import numpy as np import cv2 import os import urllib import tarfile import shutil import traceback import time import sys from rknn.api import RKNN PB_FILE = './inception_v3_quant_frozen.pb' RKNN_MODEL_PATH = './inception_v3_quant_frozen.rknn' INPUTS = ['input'] OUTPUTS = ['InceptionV3/Logits/SpatialSqueeze'] IMG_PATH = './goldfish_299x299.jpg' INPUT_SIZE = 299 def show_outputs(outputs): output = outputs[0][0] output_sorted = sorted(output, reverse=True) top5_str = 'inception_v3\n-----TOP 5-----\n' for i in range(5): value = output_sorted[i] index = np.where(output == value) for j in range(len(index)): if (i + j) >= 5: break if value > 0: topi = '{}: {}\n'.format(index[j], value) else: topi = '-1: 0.0\n' top5_str += topi print(top5_str) def readable_speed(speed): speed_bytes = float(speed) speed_kbytes = speed_bytes / 1024 if speed_kbytes > 1024: speed_mbytes = speed_kbytes / 1024 if speed_mbytes > 1024: speed_gbytes = speed_mbytes / 1024 return "{:.2f} GB/s".format(speed_gbytes) else: return "{:.2f} MB/s".format(speed_mbytes) else: return "{:.2f} KB/s".format(speed_kbytes) def show_progress(blocknum, blocksize, totalsize): speed = (blocknum * blocksize) / (time.time() - start_time) speed_str = " Speed: {}".format(readable_speed(speed)) recv_size = blocknum * blocksize f = sys.stdout progress = (recv_size / totalsize) progress_str = "{:.2f}%".format(progress * 100) n = round(progress * 50) s = ('#' * n).ljust(50, '-') f.write(progress_str.ljust(8, ' ') + '[' + s + ']' + speed_str) f.flush() f.write('\r\n') if __name__ == '__main__': # Create RKNN object rknn = RKNN(verbose=True) # If inception_v3_quant_frozen.pb does not exist, download it. # Download address: # https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz if not os.path.exists(PB_FILE): print('--> Download {}'.format(PB_FILE)) url = 'https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz' download_file = 'inception_v3_quant.tgz' try: start_time = time.time() urllib.request.urlretrieve(url, download_file, show_progress) except: print('Download {} failed.'.format(download_file)) print(traceback.format_exc()) exit(-1) try: tar = tarfile.open(download_file) target_dir = os.path.splitext(download_file)[0] if os.path.isdir(target_dir): pass else: os.mkdir(target_dir) tar.extractall(target_dir) tar.close() except: print('Extract {} failed.'.format(download_file)) exit(-1) pb_file = os.path.join(target_dir, PB_FILE) if os.path.exists(pb_file): shutil.copyfile(pb_file, './inception_v3_quant_frozen.pb') shutil.rmtree(target_dir) os.remove(download_file) print('done') # Pre-process config print('--> Config model') rknn.config(mean_values=[104, 117, 123], std_values=[128, 128, 128]) print('done') # Load model print('--> Loading model') ret = rknn.load_tensorflow(tf_pb=PB_FILE, inputs=INPUTS, outputs=OUTPUTS, input_size_list=[[1, INPUT_SIZE, INPUT_SIZE, 3]]) if ret != 0: print('Load model failed!') exit(ret) print('done') # Build model print('--> Building model') ret = rknn.build(do_quantization=False) if ret != 0: print('Build model failed!') exit(ret) print('done') # Export rknn model print('--> Export rknn model') ret = rknn.export_rknn(RKNN_MODEL_PATH) if ret != 0: print('Export rknn model failed!') exit(ret) print('done') # Set inputs img = cv2.imread(IMG_PATH) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Init runtime environment print('--> Init runtime environment') ret = rknn.init_runtime() if ret != 0: print('Init runtime environment failed!') exit(ret) print('done') # Inference print('--> Running model') outputs = rknn.inference(inputs=[img]) np.save('./tensorflow_inception_v3_qat_0.npy', outputs[0]) x = outputs[0] output = np.exp(x)/np.sum(np.exp(x)) outputs = [output] show_outputs(outputs) print('done') rknn.release()