dhd, true, false, NULL); #endif /* WLTDLS */ #ifdef ARP_OFFLOAD_SUPPORT /* Set and enable ARP offload feature for STA only */ //get arp offload from firmware dhd_arp_enable = arpoe; #endif /* ARP_OFFLOAD_SUPPORT */ #ifdef PKT_FILTER_SUPPORT /* Setup default defintions for pktfilter , enable in suspend */ dhd->pktfilter_count = 6; /* Setup filter to allow only unicast */ dhd->pktfilter[DHD_UNICAST_FILTER_NUM] = "100 0 0 0 0x01 0x00"; dhd->pktfilter[DHD_BROADCAST_FILTER_NUM] = NULL; dhd->pktfilter[DHD_MULTICAST4_FILTER_NUM] = NULL; dhd->pktfilter[DHD_MULTICAST6_FILTER_NUM] = NULL; /* Add filter to pass multicastDNS packet and NOT filter out as Broadcast */ dhd->pktfilter[DHD_MDNS_FILTER_NUM] = "104 0 0 0 0xFFFFFFFFFFFF 0x01005E0000FB"; /* apply APP pktfilter */ dhd->pktfilter[DHD_ARP_FILTER_NUM] = "105 0 0 12 0xFFFF 0x0806"; #endif /* PKT_FILTER_SUPPORT */ #if defined(BCMSDIO) || defined(BCMDBUS) #ifdef PROP_TXSTATUS if (disable_proptx || #ifdef PROP_TXSTATUS_VSDB /* enable WLFC only if the firmware is VSDB when it is in STA mode */ (dhd->op_mode != DHD_FLAG_HOSTAP_MODE && dhd->op_mode != DHD_FLAG_IBSS_MODE) || #endif /* PROP_TXSTATUS_VSDB */ FALSE) { wlfc_enable = FALSE; } if (wlfc_enable) dhd_wlfc_init(dhd); #ifndef DISABLE_11N else if (hostreorder) dhd_wlfc_hostreorder_init(dhd); #endif /* DISABLE_11N */ #endif /* PROP_TXSTATUS */ #endif /* BCMSDIO || BCMBUS */ #endif done: return ret; } #endif /* LOAD_DHD_WITH_FW_ALIVE */ int dhd_iovar(dhd_pub_t *pub, int ifidx, char *name, char *param_buf, uint param_len, char *res_buf, uint res_len, int set) { char *buf = NULL; int input_len; wl_ioctl_t ioc; int ret; if (res_len > WLC_IOCTL_MAXLEN || param_len > WLC_IOCTL_MAXLEN) return BCME_BADARG; input_len = strlen(name) + 1 + param_len; if (input_len > WLC_IOCTL_MAXLEN) return BCME_BADARG; buf = NULL; if (set) { if (res_buf || res_len != 0) { DHD_ERROR(("%s: SET wrong arguemnet\n", __FUNCTION__)); ret = BCME_BADARG; goto exit; } buf = kzalloc(input_len, GFP_KERNEL); if (!buf) { DHD_ERROR(("%s: mem alloc failed\n", __FUNCTION__)); ret = BCME_NOMEM; goto exit; } ret = bcm_mkiovar(name, param_buf, param_len, buf, input_len); if (!ret) { ret = BCME_NOMEM; goto exit; } ioc.cmd = WLC_SET_VAR; ioc.buf = buf; ioc.len = input_len; ioc.set = set; ret = dhd_wl_ioctl(pub, ifidx, &ioc, ioc.buf, ioc.len); } else { if (!res_buf || !res_len) { DHD_ERROR(("%s: GET failed. resp_buf NULL or length 0.\n", __FUNCTION__)); ret = BCME_BADARG; goto exit; } if (res_len < input_len) { DHD_INFO(("%s: res_len(%d) < input_len(%d)\n", __FUNCTION__, res_len, input_len)); buf = kzalloc(input_len, GFP_KERNEL); if (!buf) { DHD_ERROR(("%s: mem alloc failed\n", __FUNCTION__)); ret = BCME_NOMEM; goto exit; } ret = bcm_mkiovar(name, param_buf, param_len, buf, input_len); if (!ret) { ret = BCME_NOMEM; goto exit; } ioc.cmd = WLC_GET_VAR; ioc.buf = buf; ioc.len = input_len; ioc.set = set; ret = dhd_wl_ioctl(pub, ifidx, &ioc, ioc.buf, ioc.len); if (ret == BCME_OK) { memcpy(res_buf, buf, res_len); } } else { memset(res_buf, 0, res_len); ret = bcm_mkiovar(name, param_buf, param_len, res_buf, res_len); if (!ret) { ret = BCME_NOMEM; goto exit; } ioc.cmd = WLC_GET_VAR; ioc.buf = res_buf; ioc.len = res_len; ioc.set = set; ret = dhd_wl_ioctl(pub, ifidx, &ioc, ioc.buf, ioc.len); } } exit: kfree(buf); return ret; } int dhd_getiovar(dhd_pub_t *pub, int ifidx, char *name, char *cmd_buf, uint cmd_len, char **resptr, uint resp_len) { int len = resp_len; int ret; char *buf = *resptr; wl_ioctl_t ioc; if (resp_len > WLC_IOCTL_MAXLEN) return BCME_BADARG; memset(buf, 0, resp_len); bcm_mkiovar(name, cmd_buf, cmd_len, buf, len); memset(&ioc, 0, sizeof(ioc)); ioc.cmd = WLC_GET_VAR; ioc.buf = buf; ioc.len = len; ioc.set = 0; ret = dhd_wl_ioctl(pub, ifidx, &ioc, ioc.buf, ioc.len); return ret; } int dhd_change_mtu(dhd_pub_t *dhdp, int new_mtu, int ifidx) { struct dhd_info *dhd = dhdp->info; struct net_device *dev = NULL; ASSERT(dhd && dhd->iflist[ifidx]); dev = dhd->iflist[ifidx]->net; ASSERT(dev); if (netif_running(dev)) { DHD_ERROR(("%s: Must be down to change its MTU", dev->name)); return BCME_NOTDOWN; } #define DHD_MIN_MTU 1500 #define DHD_MAX_MTU 1752 if ((new_mtu < DHD_MIN_MTU) || (new_mtu > DHD_MAX_MTU)) { DHD_ERROR(("%s: MTU size %d is invalid.\n", __FUNCTION__, new_mtu)); return BCME_BADARG; } dev->mtu = new_mtu; return 0; } #ifdef ARP_OFFLOAD_SUPPORT /* add or remove AOE host ip(s) (up to 8 IPs on the interface) */ void aoe_update_host_ipv4_table(dhd_pub_t *dhd_pub, u32 ipa, bool add, int idx) { u32 ipv4_buf[MAX_IPV4_ENTRIES]; /* temp save for AOE host_ip table */ int i; int ret; bzero(ipv4_buf, sizeof(ipv4_buf)); /* display what we've got */ ret = dhd_arp_get_arp_hostip_table(dhd_pub, ipv4_buf, sizeof(ipv4_buf), idx); DHD_ARPOE(("%s: hostip table read from Dongle:\n", __FUNCTION__)); if (ret) { DHD_ERROR(("%s failed\n", __FUNCTION__)); return; } #ifdef AOE_DBG dhd_print_buf(ipv4_buf, 32, 4); /* max 8 IPs 4b each */ #endif /* now we saved hoste_ip table, clr it in the dongle AOE */ dhd_aoe_hostip_clr(dhd_pub, idx); for (i = 0; i < MAX_IPV4_ENTRIES; i++) { if (add && (ipv4_buf[i] == 0)) { ipv4_buf[i] = ipa; add = FALSE; /* added ipa to local table */ DHD_ARPOE(("%s: Saved new IP in temp arp_hostip[%d]\n", __FUNCTION__, i)); } else if (ipv4_buf[i] == ipa) { ipv4_buf[i] = 0; DHD_ARPOE(("%s: removed IP:%x from temp table %d\n", __FUNCTION__, ipa, i)); } if (ipv4_buf[i] != 0) { /* add back host_ip entries from our local cache */ dhd_arp_offload_add_ip(dhd_pub, ipv4_buf[i], idx); DHD_ARPOE(("%s: added IP:%x to dongle arp_hostip[%d]\n\n", __FUNCTION__, ipv4_buf[i], i)); } } #ifdef AOE_DBG /* see the resulting hostip table */ dhd_arp_get_arp_hostip_table(dhd_pub, ipv4_buf, sizeof(ipv4_buf), idx); DHD_ARPOE(("%s: read back arp_hostip table:\n", __FUNCTION__)); dhd_print_buf(ipv4_buf, 32, 4); /* max 8 IPs 4b each */ #endif } /* * Notification mechanism from kernel to our driver. This function is called by the Linux kernel * whenever there is an event related to an IP address. * ptr : kernel provided pointer to IP address that has changed */ static int dhd_inetaddr_notifier_call(struct notifier_block *this, unsigned long event, void *ptr) { struct in_ifaddr *ifa = (struct in_ifaddr *)ptr; dhd_info_t *dhd; dhd_pub_t *dhd_pub; int idx; if (!dhd_arp_enable) return NOTIFY_DONE; if (!ifa || !(ifa->ifa_dev->dev)) return NOTIFY_DONE; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 31)) /* Filter notifications meant for non Broadcom devices */ if ((ifa->ifa_dev->dev->netdev_ops != &dhd_ops_pri) && (ifa->ifa_dev->dev->netdev_ops != &dhd_ops_virt)) { #if defined(WL_ENABLE_P2P_IF) if (!wl_cfgp2p_is_ifops(ifa->ifa_dev->dev->netdev_ops)) #endif /* WL_ENABLE_P2P_IF */ return NOTIFY_DONE; } #endif /* LINUX_VERSION_CODE */ dhd = DHD_DEV_INFO(ifa->ifa_dev->dev); if (!dhd) return NOTIFY_DONE; dhd_pub = &dhd->pub; #ifndef STBLINUX if (dhd_pub->arp_version == 1) { idx = 0; } else #endif /* STBLINUX */ { for (idx = 0; idx < DHD_MAX_IFS; idx++) { if (dhd->iflist[idx] && dhd->iflist[idx]->net == ifa->ifa_dev->dev) break; } if (idx < DHD_MAX_IFS) { DHD_TRACE(("ifidx : %p %s %d\n", dhd->iflist[idx]->net, dhd->iflist[idx]->name, dhd->iflist[idx]->idx)); } else { DHD_ERROR(("Cannot find ifidx for(%s) set to 0\n", ifa->ifa_label)); idx = 0; } } switch (event) { case NETDEV_UP: DHD_ARPOE(("%s: [%s] Up IP: 0x%x\n", __FUNCTION__, ifa->ifa_label, ifa->ifa_address)); if (dhd->pub.busstate != DHD_BUS_DATA) { DHD_ERROR(("%s: bus not ready, exit\n", __FUNCTION__)); if (dhd->pend_ipaddr) { DHD_ERROR(("%s: overwrite pending ipaddr: 0x%x\n", __FUNCTION__, dhd->pend_ipaddr)); } dhd->pend_ipaddr = ifa->ifa_address; break; } #ifdef AOE_IP_ALIAS_SUPPORT DHD_ARPOE(("%s:add aliased IP to AOE hostip cache\n", __FUNCTION__)); aoe_update_host_ipv4_table(dhd_pub, ifa->ifa_address, TRUE, idx); #endif /* AOE_IP_ALIAS_SUPPORT */ break; case NETDEV_DOWN: DHD_ARPOE(("%s: [%s] Down IP: 0x%x\n", __FUNCTION__, ifa->ifa_label, ifa->ifa_address)); dhd->pend_ipaddr = 0; #ifdef AOE_IP_ALIAS_SUPPORT DHD_ARPOE(("%s:interface is down, AOE clr all for this if\n", __FUNCTION__)); aoe_update_host_ipv4_table(dhd_pub, ifa->ifa_address, FALSE, idx); #else dhd_aoe_hostip_clr(&dhd->pub, idx); dhd_aoe_arp_clr(&dhd->pub, idx); #endif /* AOE_IP_ALIAS_SUPPORT */ break; default: DHD_ARPOE(("%s: do noting for [%s] Event: %lu\n", __func__, ifa->ifa_label, event)); break; } return NOTIFY_DONE; } #endif /* ARP_OFFLOAD_SUPPORT */ #if defined(CONFIG_IPV6) /* Neighbor Discovery Offload: defered handler */ static void dhd_inet6_work_handler(void *dhd_info, void *event_data, u8 event) { struct ipv6_work_info_t *ndo_work = (struct ipv6_work_info_t *)event_data; dhd_pub_t *pub = &((dhd_info_t *)dhd_info)->pub; int ret; if (event != DHD_WQ_WORK_IPV6_NDO) { DHD_ERROR(("%s: unexpected event \n", __FUNCTION__)); return; } if (!ndo_work) { DHD_ERROR(("%s: ipv6 work info is not initialized \n", __FUNCTION__)); return; } if (!pub) { DHD_ERROR(("%s: dhd pub is not initialized \n", __FUNCTION__)); return; } if (ndo_work->if_idx) { DHD_ERROR(("%s: idx %d \n", __FUNCTION__, ndo_work->if_idx)); return; } switch (ndo_work->event) { case NETDEV_UP: DHD_TRACE(("%s: Enable NDO and add ipv6 into table \n ", __FUNCTION__)); ret = dhd_ndo_enable(pub, TRUE); if (ret < 0) { DHD_ERROR(("%s: Enabling NDO Failed %d\n", __FUNCTION__, ret)); } ret = dhd_ndo_add_ip(pub, &ndo_work->ipv6_addr[0], ndo_work->if_idx); if (ret < 0) { DHD_ERROR(("%s: Adding host ip for NDO failed %d\n", __FUNCTION__, ret)); } break; case NETDEV_DOWN: DHD_TRACE(("%s: clear ipv6 table \n", __FUNCTION__)); ret = dhd_ndo_remove_ip(pub, ndo_work->if_idx); if (ret < 0) { DHD_ERROR(("%s: Removing host ip for NDO failed %d\n", __FUNCTION__, ret)); goto done; } ret = dhd_ndo_enable(pub, FALSE); if (ret < 0) { DHD_ERROR(("%s: disabling NDO Failed %d\n", __FUNCTION__, ret)); goto done; } break; default: DHD_ERROR(("%s: unknown notifier event \n", __FUNCTION__)); break; } done: /* free ndo_work. alloced while scheduling the work */ kfree(ndo_work); return; } /* * Neighbor Discovery Offload: Called when an interface * is assigned with ipv6 address. * Handles only primary interface */ static int dhd_inet6addr_notifier_call(struct notifier_block *this, unsigned long event, void *ptr) { dhd_info_t *dhd; dhd_pub_t *dhd_pub; struct inet6_ifaddr *inet6_ifa = ptr; struct in6_addr *ipv6_addr = &inet6_ifa->addr; struct ipv6_work_info_t *ndo_info; int idx = 0; /* REVISIT */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 31)) /* Filter notifications meant for non Broadcom devices */ if (inet6_ifa->idev->dev->netdev_ops != &dhd_ops_pri) { return NOTIFY_DONE; } #endif /* LINUX_VERSION_CODE */ dhd = DHD_DEV_INFO(inet6_ifa->idev->dev); if (!dhd) return NOTIFY_DONE; if (dhd->iflist[idx] && dhd->iflist[idx]->net != inet6_ifa->idev->dev) return NOTIFY_DONE; dhd_pub = &dhd->pub; if (!FW_SUPPORTED(dhd_pub, ndoe)) return NOTIFY_DONE; ndo_info = (struct ipv6_work_info_t *)kzalloc(sizeof(struct ipv6_work_info_t), GFP_ATOMIC); if (!ndo_info) { DHD_ERROR(("%s: ipv6 work alloc failed\n", __FUNCTION__)); return NOTIFY_DONE; } ndo_info->event = event; ndo_info->if_idx = idx; memcpy(&ndo_info->ipv6_addr[0], ipv6_addr, IPV6_ADDR_LEN); /* defer the work to thread as it may block kernel */ dhd_deferred_schedule_work(dhd->dhd_deferred_wq, (void *)ndo_info, DHD_WQ_WORK_IPV6_NDO, dhd_inet6_work_handler, DHD_WORK_PRIORITY_LOW); return NOTIFY_DONE; } #endif /* OEM_ANDROID && CONFIG_IPV6 */ int dhd_register_if(dhd_pub_t *dhdp, int ifidx, bool need_rtnl_lock) { dhd_info_t *dhd = (dhd_info_t *)dhdp->info; dhd_if_t *ifp; struct net_device *net = NULL; int err = 0; uint8 temp_addr[ETHER_ADDR_LEN] = { 0x00, 0x90, 0x4c, 0x11, 0x22, 0x33 }; DHD_TRACE(("%s: ifidx %d\n", __FUNCTION__, ifidx)); ASSERT(dhd && dhd->iflist[ifidx]); ifp = dhd->iflist[ifidx]; net = ifp->net; ASSERT(net && (ifp->idx == ifidx)); #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31)) ASSERT(!net->open); net->get_stats = dhd_get_stats; net->do_ioctl = dhd_ioctl_entry; net->hard_start_xmit = dhd_start_xmit; net->set_mac_address = dhd_set_mac_address; net->set_multicast_list = dhd_set_multicast_list; net->open = net->stop = NULL; #else ASSERT(!net->netdev_ops); net->netdev_ops = &dhd_ops_virt; #endif /* LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31) */ /* Ok, link into the network layer... */ if (ifidx == 0) { /* * device functions for the primary interface only */ #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31)) net->open = dhd_open; net->stop = dhd_stop; #else net->netdev_ops = &dhd_ops_pri; #endif /* LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31) */ if (!ETHER_ISNULLADDR(dhd->pub.mac.octet)) memcpy(temp_addr, dhd->pub.mac.octet, ETHER_ADDR_LEN); } else { /* * We have to use the primary MAC for virtual interfaces */ memcpy(temp_addr, ifp->mac_addr, ETHER_ADDR_LEN); /* * Android sets the locally administered bit to indicate that this is a * portable hotspot. This will not work in simultaneous AP/STA mode, * nor with P2P. Need to set the Donlge's MAC address, and then use that. */ if (!memcmp(temp_addr, dhd->iflist[0]->mac_addr, ETHER_ADDR_LEN)) { DHD_ERROR(("%s interface [%s]: set locally administered bit in MAC\n", __func__, net->name)); temp_addr[0] |= 0x02; } } net->hard_header_len = ETH_HLEN + dhd->pub.hdrlen; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24) net->ethtool_ops = &dhd_ethtool_ops; #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24) */ #if defined(WL_WIRELESS_EXT) #if WIRELESS_EXT < 19 net->get_wireless_stats = dhd_get_wireless_stats; #endif /* WIRELESS_EXT < 19 */ #if WIRELESS_EXT > 12 net->wireless_handlers = (struct iw_handler_def *)&wl_iw_handler_def; #endif /* WIRELESS_EXT > 12 */ #endif /* defined(WL_WIRELESS_EXT) */ dhd->pub.rxsz = DBUS_RX_BUFFER_SIZE_DHD(net); memcpy(net->dev_addr, temp_addr, ETHER_ADDR_LEN); if (ifidx == 0) printf("%s\n", dhd_version); if (need_rtnl_lock) err = register_netdev(net); else err = register_netdevice(net); if (err != 0) { DHD_ERROR(("couldn't register the net device [%s], err %d\n", net->name, err)); goto fail; } printf("Register interface [%s] MAC: "MACDBG"\n\n", net->name, MAC2STRDBG(net->dev_addr)); #if defined(SOFTAP) && defined(WL_WIRELESS_EXT) && !defined(WL_CFG80211) wl_iw_iscan_set_scan_broadcast_prep(net, 1); #endif #if (defined(BCMPCIE) || (defined(BCMLXSDMMC) && (LINUX_VERSION_CODE >= \ KERNEL_VERSION(2, 6, 27)))) if (ifidx == 0) { #ifdef BCMLXSDMMC up(&dhd_registration_sem); #endif /* BCMLXSDMMC */ if (!dhd_download_fw_on_driverload) { #ifdef WL_CFG80211 wl_terminate_event_handler(); #endif /* WL_CFG80211 */ #if defined(DHD_LB) && defined(DHD_LB_RXP) __skb_queue_purge(&dhd->rx_pend_queue); #endif /* DHD_LB && DHD_LB_RXP */ #if defined(BCMPCIE) && defined(DHDTCPACK_SUPPRESS) dhd_tcpack_suppress_set(dhdp, TCPACK_SUP_OFF); #endif /* BCMPCIE && DHDTCPACK_SUPPRESS */ dhd_net_bus_devreset(net, TRUE); #ifdef BCMLXSDMMC dhd_net_bus_suspend(net); #endif /* BCMLXSDMMC */ wifi_platform_set_power(dhdp->info->adapter, FALSE, WIFI_TURNOFF_DELAY); } } #endif /* OEM_ANDROID && (BCMPCIE || (BCMLXSDMMC && KERNEL_VERSION >= 2.6.27)) */ return 0; fail: #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31) net->open = NULL; #else net->netdev_ops = NULL; #endif return err; } void dhd_bus_detach(dhd_pub_t *dhdp) { dhd_info_t *dhd; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (dhdp) { dhd = (dhd_info_t *)dhdp->info; if (dhd) { /* * In case of Android cfg80211 driver, the bus is down in dhd_stop, * calling stop again will cuase SD read/write errors. */ if (dhd->pub.busstate != DHD_BUS_DOWN) { /* Stop the protocol module */ dhd_prot_stop(&dhd->pub); /* Stop the bus module */ #ifdef BCMDBUS /* Force Dongle terminated */ if (dhd_wl_ioctl_cmd(dhdp, WLC_TERMINATED, NULL, 0, TRUE, 0) < 0) DHD_ERROR(("%s Setting WLC_TERMINATED failed\n", __FUNCTION__)); dbus_stop(dhd->pub.dbus); dhd->pub.busstate = DHD_BUS_DOWN; #else dhd_bus_stop(dhd->pub.bus, TRUE); #endif /* BCMDBUS */ } #if defined(OOB_INTR_ONLY) || defined(BCMPCIE_OOB_HOST_WAKE) dhd_bus_oob_intr_unregister(dhdp); #endif } } } void dhd_detach(dhd_pub_t *dhdp) { dhd_info_t *dhd; unsigned long flags; int timer_valid = FALSE; struct net_device *dev; if (!dhdp) return; dhd = (dhd_info_t *)dhdp->info; if (!dhd) return; dev = dhd->iflist[0]->net; if (dev) { rtnl_lock(); if (dev->flags & IFF_UP) { /* If IFF_UP is still up, it indicates that * "ifconfig wlan0 down" hasn't been called. * So invoke dev_close explicitly here to * bring down the interface. */ DHD_TRACE(("IFF_UP flag is up. Enforcing dev_close from detach \n")); dev_close(dev); } rtnl_unlock(); } DHD_TRACE(("%s: Enter state 0x%x\n", __FUNCTION__, dhd->dhd_state)); dhd->pub.up = 0; if (dhd->dhd_state & DHD_ATTACH_STATE_DONE) { if (dhd_found > 0) dhd_found--; } else { /* Give sufficient time for threads to start running in case * dhd_attach() has failed */ OSL_SLEEP(100); } #ifdef DHD_WET dhd_free_wet_info(&dhd->pub, dhd->pub.wet_info); #endif #if defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) #if defined(BCMDBUS) if (dhd->fw_download_task) { up(&dhd->fw_download_lock); kthread_stop(dhd->fw_download_task); dhd->fw_download_task = NULL; } #endif /* BCMDBUS */ #endif /* defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) */ #ifdef PROP_TXSTATUS #ifdef DHD_WLFC_THREAD if (dhd->pub.wlfc_thread) { kthread_stop(dhd->pub.wlfc_thread); dhdp->wlfc_thread_go = TRUE; wake_up_interruptible(&dhdp->wlfc_wqhead); } dhd->pub.wlfc_thread = NULL; #endif /* DHD_WLFC_THREAD */ #endif /* PROP_TXSTATUS */ #ifdef WL_CFG80211 wl_cfg80211_down(NULL); #endif /* WL_CFG80211 */ if (dhd->dhd_state & DHD_ATTACH_STATE_PROT_ATTACH) { #ifndef BCMSDIO dhd_bus_detach(dhdp); #endif #ifdef BCMPCIE if (is_reboot == SYS_RESTART) { extern bcmdhd_wifi_platdata_t *dhd_wifi_platdata; if (dhd_wifi_platdata && !dhdp->dongle_reset) { dhdpcie_bus_clock_stop(dhdp->bus); wifi_platform_set_power(dhd_wifi_platdata->adapters, FALSE, WIFI_TURNOFF_DELAY); } } #endif /* BCMPCIE */ #if !defined(PCIE_FULL_DONGLE) && !defined(BCMSDIO) if (dhdp->prot) dhd_prot_detach(dhdp); #endif } #ifdef ARP_OFFLOAD_SUPPORT if (dhd_inetaddr_notifier_registered) { dhd_inetaddr_notifier_registered = FALSE; unregister_inetaddr_notifier(&dhd_inetaddr_notifier); } #endif /* ARP_OFFLOAD_SUPPORT */ #if defined(CONFIG_IPV6) if (dhd_inet6addr_notifier_registered) { dhd_inet6addr_notifier_registered = FALSE; unregister_inet6addr_notifier(&dhd_inet6addr_notifier); } #endif /* OEM_ANDROID && CONFIG_IPV6 */ #if defined(CONFIG_HAS_EARLYSUSPEND) && defined(DHD_USE_EARLYSUSPEND) if (dhd->dhd_state & DHD_ATTACH_STATE_EARLYSUSPEND_DONE) { if (dhd->early_suspend.suspend) unregister_early_suspend(&dhd->early_suspend); } #endif /* CONFIG_HAS_EARLYSUSPEND && DHD_USE_EARLYSUSPEND */ #if defined(WL_WIRELESS_EXT) if (dhd->dhd_state & DHD_ATTACH_STATE_WL_ATTACH) { /* Detatch and unlink in the iw */ wl_iw_detach(); } #endif /* defined(WL_WIRELESS_EXT) */ #ifdef DHD_ULP dhd_ulp_deinit(dhd->pub.osh, dhdp); #endif /* DHD_ULP */ /* delete all interfaces, start with virtual */ if (dhd->dhd_state & DHD_ATTACH_STATE_ADD_IF) { int i = 1; dhd_if_t *ifp; /* Cleanup virtual interfaces */ dhd_net_if_lock_local(dhd); for (i = 1; i < DHD_MAX_IFS; i++) { if (dhd->iflist[i]) { dhd_remove_if(&dhd->pub, i, TRUE); } } dhd_net_if_unlock_local(dhd); /* delete primary interface 0 */ ifp = dhd->iflist[0]; ASSERT(ifp); ASSERT(ifp->net); if (ifp && ifp->net) { #if (defined(STBLINUX) && defined(WL_CFG80211)) /* keep wirless framework happy */ wl_cfg80211_cleanup(); #endif /* STBLINUX && WL_CFG80211 */ /* in unregister_netdev case, the interface gets freed by net->destructor * (which is set to free_netdev) */ if (ifp->net->reg_state == NETREG_UNINITIALIZED) { free_netdev(ifp->net); } else { #ifdef SET_RPS_CPUS custom_rps_map_clear(ifp->net->_rx); #endif /* SET_RPS_CPUS */ netif_tx_disable(ifp->net); unregister_netdev(ifp->net); } ifp->net = NULL; #ifdef BCMSDIO dhd_bus_detach(dhdp); if (dhdp->prot) dhd_prot_detach(dhdp); #endif #ifdef DHD_WMF dhd_wmf_cleanup(dhdp, 0); #endif /* DHD_WMF */ #ifdef DHD_L2_FILTER bcm_l2_filter_arp_table_update(dhdp->osh, ifp->phnd_arp_table, TRUE, NULL, FALSE, dhdp->tickcnt); deinit_l2_filter_arp_table(dhdp->osh, ifp->phnd_arp_table); ifp->phnd_arp_table = NULL; #endif /* DHD_L2_FILTER */ dhd_if_del_sta_list(ifp); MFREE(dhd->pub.osh, ifp, sizeof(*ifp)); dhd->iflist[0] = NULL; } } /* Clear the watchdog timer */ DHD_GENERAL_LOCK(&dhd->pub, flags); timer_valid = dhd->wd_timer_valid; dhd->wd_timer_valid = FALSE; DHD_GENERAL_UNLOCK(&dhd->pub, flags); if (timer_valid) del_timer_sync(&dhd->timer); #ifdef BCMDBUS tasklet_kill(&dhd->tasklet); #else if (dhd->dhd_state & DHD_ATTACH_STATE_THREADS_CREATED) { if (dhd->thr_wdt_ctl.thr_pid >= 0) { PROC_STOP(&dhd->thr_wdt_ctl); } if (dhd->rxthread_enabled && dhd->thr_rxf_ctl.thr_pid >= 0) { PROC_STOP(&dhd->thr_rxf_ctl); } if (dhd->thr_dpc_ctl.thr_pid >= 0) { PROC_STOP(&dhd->thr_dpc_ctl); } else { tasklet_kill(&dhd->tasklet); #ifdef DHD_LB_RXP __skb_queue_purge(&dhd->rx_pend_queue); #endif /* DHD_LB_RXP */ } } #endif /* BCMDBUS */ #if defined(DHD_LB) /* Kill the Load Balancing Tasklets */ #if defined(DHD_LB_TXC) tasklet_disable(&dhd->tx_compl_tasklet); tasklet_kill(&dhd->tx_compl_tasklet); #endif /* DHD_LB_TXC */ #if defined(DHD_LB_RXC) tasklet_disable(&dhd->rx_compl_tasklet); tasklet_kill(&dhd->rx_compl_tasklet); #endif /* DHD_LB_RXC */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0)) cpuhp_state_remove_instance(dhd_cpuhp_online_state, &dhd->node_online); cpuhp_remove_multi_state(dhd_cpuhp_online_state); #else if (dhd->cpu_notifier.notifier_call != NULL) unregister_cpu_notifier(&dhd->cpu_notifier); #endif dhd_cpumasks_deinit(dhd); #endif /* DHD_LB */ #ifdef WL_CFG80211 if (dhd->dhd_state & DHD_ATTACH_STATE_CFG80211) { wl_cfg80211_detach(NULL); dhd_monitor_uninit(); } #endif /* free deferred work queue */ dhd_deferred_work_deinit(dhd->dhd_deferred_wq); dhd->dhd_deferred_wq = NULL; #ifdef BCMDBUS if (dhdp->dbus) { dbus_detach(dhdp->dbus); dhdp->dbus = NULL; } #endif /* BCMDBUS */ #ifdef SHOW_LOGTRACE if (dhdp->dbg) dhd_os_dbg_detach(dhdp); if (dhd->event_data.fmts) kfree(dhd->event_data.fmts); if (dhd->event_data.raw_fmts) kfree(dhd->event_data.raw_fmts); if (dhd->event_data.raw_sstr) kfree(dhd->event_data.raw_sstr); #endif /* SHOW_LOGTRACE */ #ifdef PNO_SUPPORT if (dhdp->pno_state) dhd_pno_deinit(dhdp); #endif #ifdef RTT_SUPPORT if (dhdp->rtt_state) { dhd_rtt_deinit(dhdp); } #endif #if defined(CONFIG_PM_SLEEP) if (dhd_pm_notifier_registered) { unregister_pm_notifier(&dhd->pm_notifier); dhd_pm_notifier_registered = FALSE; } #endif /* CONFIG_PM_SLEEP */ #ifdef DEBUG_CPU_FREQ if (dhd->new_freq) free_percpu(dhd->new_freq); dhd->new_freq = NULL; cpufreq_unregister_notifier(&dhd->freq_trans, CPUFREQ_TRANSITION_NOTIFIER); #endif if (dhd->dhd_state & DHD_ATTACH_STATE_WAKELOCKS_INIT) { DHD_TRACE(("wd wakelock count:%d\n", dhd->wakelock_wd_counter)); #ifdef CONFIG_HAS_WAKELOCK dhd->wakelock_counter = 0; dhd->wakelock_wd_counter = 0; wake_lock_destroy(&dhd->wl_wifi); wake_lock_destroy(&dhd->wl_wdwake); DHD_OS_WAKE_LOCK_DESTROY(dhd); #endif /* CONFIG_HAS_WAKELOCK */ } #ifdef DHDTCPACK_SUPPRESS /* This will free all MEM allocated for TCPACK SUPPRESS */ dhd_tcpack_suppress_set(&dhd->pub, TCPACK_SUP_OFF); #endif /* DHDTCPACK_SUPPRESS */ #ifdef PCIE_FULL_DONGLE dhd_flow_rings_deinit(dhdp); if (dhdp->prot) dhd_prot_detach(dhdp); #endif dhd_fw_downloaded = FALSE; } void dhd_free(dhd_pub_t *dhdp) { dhd_info_t *dhd; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (dhdp) { int i; for (i = 0; i < ARRAYSIZE(dhdp->reorder_bufs); i++) { if (dhdp->reorder_bufs[i]) { reorder_info_t *ptr; uint32 buf_size = sizeof(struct reorder_info); ptr = dhdp->reorder_bufs[i]; buf_size += ((ptr->max_idx + 1) * sizeof(void*)); DHD_REORDER(("free flow id buf %d, maxidx is %d, buf_size %d\n", i, ptr->max_idx, buf_size)); MFREE(dhdp->osh, dhdp->reorder_bufs[i], buf_size); dhdp->reorder_bufs[i] = NULL; } } dhd_sta_pool_fini(dhdp, DHD_MAX_STA); dhd = (dhd_info_t *)dhdp->info; if (dhdp->soc_ram) { #if defined(CONFIG_DHD_USE_STATIC_BUF) && defined(DHD_USE_STATIC_MEMDUMP) DHD_OS_PREFREE(dhdp, dhdp->soc_ram, dhdp->soc_ram_length); #else MFREE(dhdp->osh, dhdp->soc_ram, dhdp->soc_ram_length); #endif /* CONFIG_DHD_USE_STATIC_BUF && DHD_USE_STATIC_MEMDUMP */ dhdp->soc_ram = NULL; } #ifdef CACHE_FW_IMAGES if (dhdp->cached_fw) { MFREE(dhdp->osh, dhdp->cached_fw, dhdp->bus->ramsize); dhdp->cached_fw = NULL; } if (dhdp->cached_nvram) { MFREE(dhdp->osh, dhdp->cached_nvram, MAX_NVRAMBUF_SIZE); dhdp->cached_nvram = NULL; } #endif /* If pointer is allocated by dhd_os_prealloc then avoid MFREE */ if (dhd && dhd != (dhd_info_t *)dhd_os_prealloc(dhdp, DHD_PREALLOC_DHD_INFO, 0, FALSE)) MFREE(dhd->pub.osh, dhd, sizeof(*dhd)); dhd = NULL; } } void dhd_clear(dhd_pub_t *dhdp) { DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (dhdp) { int i; #ifdef DHDTCPACK_SUPPRESS /* Clean up timer/data structure for any remaining/pending packet or timer. */ dhd_tcpack_info_tbl_clean(dhdp); #endif /* DHDTCPACK_SUPPRESS */ for (i = 0; i < ARRAYSIZE(dhdp->reorder_bufs); i++) { if (dhdp->reorder_bufs[i]) { reorder_info_t *ptr; uint32 buf_size = sizeof(struct reorder_info); ptr = dhdp->reorder_bufs[i]; buf_size += ((ptr->max_idx + 1) * sizeof(void*)); DHD_REORDER(("free flow id buf %d, maxidx is %d, buf_size %d\n", i, ptr->max_idx, buf_size)); MFREE(dhdp->osh, dhdp->reorder_bufs[i], buf_size); dhdp->reorder_bufs[i] = NULL; } } dhd_sta_pool_clear(dhdp, DHD_MAX_STA); if (dhdp->soc_ram) { #if defined(CONFIG_DHD_USE_STATIC_BUF) && defined(DHD_USE_STATIC_MEMDUMP) DHD_OS_PREFREE(dhdp, dhdp->soc_ram, dhdp->soc_ram_length); #else MFREE(dhdp->osh, dhdp->soc_ram, dhdp->soc_ram_length); #endif /* CONFIG_DHD_USE_STATIC_BUF && DHD_USE_STATIC_MEMDUMP */ dhdp->soc_ram = NULL; } } } static void dhd_module_cleanup(void) { DHD_TRACE(("%s: Enter\n", __FUNCTION__)); #ifdef BCMDBUS dbus_deregister(); #else dhd_bus_unregister(); #endif /* BCMDBUS */ wl_android_exit(); dhd_wifi_platform_unregister_drv(); } static void __exit dhd_module_exit(void) { dhd_buzzz_detach(); dhd_module_cleanup(); unregister_reboot_notifier(&dhd_reboot_notifier); } static int __init dhd_module_init(void) { int err; int retry = POWERUP_MAX_RETRY; DHD_ERROR(("%s in\n", __FUNCTION__)); dhd_buzzz_attach(); DHD_PERIM_RADIO_INIT(); if (firmware_path[0] != '\0') { strncpy(fw_bak_path, firmware_path, MOD_PARAM_PATHLEN); fw_bak_path[MOD_PARAM_PATHLEN-1] = '\0'; } if (nvram_path[0] != '\0') { strncpy(nv_bak_path, nvram_path, MOD_PARAM_PATHLEN); nv_bak_path[MOD_PARAM_PATHLEN-1] = '\0'; } do { err = dhd_wifi_platform_register_drv(); if (!err) { register_reboot_notifier(&dhd_reboot_notifier); break; } else { DHD_ERROR(("%s: Failed to load the driver, try cnt %d\n", __FUNCTION__, retry)); strncpy(firmware_path, fw_bak_path, MOD_PARAM_PATHLEN); firmware_path[MOD_PARAM_PATHLEN-1] = '\0'; strncpy(nvram_path, nv_bak_path, MOD_PARAM_PATHLEN); nvram_path[MOD_PARAM_PATHLEN-1] = '\0'; } } while (retry--); if (err) { DHD_ERROR(("%s: Failed to load driver max retry reached**\n", __FUNCTION__)); } else { if (!dhd_download_fw_on_driverload) { dhd_driver_init_done = TRUE; } } DHD_ERROR(("%s out\n", __FUNCTION__)); return err; } static int dhd_reboot_callback(struct notifier_block *this, unsigned long code, void *unused) { DHD_TRACE(("%s: code = %ld\n", __FUNCTION__, code)); #ifdef STBLINUX dhd_module_cleanup(); #else if (code == SYS_RESTART) { #ifdef BCMPCIE is_reboot = code; #endif /* BCMPCIE */ } #endif /* STBLINUX */ return NOTIFY_DONE; } #ifdef BCMDBUS /* * hdrlen is space to reserve in pkt headroom for DBUS */ void * dhd_dbus_probe_cb(void *arg, const char *desc, uint32 bustype, uint32 hdrlen) { osl_t *osh; int ret = 0; dbus_attrib_t attrib; dhd_pub_t *pub = NULL; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); /* Ask the OS interface part for an OSL handle */ if (!(osh = osl_attach(NULL, bustype, TRUE))) { DHD_ERROR(("%s: OSL attach failed\n", __FUNCTION__)); ret = -ENOMEM; goto fail; } /* Attach to the dhd/OS interface */ if (!(pub = dhd_attach(osh, NULL /* bus */, hdrlen))) { DHD_ERROR(("%s: dhd_attach failed\n", __FUNCTION__)); ret = -ENXIO; goto fail; } /* Ok, finish the attach to the OS network interface */ if (dhd_register_if(pub, 0, TRUE) != 0) { DHD_ERROR(("%s: dhd_register_if failed\n", __FUNCTION__)); ret = -ENXIO; goto fail; } pub->dbus = dbus_attach(osh, pub->rxsz, DBUS_NRXQ, DBUS_NTXQ, pub->info, &dhd_dbus_cbs, NULL, NULL); if (pub->dbus) { dbus_get_attrib(pub->dbus, &attrib); DHD_ERROR(("DBUS: vid=0x%x pid=0x%x devid=0x%x bustype=0x%x mtu=%d\n", attrib.vid, attrib.pid, attrib.devid, attrib.bustype, attrib.mtu)); } else { ret = -ENXIO; goto fail; } #ifdef BCM_FD_AGGR pub->info->rpc_th = bcm_rpc_tp_attach(osh, (void *)pub->dbus); if (!pub->info->rpc_th) { DHD_ERROR(("%s: bcm_rpc_tp_attach failed\n", __FUNCTION__)); ret = -ENXIO; goto fail; } pub->info->rpc_osh = rpc_osl_attach(osh); if (!pub->info->rpc_osh) { DHD_ERROR(("%s: rpc_osl_attach failed\n", __FUNCTION__)); bcm_rpc_tp_detach(pub->info->rpc_th); pub->info->rpc_th = NULL; ret = -ENXIO; goto fail; } /* Set up the aggregation release timer */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 15, 0)) timer_setup(&pub->info->rpcth_timer, dhd_rpcth_watchdog, 0) #else init_timer(&pub->info->rpcth_timer); pub->info->rpcth_timer.data = (ulong)pub->info; pub->info->rpcth_timer.function = dhd_rpcth_watchdog; #endif pub->info->rpcth_timer_active = FALSE; bcm_rpc_tp_register_cb(pub->info->rpc_th, NULL, pub->info, dbus_rpcth_rx_pkt, pub->info, pub->info->rpc_osh); #endif /* BCM_FD_AGGR */ /* This is passed to dhd_dbus_disconnect_cb */ return pub->info; fail: /* Release resources in reverse order */ if (osh) { if (pub) { dhd_detach(pub); dhd_free(pub); } osl_detach(osh); } BCM_REFERENCE(ret); return NULL; } void dhd_dbus_disconnect_cb(void *arg) { dhd_info_t *dhd = (dhd_info_t *)arg; dhd_pub_t *pub; osl_t *osh; if (dhd == NULL) return; pub = &dhd->pub; osh = pub->osh; #ifdef BCM_FD_AGGR del_timer_sync(&dhd->rpcth_timer); bcm_rpc_tp_deregister_cb(dhd->rpc_th); rpc_osl_detach(dhd->rpc_osh); bcm_rpc_tp_detach(dhd->rpc_th); #endif dhd_detach(pub); dhd_free(pub); if (MALLOCED(osh)) { DHD_ERROR(("%s: MEMORY LEAK %d bytes\n", __FUNCTION__, MALLOCED(osh))); } osl_detach(osh); } #endif /* BCMDBUS */ #ifdef CONFIG_PLAT_ROCKCHIP #include //rk /* The debugfs functions are optimized away when CONFIG_DEBUG_FS isn't set. */ //static char tcp_keepalive_param[200]; static char sabuf[20]="", dabuf[20]=""; static char seabuf[ETHER_ADDR_STR_LEN]=""; static char deabuf[ETHER_ADDR_STR_LEN]=""; static uint16 source, dest, window, ip_id; static uint32 seq = 0, seq_ack = 0, tcp_option_len = 0, tcp_data_len = 0, tsval = 0, tsecr = 0; #include #include #include #include static int tcp_param_show(struct seq_file *s, void *data) { //seq_printf(s, "dhd_priv wl tcpka_conn_add 1 %s %s %s 1 %d %d 1 1 1 1 1 5 0x6865617274\n", // deabuf, sabuf, dabuf, source, dest); //seq_printf(s, "dhd_priv wl tcpka_conn_add 1 %s %s %s %d %d %d %8u %8u %d %8u %8u 0 5 0x6865617274\n", deabuf, sabuf, dabuf, ip_id, source, dest, seq, seq_ack, window, tsval, tsecr); seq_printf(s, "wl_cy tcpka_conn_add %s %s %s %d %d %d %8u %8u %d %8u %8u 0 7 Qghappy\n", deabuf, sabuf, dabuf, ip_id, source, dest, seq, seq_ack, window, tsval, tsecr); return 0; } #ifndef CONFIG_PROC_FS DEFINE_SHOW_ATTRIBUTE(tcp_param); #endif static void rk_bcm_add_tcp_keepalive_debugfs(void) { #ifdef CONFIG_PROC_FS proc_create_single("tcp_params", 0, NULL, tcp_param_show); #else struct dentry *root; root = debugfs_create_dir("tcp_keepalive_param", NULL); if (IS_ERR(root)) /* Don't complain -- debugfs just isn't enabled */ return; if (!root) /* Complain -- debugfs is enabled, but it failed to * create the directory. */ goto err_root; if (!debugfs_create_file("tcp_param", S_IRUSR, root, NULL, &tcp_param_fops)) goto err_node; return; err_node: debugfs_remove_recursive(root); err_root: pr_err("failed to initialize keepalive debugfs\n"); #endif } #define CONFIG_WIFI_LOAD_DRIVER_WHEN_KERNEL_BOOTUP 1 extern int get_wifi_chip_type(void); extern char WIFI_MODULE_NAME[]; extern char RKWIFI_DRV_VERSION[]; #ifdef CONFIG_WIFI_LOAD_DRIVER_WHEN_KERNEL_BOOTUP static int wifi_init_thread(void *data) { rk_bcm_add_tcp_keepalive_debugfs(); dhd_module_init(); return 0; } #endif /* CONFIG_WIFI_LOAD_DRIVER_WHEN_KERNEL_BOOTUP */ int rockchip_wifi_init_module_rkwifi(void) { #ifdef CONFIG_WIFI_LOAD_DRIVER_WHEN_KERNEL_BOOTUP struct task_struct *kthread = NULL; kthread = kthread_run(wifi_init_thread, NULL, "wifi_init_thread"); if (IS_ERR(kthread)) { DHD_ERROR(("create wifi_init_thread failed.\n")); } return 0; #else /* CONFIG_WIFI_LOAD_DRIVER_WHEN_KERNEL_BOOTUP */ return dhd_module_init(); #endif /* CONFIG_WIFI_LOAD_DRIVER_WHEN_KERNEL_BOOTUP */ } void rockchip_wifi_exit_module_rkwifi(void) { dhd_module_exit(); } #ifdef CONFIG_WIFI_LOAD_DRIVER_WHEN_KERNEL_BOOTUP late_initcall(rockchip_wifi_init_module_rkwifi); module_exit(rockchip_wifi_exit_module_rkwifi); #else /* CONFIG_WIFI_LOAD_DRIVER_WHEN_KERNEL_BOOTUP */ EXPORT_SYMBOL(rockchip_wifi_init_module_rkwifi); EXPORT_SYMBOL(rockchip_wifi_exit_module_rkwifi); #endif /* CONFIG_WIFI_LOAD_DRIVER_WHEN_KERNEL_BOOTUP */ #else /* CONFIG_PLAT_ROCKCHIP */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) #if defined(CONFIG_DEFERRED_INITCALLS) #if defined(CONFIG_MACH_UNIVERSAL7420) deferred_module_init_sync(dhd_module_init); #else deferred_module_init(dhd_module_init); #endif /* CONFIG_MACH_UNIVERSAL7420 */ #elif defined(USE_LATE_INITCALL_SYNC) late_initcall_sync(dhd_module_init); #else late_initcall(dhd_module_init); #endif /* USE_LATE_INITCALL_SYNC */ #else module_init(dhd_module_init); #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) */ module_exit(dhd_module_exit); #endif/* CONFIG_PLAT_ROCKCHIP */ /* * OS specific functions required to implement DHD driver in OS independent way */ int dhd_os_proto_block(dhd_pub_t *pub) { dhd_info_t * dhd = (dhd_info_t *)(pub->info); if (dhd) { DHD_PERIM_UNLOCK(pub); down(&dhd->proto_sem); DHD_PERIM_LOCK(pub); return 1; } return 0; } int dhd_os_proto_unblock(dhd_pub_t *pub) { dhd_info_t * dhd = (dhd_info_t *)(pub->info); if (dhd) { up(&dhd->proto_sem); return 1; } return 0; } unsigned int dhd_os_get_ioctl_resp_timeout(void) { return ((unsigned int)dhd_ioctl_timeout_msec); } void dhd_os_set_ioctl_resp_timeout(unsigned int timeout_msec) { dhd_ioctl_timeout_msec = (int)timeout_msec; } int dhd_os_ioctl_resp_wait(dhd_pub_t *pub, uint *condition) { dhd_info_t * dhd = (dhd_info_t *)(pub->info); int timeout; /* Convert timeout in millsecond to jiffies */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) timeout = msecs_to_jiffies(dhd_ioctl_timeout_msec); #else timeout = dhd_ioctl_timeout_msec * HZ / 1000; #endif DHD_PERIM_UNLOCK(pub); timeout = wait_event_timeout(dhd->ioctl_resp_wait, (*condition), timeout); DHD_PERIM_LOCK(pub); return timeout; } int dhd_os_ioctl_resp_wake(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); wake_up(&dhd->ioctl_resp_wait); return 0; } int dhd_os_d3ack_wait(dhd_pub_t *pub, uint *condition) { dhd_info_t * dhd = (dhd_info_t *)(pub->info); int timeout; /* Convert timeout in millsecond to jiffies */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) timeout = msecs_to_jiffies(dhd_ioctl_timeout_msec); #else timeout = dhd_ioctl_timeout_msec * HZ / 1000; #endif DHD_PERIM_UNLOCK(pub); timeout = wait_event_timeout(dhd->d3ack_wait, (*condition), timeout); DHD_PERIM_LOCK(pub); return timeout; } int dhd_os_d3ack_wake(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); wake_up(&dhd->d3ack_wait); return 0; } int dhd_os_busbusy_wait_negation(dhd_pub_t *pub, uint *condition) { dhd_info_t * dhd = (dhd_info_t *)(pub->info); int timeout; /* Wait for bus usage contexts to gracefully exit within some timeout value * Set time out to little higher than dhd_ioctl_timeout_msec, * so that IOCTL timeout should not get affected. */ /* Convert timeout in millsecond to jiffies */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) timeout = msecs_to_jiffies(DHD_BUS_BUSY_TIMEOUT); #else timeout = DHD_BUS_BUSY_TIMEOUT * HZ / 1000; #endif timeout = wait_event_timeout(dhd->dhd_bus_busy_state_wait, !(*condition), timeout); return timeout; } INLINE int dhd_os_busbusy_wake(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); /* Call wmb() to make sure before waking up the other event value gets updated */ OSL_SMP_WMB(); wake_up(&dhd->dhd_bus_busy_state_wait); return 0; } void dhd_os_wd_timer_extend(void *bus, bool extend) { #ifndef BCMDBUS dhd_pub_t *pub = bus; dhd_info_t *dhd = (dhd_info_t *)pub->info; if (extend) dhd_os_wd_timer(bus, WATCHDOG_EXTEND_INTERVAL); else dhd_os_wd_timer(bus, dhd->default_wd_interval); #endif /* !BCMDBUS */ } void dhd_os_wd_timer(void *bus, uint wdtick) { #ifndef BCMDBUS dhd_pub_t *pub = bus; dhd_info_t *dhd = (dhd_info_t *)pub->info; unsigned long flags; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (!dhd) { DHD_ERROR(("%s: dhd NULL\n", __FUNCTION__)); return; } DHD_GENERAL_LOCK(pub, flags); /* don't start the wd until fw is loaded */ if (pub->busstate == DHD_BUS_DOWN) { DHD_GENERAL_UNLOCK(pub, flags); return; } /* Totally stop the timer */ if (!wdtick && dhd->wd_timer_valid == TRUE) { dhd->wd_timer_valid = FALSE; DHD_GENERAL_UNLOCK(pub, flags); del_timer_sync(&dhd->timer); return; } if (wdtick) { dhd_watchdog_ms = (uint)wdtick; /* Re arm the timer, at last watchdog period */ mod_timer(&dhd->timer, jiffies + msecs_to_jiffies(dhd_watchdog_ms)); dhd->wd_timer_valid = TRUE; } DHD_GENERAL_UNLOCK(pub, flags); #endif /* BCMDBUS */ } void * dhd_os_open_image(char *filename) { struct file *fp; fp = filp_open(filename, O_RDONLY, 0); /* * 2.6.11 (FC4) supports filp_open() but later revs don't? * Alternative: * fp = open_namei(AT_FDCWD, filename, O_RD, 0); * ??? */ if (IS_ERR(fp)) fp = NULL; return fp; } int dhd_os_get_image_block(char *buf, int len, void *image) { struct file *fp = (struct file *)image; int rdlen; loff_t pos; if (!image) return 0; pos = fp->f_pos; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0)) rdlen = kernel_read(fp, (void *) buf, (size_t) len, (loff_t *) &pos); #else rdlen = kernel_read(fp, pos, buf, len); #endif if (rdlen > 0) fp->f_pos += rdlen; return rdlen; } void dhd_os_close_image(void *image) { if (image) filp_close((struct file *)image, NULL); } void dhd_os_sdlock(dhd_pub_t *pub) { dhd_info_t *dhd; dhd = (dhd_info_t *)(pub->info); #ifndef BCMDBUS if (dhd_dpc_prio >= 0) down(&dhd->sdsem); else spin_lock_bh(&dhd->sdlock); #else spin_lock_bh(&dhd->sdlock); #endif /* BCMDBUS */ } void dhd_os_sdunlock(dhd_pub_t *pub) { dhd_info_t *dhd; dhd = (dhd_info_t *)(pub->info); #ifndef BCMDBUS if (dhd_dpc_prio >= 0) up(&dhd->sdsem); else spin_unlock_bh(&dhd->sdlock); #else spin_unlock_bh(&dhd->sdlock); #endif /* BCMDBUS */ } void dhd_os_sdlock_txq(dhd_pub_t *pub) { dhd_info_t *dhd; dhd = (dhd_info_t *)(pub->info); #ifdef BCMDBUS spin_lock_irqsave(&dhd->txqlock, dhd->txqlock_flags); #else spin_lock_bh(&dhd->txqlock); #endif } void dhd_os_sdunlock_txq(dhd_pub_t *pub) { dhd_info_t *dhd; dhd = (dhd_info_t *)(pub->info); #ifdef BCMDBUS spin_unlock_irqrestore(&dhd->txqlock, dhd->txqlock_flags); #else spin_unlock_bh(&dhd->txqlock); #endif } void dhd_os_sdlock_rxq(dhd_pub_t *pub) { } void dhd_os_sdunlock_rxq(dhd_pub_t *pub) { } static void dhd_os_rxflock(dhd_pub_t *pub) { dhd_info_t *dhd; dhd = (dhd_info_t *)(pub->info); spin_lock_bh(&dhd->rxf_lock); } static void dhd_os_rxfunlock(dhd_pub_t *pub) { dhd_info_t *dhd; dhd = (dhd_info_t *)(pub->info); spin_unlock_bh(&dhd->rxf_lock); } #ifdef DHDTCPACK_SUPPRESS unsigned long dhd_os_tcpacklock(dhd_pub_t *pub) { dhd_info_t *dhd; unsigned long flags = 0; dhd = (dhd_info_t *)(pub->info); if (dhd) { #ifdef BCMSDIO spin_lock_bh(&dhd->tcpack_lock); #else spin_lock_irqsave(&dhd->tcpack_lock, flags); #endif /* BCMSDIO */ } return flags; } void dhd_os_tcpackunlock(dhd_pub_t *pub, unsigned long flags) { dhd_info_t *dhd; #ifdef BCMSDIO BCM_REFERENCE(flags); #endif /* BCMSDIO */ dhd = (dhd_info_t *)(pub->info); if (dhd) { #ifdef BCMSDIO spin_unlock_bh(&dhd->tcpack_lock); #else spin_unlock_irqrestore(&dhd->tcpack_lock, flags); #endif /* BCMSDIO */ } } #endif /* DHDTCPACK_SUPPRESS */ uint8* dhd_os_prealloc(dhd_pub_t *dhdpub, int section, uint size, bool kmalloc_if_fail) { uint8* buf; gfp_t flags = CAN_SLEEP() ? GFP_KERNEL: GFP_ATOMIC; buf = (uint8*)wifi_platform_prealloc(dhdpub->info->adapter, section, size); if (buf == NULL && kmalloc_if_fail) buf = kmalloc(size, flags); return buf; } void dhd_os_prefree(dhd_pub_t *dhdpub, void *addr, uint size) { } #if defined(WL_WIRELESS_EXT) struct iw_statistics * dhd_get_wireless_stats(struct net_device *dev) { int res = 0; dhd_info_t *dhd = DHD_DEV_INFO(dev); if (!dhd->pub.up) { return NULL; } res = wl_iw_get_wireless_stats(dev, &dhd->iw.wstats); if (res == 0) return &dhd->iw.wstats; else return NULL; } #endif /* defined(WL_WIRELESS_EXT) */ static int dhd_wl_host_event(dhd_info_t *dhd, int *ifidx, void *pktdata, uint16 pktlen, wl_event_msg_t *event, void **data) { int bcmerror = 0; #ifdef WL_CFG80211 unsigned long flags = 0; #endif /* WL_CFG80211 */ ASSERT(dhd != NULL); #ifdef SHOW_LOGTRACE bcmerror = wl_host_event(&dhd->pub, ifidx, pktdata, pktlen, event, data, &dhd->event_data); #else bcmerror = wl_host_event(&dhd->pub, ifidx, pktdata, pktlen, event, data, NULL); #endif /* SHOW_LOGTRACE */ if (bcmerror != BCME_OK) return (bcmerror); #if defined(WL_WIRELESS_EXT) if (event->bsscfgidx == 0) { /* * Wireless ext is on primary interface only */ ASSERT(dhd->iflist[*ifidx] != NULL); ASSERT(dhd->iflist[*ifidx]->net != NULL); if (dhd->iflist[*ifidx]->net) { wl_iw_event(dhd->iflist[*ifidx]->net, event, *data); } } #endif /* defined(WL_WIRELESS_EXT) */ #ifdef WL_CFG80211 ASSERT(dhd->iflist[*ifidx] != NULL); ASSERT(dhd->iflist[*ifidx]->net != NULL); if (dhd->iflist[*ifidx]->net) { spin_lock_irqsave(&dhd->pub.up_lock, flags); if (dhd->pub.up) { wl_cfg80211_event(dhd->iflist[*ifidx]->net, event, *data); } spin_unlock_irqrestore(&dhd->pub.up_lock, flags); } #endif /* defined(WL_CFG80211) */ return (bcmerror); } /* send up locally generated event */ void dhd_sendup_event(dhd_pub_t *dhdp, wl_event_msg_t *event, void *data) { switch (ntoh32(event->event_type)) { default: break; } } #ifdef LOG_INTO_TCPDUMP void dhd_sendup_log(dhd_pub_t *dhdp, void *data, int data_len) { struct sk_buff *p, *skb; uint32 pktlen; int len; dhd_if_t *ifp; dhd_info_t *dhd; uchar *skb_data; int ifidx = 0; struct ether_header eth; pktlen = sizeof(eth) + data_len; dhd = dhdp->info; if ((p = PKTGET(dhdp->osh, pktlen, FALSE))) { ASSERT(ISALIGNED((uintptr)PKTDATA(dhdp->osh, p), sizeof(uint32))); bcopy(&dhdp->mac, ð.ether_dhost, ETHER_ADDR_LEN); bcopy(&dhdp->mac, ð.ether_shost, ETHER_ADDR_LEN); ETHER_TOGGLE_LOCALADDR(ð.ether_shost); eth.ether_type = hton16(ETHER_TYPE_BRCM); bcopy((void *)ð, PKTDATA(dhdp->osh, p), sizeof(eth)); bcopy(data, PKTDATA(dhdp->osh, p) + sizeof(eth), data_len); skb = PKTTONATIVE(dhdp->osh, p); skb_data = skb->data; len = skb->len; ifidx = dhd_ifname2idx(dhd, "wlan0"); ifp = dhd->iflist[ifidx]; if (ifp == NULL) ifp = dhd->iflist[0]; ASSERT(ifp); skb->dev = ifp->net; skb->protocol = eth_type_trans(skb, skb->dev); skb->data = skb_data; skb->len = len; /* Strip header, count, deliver upward */ skb_pull(skb, ETH_HLEN); bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__); /* Send the packet */ if (in_interrupt()) { netif_rx(skb); } else { netif_rx_ni(skb); } } else { /* Could not allocate a sk_buf */ DHD_ERROR(("%s: unable to alloc sk_buf", __FUNCTION__)); } } #endif /* LOG_INTO_TCPDUMP */ void dhd_wait_for_event(dhd_pub_t *dhd, bool *lockvar) { #if defined(BCMSDIO) && (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0)) struct dhd_info *dhdinfo = dhd->info; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) int timeout = msecs_to_jiffies(IOCTL_RESP_TIMEOUT); #else int timeout = (IOCTL_RESP_TIMEOUT / 1000) * HZ; #endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) */ dhd_os_sdunlock(dhd); wait_event_timeout(dhdinfo->ctrl_wait, (*lockvar == FALSE), timeout); dhd_os_sdlock(dhd); #endif /* defined(BCMSDIO) && (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0)) */ return; } void dhd_wait_event_wakeup(dhd_pub_t *dhd) { #if defined(BCMSDIO) && (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0)) struct dhd_info *dhdinfo = dhd->info; if (waitqueue_active(&dhdinfo->ctrl_wait)) wake_up(&dhdinfo->ctrl_wait); #endif return; } #if defined(BCMSDIO) || defined(BCMPCIE) int dhd_net_bus_devreset(struct net_device *dev, uint8 flag) { int ret; dhd_info_t *dhd = DHD_DEV_INFO(dev); if (flag == TRUE) { /* Issue wl down command before resetting the chip */ if (dhd_wl_ioctl_cmd(&dhd->pub, WLC_DOWN, NULL, 0, TRUE, 0) < 0) { DHD_TRACE(("%s: wl down failed\n", __FUNCTION__)); } #ifdef PROP_TXSTATUS if (dhd->pub.wlfc_enabled) { dhd_wlfc_deinit(&dhd->pub); } #endif /* PROP_TXSTATUS */ #ifdef PNO_SUPPORT if (dhd->pub.pno_state) { dhd_pno_deinit(&dhd->pub); } #endif #ifdef RTT_SUPPORT if (dhd->pub.rtt_state) { dhd_rtt_deinit(&dhd->pub); } #endif /* RTT_SUPPORT */ } #ifdef BCMSDIO if (!flag) { dhd_update_fw_nv_path(dhd); /* update firmware and nvram path to sdio bus */ dhd_bus_update_fw_nv_path(dhd->pub.bus, dhd->fw_path, dhd->nv_path); } #endif /* BCMSDIO */ ret = dhd_bus_devreset(&dhd->pub, flag); if (ret) { DHD_ERROR(("%s: dhd_bus_devreset: %d\n", __FUNCTION__, ret)); return ret; } return ret; } #ifdef BCMSDIO int dhd_net_bus_suspend(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); return dhd_bus_suspend(&dhd->pub); } int dhd_net_bus_resume(struct net_device *dev, uint8 stage) { dhd_info_t *dhd = DHD_DEV_INFO(dev); return dhd_bus_resume(&dhd->pub, stage); } #endif /* BCMSDIO */ #endif /* BCMSDIO || BCMPCIE */ int net_os_set_suspend_disable(struct net_device *dev, int val) { dhd_info_t *dhd = DHD_DEV_INFO(dev); int ret = 0; if (dhd) { ret = dhd->pub.suspend_disable_flag; dhd->pub.suspend_disable_flag = val; } return ret; } int net_os_set_suspend(struct net_device *dev, int val, int force) { int ret = 0; dhd_info_t *dhd = DHD_DEV_INFO(dev); if (dhd) { #ifdef CONFIG_MACH_UNIVERSAL7420 #endif /* CONFIG_MACH_UNIVERSAL7420 */ #if defined(CONFIG_HAS_EARLYSUSPEND) && defined(DHD_USE_EARLYSUSPEND) ret = dhd_set_suspend(val, &dhd->pub); #else ret = dhd_suspend_resume_helper(dhd, val, force); #endif #ifdef WL_CFG80211 wl_cfg80211_update_power_mode(dev); #endif } return ret; } int net_os_set_suspend_bcn_li_dtim(struct net_device *dev, int val) { dhd_info_t *dhd = DHD_DEV_INFO(dev); if (dhd) dhd->pub.suspend_bcn_li_dtim = val; return 0; } #ifdef PKT_FILTER_SUPPORT int net_os_rxfilter_add_remove(struct net_device *dev, int add_remove, int num) { dhd_info_t *dhd = DHD_DEV_INFO(dev); char *filterp = NULL; int filter_id = 0; int ret = 0; if (!dhd || (num == DHD_UNICAST_FILTER_NUM) || (num == DHD_MDNS_FILTER_NUM)) return ret; if (num >= dhd->pub.pktfilter_count) return -EINVAL; switch (num) { case DHD_BROADCAST_FILTER_NUM: filterp = "101 0 0 0 0xFFFFFFFFFFFF 0xFFFFFFFFFFFF"; filter_id = 101; break; case DHD_MULTICAST4_FILTER_NUM: filterp = "102 0 0 0 0xFFFFFF 0x01005E"; filter_id = 102; break; case DHD_MULTICAST6_FILTER_NUM: filterp = "103 0 0 0 0xFFFF 0x3333"; filter_id = 103; break; default: return -EINVAL; } /* Add filter */ if (add_remove) { dhd->pub.pktfilter[num] = filterp; dhd_pktfilter_offload_set(&dhd->pub, dhd->pub.pktfilter[num]); } else { /* Delete filter */ if (dhd->pub.pktfilter[num] != NULL) { dhd_pktfilter_offload_delete(&dhd->pub, filter_id); dhd->pub.pktfilter[num] = NULL; } } return ret; } int dhd_os_enable_packet_filter(dhd_pub_t *dhdp, int val) { int ret = 0; /* Packet filtering is set only if we still in early-suspend and * we need either to turn it ON or turn it OFF * We can always turn it OFF in case of early-suspend, but we turn it * back ON only if suspend_disable_flag was not set */ if (dhdp && dhdp->up) { if (dhdp->in_suspend) { if (!val || (val && !dhdp->suspend_disable_flag)) dhd_enable_packet_filter(val, dhdp); } } return ret; } /* function to enable/disable packet for Network device */ int net_os_enable_packet_filter(struct net_device *dev, int val) { dhd_info_t *dhd = DHD_DEV_INFO(dev); return dhd_os_enable_packet_filter(&dhd->pub, val); } #endif /* PKT_FILTER_SUPPORT */ int dhd_dev_init_ioctl(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); int ret; if ((ret = dhd_sync_with_dongle(&dhd->pub)) < 0) goto done; done: return ret; } int dhd_dev_get_feature_set(struct net_device *dev) { dhd_info_t *ptr = *(dhd_info_t **)netdev_priv(dev); dhd_pub_t *dhd = (&ptr->pub); int feature_set = 0; #ifdef DYNAMIC_SWOOB_DURATION #ifndef CUSTOM_INTR_WIDTH #define CUSTOM_INTR_WIDTH 100 int intr_width = 0; #endif /* CUSTOM_INTR_WIDTH */ #endif /* DYNAMIC_SWOOB_DURATION */ if (!dhd) return feature_set; if (FW_SUPPORTED(dhd, sta)) feature_set |= WIFI_FEATURE_INFRA; if (FW_SUPPORTED(dhd, dualband)) feature_set |= WIFI_FEATURE_INFRA_5G; if (FW_SUPPORTED(dhd, p2p)) feature_set |= WIFI_FEATURE_P2P; if (dhd->op_mode & DHD_FLAG_HOSTAP_MODE) feature_set |= WIFI_FEATURE_SOFT_AP; if (FW_SUPPORTED(dhd, tdls)) feature_set |= WIFI_FEATURE_TDLS; if (FW_SUPPORTED(dhd, vsdb)) feature_set |= WIFI_FEATURE_TDLS_OFFCHANNEL; if (FW_SUPPORTED(dhd, nan)) { feature_set |= WIFI_FEATURE_NAN; /* NAN is essentail for d2d rtt */ if (FW_SUPPORTED(dhd, rttd2d)) feature_set |= WIFI_FEATURE_D2D_RTT; } #ifdef RTT_SUPPORT feature_set |= WIFI_FEATURE_D2AP_RTT; #endif /* RTT_SUPPORT */ #ifdef LINKSTAT_SUPPORT feature_set |= WIFI_FEATURE_LINKSTAT; #endif /* LINKSTAT_SUPPORT */ /* Supports STA + STA always */ feature_set |= WIFI_FEATURE_ADDITIONAL_STA; #ifdef PNO_SUPPORT if (dhd_is_pno_supported(dhd)) { feature_set |= WIFI_FEATURE_PNO; feature_set |= WIFI_FEATURE_BATCH_SCAN; #ifdef GSCAN_SUPPORT feature_set |= WIFI_FEATURE_GSCAN; #endif /* GSCAN_SUPPORT */ } if (FW_SUPPORTED(dhd, rssi_mon)) { feature_set |= WIFI_FEATURE_RSSI_MONITOR; } #endif /* PNO_SUPPORT */ #ifdef WL11U feature_set |= WIFI_FEATURE_HOTSPOT; #endif /* WL11U */ return feature_set; } int *dhd_dev_get_feature_set_matrix(struct net_device *dev, int *num) { int feature_set_full, mem_needed; int *ret; *num = 0; mem_needed = sizeof(int) * MAX_FEATURE_SET_CONCURRRENT_GROUPS; ret = (int *) kmalloc(mem_needed, GFP_KERNEL); if (!ret) { DHD_ERROR(("%s: failed to allocate %d bytes\n", __FUNCTION__, mem_needed)); return ret; } feature_set_full = dhd_dev_get_feature_set(dev); ret[0] = (feature_set_full & WIFI_FEATURE_INFRA) | (feature_set_full & WIFI_FEATURE_INFRA_5G) | (feature_set_full & WIFI_FEATURE_NAN) | (feature_set_full & WIFI_FEATURE_D2D_RTT) | (feature_set_full & WIFI_FEATURE_D2AP_RTT) | (feature_set_full & WIFI_FEATURE_PNO) | (feature_set_full & WIFI_FEATURE_HAL_EPNO) | (feature_set_full & WIFI_FEATURE_RSSI_MONITOR) | (feature_set_full & WIFI_FEATURE_BATCH_SCAN) | (feature_set_full & WIFI_FEATURE_GSCAN) | (feature_set_full & WIFI_FEATURE_HOTSPOT) | (feature_set_full & WIFI_FEATURE_ADDITIONAL_STA) | (feature_set_full & WIFI_FEATURE_EPR); ret[1] = (feature_set_full & WIFI_FEATURE_INFRA) | (feature_set_full & WIFI_FEATURE_INFRA_5G) | (feature_set_full & WIFI_FEATURE_RSSI_MONITOR) | /* Not yet verified NAN with P2P */ /* (feature_set_full & WIFI_FEATURE_NAN) | */ (feature_set_full & WIFI_FEATURE_P2P) | (feature_set_full & WIFI_FEATURE_D2AP_RTT) | (feature_set_full & WIFI_FEATURE_D2D_RTT) | (feature_set_full & WIFI_FEATURE_EPR); ret[2] = (feature_set_full & WIFI_FEATURE_INFRA) | (feature_set_full & WIFI_FEATURE_INFRA_5G) | (feature_set_full & WIFI_FEATURE_RSSI_MONITOR) | (feature_set_full & WIFI_FEATURE_NAN) | (feature_set_full & WIFI_FEATURE_D2D_RTT) | (feature_set_full & WIFI_FEATURE_D2AP_RTT) | (feature_set_full & WIFI_FEATURE_TDLS) | (feature_set_full & WIFI_FEATURE_TDLS_OFFCHANNEL) | (feature_set_full & WIFI_FEATURE_EPR); *num = MAX_FEATURE_SET_CONCURRRENT_GROUPS; return ret; } #ifdef CUSTOM_FORCE_NODFS_FLAG int dhd_dev_set_nodfs(struct net_device *dev, u32 nodfs) { dhd_info_t *dhd = DHD_DEV_INFO(dev); if (nodfs) dhd->pub.dhd_cflags |= WLAN_PLAT_NODFS_FLAG; else dhd->pub.dhd_cflags &= ~WLAN_PLAT_NODFS_FLAG; dhd->pub.force_country_change = TRUE; return 0; } #endif /* CUSTOM_FORCE_NODFS_FLAG */ #ifdef PNO_SUPPORT /* Linux wrapper to call common dhd_pno_stop_for_ssid */ int dhd_dev_pno_stop_for_ssid(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); return (dhd_pno_stop_for_ssid(&dhd->pub)); } /* Linux wrapper to call common dhd_pno_set_for_ssid */ int dhd_dev_pno_set_for_ssid(struct net_device *dev, wlc_ssid_ext_t* ssids_local, int nssid, uint16 scan_fr, int pno_repeat, int pno_freq_expo_max, uint16 *channel_list, int nchan) { dhd_info_t *dhd = DHD_DEV_INFO(dev); return (dhd_pno_set_for_ssid(&dhd->pub, ssids_local, nssid, scan_fr, pno_repeat, pno_freq_expo_max, channel_list, nchan)); } /* Linux wrapper to call common dhd_pno_enable */ int dhd_dev_pno_enable(struct net_device *dev, int enable) { dhd_info_t *dhd = DHD_DEV_INFO(dev); return (dhd_pno_enable(&dhd->pub, enable)); } /* Linux wrapper to call common dhd_pno_set_for_hotlist */ int dhd_dev_pno_set_for_hotlist(struct net_device *dev, wl_pfn_bssid_t *p_pfn_bssid, struct dhd_pno_hotlist_params *hotlist_params) { dhd_info_t *dhd = DHD_DEV_INFO(dev); return (dhd_pno_set_for_hotlist(&dhd->pub, p_pfn_bssid, hotlist_params)); } /* Linux wrapper to call common dhd_dev_pno_stop_for_batch */ int dhd_dev_pno_stop_for_batch(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); return (dhd_pno_stop_for_batch(&dhd->pub)); } /* Linux wrapper to call common dhd_dev_pno_set_for_batch */ int dhd_dev_pno_set_for_batch(struct net_device *dev, struct dhd_pno_batch_params *batch_params) { dhd_info_t *dhd = DHD_DEV_INFO(dev); return (dhd_pno_set_for_batch(&dhd->pub, batch_params)); } /* Linux wrapper to call common dhd_dev_pno_get_for_batch */ int dhd_dev_pno_get_for_batch(struct net_device *dev, char *buf, int bufsize) { dhd_info_t *dhd = DHD_DEV_INFO(dev); return (dhd_pno_get_for_batch(&dhd->pub, buf, bufsize, PNO_STATUS_NORMAL)); } bool dhd_dev_is_legacy_pno_enabled(struct net_device *dev) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_is_legacy_pno_enabled(&dhd->pub)); } #endif /* PNO_SUPPORT */ #if defined(PNO_SUPPORT) #ifdef GSCAN_SUPPORT /* Linux wrapper to call common dhd_pno_set_cfg_gscan */ int dhd_dev_pno_set_cfg_gscan(struct net_device *dev, dhd_pno_gscan_cmd_cfg_t type, void *buf, uint8 flush) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_pno_set_cfg_gscan(&dhd->pub, type, buf, flush)); } /* Linux wrapper to call common dhd_pno_get_gscan */ void * dhd_dev_pno_get_gscan(struct net_device *dev, dhd_pno_gscan_cmd_cfg_t type, void *info, uint32 *len) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_pno_get_gscan(&dhd->pub, type, info, len)); } /* Linux wrapper to call common dhd_wait_batch_results_complete */ int dhd_dev_wait_batch_results_complete(struct net_device *dev) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_wait_batch_results_complete(&dhd->pub)); } /* Linux wrapper to call common dhd_pno_lock_batch_results */ int dhd_dev_pno_lock_access_batch_results(struct net_device *dev) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_pno_lock_batch_results(&dhd->pub)); } /* Linux wrapper to call common dhd_pno_unlock_batch_results */ void dhd_dev_pno_unlock_access_batch_results(struct net_device *dev) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_pno_unlock_batch_results(&dhd->pub)); } /* Linux wrapper to call common dhd_pno_initiate_gscan_request */ int dhd_dev_pno_run_gscan(struct net_device *dev, bool run, bool flush) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_pno_initiate_gscan_request(&dhd->pub, run, flush)); } /* Linux wrapper to call common dhd_pno_enable_full_scan_result */ int dhd_dev_pno_enable_full_scan_result(struct net_device *dev, bool real_time_flag) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_pno_enable_full_scan_result(&dhd->pub, real_time_flag)); } /* Linux wrapper to call common dhd_handle_swc_evt */ void * dhd_dev_swc_scan_event(struct net_device *dev, const void *data, int *send_evt_bytes) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_handle_swc_evt(&dhd->pub, data, send_evt_bytes)); } /* Linux wrapper to call common dhd_handle_hotlist_scan_evt */ void * dhd_dev_hotlist_scan_event(struct net_device *dev, const void *data, int *send_evt_bytes, hotlist_type_t type) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_handle_hotlist_scan_evt(&dhd->pub, data, send_evt_bytes, type)); } /* Linux wrapper to call common dhd_process_full_gscan_result */ void * dhd_dev_process_full_gscan_result(struct net_device *dev, const void *data, uint32 len, int *send_evt_bytes) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_process_full_gscan_result(&dhd->pub, data, len, send_evt_bytes)); } void dhd_dev_gscan_hotlist_cache_cleanup(struct net_device *dev, hotlist_type_t type) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); dhd_gscan_hotlist_cache_cleanup(&dhd->pub, type); return; } int dhd_dev_gscan_batch_cache_cleanup(struct net_device *dev) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_gscan_batch_cache_cleanup(&dhd->pub)); } /* Linux wrapper to call common dhd_retreive_batch_scan_results */ int dhd_dev_retrieve_batch_scan(struct net_device *dev) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_retreive_batch_scan_results(&dhd->pub)); } /* Linux wrapper to call common dhd_pno_process_epno_result */ void * dhd_dev_process_epno_result(struct net_device *dev, const void *data, uint32 event, int *send_evt_bytes) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_pno_process_epno_result(&dhd->pub, data, event, send_evt_bytes)); } int dhd_dev_set_lazy_roam_cfg(struct net_device *dev, wlc_roam_exp_params_t *roam_param) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); wl_roam_exp_cfg_t roam_exp_cfg; int err; if (!roam_param) { return BCME_BADARG; } DHD_ERROR(("a_band_boost_thr %d a_band_penalty_thr %d\n", roam_param->a_band_boost_threshold, roam_param->a_band_penalty_threshold)); DHD_ERROR(("a_band_boost_factor %d a_band_penalty_factor %d cur_bssid_boost %d\n", roam_param->a_band_boost_factor, roam_param->a_band_penalty_factor, roam_param->cur_bssid_boost)); DHD_ERROR(("alert_roam_trigger_thr %d a_band_max_boost %d\n", roam_param->alert_roam_trigger_threshold, roam_param->a_band_max_boost)); memcpy(&roam_exp_cfg.params, roam_param, sizeof(*roam_param)); roam_exp_cfg.version = ROAM_EXP_CFG_VERSION; roam_exp_cfg.flags = ROAM_EXP_CFG_PRESENT; if (dhd->pub.lazy_roam_enable) { roam_exp_cfg.flags |= ROAM_EXP_ENABLE_FLAG; } err = dhd_iovar(&dhd->pub, 0, "roam_exp_params", (char *)&roam_exp_cfg, sizeof(roam_exp_cfg), NULL, 0, TRUE); if (err < 0) { DHD_ERROR(("%s : Failed to execute roam_exp_params %d\n", __FUNCTION__, err)); } return err; } int dhd_dev_lazy_roam_enable(struct net_device *dev, uint32 enable) { int err; dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); wl_roam_exp_cfg_t roam_exp_cfg; memset(&roam_exp_cfg, 0, sizeof(roam_exp_cfg)); roam_exp_cfg.version = ROAM_EXP_CFG_VERSION; if (enable) { roam_exp_cfg.flags = ROAM_EXP_ENABLE_FLAG; } err = dhd_iovar(&dhd->pub, 0, "roam_exp_params", (char *)&roam_exp_cfg, sizeof(roam_exp_cfg), NULL, 0, TRUE); if (err < 0) { DHD_ERROR(("%s : Failed to execute roam_exp_params %d\n", __FUNCTION__, err)); } else { dhd->pub.lazy_roam_enable = (enable != 0); } return err; } int dhd_dev_set_lazy_roam_bssid_pref(struct net_device *dev, wl_bssid_pref_cfg_t *bssid_pref, uint32 flush) { int err; int len; dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); bssid_pref->version = BSSID_PREF_LIST_VERSION; /* By default programming bssid pref flushes out old values */ bssid_pref->flags = (flush && !bssid_pref->count) ? ROAM_EXP_CLEAR_BSSID_PREF: 0; len = sizeof(wl_bssid_pref_cfg_t); len += (bssid_pref->count - 1) * sizeof(wl_bssid_pref_list_t); err = dhd_iovar(&dhd->pub, 0, "roam_exp_bssid_pref", (char *)bssid_pref, len, NULL, 0, TRUE); if (err != BCME_OK) { DHD_ERROR(("%s : Failed to execute roam_exp_bssid_pref %d\n", __FUNCTION__, err)); } return err; } int dhd_dev_set_blacklist_bssid(struct net_device *dev, maclist_t *blacklist, uint32 len, uint32 flush) { int err; dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); int macmode; if (blacklist) { err = dhd_wl_ioctl_cmd(&(dhd->pub), WLC_SET_MACLIST, (char *)blacklist, len, TRUE, 0); if (err != BCME_OK) { DHD_ERROR(("%s : WLC_SET_MACLIST failed %d\n", __FUNCTION__, err)); return err; } } /* By default programming blacklist flushes out old values */ macmode = (flush && !blacklist) ? WLC_MACMODE_DISABLED : WLC_MACMODE_DENY; err = dhd_wl_ioctl_cmd(&(dhd->pub), WLC_SET_MACMODE, (char *)&macmode, sizeof(macmode), TRUE, 0); if (err != BCME_OK) { DHD_ERROR(("%s : WLC_SET_MACMODE failed %d\n", __FUNCTION__, err)); } return err; } int dhd_dev_set_whitelist_ssid(struct net_device *dev, wl_ssid_whitelist_t *ssid_whitelist, uint32 len, uint32 flush) { int err; dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); wl_ssid_whitelist_t whitelist_ssid_flush; if (!ssid_whitelist) { if (flush) { ssid_whitelist = &whitelist_ssid_flush; ssid_whitelist->ssid_count = 0; } else { DHD_ERROR(("%s : Nothing to do here\n", __FUNCTION__)); return BCME_BADARG; } } ssid_whitelist->version = SSID_WHITELIST_VERSION; ssid_whitelist->flags = flush ? ROAM_EXP_CLEAR_SSID_WHITELIST : 0; err = dhd_iovar(&dhd->pub, 0, "roam_exp_ssid_whitelist", (char *)ssid_whitelist, len, NULL, 0, TRUE); if (err != BCME_OK) { DHD_ERROR(("%s : Failed to execute roam_exp_bssid_pref %d\n", __FUNCTION__, err)); } return err; } #endif /* GSCAN_SUPPORT */ #endif int dhd_dev_set_rssi_monitor_cfg(struct net_device *dev, int start, int8 max_rssi, int8 min_rssi) { int err; wl_rssi_monitor_cfg_t rssi_monitor; dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); rssi_monitor.version = RSSI_MONITOR_VERSION; rssi_monitor.max_rssi = max_rssi; rssi_monitor.min_rssi = min_rssi; rssi_monitor.flags = start ? 0: RSSI_MONITOR_STOP; err = dhd_iovar(&dhd->pub, 0, "rssi_monitor", (char *)&rssi_monitor, sizeof(rssi_monitor), NULL, 0, TRUE); if (err < 0 && err != BCME_UNSUPPORTED) { DHD_ERROR(("%s : Failed to execute rssi_monitor %d\n", __FUNCTION__, err)); } return err; } int dhd_dev_cfg_rand_mac_oui(struct net_device *dev, uint8 *oui) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); dhd_pub_t *dhdp = &dhd->pub; if (!dhdp || !oui) { DHD_ERROR(("NULL POINTER : %s\n", __FUNCTION__)); return BCME_ERROR; } if (ETHER_ISMULTI(oui)) { DHD_ERROR(("Expected unicast OUI\n")); return BCME_ERROR; } else { uint8 *rand_mac_oui = dhdp->rand_mac_oui; memcpy(rand_mac_oui, oui, DOT11_OUI_LEN); DHD_ERROR(("Random MAC OUI to be used - %02x:%02x:%02x\n", rand_mac_oui[0], rand_mac_oui[1], rand_mac_oui[2])); } return BCME_OK; } int dhd_set_rand_mac_oui(dhd_pub_t *dhd) { int err; wl_pfn_macaddr_cfg_t cfg; uint8 *rand_mac_oui = dhd->rand_mac_oui; memset(&cfg.macaddr, 0, ETHER_ADDR_LEN); memcpy(&cfg.macaddr, rand_mac_oui, DOT11_OUI_LEN); cfg.version = WL_PFN_MACADDR_CFG_VER; if (ETHER_ISNULLADDR(&cfg.macaddr)) cfg.flags = 0; else cfg.flags = (WL_PFN_MAC_OUI_ONLY_MASK | WL_PFN_SET_MAC_UNASSOC_MASK); DHD_ERROR(("Setting rand mac oui to FW - %02x:%02x:%02x\n", rand_mac_oui[0], rand_mac_oui[1], rand_mac_oui[2])); err = dhd_iovar(dhd, 0, "pfn_macaddr", (char *)&cfg, sizeof(cfg), NULL, 0, TRUE); if (err < 0) { DHD_ERROR(("%s : failed to execute pfn_macaddr %d\n", __FUNCTION__, err)); } return err; } #ifdef RTT_SUPPORT /* Linux wrapper to call common dhd_pno_set_cfg_gscan */ int dhd_dev_rtt_set_cfg(struct net_device *dev, void *buf) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_rtt_set_cfg(&dhd->pub, buf)); } int dhd_dev_rtt_cancel_cfg(struct net_device *dev, struct ether_addr *mac_list, int mac_cnt) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_rtt_stop(&dhd->pub, mac_list, mac_cnt)); } int dhd_dev_rtt_register_noti_callback(struct net_device *dev, void *ctx, dhd_rtt_compl_noti_fn noti_fn) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_rtt_register_noti_callback(&dhd->pub, ctx, noti_fn)); } int dhd_dev_rtt_unregister_noti_callback(struct net_device *dev, dhd_rtt_compl_noti_fn noti_fn) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_rtt_unregister_noti_callback(&dhd->pub, noti_fn)); } int dhd_dev_rtt_capability(struct net_device *dev, rtt_capabilities_t *capa) { dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); return (dhd_rtt_capability(&dhd->pub, capa)); } #endif /* RTT_SUPPORT */ #if defined(KEEP_ALIVE) #define TEMP_BUF_SIZE 512 #define TEMP_FRAME_SIZE 300 int dhd_dev_start_mkeep_alive(dhd_pub_t *dhd_pub, u8 mkeep_alive_id, u8 *ip_pkt, u16 ip_pkt_len, u8* src_mac, u8* dst_mac, u32 period_msec) { char *pbuf; const char *str; wl_mkeep_alive_pkt_t mkeep_alive_pkt = {0}; wl_mkeep_alive_pkt_t *mkeep_alive_pktp; int buf_len; int str_len; int res = BCME_ERROR; int len_bytes = 0; int i; /* ether frame to have both max IP pkt (256 bytes) and ether header */ char *pmac_frame; /* * The mkeep_alive packet is for STA interface only; if the bss is configured as AP, * dongle shall reject a mkeep_alive request. */ if (!dhd_support_sta_mode(dhd_pub)) return res; DHD_TRACE(("%s execution\n", __FUNCTION__)); if ((pbuf = kzalloc(TEMP_BUF_SIZE, GFP_KERNEL)) == NULL) { DHD_ERROR(("failed to allocate buf with size %d\n", TEMP_BUF_SIZE)); res = BCME_NOMEM; return res; } if ((pmac_frame = kzalloc(TEMP_FRAME_SIZE, GFP_KERNEL)) == NULL) { DHD_ERROR(("failed to allocate mac_frame with size %d\n", TEMP_FRAME_SIZE)); res = BCME_NOMEM; goto exit; } /* * Get current mkeep-alive status. */ bcm_mkiovar("mkeep_alive", &mkeep_alive_id, sizeof(mkeep_alive_id), pbuf, TEMP_BUF_SIZE); if ((res = dhd_wl_ioctl_cmd(dhd_pub, WLC_GET_VAR, pbuf, TEMP_BUF_SIZE, FALSE, 0)) < 0) { DHD_ERROR(("%s: Get mkeep_alive failed (error=%d)\n", __FUNCTION__, res)); goto exit; } else { /* Check available ID whether it is occupied */ mkeep_alive_pktp = (wl_mkeep_alive_pkt_t *) pbuf; if (dtoh32(mkeep_alive_pktp->period_msec != 0)) { DHD_ERROR(("%s: Get mkeep_alive failed, ID %u is in use.\n", __FUNCTION__, mkeep_alive_id)); /* Current occupied ID info */ DHD_ERROR(("%s: mkeep_alive\n", __FUNCTION__)); DHD_ERROR((" Id : %d\n" " Period: %d msec\n" " Length: %d\n" " Packet: 0x", mkeep_alive_pktp->keep_alive_id, dtoh32(mkeep_alive_pktp->period_msec), dtoh16(mkeep_alive_pktp->len_bytes))); for (i = 0; i < mkeep_alive_pktp->len_bytes; i++) { DHD_ERROR(("%02x", mkeep_alive_pktp->data[i])); } DHD_ERROR(("\n")); res = BCME_NOTFOUND; goto exit; } } /* Request the specified ID */ memset(&mkeep_alive_pkt, 0, sizeof(wl_mkeep_alive_pkt_t)); memset(pbuf, 0, TEMP_BUF_SIZE); str = "mkeep_alive"; str_len = strlen(str); strncpy(pbuf, str, str_len); pbuf[str_len] = '\0'; mkeep_alive_pktp = (wl_mkeep_alive_pkt_t *) (pbuf + str_len + 1); mkeep_alive_pkt.period_msec = htod32(period_msec); buf_len = str_len + 1; mkeep_alive_pkt.version = htod16(WL_MKEEP_ALIVE_VERSION); mkeep_alive_pkt.length = htod16(WL_MKEEP_ALIVE_FIXED_LEN); /* ID assigned */ mkeep_alive_pkt.keep_alive_id = mkeep_alive_id; buf_len += WL_MKEEP_ALIVE_FIXED_LEN; /* * Build up Ethernet Frame */ /* Mapping dest mac addr */ memcpy(pmac_frame, dst_mac, ETHER_ADDR_LEN); pmac_frame += ETHER_ADDR_LEN; /* Mapping src mac addr */ memcpy(pmac_frame, src_mac, ETHER_ADDR_LEN); pmac_frame += ETHER_ADDR_LEN; /* Mapping Ethernet type (ETHERTYPE_IP: 0x0800) */ *(pmac_frame++) = 0x08; *(pmac_frame++) = 0x00; /* Mapping IP pkt */ memcpy(pmac_frame, ip_pkt, ip_pkt_len); pmac_frame += ip_pkt_len; /* * Length of ether frame (assume to be all hexa bytes) * = src mac + dst mac + ether type + ip pkt len */ len_bytes = ETHER_ADDR_LEN*2 + ETHER_TYPE_LEN + ip_pkt_len; /* Get back to the beginning. */ pmac_frame -= len_bytes; memcpy(mkeep_alive_pktp->data, pmac_frame, len_bytes); buf_len += len_bytes; mkeep_alive_pkt.len_bytes = htod16(len_bytes); /* * Keep-alive attributes are set in local variable (mkeep_alive_pkt), and * then memcpy'ed into buffer (mkeep_alive_pktp) since there is no * guarantee that the buffer is properly aligned. */ memcpy((char *)mkeep_alive_pktp, &mkeep_alive_pkt, WL_MKEEP_ALIVE_FIXED_LEN); res = dhd_wl_ioctl_cmd(dhd_pub, WLC_SET_VAR, pbuf, buf_len, TRUE, 0); exit: kfree(pmac_frame); kfree(pbuf); return res; } int dhd_dev_stop_mkeep_alive(dhd_pub_t *dhd_pub, u8 mkeep_alive_id) { char *pbuf; const char *str; wl_mkeep_alive_pkt_t mkeep_alive_pkt; wl_mkeep_alive_pkt_t *mkeep_alive_pktp; int buf_len; int str_len; int res = BCME_ERROR; int i; /* * The mkeep_alive packet is for STA interface only; if the bss is configured as AP, * dongle shall reject a mkeep_alive request. */ if (!dhd_support_sta_mode(dhd_pub)) return res; DHD_TRACE(("%s execution\n", __FUNCTION__)); /* * Get current mkeep-alive status. Skip ID 0 which is being used for NULL pkt. */ if ((pbuf = kzalloc(TEMP_BUF_SIZE, GFP_KERNEL)) == NULL) { DHD_ERROR(("failed to allocate buf with size %d\n", TEMP_BUF_SIZE)); return res; } bcm_mkiovar("mkeep_alive", &mkeep_alive_id, sizeof(mkeep_alive_id), pbuf, TEMP_BUF_SIZE); if ((res = dhd_wl_ioctl_cmd(dhd_pub, WLC_GET_VAR, pbuf, TEMP_BUF_SIZE, FALSE, 0)) < 0) { DHD_ERROR(("%s: Get mkeep_alive failed (error=%d)\n", __FUNCTION__, res)); goto exit; } else { /* Check occupied ID */ mkeep_alive_pktp = (wl_mkeep_alive_pkt_t *) pbuf; DHD_INFO(("%s: mkeep_alive\n", __FUNCTION__)); DHD_INFO((" Id : %d\n" " Period: %d msec\n" " Length: %d\n" " Packet: 0x", mkeep_alive_pktp->keep_alive_id, dtoh32(mkeep_alive_pktp->period_msec), dtoh16(mkeep_alive_pktp->len_bytes))); for (i = 0; i < mkeep_alive_pktp->len_bytes; i++) { DHD_INFO(("%02x", mkeep_alive_pktp->data[i])); } DHD_INFO(("\n")); } /* Make it stop if available */ if (dtoh32(mkeep_alive_pktp->period_msec != 0)) { DHD_INFO(("stop mkeep_alive on ID %d\n", mkeep_alive_id)); memset(&mkeep_alive_pkt, 0, sizeof(wl_mkeep_alive_pkt_t)); memset(pbuf, 0, TEMP_BUF_SIZE); str = "mkeep_alive"; str_len = strlen(str); strncpy(pbuf, str, str_len); pbuf[str_len] = '\0'; mkeep_alive_pktp = (wl_mkeep_alive_pkt_t *) (pbuf + str_len + 1); mkeep_alive_pkt.period_msec = 0; buf_len = str_len + 1; mkeep_alive_pkt.version = htod16(WL_MKEEP_ALIVE_VERSION); mkeep_alive_pkt.length = htod16(WL_MKEEP_ALIVE_FIXED_LEN); mkeep_alive_pkt.keep_alive_id = mkeep_alive_id; buf_len += WL_MKEEP_ALIVE_FIXED_LEN; /* * Keep-alive attributes are set in local variable (mkeep_alive_pkt), and * then memcpy'ed into buffer (mkeep_alive_pktp) since there is no * guarantee that the buffer is properly aligned. */ memcpy((char *)mkeep_alive_pktp, &mkeep_alive_pkt, WL_MKEEP_ALIVE_FIXED_LEN); res = dhd_wl_ioctl_cmd(dhd_pub, WLC_SET_VAR, pbuf, buf_len, TRUE, 0); } else { DHD_ERROR(("%s: ID %u does not exist.\n", __FUNCTION__, mkeep_alive_id)); res = BCME_NOTFOUND; } exit: kfree(pbuf); return res; } #endif /* defined(KEEP_ALIVE) */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) static void dhd_hang_process(void *dhd_info, void *event_info, u8 event) { dhd_info_t *dhd; struct net_device *dev; dhd = (dhd_info_t *)dhd_info; dev = dhd->iflist[0]->net; if (dev) { rtnl_lock(); dev_close(dev); rtnl_unlock(); #if defined(WL_WIRELESS_EXT) wl_iw_send_priv_event(dev, "HANG"); #endif #if defined(WL_CFG80211) wl_cfg80211_hang(dev, WLAN_REASON_UNSPECIFIED); #endif } } int dhd_os_send_hang_message(dhd_pub_t *dhdp) { int ret = 0; if (dhdp) { if (!dhdp->hang_was_sent) { dhdp->hang_was_sent = 1; dhd_deferred_schedule_work(dhdp->info->dhd_deferred_wq, (void *)dhdp, DHD_WQ_WORK_HANG_MSG, dhd_hang_process, DHD_WORK_PRIORITY_HIGH); } } return ret; } int net_os_send_hang_message(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); int ret = 0; if (dhd) { /* Report FW problem when enabled */ if (dhd->pub.hang_report) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) ret = dhd_os_send_hang_message(&dhd->pub); #else ret = wl_cfg80211_hang(dev, WLAN_REASON_UNSPECIFIED); #endif } else { DHD_ERROR(("%s: FW HANG ignored (for testing purpose) and not sent up\n", __FUNCTION__)); /* Enforce bus down to stop any future traffic */ dhd->pub.busstate = DHD_BUS_DOWN; } } return ret; } #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27) && OEM_ANDROID */ int dhd_net_wifi_platform_set_power(struct net_device *dev, bool on, unsigned long delay_msec) { dhd_info_t *dhd = DHD_DEV_INFO(dev); return wifi_platform_set_power(dhd->adapter, on, delay_msec); } bool dhd_force_country_change(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); if (dhd && dhd->pub.up) return dhd->pub.force_country_change; return FALSE; } void dhd_get_customized_country_code(struct net_device *dev, char *country_iso_code, wl_country_t *cspec) { dhd_info_t *dhd = DHD_DEV_INFO(dev); #ifdef CUSTOM_COUNTRY_CODE get_customized_country_code(dhd->adapter, country_iso_code, cspec, dhd->pub.dhd_cflags); #else get_customized_country_code(dhd->adapter, country_iso_code, cspec); #endif /* CUSTOM_COUNTRY_CODE */ } void dhd_bus_country_set(struct net_device *dev, wl_country_t *cspec, bool notify) { dhd_info_t *dhd = DHD_DEV_INFO(dev); if (dhd && dhd->pub.up) { memcpy(&dhd->pub.dhd_cspec, cspec, sizeof(wl_country_t)); #ifdef WL_CFG80211 wl_update_wiphybands(NULL, notify); #endif } } void dhd_bus_band_set(struct net_device *dev, uint band) { dhd_info_t *dhd = DHD_DEV_INFO(dev); if (dhd && dhd->pub.up) { #ifdef WL_CFG80211 wl_update_wiphybands(NULL, true); #endif } } int dhd_net_set_fw_path(struct net_device *dev, char *fw) { dhd_info_t *dhd = DHD_DEV_INFO(dev); if (!fw || fw[0] == '\0') return -EINVAL; strncpy(dhd->fw_path, fw, sizeof(dhd->fw_path) - 1); dhd->fw_path[sizeof(dhd->fw_path)-1] = '\0'; #if defined(SOFTAP) if (strstr(fw, "apsta") != NULL) { DHD_INFO(("GOT APSTA FIRMWARE\n")); ap_fw_loaded = TRUE; } else { DHD_INFO(("GOT STA FIRMWARE\n")); ap_fw_loaded = FALSE; } #endif return 0; } void dhd_net_if_lock(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); dhd_net_if_lock_local(dhd); } void dhd_net_if_unlock(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); dhd_net_if_unlock_local(dhd); } static void dhd_net_if_lock_local(dhd_info_t *dhd) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) if (dhd) mutex_lock(&dhd->dhd_net_if_mutex); #endif } static void dhd_net_if_unlock_local(dhd_info_t *dhd) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) if (dhd) mutex_unlock(&dhd->dhd_net_if_mutex); #endif } static void dhd_suspend_lock(dhd_pub_t *pub) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) mutex_lock(&dhd->dhd_suspend_mutex); #endif } static void dhd_suspend_unlock(dhd_pub_t *pub) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)) dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) mutex_unlock(&dhd->dhd_suspend_mutex); #endif } unsigned long dhd_os_general_spin_lock(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); unsigned long flags = 0; if (dhd) spin_lock_irqsave(&dhd->dhd_lock, flags); return flags; } void dhd_os_general_spin_unlock(dhd_pub_t *pub, unsigned long flags) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) spin_unlock_irqrestore(&dhd->dhd_lock, flags); } /* Linux specific multipurpose spinlock API */ void * dhd_os_spin_lock_init(osl_t *osh) { /* Adding 4 bytes since the sizeof(spinlock_t) could be 0 */ /* if CONFIG_SMP and CONFIG_DEBUG_SPINLOCK are not defined */ /* and this results in kernel asserts in internal builds */ spinlock_t * lock = MALLOC(osh, sizeof(spinlock_t) + 4); if (lock) spin_lock_init(lock); return ((void *)lock); } void dhd_os_spin_lock_deinit(osl_t *osh, void *lock) { if (lock) MFREE(osh, lock, sizeof(spinlock_t) + 4); } unsigned long dhd_os_spin_lock(void *lock) { unsigned long flags = 0; if (lock) spin_lock_irqsave((spinlock_t *)lock, flags); return flags; } void dhd_os_spin_unlock(void *lock, unsigned long flags) { if (lock) spin_unlock_irqrestore((spinlock_t *)lock, flags); } static int dhd_get_pend_8021x_cnt(dhd_info_t *dhd) { return (atomic_read(&dhd->pend_8021x_cnt)); } #define MAX_WAIT_FOR_8021X_TX 100 int dhd_wait_pend8021x(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); int timeout = msecs_to_jiffies(10); int ntimes = MAX_WAIT_FOR_8021X_TX; int pend = dhd_get_pend_8021x_cnt(dhd); while (ntimes && pend) { if (pend) { set_current_state(TASK_INTERRUPTIBLE); DHD_PERIM_UNLOCK(&dhd->pub); schedule_timeout(timeout); DHD_PERIM_LOCK(&dhd->pub); set_current_state(TASK_RUNNING); ntimes--; } pend = dhd_get_pend_8021x_cnt(dhd); } if (ntimes == 0) { atomic_set(&dhd->pend_8021x_cnt, 0); DHD_ERROR(("%s: TIMEOUT\n", __FUNCTION__)); } return pend; } #if defined(DHD_DEBUG) int write_file(char * file_name, uint32 flags, uint8 *buf, int size) { int ret = 0; struct file *fp = NULL; mm_segment_t old_fs; loff_t pos = 0; /* change to KERNEL_DS address limit */ old_fs = get_fs(); set_fs(KERNEL_DS); /* open file to write */ fp = filp_open(file_name, flags, 0644); if (IS_ERR(fp)) { printf("%s: open file error, err = %ld\n", __FUNCTION__, PTR_ERR(fp)); ret = -1; goto exit; } /* Write buf to file */ fp->f_op->write(fp, buf, size, &pos); exit: /* close file before return */ if (!IS_ERR(fp)) filp_close(fp, current->files); /* restore previous address limit */ set_fs(old_fs); /* buf is actually dhd_pub->soc_ram and freed in in dhd_{free,clear} */ return ret; } #endif #ifdef DHD_DEBUG static void dhd_convert_memdump_type_to_str(uint32 type, char *buf) { char *type_str = NULL; switch (type) { case DUMP_TYPE_RESUMED_ON_TIMEOUT: type_str = "resumed_on_timeout"; break; case DUMP_TYPE_D3_ACK_TIMEOUT: type_str = "D3_ACK_timeout"; break; case DUMP_TYPE_DONGLE_TRAP: type_str = "Dongle_Trap"; break; case DUMP_TYPE_MEMORY_CORRUPTION: type_str = "Memory_Corruption"; break; case DUMP_TYPE_PKTID_AUDIT_FAILURE: type_str = "PKTID_AUDIT_Fail"; break; case DUMP_TYPE_SCAN_TIMEOUT: type_str = "SCAN_timeout"; break; default: type_str = "Unknown_type"; break; } strncpy(buf, type_str, strlen(type_str)); buf[strlen(type_str)] = 0; } int write_to_file(dhd_pub_t *dhd, uint8 *buf, int size) { int ret = 0; char memdump_path[64]; char memdump_type[32]; #if LINUX_VERSION_CODE < KERNEL_VERSION(5, 0, 0) struct timeval curtime; #else struct timespec64 curtime; #endif uint32 file_mode; /* Init file name */ memset(memdump_path, 0, sizeof(memdump_path)); memset(memdump_type, 0, sizeof(memdump_type)); #if LINUX_VERSION_CODE < KERNEL_VERSION(5, 0, 0) do_gettimeofday(&curtime); #else ktime_get_real_ts64(&curtime); #endif dhd_convert_memdump_type_to_str(dhd->memdump_type, memdump_type); sprintf(memdump_path, "%s_%s_%ld.%ld", "/installmedia/mem_dump", memdump_type, (unsigned long)curtime.tv_sec, #if LINUX_VERSION_CODE < KERNEL_VERSION(5, 0, 0) (unsigned long)curtime.tv_usec); #else (unsigned long)curtime.tv_nsec); #endif /* Extra flags O_DIRECT and O_SYNC are required for Brix Android, as we are * calling BUG_ON immediately after collecting the socram dump. * So the file write operation should directly write the contents into the * file instead of caching it. O_TRUNC flag ensures that file will be re-written * instead of appending. */ file_mode = O_CREAT | O_WRONLY | O_DIRECT | O_SYNC | O_TRUNC; /* print SOCRAM dump file path */ DHD_ERROR(("%s: memdump_path = %s\n", __FUNCTION__, memdump_path)); /* Write file */ ret = write_file(memdump_path, file_mode, buf, size); return ret; } #endif /* DHD_DEBUG */ int dhd_os_wake_lock_timeout(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); unsigned long flags; int ret = 0; if (dhd) { spin_lock_irqsave(&dhd->wakelock_spinlock, flags); ret = dhd->wakelock_rx_timeout_enable > dhd->wakelock_ctrl_timeout_enable ? dhd->wakelock_rx_timeout_enable : dhd->wakelock_ctrl_timeout_enable; #ifdef CONFIG_HAS_WAKELOCK if (dhd->wakelock_rx_timeout_enable) wake_lock_timeout(&dhd->wl_rxwake, msecs_to_jiffies(dhd->wakelock_rx_timeout_enable)); if (dhd->wakelock_ctrl_timeout_enable) wake_lock_timeout(&dhd->wl_ctrlwake, msecs_to_jiffies(dhd->wakelock_ctrl_timeout_enable)); #endif dhd->wakelock_rx_timeout_enable = 0; dhd->wakelock_ctrl_timeout_enable = 0; spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); } return ret; } int net_os_wake_lock_timeout(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); int ret = 0; if (dhd) ret = dhd_os_wake_lock_timeout(&dhd->pub); return ret; } int dhd_os_wake_lock_rx_timeout_enable(dhd_pub_t *pub, int val) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); unsigned long flags; if (dhd) { spin_lock_irqsave(&dhd->wakelock_spinlock, flags); if (val > dhd->wakelock_rx_timeout_enable) dhd->wakelock_rx_timeout_enable = val; spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); } return 0; } int dhd_os_wake_lock_ctrl_timeout_enable(dhd_pub_t *pub, int val) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); unsigned long flags; if (dhd) { spin_lock_irqsave(&dhd->wakelock_spinlock, flags); if (val > dhd->wakelock_ctrl_timeout_enable) dhd->wakelock_ctrl_timeout_enable = val; spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); } return 0; } int dhd_os_wake_lock_ctrl_timeout_cancel(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); unsigned long flags; if (dhd) { spin_lock_irqsave(&dhd->wakelock_spinlock, flags); dhd->wakelock_ctrl_timeout_enable = 0; #ifdef CONFIG_HAS_WAKELOCK if (wake_lock_active(&dhd->wl_ctrlwake)) wake_unlock(&dhd->wl_ctrlwake); #endif spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); } return 0; } int net_os_wake_lock_rx_timeout_enable(struct net_device *dev, int val) { dhd_info_t *dhd = DHD_DEV_INFO(dev); int ret = 0; if (dhd) ret = dhd_os_wake_lock_rx_timeout_enable(&dhd->pub, val); return ret; } int net_os_wake_lock_ctrl_timeout_enable(struct net_device *dev, int val) { dhd_info_t *dhd = DHD_DEV_INFO(dev); int ret = 0; if (dhd) ret = dhd_os_wake_lock_ctrl_timeout_enable(&dhd->pub, val); return ret; } int dhd_os_wake_lock(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); unsigned long flags; int ret = 0; if (dhd) { spin_lock_irqsave(&dhd->wakelock_spinlock, flags); if (dhd->wakelock_counter == 0 && !dhd->waive_wakelock) { #ifdef CONFIG_HAS_WAKELOCK wake_lock(&dhd->wl_wifi); #elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36)) dhd_bus_dev_pm_stay_awake(pub); #endif } dhd->wakelock_counter++; ret = dhd->wakelock_counter; spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); } return ret; } int net_os_wake_lock(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); int ret = 0; if (dhd) ret = dhd_os_wake_lock(&dhd->pub); return ret; } int dhd_os_wake_unlock(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); unsigned long flags; int ret = 0; dhd_os_wake_lock_timeout(pub); if (dhd) { spin_lock_irqsave(&dhd->wakelock_spinlock, flags); if (dhd->wakelock_counter > 0) { dhd->wakelock_counter--; if (dhd->wakelock_counter == 0 && !dhd->waive_wakelock) { #ifdef CONFIG_HAS_WAKELOCK wake_unlock(&dhd->wl_wifi); #elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36)) dhd_bus_dev_pm_relax(pub); #endif } ret = dhd->wakelock_counter; } spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); } return ret; } void dhd_event_wake_lock(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) { #ifdef CONFIG_HAS_WAKELOCK wake_lock(&dhd->wl_evtwake); #elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36)) dhd_bus_dev_pm_stay_awake(pub); #endif } } void dhd_event_wake_unlock(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) { #ifdef CONFIG_HAS_WAKELOCK wake_unlock(&dhd->wl_evtwake); #elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36)) dhd_bus_dev_pm_relax(pub); #endif } } void dhd_txfl_wake_lock_timeout(dhd_pub_t *pub, int val) { #ifdef CONFIG_HAS_WAKELOCK dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) { wake_lock_timeout(&dhd->wl_txflwake, msecs_to_jiffies(val)); } #endif /* CONFIG_HAS_WAKE_LOCK */ } void dhd_txfl_wake_unlock(dhd_pub_t *pub) { #ifdef CONFIG_HAS_WAKELOCK dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) { /* if wl_txflwake is active, unlock it */ if (wake_lock_active(&dhd->wl_txflwake)) { wake_unlock(&dhd->wl_txflwake); } } #endif /* CONFIG_HAS_WAKELOCK */ } int dhd_os_check_wakelock(dhd_pub_t *pub) { #if defined(CONFIG_HAS_WAKELOCK) || (defined(BCMSDIO) && (LINUX_VERSION_CODE > \ KERNEL_VERSION(2, 6, 36))) dhd_info_t *dhd; if (!pub) return 0; dhd = (dhd_info_t *)(pub->info); #endif /* CONFIG_HAS_WAKELOCK || BCMSDIO */ #ifdef CONFIG_HAS_WAKELOCK /* Indicate to the SD Host to avoid going to suspend if internal locks are up */ if (dhd && (wake_lock_active(&dhd->wl_wifi) || (wake_lock_active(&dhd->wl_wdwake)))) return 1; #elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36)) if (dhd && (dhd->wakelock_counter > 0) && dhd_bus_dev_pm_enabled(pub)) return 1; #endif return 0; } int dhd_os_check_wakelock_all(dhd_pub_t *pub) { #ifdef CONFIG_HAS_WAKELOCK int l1, l2, l3, l4; int l5 = 0, l6 = 0; int l7, l8; int c, lock_active; #endif /* CONFIG_HAS_WAKELOCK */ #if defined(CONFIG_HAS_WAKELOCK) || (defined(BCMSDIO) && (LINUX_VERSION_CODE > \ KERNEL_VERSION(2, 6, 36))) dhd_info_t *dhd; if (!pub) { return 0; } dhd = (dhd_info_t *)(pub->info); if (!dhd) { return 0; } #endif /* CONFIG_HAS_WAKELOCK || BCMSDIO */ #ifdef CONFIG_HAS_WAKELOCK c = dhd->wakelock_counter; l1 = wake_lock_active(&dhd->wl_wifi); l2 = wake_lock_active(&dhd->wl_wdwake); l3 = wake_lock_active(&dhd->wl_rxwake); l4 = wake_lock_active(&dhd->wl_ctrlwake); #ifdef BCMPCIE_OOB_HOST_WAKE l5 = wake_lock_active(&dhd->wl_intrwake); #endif /* BCMPCIE_OOB_HOST_WAKE */ #ifdef DHD_USE_SCAN_WAKELOCK l6 = wake_lock_active(&dhd->wl_scanwake); #endif /* DHD_USE_SCAN_WAKELOCK */ l7 = wake_lock_active(&dhd->wl_evtwake); l8 = wake_lock_active(&dhd->wl_txflwake); lock_active = (l1 || l2 || l3 || l4 || l5 || l6 || l7 || l8); /* Indicate to the Host to avoid going to suspend if internal locks are up */ if (dhd && lock_active) { DHD_ERROR(("%s wakelock c-%d wl-%d wd-%d rx-%d " "ctl-%d intr-%d scan-%d\n", __FUNCTION__, c, l1, l2, l3, l4, l5, l6)); return 1; } #elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36)) if (dhd && (dhd->wakelock_counter > 0) && dhd_bus_dev_pm_enabled(pub)) { return 1; } #endif /* CONFIG_HAS_WAKELOCK */ return 0; } int net_os_wake_unlock(struct net_device *dev) { dhd_info_t *dhd = DHD_DEV_INFO(dev); int ret = 0; if (dhd) ret = dhd_os_wake_unlock(&dhd->pub); return ret; } int dhd_os_wd_wake_lock(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); unsigned long flags; int ret = 0; if (dhd) { spin_lock_irqsave(&dhd->wakelock_spinlock, flags); #ifdef CONFIG_HAS_WAKELOCK /* if wakelock_wd_counter was never used : lock it at once */ if (!dhd->wakelock_wd_counter) wake_lock(&dhd->wl_wdwake); #endif dhd->wakelock_wd_counter++; ret = dhd->wakelock_wd_counter; spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); } return ret; } int dhd_os_wd_wake_unlock(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); unsigned long flags; int ret = 0; if (dhd) { spin_lock_irqsave(&dhd->wakelock_spinlock, flags); if (dhd->wakelock_wd_counter) { dhd->wakelock_wd_counter = 0; #ifdef CONFIG_HAS_WAKELOCK wake_unlock(&dhd->wl_wdwake); #endif } spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); } return ret; } #ifdef BCMPCIE_OOB_HOST_WAKE void dhd_os_oob_irq_wake_lock_timeout(dhd_pub_t *pub, int val) { #ifdef CONFIG_HAS_WAKELOCK dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) { wake_lock_timeout(&dhd->wl_intrwake, msecs_to_jiffies(val)); } #endif /* CONFIG_HAS_WAKELOCK */ } void dhd_os_oob_irq_wake_unlock(dhd_pub_t *pub) { #ifdef CONFIG_HAS_WAKELOCK dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) { /* if wl_intrwake is active, unlock it */ if (wake_lock_active(&dhd->wl_intrwake)) { wake_unlock(&dhd->wl_intrwake); } } #endif /* CONFIG_HAS_WAKELOCK */ } #endif /* BCMPCIE_OOB_HOST_WAKE */ #ifdef DHD_USE_SCAN_WAKELOCK void dhd_os_scan_wake_lock_timeout(dhd_pub_t *pub, int val) { #ifdef CONFIG_HAS_WAKELOCK dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) { wake_lock_timeout(&dhd->wl_scanwake, msecs_to_jiffies(val)); } #endif /* CONFIG_HAS_WAKELOCK */ } void dhd_os_scan_wake_unlock(dhd_pub_t *pub) { #ifdef CONFIG_HAS_WAKELOCK dhd_info_t *dhd = (dhd_info_t *)(pub->info); if (dhd) { /* if wl_scanwake is active, unlock it */ if (wake_lock_active(&dhd->wl_scanwake)) { wake_unlock(&dhd->wl_scanwake); } } #endif /* CONFIG_HAS_WAKELOCK */ } #endif /* DHD_USE_SCAN_WAKELOCK */ /* waive wakelocks for operations such as IOVARs in suspend function, must be closed * by a paired function call to dhd_wakelock_restore. returns current wakelock counter */ int dhd_os_wake_lock_waive(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); unsigned long flags; int ret = 0; if (dhd) { spin_lock_irqsave(&dhd->wakelock_spinlock, flags); /* dhd_wakelock_waive/dhd_wakelock_restore must be paired */ if (dhd->waive_wakelock == FALSE) { /* record current lock status */ dhd->wakelock_before_waive = dhd->wakelock_counter; dhd->waive_wakelock = TRUE; } ret = dhd->wakelock_wd_counter; spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); } return ret; } int dhd_os_wake_lock_restore(dhd_pub_t *pub) { dhd_info_t *dhd = (dhd_info_t *)(pub->info); unsigned long flags; int ret = 0; if (!dhd) return 0; spin_lock_irqsave(&dhd->wakelock_spinlock, flags); /* dhd_wakelock_waive/dhd_wakelock_restore must be paired */ if (!dhd->waive_wakelock) goto exit; dhd->waive_wakelock = FALSE; /* if somebody else acquires wakelock between dhd_wakelock_waive/dhd_wakelock_restore, * we need to make it up by calling wake_lock or pm_stay_awake. or if somebody releases * the lock in between, do the same by calling wake_unlock or pm_relax */ if (dhd->wakelock_before_waive == 0 && dhd->wakelock_counter > 0) { #ifdef CONFIG_HAS_WAKELOCK wake_lock(&dhd->wl_wifi); #elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36)) dhd_bus_dev_pm_stay_awake(&dhd->pub); #endif } else if (dhd->wakelock_before_waive > 0 && dhd->wakelock_counter == 0) { #ifdef CONFIG_HAS_WAKELOCK wake_unlock(&dhd->wl_wifi); #elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36)) dhd_bus_dev_pm_relax(&dhd->pub); #endif } dhd->wakelock_before_waive = 0; exit: ret = dhd->wakelock_wd_counter; spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags); return ret; } void dhd_os_wake_lock_init(struct dhd_info *dhd) { DHD_TRACE(("%s: initialize wake_lock_counters\n", __FUNCTION__)); dhd->wakelock_counter = 0; dhd->wakelock_rx_timeout_enable = 0; dhd->wakelock_ctrl_timeout_enable = 0; #ifdef CONFIG_HAS_WAKELOCK wake_lock_init(&dhd->wl_rxwake, WAKE_LOCK_SUSPEND, "wlan_rx_wake"); wake_lock_init(&dhd->wl_ctrlwake, WAKE_LOCK_SUSPEND, "wlan_ctrl_wake"); wake_lock_init(&dhd->wl_evtwake, WAKE_LOCK_SUSPEND, "wlan_evt_wake"); wake_lock_init(&dhd->wl_txflwake, WAKE_LOCK_SUSPEND, "wlan_txfl_wake"); #ifdef BCMPCIE_OOB_HOST_WAKE wake_lock_init(&dhd->wl_intrwake, WAKE_LOCK_SUSPEND, "wlan_oob_irq_wake"); #endif /* BCMPCIE_OOB_HOST_WAKE */ #ifdef DHD_USE_SCAN_WAKELOCK wake_lock_init(&dhd->wl_scanwake, WAKE_LOCK_SUSPEND, "wlan_scan_wake"); #endif /* DHD_USE_SCAN_WAKELOCK */ #endif /* CONFIG_HAS_WAKELOCK */ } void dhd_os_wake_lock_destroy(struct dhd_info *dhd) { DHD_TRACE(("%s: deinit wake_lock_counters\n", __FUNCTION__)); #ifdef CONFIG_HAS_WAKELOCK dhd->wakelock_counter = 0; dhd->wakelock_rx_timeout_enable = 0; dhd->wakelock_ctrl_timeout_enable = 0; wake_lock_destroy(&dhd->wl_rxwake); wake_lock_destroy(&dhd->wl_ctrlwake); wake_lock_destroy(&dhd->wl_evtwake); wake_lock_destroy(&dhd->wl_txflwake); #ifdef BCMPCIE_OOB_HOST_WAKE wake_lock_destroy(&dhd->wl_intrwake); #endif /* BCMPCIE_OOB_HOST_WAKE */ #ifdef DHD_USE_SCAN_WAKELOCK wake_lock_destroy(&dhd->wl_scanwake); #endif /* DHD_USE_SCAN_WAKELOCK */ #endif /* CONFIG_HAS_WAKELOCK */ } bool dhd_os_check_if_up(dhd_pub_t *pub) { if (!pub) return FALSE; return pub->up; } #if defined(BCMSDIO) || defined(BCMPCIE) /* function to collect firmware, chip id and chip version info */ void dhd_set_version_info(dhd_pub_t *dhdp, char *fw) { int i; i = snprintf(info_string, sizeof(info_string), " Driver: %s\n Firmware: %s ", EPI_VERSION_STR, fw); if (!dhdp) return; i = snprintf(&info_string[i], sizeof(info_string) - i, "\n Chip: %x Rev %x Pkg %x", dhd_bus_chip_id(dhdp), dhd_bus_chiprev_id(dhdp), dhd_bus_chippkg_id(dhdp)); } #endif /* BCMSDIO || BCMPCIE */ int dhd_ioctl_entry_local(struct net_device *net, wl_ioctl_t *ioc, int cmd) { int ifidx; int ret = 0; dhd_info_t *dhd = NULL; if (!net || !DEV_PRIV(net)) { DHD_ERROR(("%s invalid parameter\n", __FUNCTION__)); return -EINVAL; } dhd = DHD_DEV_INFO(net); if (!dhd) return -EINVAL; ifidx = dhd_net2idx(dhd, net); if (ifidx == DHD_BAD_IF) { DHD_ERROR(("%s bad ifidx\n", __FUNCTION__)); return -ENODEV; } DHD_OS_WAKE_LOCK(&dhd->pub); DHD_PERIM_LOCK(&dhd->pub); ret = dhd_wl_ioctl(&dhd->pub, ifidx, ioc, ioc->buf, ioc->len); dhd_check_hang(net, &dhd->pub, ret); DHD_PERIM_UNLOCK(&dhd->pub); DHD_OS_WAKE_UNLOCK(&dhd->pub); return ret; } bool dhd_os_check_hang(dhd_pub_t *dhdp, int ifidx, int ret) { struct net_device *net; net = dhd_idx2net(dhdp, ifidx); if (!net) { DHD_ERROR(("%s : Invalid index : %d\n", __FUNCTION__, ifidx)); return -EINVAL; } return dhd_check_hang(net, dhdp, ret); } /* Return instance */ int dhd_get_instance(dhd_pub_t *dhdp) { return dhdp->info->unit; } #ifdef PROP_TXSTATUS void dhd_wlfc_plat_init(void *dhd) { return; } void dhd_wlfc_plat_deinit(void *dhd) { return; } bool dhd_wlfc_skip_fc(void) { return FALSE; } #endif /* PROP_TXSTATUS */ #ifdef BCMDBGFS #include typedef struct dhd_dbgfs { struct dentry *debugfs_dir; struct dentry *debugfs_mem; dhd_pub_t *dhdp; uint32 size; } dhd_dbgfs_t; dhd_dbgfs_t g_dbgfs; extern uint32 dhd_readregl(void *bp, uint32 addr); extern uint32 dhd_writeregl(void *bp, uint32 addr, uint32 data); static int dhd_dbg_state_open(struct inode *inode, struct file *file) { file->private_data = inode->i_private; return 0; } static ssize_t dhd_dbg_state_read(struct file *file, char __user *ubuf, size_t count, loff_t *ppos) { ssize_t rval; uint32 tmp; loff_t pos = *ppos; size_t ret; if (pos < 0) return -EINVAL; if (pos >= g_dbgfs.size || !count) return 0; if (count > g_dbgfs.size - pos) count = g_dbgfs.size - pos; /* Basically enforce aligned 4 byte reads. It's up to the user to work out the details */ tmp = dhd_readregl(g_dbgfs.dhdp->bus, file->f_pos & (~3)); ret = copy_to_user(ubuf, &tmp, 4); if (ret == count) return -EFAULT; count -= ret; *ppos = pos + count; rval = count; return rval; } static ssize_t dhd_debugfs_write(struct file *file, const char __user *ubuf, size_t count, loff_t *ppos) { loff_t pos = *ppos; size_t ret; uint32 buf; if (pos < 0) return -EINVAL; if (pos >= g_dbgfs.size || !count) return 0; if (count > g_dbgfs.size - pos) count = g_dbgfs.size - pos; ret = copy_from_user(&buf, ubuf, sizeof(uint32)); if (ret == count) return -EFAULT; /* Basically enforce aligned 4 byte writes. It's up to the user to work out the details */ dhd_writeregl(g_dbgfs.dhdp->bus, file->f_pos & (~3), buf); return count; } loff_t dhd_debugfs_lseek(struct file *file, loff_t off, int whence) { loff_t pos = -1; switch (whence) { case 0: pos = off; break; case 1: pos = file->f_pos + off; break; case 2: pos = g_dbgfs.size - off; } return (pos < 0 || pos > g_dbgfs.size) ? -EINVAL : (file->f_pos = pos); } static const struct file_operations dhd_dbg_state_ops = { .read = dhd_dbg_state_read, .write = dhd_debugfs_write, .open = dhd_dbg_state_open, .llseek = dhd_debugfs_lseek }; static void dhd_dbg_create(void) { if (g_dbgfs.debugfs_dir) { g_dbgfs.debugfs_mem = debugfs_create_file("mem", 0644, g_dbgfs.debugfs_dir, NULL, &dhd_dbg_state_ops); } } void dhd_dbg_init(dhd_pub_t *dhdp) { g_dbgfs.dhdp = dhdp; g_dbgfs.size = 0x20000000; /* Allow access to various cores regs */ g_dbgfs.debugfs_dir = debugfs_create_dir("dhd", 0); if (IS_ERR(g_dbgfs.debugfs_dir)) { g_dbgfs.debugfs_dir = NULL; return; } dhd_dbg_create(); return; } void dhd_dbg_remove(void) { debugfs_remove(g_dbgfs.debugfs_mem); debugfs_remove(g_dbgfs.debugfs_dir); bzero((unsigned char *) &g_dbgfs, sizeof(g_dbgfs)); } #endif /* BCMDBGFS */ #ifdef WLMEDIA_HTSF static void dhd_htsf_addtxts(dhd_pub_t *dhdp, void *pktbuf) { dhd_info_t *dhd = (dhd_info_t *)(dhdp->info); struct sk_buff *skb; uint32 htsf = 0; uint16 dport = 0, oldmagic = 0xACAC; char *p1; htsfts_t ts; /* timestamp packet */ p1 = (char*) PKTDATA(dhdp->osh, pktbuf); if (PKTLEN(dhdp->osh, pktbuf) > HTSF_MINLEN) { /* memcpy(&proto, p1+26, 4); */ memcpy(&dport, p1+40, 2); /* proto = ((ntoh32(proto))>> 16) & 0xFF; */ dport = ntoh16(dport); } /* timestamp only if icmp or udb iperf with port 5555 */ /* if (proto == 17 && dport == tsport) { */ if (dport >= tsport && dport <= tsport + 20) { skb = (struct sk_buff *) pktbuf; htsf = dhd_get_htsf(dhd, 0); memset(skb->data + 44, 0, 2); /* clear checksum */ memcpy(skb->data+82, &oldmagic, 2); memcpy(skb->data+84, &htsf, 4); memset(&ts, 0, sizeof(htsfts_t)); ts.magic = HTSFMAGIC; ts.prio = PKTPRIO(pktbuf); ts.seqnum = htsf_seqnum++; ts.c10 = get_cycles(); ts.t10 = htsf; ts.endmagic = HTSFENDMAGIC; memcpy(skb->data + HTSF_HOSTOFFSET, &ts, sizeof(ts)); } } static void dhd_dump_htsfhisto(histo_t *his, char *s) { int pktcnt = 0, curval = 0, i; for (i = 0; i < (NUMBIN-2); i++) { curval += 500; printf("%d ", his->bin[i]); pktcnt += his->bin[i]; } printf(" max: %d TotPkt: %d neg: %d [%s]\n", his->bin[NUMBIN-2], pktcnt, his->bin[NUMBIN-1], s); } static void sorttobin(int value, histo_t *histo) { int i, binval = 0; if (value < 0) { histo->bin[NUMBIN-1]++; return; } if (value > histo->bin[NUMBIN-2]) /* store the max value */ histo->bin[NUMBIN-2] = value; for (i = 0; i < (NUMBIN-2); i++) { binval += 500; /* 500m s bins */ if (value <= binval) { histo->bin[i]++; return; } } histo->bin[NUMBIN-3]++; } static void dhd_htsf_addrxts(dhd_pub_t *dhdp, void *pktbuf) { dhd_info_t *dhd = (dhd_info_t *)dhdp->info; struct sk_buff *skb; char *p1; uint16 old_magic; int d1, d2, d3, end2end; htsfts_t *htsf_ts; uint32 htsf; skb = PKTTONATIVE(dhdp->osh, pktbuf); p1 = (char*)PKTDATA(dhdp->osh, pktbuf); if (PKTLEN(osh, pktbuf) > HTSF_MINLEN) { memcpy(&old_magic, p1+78, 2); htsf_ts = (htsfts_t*) (p1 + HTSF_HOSTOFFSET - 4); } else { return; } if (htsf_ts->magic == HTSFMAGIC) { htsf_ts->tE0 = dhd_get_htsf(dhd, 0); htsf_ts->cE0 = get_cycles(); } if (old_magic == 0xACAC) { tspktcnt++; htsf = dhd_get_htsf(dhd, 0); memcpy(skb->data+92, &htsf, sizeof(uint32)); memcpy(&ts[tsidx].t1, skb->data+80, 16); d1 = ts[tsidx].t2 - ts[tsidx].t1; d2 = ts[tsidx].t3 - ts[tsidx].t2; d3 = ts[tsidx].t4 - ts[tsidx].t3; end2end = ts[tsidx].t4 - ts[tsidx].t1; sorttobin(d1, &vi_d1); sorttobin(d2, &vi_d2); sorttobin(d3, &vi_d3); sorttobin(end2end, &vi_d4); if (end2end > 0 && end2end > maxdelay) { maxdelay = end2end; maxdelaypktno = tspktcnt; memcpy(&maxdelayts, &ts[tsidx], 16); } if (++tsidx >= TSMAX) tsidx = 0; } } uint32 dhd_get_htsf(dhd_info_t *dhd, int ifidx) { uint32 htsf = 0, cur_cycle, delta, delta_us; uint32 factor, baseval, baseval2; cycles_t t; t = get_cycles(); cur_cycle = t; if (cur_cycle > dhd->htsf.last_cycle) { delta = cur_cycle - dhd->htsf.last_cycle; } else { delta = cur_cycle + (0xFFFFFFFF - dhd->htsf.last_cycle); } delta = delta >> 4; if (dhd->htsf.coef) { /* times ten to get the first digit */ factor = (dhd->htsf.coef*10 + dhd->htsf.coefdec1); baseval = (delta*10)/factor; baseval2 = (delta*10)/(factor+1); delta_us = (baseval - (((baseval - baseval2) * dhd->htsf.coefdec2)) / 10); htsf = (delta_us << 4) + dhd->htsf.last_tsf + HTSF_BUS_DELAY; } else { DHD_ERROR(("-------dhd->htsf.coef = 0 -------\n")); } return htsf; } static void dhd_dump_latency(void) { int i, max = 0; int d1, d2, d3, d4, d5; printf("T1 T2 T3 T4 d1 d2 t4-t1 i \n"); for (i = 0; i < TSMAX; i++) { d1 = ts[i].t2 - ts[i].t1; d2 = ts[i].t3 - ts[i].t2; d3 = ts[i].t4 - ts[i].t3; d4 = ts[i].t4 - ts[i].t1; d5 = ts[max].t4-ts[max].t1; if (d4 > d5 && d4 > 0) { max = i; } printf("%08X %08X %08X %08X \t%d %d %d %d i=%d\n", ts[i].t1, ts[i].t2, ts[i].t3, ts[i].t4, d1, d2, d3, d4, i); } printf("current idx = %d \n", tsidx); printf("Highest latency %d pkt no.%d total=%d\n", maxdelay, maxdelaypktno, tspktcnt); printf("%08X %08X %08X %08X \t%d %d %d %d\n", maxdelayts.t1, maxdelayts.t2, maxdelayts.t3, maxdelayts.t4, maxdelayts.t2 - maxdelayts.t1, maxdelayts.t3 - maxdelayts.t2, maxdelayts.t4 - maxdelayts.t3, maxdelayts.t4 - maxdelayts.t1); } static int dhd_ioctl_htsf_get(dhd_info_t *dhd, int ifidx) { char buf[32]; int ret; uint32 s1, s2; struct tsf { uint32 low; uint32 high; } tsf_buf; memset(&tsf_buf, 0, sizeof(tsf_buf)); s1 = dhd_get_htsf(dhd, 0); ret = dhd_iovar(&dhd->pub, ifidx, "tsf", NULL, 0, buf, sizeof(buf), FALSE); if (ret < 0) { if (ret == -EIO) { DHD_ERROR(("%s: tsf is not supported by device\n", dhd_ifname(&dhd->pub, ifidx))); return -EOPNOTSUPP; } return ret; } s2 = dhd_get_htsf(dhd, 0); memcpy(&tsf_buf, buf, sizeof(tsf_buf)); printf(" TSF_h=%04X lo=%08X Calc:htsf=%08X, coef=%d.%d%d delta=%d ", tsf_buf.high, tsf_buf.low, s2, dhd->htsf.coef, dhd->htsf.coefdec1, dhd->htsf.coefdec2, s2-tsf_buf.low); printf("lasttsf=%08X lastcycle=%08X\n", dhd->htsf.last_tsf, dhd->htsf.last_cycle); return 0; } void htsf_update(dhd_info_t *dhd, void *data) { static ulong cur_cycle = 0, prev_cycle = 0; uint32 htsf, tsf_delta = 0; uint32 hfactor = 0, cyc_delta, dec1 = 0, dec2, dec3, tmp; ulong b, a; cycles_t t; /* cycles_t in inlcude/mips/timex.h */ t = get_cycles(); prev_cycle = cur_cycle; cur_cycle = t; if (cur_cycle > prev_cycle) cyc_delta = cur_cycle - prev_cycle; else { b = cur_cycle; a = prev_cycle; cyc_delta = cur_cycle + (0xFFFFFFFF - prev_cycle); } if (data == NULL) printf(" tsf update ata point er is null \n"); memcpy(&prev_tsf, &cur_tsf, sizeof(tsf_t)); memcpy(&cur_tsf, data, sizeof(tsf_t)); if (cur_tsf.low == 0) { DHD_INFO((" ---- 0 TSF, do not update, return\n")); return; } if (cur_tsf.low > prev_tsf.low) tsf_delta = (cur_tsf.low - prev_tsf.low); else { DHD_INFO((" ---- tsf low is smaller cur_tsf= %08X, prev_tsf=%08X, \n", cur_tsf.low, prev_tsf.low)); if (cur_tsf.high > prev_tsf.high) { tsf_delta = cur_tsf.low + (0xFFFFFFFF - prev_tsf.low); DHD_INFO((" ---- Wrap around tsf coutner adjusted TSF=%08X\n", tsf_delta)); } else { return; /* do not update */ } } if (tsf_delta) { hfactor = cyc_delta / tsf_delta; tmp = (cyc_delta - (hfactor * tsf_delta))*10; dec1 = tmp/tsf_delta; dec2 = ((tmp - dec1*tsf_delta)*10) / tsf_delta; tmp = (tmp - (dec1*tsf_delta))*10; dec3 = ((tmp - dec2*tsf_delta)*10) / tsf_delta; if (dec3 > 4) { if (dec2 == 9) { dec2 = 0; if (dec1 == 9) { dec1 = 0; hfactor++; } else { dec1++; } } else { dec2++; } } } if (hfactor) { htsf = ((cyc_delta * 10) / (hfactor*10+dec1)) + prev_tsf.low; dhd->htsf.coef = hfactor; dhd->htsf.last_cycle = cur_cycle; dhd->htsf.last_tsf = cur_tsf.low; dhd->htsf.coefdec1 = dec1; dhd->htsf.coefdec2 = dec2; } else { htsf = prev_tsf.low; } } #endif /* WLMEDIA_HTSF */ #ifdef CUSTOM_SET_CPUCORE void dhd_set_cpucore(dhd_pub_t *dhd, int set) { int e_dpc = 0, e_rxf = 0, retry_set = 0; if (!(dhd->chan_isvht80)) { DHD_ERROR(("%s: chan_status(%d) cpucore!!!\n", __FUNCTION__, dhd->chan_isvht80)); return; } if (DPC_CPUCORE) { do { if (set == TRUE) { e_dpc = set_cpus_allowed_ptr(dhd->current_dpc, cpumask_of(DPC_CPUCORE)); } else { e_dpc = set_cpus_allowed_ptr(dhd->current_dpc, cpumask_of(PRIMARY_CPUCORE)); } if (retry_set++ > MAX_RETRY_SET_CPUCORE) { DHD_ERROR(("%s: dpc(%d) invalid cpu!\n", __FUNCTION__, e_dpc)); return; } if (e_dpc < 0) OSL_SLEEP(1); } while (e_dpc < 0); } if (RXF_CPUCORE) { do { if (set == TRUE) { e_rxf = set_cpus_allowed_ptr(dhd->current_rxf, cpumask_of(RXF_CPUCORE)); } else { e_rxf = set_cpus_allowed_ptr(dhd->current_rxf, cpumask_of(PRIMARY_CPUCORE)); } if (retry_set++ > MAX_RETRY_SET_CPUCORE) { DHD_ERROR(("%s: rxf(%d) invalid cpu!\n", __FUNCTION__, e_rxf)); return; } if (e_rxf < 0) OSL_SLEEP(1); } while (e_rxf < 0); } #ifdef DHD_OF_SUPPORT interrupt_set_cpucore(set); #endif /* DHD_OF_SUPPORT */ DHD_TRACE(("%s: set(%d) cpucore success!\n", __FUNCTION__, set)); return; } #endif /* CUSTOM_SET_CPUCORE */ #ifdef DHD_MCAST_REGEN /* Get interface specific ap_isolate configuration */ int dhd_get_mcast_regen_bss_enable(dhd_pub_t *dhdp, uint32 idx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; return ifp->mcast_regen_bss_enable; } /* Set interface specific mcast_regen configuration */ int dhd_set_mcast_regen_bss_enable(dhd_pub_t *dhdp, uint32 idx, int val) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; ifp->mcast_regen_bss_enable = val; /* Disable rx_pkt_chain feature for interface, if mcast_regen feature * is enabled */ dhd_update_rx_pkt_chainable_state(dhdp, idx); return BCME_OK; } #endif /* DHD_MCAST_REGEN */ /* Get interface specific ap_isolate configuration */ int dhd_get_ap_isolate(dhd_pub_t *dhdp, uint32 idx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; return ifp->ap_isolate; } /* Set interface specific ap_isolate configuration */ int dhd_set_ap_isolate(dhd_pub_t *dhdp, uint32 idx, int val) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; if (ifp) ifp->ap_isolate = val; return 0; } #ifdef DHD_FW_COREDUMP /* * dhd_get_memdump_info is defined only for Android builds. * The filename to store memdump is defined for CUSTOMER_HW4, * for other platforms it will take default path "/installmedia/.memdump.info" * New platforms can add their ifdefs accordingly below. */ #define MEMDUMPINFO "/installmedia/.memdump.info" void dhd_get_memdump_info(dhd_pub_t *dhd) { struct file *fp = NULL; uint32 mem_val = DUMP_MEMFILE_MAX; int ret = 0; char *filepath = MEMDUMPINFO; /* Read memdump info from the file */ fp = filp_open(filepath, O_RDONLY, 0); if (IS_ERR(fp)) { DHD_ERROR(("[WIFI_SEC] %s: File [%s] doesn't exist\n", __FUNCTION__, filepath)); goto done; } else { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0)) loff_t zero = 0; ret = kernel_read(fp, (void *) &mem_val, (size_t) 4, (loff_t *) &zero); #else ret = kernel_read(fp, 0, (char *)&mem_val, 4); #endif if (ret < 0) { DHD_ERROR(("[WIFI_SEC] %s: File read error, ret=%d\n", __FUNCTION__, ret)); filp_close(fp, NULL); goto done; } mem_val = bcm_atoi((char *)&mem_val); DHD_ERROR(("[WIFI_SEC]%s: MEMDUMP ENABLED = %d\n", __FUNCTION__, mem_val)); filp_close(fp, NULL); } done: /* * The default behavior for Customer_hw4 is to disable the memdump * But for Brix Android, default behavior is to collect memdump and crash the host. * Other platforms can change the behavior accordingly by adding appropriate ifdefs */ dhd->memdump_enabled = (mem_val < DUMP_MEMFILE_MAX) ? mem_val : DUMP_MEMFILE_BUGON; } void dhd_schedule_memdump(dhd_pub_t *dhdp, uint8 *buf, uint32 size) { dhd_dump_t *dump = NULL; dump = (dhd_dump_t *)MALLOC(dhdp->osh, sizeof(dhd_dump_t)); if (dump == NULL) { DHD_ERROR(("%s: dhd dump memory allocation failed\n", __FUNCTION__)); return; } dump->buf = buf; dump->bufsize = size; #if defined(CONFIG_ARM64) DHD_ERROR(("%s: buf(va)=%llx, buf(pa)=%llx, bufsize=%d\n", __FUNCTION__, (uint64)buf, (uint64)__virt_to_phys((ulong)buf), size)); #elif defined(__ARM_ARCH_7A__) DHD_ERROR(("%s: buf(va)=%x, buf(pa)=%x, bufsize=%d\n", __FUNCTION__, (uint32)buf, (uint32)__virt_to_phys((ulong)buf), size)); #endif /* __ARM_ARCH_7A__ */ if (dhdp->memdump_enabled == DUMP_MEMONLY) { BUG_ON(1); } dhd_deferred_schedule_work(dhdp->info->dhd_deferred_wq, (void *)dump, DHD_WQ_WORK_SOC_RAM_DUMP, dhd_mem_dump, DHD_WORK_PRIORITY_HIGH); } int dhd_os_socram_dump(struct net_device *dev, uint32 *dump_size) { int ret = BCME_OK; dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); dhd_pub_t *dhdp = &dhd->pub; ret = dhd_common_socram_dump(dhdp); if (ret == BCME_OK) { *dump_size = dhdp->soc_ram_length; } return ret; } int dhd_os_get_socram_dump(struct net_device *dev, char **buf, uint32 *size) { int ret = BCME_OK; int orig_len = 0; dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev); dhd_pub_t *dhdp = &dhd->pub; if (buf == NULL) return BCME_ERROR; orig_len = *size; if (dhdp->soc_ram) { if (orig_len >= dhdp->soc_ram_length) { memcpy(*buf, dhdp->soc_ram, dhdp->soc_ram_length); /* reset the storage of dump */ memset(dhdp->soc_ram, 0, dhdp->soc_ram_length); *size = dhdp->soc_ram_length; dhdp->soc_ram_length = 0; } else { ret = BCME_BUFTOOSHORT; DHD_ERROR(("The length of the buffer is too short" " to save the memory dump with %d\n", dhdp->soc_ram_length)); } } else { DHD_ERROR(("socram_dump is not ready to get\n")); ret = BCME_NOTREADY; } return ret; } int dhd_os_get_version(struct net_device *dev, bool dhd_ver, char **buf, uint32 size) { int ret = BCME_OK; memset(*buf, 0, size); if (dhd_ver) { strncpy(*buf, dhd_version, size - 1); } else { strncpy(*buf, strstr(info_string, "Firmware: "), size - 1); } return ret; } static void dhd_mem_dump(void *handle, void *event_info, u8 event) { dhd_info_t *dhd = handle; dhd_dump_t *dump = event_info; if (!dhd) { DHD_ERROR(("%s: dhd is NULL\n", __FUNCTION__)); return; } if (!dump) { DHD_ERROR(("%s: dump is NULL\n", __FUNCTION__)); return; } if (write_to_file(&dhd->pub, dump->buf, dump->bufsize)) { DHD_ERROR(("%s: writing SoC_RAM dump to the file failed\n", __FUNCTION__)); } if (dhd->pub.memdump_enabled == DUMP_MEMFILE_BUGON) { BUG_ON(1); } MFREE(dhd->pub.osh, dump, sizeof(dhd_dump_t)); } #endif /* DHD_FW_COREDUMP */ #ifdef DHD_WMF /* Returns interface specific WMF configuration */ dhd_wmf_t* dhd_wmf_conf(dhd_pub_t *dhdp, uint32 idx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; return &ifp->wmf; } #endif /* DHD_WMF */ #if defined(TRAFFIC_MGMT_DWM) void traffic_mgmt_pkt_set_prio(dhd_pub_t *dhdp, void * pktbuf) { struct ether_header *eh; struct ethervlan_header *evh; uint8 *pktdata, *ip_body; uint8 dwm_filter; uint8 tos_tc = 0; uint8 dscp = 0; pktdata = (uint8 *)PKTDATA(dhdp->osh, pktbuf); eh = (struct ether_header *) pktdata; ip_body = NULL; if (dhdp->dhd_tm_dwm_tbl.dhd_dwm_enabled) { if (eh->ether_type == hton16(ETHER_TYPE_8021Q)) { evh = (struct ethervlan_header *)eh; if ((evh->ether_type == hton16(ETHER_TYPE_IP)) || (evh->ether_type == hton16(ETHER_TYPE_IPV6))) { ip_body = pktdata + sizeof(struct ethervlan_header); } } else if ((eh->ether_type == hton16(ETHER_TYPE_IP)) || (eh->ether_type == hton16(ETHER_TYPE_IPV6))) { ip_body = pktdata + sizeof(struct ether_header); } if (ip_body) { tos_tc = IP_TOS46(ip_body); dscp = tos_tc >> IPV4_TOS_DSCP_SHIFT; } if (dscp < DHD_DWM_TBL_SIZE) { dwm_filter = dhdp->dhd_tm_dwm_tbl.dhd_dwm_tbl[dscp]; if (DHD_TRF_MGMT_DWM_IS_FILTER_SET(dwm_filter)) { PKTSETPRIO(pktbuf, DHD_TRF_MGMT_DWM_PRIO(dwm_filter)); } } } } #endif #if defined(DHD_L2_FILTER) bool dhd_sta_associated(dhd_pub_t *dhdp, uint32 bssidx, uint8 *mac) { return dhd_find_sta(dhdp, bssidx, mac) ? TRUE : FALSE; } #endif #ifdef DHD_L2_FILTER arp_table_t* dhd_get_ifp_arp_table_handle(dhd_pub_t *dhdp, uint32 bssidx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(bssidx < DHD_MAX_IFS); ifp = dhd->iflist[bssidx]; return ifp->phnd_arp_table; } int dhd_get_parp_status(dhd_pub_t *dhdp, uint32 idx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; if (ifp) return ifp->parp_enable; else return FALSE; } /* Set interface specific proxy arp configuration */ int dhd_set_parp_status(dhd_pub_t *dhdp, uint32 idx, int val) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; if (!ifp) return BCME_ERROR; /* At present all 3 variables are being * handled at once */ ifp->parp_enable = val; ifp->parp_discard = val; ifp->parp_allnode = val; /* Flush ARP entries when disabled */ if (val == FALSE) { bcm_l2_filter_arp_table_update(dhdp->osh, ifp->phnd_arp_table, TRUE, NULL, FALSE, dhdp->tickcnt); } return BCME_OK; } bool dhd_parp_discard_is_enabled(dhd_pub_t *dhdp, uint32 idx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; ASSERT(ifp); return ifp->parp_discard; } bool dhd_parp_allnode_is_enabled(dhd_pub_t *dhdp, uint32 idx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; ASSERT(ifp); return ifp->parp_allnode; } int dhd_get_dhcp_unicast_status(dhd_pub_t *dhdp, uint32 idx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; ASSERT(ifp); return ifp->dhcp_unicast; } int dhd_set_dhcp_unicast_status(dhd_pub_t *dhdp, uint32 idx, int val) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; ASSERT(ifp); ifp->dhcp_unicast = val; return BCME_OK; } int dhd_get_block_ping_status(dhd_pub_t *dhdp, uint32 idx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; ASSERT(ifp); return ifp->block_ping; } int dhd_set_block_ping_status(dhd_pub_t *dhdp, uint32 idx, int val) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; ASSERT(ifp); ifp->block_ping = val; /* Disable rx_pkt_chain feature for interface if block_ping option is * enabled */ dhd_update_rx_pkt_chainable_state(dhdp, idx); return BCME_OK; } int dhd_get_grat_arp_status(dhd_pub_t *dhdp, uint32 idx) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; ASSERT(ifp); return ifp->grat_arp; } int dhd_set_grat_arp_status(dhd_pub_t *dhdp, uint32 idx, int val) { dhd_info_t *dhd = dhdp->info; dhd_if_t *ifp; ASSERT(idx < DHD_MAX_IFS); ifp = dhd->iflist[idx]; ASSERT(ifp); ifp->grat_arp = val; return BCME_OK; } #endif /* DHD_L2_FILTER */ #if defined(SET_RPS_CPUS) int dhd_rps_cpus_enable(struct net_device *net, int enable) { dhd_info_t *dhd = DHD_DEV_INFO(net); dhd_if_t *ifp; int ifidx; char * RPS_CPU_SETBUF; ifidx = dhd_net2idx(dhd, net); if (ifidx == DHD_BAD_IF) { DHD_ERROR(("%s bad ifidx\n", __FUNCTION__)); return -ENODEV; } if (ifidx == PRIMARY_INF) { if (dhd->pub.op_mode == DHD_FLAG_IBSS_MODE) { DHD_INFO(("%s : set for IBSS.\n", __FUNCTION__)); RPS_CPU_SETBUF = RPS_CPUS_MASK_IBSS; } else { DHD_INFO(("%s : set for BSS.\n", __FUNCTION__)); RPS_CPU_SETBUF = RPS_CPUS_MASK; } } else if (ifidx == VIRTUAL_INF) { DHD_INFO(("%s : set for P2P.\n", __FUNCTION__)); RPS_CPU_SETBUF = RPS_CPUS_MASK_P2P; } else { DHD_ERROR(("%s : Invalid index : %d.\n", __FUNCTION__, ifidx)); return -EINVAL; } ifp = dhd->iflist[ifidx]; if (ifp) { if (enable) { DHD_INFO(("%s : set rps_cpus as [%s]\n", __FUNCTION__, RPS_CPU_SETBUF)); custom_rps_map_set(ifp->net->_rx, RPS_CPU_SETBUF, strlen(RPS_CPU_SETBUF)); } else { custom_rps_map_clear(ifp->net->_rx); } } else { DHD_ERROR(("%s : ifp is NULL!!\n", __FUNCTION__)); return -ENODEV; } return BCME_OK; } int custom_rps_map_set(struct netdev_rx_queue *queue, char *buf, size_t len) { struct rps_map *old_map, *map; cpumask_var_t mask; int err, cpu, i; static DEFINE_SPINLOCK(rps_map_lock); DHD_INFO(("%s : Entered.\n", __FUNCTION__)); if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { DHD_ERROR(("%s : alloc_cpumask_var fail.\n", __FUNCTION__)); return -ENOMEM; } err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); if (err) { free_cpumask_var(mask); DHD_ERROR(("%s : bitmap_parse fail.\n", __FUNCTION__)); return err; } map = kzalloc(max_t(unsigned int, RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES), GFP_KERNEL); if (!map) { free_cpumask_var(mask); DHD_ERROR(("%s : map malloc fail.\n", __FUNCTION__)); return -ENOMEM; } i = 0; for_each_cpu(cpu, mask) { map->cpus[i++] = cpu; } if (i) { map->len = i; } else { kfree(map); map = NULL; free_cpumask_var(mask); DHD_ERROR(("%s : mapping cpu fail.\n", __FUNCTION__)); return -1; } spin_lock(&rps_map_lock); old_map = rcu_dereference_protected(queue->rps_map, lockdep_is_held(&rps_map_lock)); rcu_assign_pointer(queue->rps_map, map); spin_unlock(&rps_map_lock); if (map) { static_key_slow_inc(&rps_needed); } if (old_map) { kfree_rcu(old_map, rcu); static_key_slow_dec(&rps_needed); } free_cpumask_var(mask); DHD_INFO(("%s : Done. mapping cpu nummber : %d\n", __FUNCTION__, map->len)); return map->len; } void custom_rps_map_clear(struct netdev_rx_queue *queue) { struct rps_map *map; DHD_INFO(("%s : Entered.\n", __FUNCTION__)); map = rcu_dereference_protected(queue->rps_map, 1); if (map) { RCU_INIT_POINTER(queue->rps_map, NULL); kfree_rcu(map, rcu); DHD_INFO(("%s : rps_cpus map clear.\n", __FUNCTION__)); } } #endif #ifdef DHD_DEBUG_PAGEALLOC void dhd_page_corrupt_cb(void *handle, void *addr_corrupt, size_t len) { dhd_pub_t *dhdp = (dhd_pub_t *)handle; DHD_ERROR(("%s: Got dhd_page_corrupt_cb 0x%p %d\n", __FUNCTION__, addr_corrupt, (uint32)len)); DHD_OS_WAKE_LOCK(dhdp); prhex("Page Corruption:", addr_corrupt, len); dhd_dump_to_kernelog(dhdp); #if defined(BCMPCIE) && defined(DHD_FW_COREDUMP) /* Load the dongle side dump to host memory and then BUG_ON() */ dhdp->memdump_enabled = DUMP_MEMONLY; dhdp->memdump_type = DUMP_TYPE_MEMORY_CORRUPTION; dhd_bus_mem_dump(dhdp); #endif /* BCMPCIE && DHD_FW_COREDUMP */ DHD_OS_WAKE_UNLOCK(dhdp); } EXPORT_SYMBOL(dhd_page_corrupt_cb); #ifdef DHD_PKTID_AUDIT_ENABLED void dhd_pktid_audit_fail_cb(dhd_pub_t *dhdp) { DHD_ERROR(("%s: Got Pkt Id Audit failure \n", __FUNCTION__)); DHD_OS_WAKE_LOCK(dhdp); #if defined(BCMPCIE) && defined(DHD_FW_COREDUMP) /* Load the dongle side dump to host memory and then BUG_ON() */ dhdp->memdump_enabled = DUMP_MEMONLY; dhdp->memdump_type = DUMP_TYPE_PKTID_AUDIT_FAILURE; dhd_bus_mem_dump(dhdp); #endif /* BCMPCIE && DHD_FW_COREDUMP */ DHD_OS_WAKE_UNLOCK(dhdp); } #endif /* DHD_PKTID_AUDIT_ENABLED */ #endif /* DHD_DEBUG_PAGEALLOC */ struct tcp_fmt { struct iphdr ip_header; struct tcphdr tcp_header; }; #define KP_PORT 5150 static void dhd_tcp_dump(char *ifname, uint8 *pktdata, bool tx) { struct tcp_fmt *b = (struct tcp_fmt *) &pktdata[ETHER_HDR_LEN]; struct iphdr *h = &b->ip_header; uint32 ip_saddr, ip_daddr, c, max_c, opt, tsval_t, tsecr_t; unsigned char *opts; /* check IP header */ if (h->ihl != 5 || h->version != 4 || h->protocol != IPPROTO_TCP) { return; } if ((ntohs(b->tcp_header.source) != KP_PORT) && (ntohs(b->tcp_header.dest) != KP_PORT)) return; if (tx) { ip_saddr = h->saddr; ip_daddr = h->daddr; ip_id = ntohs(h->id); bcm_ip_ntoa((struct ipv4_addr *)&ip_saddr, sabuf); bcm_ip_ntoa((struct ipv4_addr *)&ip_daddr, dabuf); bcm_ether_ntoa((struct ether_addr *)pktdata, deabuf); bcm_ether_ntoa((struct ether_addr *)(pktdata+6), seabuf); source = ntohs(b->tcp_header.source); dest = ntohs(b->tcp_header.dest); seq = ntohl(b->tcp_header.seq); seq_ack = ntohl(b->tcp_header.ack_seq); window = ntohs(b->tcp_header.window); tcp_data_len = ntohs(h->tot_len) - 20 - (b->tcp_header.doff * 4); } tcp_option_len = (b->tcp_header.doff * 4) - 20; if (tcp_option_len) { max_c = tcp_option_len; opts = &pktdata[ETHER_HDR_LEN + 40]; for (c = 0; c < max_c; ) { opt = opts[c]; switch (opt) { case 0x00: /* End of options. */ pr_debug("rk tcp_parseopt: EOL\n"); return; case 0x01: /* NOP option. */ ++c; pr_debug("rk tcp_parseopt: NOP\n"); break; case 0x02: pr_debug("rk tcp_parseopt: MSS\n"); if (opts[c + 1] != 0x04 || c + 0x04 > max_c) { /* Bad length */ pr_err("rk tcp_parseopt: bad length\n"); return; } /* Advance to next option */ c += 0x04; break; case 0x08: pr_debug("rk tcp_parseopt: TS\n"); if (opts[c + 1] != 0x0A || c + 0x0A > max_c) { /* Bad length */ pr_err("rk tcp_parseopt: bad length\n"); return; } /* TCP timestamp option with valid length */ tsval_t = (opts[c+2]) | (opts[c+3] << 8) | (opts[c+4] << 16) | (opts[c+5] << 24); tsecr_t = (opts[c+6]) | (opts[c+7] << 8) | (opts[c+8] << 16) | (opts[c+9] << 24); if (tx) { tsval = ntohl(tsval_t); tsecr = ntohl(tsecr_t); } else { tsecr = ntohl(tsval_t); tsval = ntohl(tsecr_t); } /* Advance to next option */ c += 0x0A; break; default: pr_debug("rk tcp_parseopt: other\n"); if (opts[c + 1] == 0) { pr_err("rk tcp_parseopt: bad length\n"); /* If the length field is zero, the options are malformed and we don't process them further. */ return; } /* All other options have a length field, so that we easily can skip past them. */ c += opts[c + 1]; } } } if (tx) pr_debug("[%s-%s] %s %s %s %s %d, %d, %d, %8u, %8u, %d, %d, %d, %8u, %8u\n", ifname, tx ? "tx" : "rx", sabuf, dabuf, seabuf, deabuf, ip_id, source, dest, seq, seq_ack, window, tcp_option_len, tcp_data_len, tsval, tsecr); } #ifdef DHD_DHCP_DUMP static void dhd_dhcp_dump(uint8 *pktdata, bool tx) { struct bootp_fmt *b = (struct bootp_fmt *) &pktdata[ETHER_HDR_LEN]; struct iphdr *h = &b->ip_header; uint8 *ptr, *opt, *end = (uint8 *) b + ntohs(b->ip_header.tot_len); int dhcp_type = 0, len, opt_len; /* check IP header */ if (h->ihl != 5 || h->version != 4 || h->protocol != IPPROTO_UDP) { return; } /* check UDP port for bootp (67, 68) */ if (b->udp_header.source != htons(67) && b->udp_header.source != htons(68) && b->udp_header.dest != htons(67) && b->udp_header.dest != htons(68)) { return; } /* check header length */ if (ntohs(h->tot_len) < ntohs(b->udp_header.len) + sizeof(struct iphdr)) { return; } len = ntohs(b->udp_header.len) - sizeof(struct udphdr); opt_len = len - (sizeof(*b) - sizeof(struct iphdr) - sizeof(struct udphdr) - sizeof(b->options)); /* parse bootp options */ if (opt_len >= 4 && !memcmp(b->options, bootp_magic_cookie, 4)) { ptr = &b->options[4]; while (ptr < end && *ptr != 0xff) { opt = ptr++; if (*opt == 0) { continue; } ptr += *ptr + 1; if (ptr >= end) { break; } /* 53 is dhcp type */ if (*opt == 53) { if (opt[1]) { dhcp_type = opt[2]; DHD_ERROR(("DHCP - %s [%s] [%s]\n", dhcp_types[dhcp_type], tx?"TX":"RX", dhcp_ops[b->op])); break; } } } } } #endif /* DHD_DHCP_DUMP */ typedef struct dhd_mon_dev_priv { struct net_device_stats stats; } dhd_mon_dev_priv_t; #define DHD_MON_DEV_PRIV_SIZE (sizeof(dhd_mon_dev_priv_t)) #define DHD_MON_DEV_PRIV(dev) ((dhd_mon_dev_priv_t *)DEV_PRIV(dev)) #define DHD_MON_DEV_STATS(dev) (((dhd_mon_dev_priv_t *)DEV_PRIV(dev))->stats) static int dhd_monitor_start(struct sk_buff *skb, struct net_device *dev) { PKTFREE(NULL, skb, FALSE); return 0; } static int dhd_monitor_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { return 0; } static struct net_device_stats* dhd_monitor_get_stats(struct net_device *dev) { return &DHD_MON_DEV_STATS(dev); } static const struct net_device_ops netdev_monitor_ops = { .ndo_start_xmit = dhd_monitor_start, .ndo_get_stats = dhd_monitor_get_stats, .ndo_do_ioctl = dhd_monitor_ioctl }; static void dhd_add_monitor_if(void *handle, void *event_info, u8 event) { dhd_info_t *dhd = handle; struct net_device *dev; char *devname; if (event != DHD_WQ_WORK_IF_ADD) { DHD_ERROR(("%s: unexpected event \n", __FUNCTION__)); return; } if (!dhd) { DHD_ERROR(("%s: dhd info not available \n", __FUNCTION__)); return; } dev = alloc_etherdev(DHD_MON_DEV_PRIV_SIZE); if (!dev) { DHD_ERROR(("%s: alloc wlif failed\n", __FUNCTION__)); return; } if (dhd->monitor_type == 1) devname = "prism"; else devname = "radiotap"; snprintf(dev->name, sizeof(dev->name), "%s%u", devname, dhd->unit); #ifndef ARPHRD_IEEE80211_PRISM /* From Linux 2.4.18 */ #define ARPHRD_IEEE80211_PRISM 802 #endif #ifndef ARPHRD_IEEE80211_RADIOTAP #define ARPHRD_IEEE80211_RADIOTAP 803 /* IEEE 802.11 + radiotap header */ #endif /* ARPHRD_IEEE80211_RADIOTAP */ if (dhd->monitor_type == 1) dev->type = ARPHRD_IEEE80211_PRISM; else dev->type = ARPHRD_IEEE80211_RADIOTAP; #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31)) dev->hard_start_xmit = dhd_monitor_start; dev->do_ioctl = dhd_monitor_ioctl; dev->get_stats = dhd_monitor_get_stats; #else dev->netdev_ops = &netdev_monitor_ops; #endif if (register_netdev(dev)) { DHD_ERROR(("%s, register_netdev failed for %s\n", __FUNCTION__, dev->name)); free_netdev(dev); } dhd->monitor_dev = dev; } static void dhd_del_monitor_if(void *handle, void *event_info, u8 event) { dhd_info_t *dhd = handle; if (event != DHD_WQ_WORK_IF_DEL) { DHD_ERROR(("%s: unexpected event \n", __FUNCTION__)); return; } if (!dhd) { DHD_ERROR(("%s: dhd info not available \n", __FUNCTION__)); return; } if (dhd->monitor_dev) { unregister_netdev(dhd->monitor_dev); #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24)) MFREE(dhd->osh, dhd->monitor_dev->priv, DHD_MON_DEV_PRIV_SIZE); MFREE(dhd->osh, dhd->monitor_dev, sizeof(struct net_device)); #else free_netdev(dhd->monitor_dev); #endif /* 2.6.24 */ dhd->monitor_dev = NULL; } } void dhd_set_monitor(dhd_pub_t *dhd, int ifidx, int val) { dhd_info_t *info = dhd->info; DHD_TRACE(("%s: val %d\n", __FUNCTION__, val)); if ((val && info->monitor_dev) || (!val && !info->monitor_dev)) { DHD_ERROR(("%s: Mismatched params, return\n", __FUNCTION__)); return; } /* Delete monitor */ if (!val) { info->monitor_type = val; dhd_deferred_schedule_work(info->dhd_deferred_wq, NULL, DHD_WQ_WORK_IF_DEL, dhd_del_monitor_if, DHD_WORK_PRIORITY_LOW); return; } /* Add monitor */ if (val >= 1 && val <= 3) { info->monitor_type = val; dhd_deferred_schedule_work(info->dhd_deferred_wq, NULL, DHD_WQ_WORK_IF_ADD, dhd_add_monitor_if, DHD_WORK_PRIORITY_LOW); } else { DHD_ERROR(("monitor type %d not supported\n", val)); ASSERT(0); } } bool dhd_monitor_enabled(dhd_pub_t *dhd, int ifidx) { return (dhd->info->monitor_type != 0); } struct net_device * dhd_linux_get_primary_netdev(dhd_pub_t *dhdp) { dhd_info_t *dhd = dhdp->info; if (dhd->iflist[0] && dhd->iflist[0]->net) return dhd->iflist[0]->net; else return NULL; }