import numpy as np import cv2 from rknn.api import RKNN def show_outputs(outputs): output = outputs[0][0] output_sorted = sorted(output, reverse=True) top5_str = 'mobilenet_v1\n-----TOP 5-----\n' for i in range(5): value = output_sorted[i] index = np.where(output == value) for j in range(len(index)): if (i + j) >= 5: break if value > 0: topi = '{}: {}\n'.format(index[j], value) else: topi = '-1: 0.0\n' top5_str += topi print(top5_str) if __name__ == '__main__': # Create RKNN object rknn = RKNN(verbose=True) # Pre-process config print('--> Config model') rknn.config(mean_values=[128, 128, 128], std_values=[128, 128, 128], quantized_method='layer', quantized_algorithm='mmse') print('done') # Load model print('--> Loading model') ret = rknn.load_tensorflow(tf_pb='mobilenet_v1.pb', inputs=['input'], input_size_list=[[1, 224, 224, 3]], outputs=['MobilenetV1/Logits/SpatialSqueeze']) if ret != 0: print('Load model failed!') exit(ret) print('done') # Build model print('--> Building model') ret = rknn.build(do_quantization=True, dataset='./dataset.txt') if ret != 0: print('Build model failed!') exit(ret) print('done') # Accuracy analysis print('--> Accuracy analysis') ret = rknn.accuracy_analysis(inputs=['dog_224x224.jpg'], output_dir=None) if ret != 0: print('Accuracy analysis failed!') exit(ret) print('done') f = open('./snapshot/error_analysis.txt') lines = f.readlines() cos = lines[-1].split()[1] if float(cos) >= 0.965: print('cos = {}, mmse work!'.format(cos)) else: print('cos = {} < 0.965, mmse abnormal!'.format(cos)) f.close() # Set inputs img = cv2.imread('./dog_224x224.jpg') img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = np.expand_dims(img, 0) # Init runtime environment print('--> Init runtime environment') ret = rknn.init_runtime() if ret != 0: print('Init runtime environment failed!') exit(ret) print('done') # Inference print('--> Running model') outputs = rknn.inference(inputs=[img]) np.save('./functions_mmse_0.npy', outputs[0]) show_outputs(outputs) print('done') rknn.release()