import numpy as np import cv2 from rknn.api import RKNN def show_outputs(outputs): output_ = outputs[0].reshape((-1, 1000)) for output in output_: output_sorted = sorted(output, reverse=True) top5_str = 'mobilenet_v1\n-----TOP 5-----\n' for i in range(5): value = output_sorted[i] index = np.where(output == value) for j in range(len(index)): if (i + j) >= 5: break if value > 0: topi = '{}: {}\n'.format(index[j], value) else: topi = '-1: 0.0\n' top5_str += topi print(top5_str) def show_perfs(perfs): perfs = 'perfs: {}\n'.format(outputs) print(perfs) if __name__ == '__main__': # Create RKNN object rknn = RKNN(verbose=True) # Pre-process config print('--> Config model') rknn.config(mean_values=[103.94, 116.78, 123.68], std_values=[58.82, 58.82, 58.82], quant_img_RGB2BGR=True) print('done') # Load model print('--> Loading model') ret = rknn.load_caffe(model='../../caffe/mobilenet_v2/mobilenet_v2.prototxt', blobs='../../caffe/mobilenet_v2/mobilenet_v2.caffemodel') if ret != 0: print('Load model failed!') exit(ret) print('done') # Build model print('--> Building model') ret = rknn.build(do_quantization=True, dataset='./dataset.txt', rknn_batch_size=4) if ret != 0: print('Build model failed!') exit(ret) print('done') # Export rknn model print('--> Export rknn model') ret = rknn.export_rknn('./mobilenet_v2.rknn') if ret != 0: print('Export rknn model failed!') exit(ret) print('done') # Set inputs img = cv2.imread('./dog_224x224.jpg') img = np.expand_dims(img, 0) img = np.concatenate((img, img, img, img), axis=0) # Init runtime environment print('--> Init runtime environment') ret = rknn.init_runtime() if ret != 0: print('Init runtime environment failed!') exit(ret) print('done') # Inference print('--> Running model') outputs = rknn.inference(inputs=[img]) np.save('./functions_batch_size_0.npy', outputs[0]) show_outputs(outputs) print('done') rknn.release()