Rockchip Secure Boot Application Note

Version: 2.1

Date: 2019.10

Classification level: Publicity

Preface

Terms:

Sector: Sector size is 512 bytes

eFuse: One-Time Programmable Memory IP in SOC

RSA Encryption: Use public key for encryption

RSA Decryption: Use private key for decryption

OTP: One-Time Programmable Memory IP in SOC

MaskRom: BootROM, Boot Read-Only Memory in SOC

loader: Boot loader, generally means Miniloader or SPL(uboot)

OBM CODE: Generally means the code compiled or trusted by OEM/OBM

Introduction
This document describes how to implement Rockchip secure boot solution.

Secure boot mechanism is for verifying firmware validity, which aims to prevent invalid firmware
upgrade and booting.

The device which had programmed eFuse will enable secure boot ROM, and could not boot from
the un-signed firmware. So trying to upgrade un-signed firmware or unmatched key signed
firmware will fail.

NOTE: The valid signed firmware can boot smoothly on fake copies of device circuit board or
same CPU platform hardware. Secure boot will verify the validity of software, but not hardware.

This document applies to RK3126, RK3128, RK3228, RK3229, RK3288, RK3368, RK3399, RK3228H,
RK3328, RK3326, RK3308 and PX30.

Features of secure boot:

e Support secure boot ROM

e Support SHA256

e Support RSA2048

e Support eFuse or OTP hash to verify public key

The relative tool revision:

af://n0
mailto:zyf@rock-chips.com
mailto:hjh@rock-chips.com
mailto:cf@rock-chips.com
af://n7

Efuse tool V1.35 or the latest revision

e SecureBootTool 1.79 or the latest revision

History

Revision
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

2.1

Date

2014-11-05

2015-12-21

2016-02-02

2016-09-29

2016-11-15

2016-11-16

2017-02-15

2017-05-19

2017-10-30

2018-06-05

2018-11-09

2019-10-29

RKBatchTool 1.8 or the latest revision(deprecated, Use FactoryTool instead)
FactoryTool 1.39 or the latest revision

Description

Original document
Update secure boot tool
Update secure boot tool
Re-edit

Add detailed description of workflow

1. Add terms and definitions.2. Add eFuse layout.

Add RK3328 and RK3228H.

Add sequence chart and note

Refactor the format and add hardware info
Add OTP program public key hash flow
Add RK3336, PX30 and RK3308 OTP layout

Fix some error

Author
ZYF
YBC
YHC
ZYF
Joshua
Joshua
ZYF
Z7)
cw
CF

CF

ZYF/CF

Contents

Rockchip Secure Boot Application Note
Preface
1 Architecture
1.1 Secure Boot Process
1.2 Secure Boot Sequence
1.3 MaskRom Boot to the First Loader (RKminiLoader/U-Boot)
1.4 First Loader boot to u-boot(Secondary Boot Loader,option)
1.5 U-Boot Boot to Boot Image with Linux kernel
1.6 U-Boot Boot to Recovery
2 eFuse Layout
3 Overall Operation Flow
4 Make Update.img
4.1 Generate Images
4.2 Packet Update.img
5 Firmware Sign Flow
5.1 Generating RSA key
5.2 Save RSA key
5.3 Loading RSA key
5.4 Configuration
5.5 Sign Firmware
6 Programming eFuse
6.1 Hardware Conditions
6.1.1 eFuse Programming
6.1.2 OTP Programming
6.2 Tool Ul
6.3 Load the Signed Firmware
6.4 Click 'run' Button to Start
6.5 Programming eFuse
6.6 Programming OTP
7 Firmware Upgrade
7.1 Firmware Upgrade
8 Verification
8.1 Check Secure Flag
8.2 Secure Boot Test
9 Secure Debug
9.1 Introduction
9.2 Secure Debug Process

1 Architecture

1.1 Secure Boot Process

Data process in

Boatrom

Dala storage

r
OBM
Code

L 4

SHA256

HASH of
OBM Code
YES

0BM Code

DS of
oBM

RSAZ048
Encyption

Y

Digital
Signature of
OBM Code

SHA256 [—— Public Key

Figure 1-1 Secure boot process

MATCH?

1.2 Secure Boot Sequence

Timg

\J

Verfies&loads&Runs

¥

OBM Code

SHAZEE

Data generate

RSAZ048

Digital
signature

HASH of
pubkey

/4,

» Secure OS(OP-TEE)

BootLoader(13tep)

Verifie&Loads&Runs

Varfiabloads

Run

BootLoader| 2stap)

|

: Linux Kemel |

Varfisbloads&Ru | |

Recavery .

|

Inltrd{beot img) :

e e e _

Yas
| Werfiedloads&Runs
* Racovary.img
Limux imit process &
init.re: {from initrd) —LoadsiRuns fsysiem
Android framewark
code ALy Isystamidata

Andreid fully active

SHAZS6 1—{ Public Key }

Unsigned

Figure 1-2 Secure boot sequence

1.3 MaskRom Boot to the First Loader (RKminiLoader/U-

Boot)

af://n117
af://n118
af://n121
af://n124

MASKROM

s

Get Public Key

HASH(SHA256) of public
key

HASH in OTP Boot failed

Get raw binary of first

ot Get digital Signature

HASH(SHAZ256) of raw

binary —l RSA2048 encryption |4

MATCH? 4

YES
(Loadingﬁrstlcader) Y .;{ Boot failed)

Figure 1-3-1 MaskRom to loader sequence
First loader layout in user partition of flash

Table 1-1 First loader data layout

0-63 sector 64 sector reverse

first loader(8128 sector)(5 copys) Boot loader partition

0-2047 loader header

2048-4095 public key and digital signature
4096 - raw binary

Boot loader copy(4) partition

0-2047 loader header
2048-4095 public key and digital signature
4096 - raw binary

The structure of public key and digital signature layout at address 2048 to 4095:

typedef struct tagBOOT_HEADER
{

uint32 tag;

uint32 version;

uint32 flags;

uint32 size;

uint32 reservedl[3];
uintl6 HashBits;
uintl6é RSABits; /* length in bits of modulus */
uint32 RSA_N[64]; /* RSA public key*/
uint32 RSA_E[64];
uint32 RSA_C[64];
uint32 Hashbata[(8+1)*2];
uint32 signature[64];
}BOOT_HEADER, *PBOOT_HEADER;

Public key: uint32 RSA_N[64], RSA_E[64], RSA_C[64] ;
Digital signature: uint32 signature[64]

Step1: Get public key from first loader partition.

Step2: Calculate the hash(SHA256) of public key and compare it with the the hash stored in OTP.If
mathed,load the first loader successfully, otherwise booting failed.

Step3: Calculate the hash(SHA256) of raw binary and compare it with RSA2048 encryption(have
been obtainde in step1) of digital signature. If matched, load first loader successfully, otherwise
booting failed.

1.4 First Loader boot to u-boot(Secondary Boot
Loader,option)

Get Public Key
from first loader

HASH(5HAZ5b) of

public key
HASH in OTP Boot failed
YES
Get raw binary of Get digital Signature

uboot

b

RSAZ2048 encryption

HASH (SHAZ56) of raw
binary

F

k J

(:Loadiﬂg ubuot:) NG Boot failed

Figure 1-4-1 boot to -uboot flow

af://n167

UBoot
0-2047 header, digital signature
2048- Raw binary

uboot
(4MB, 4copys)

UBoot copy(3)
0-2047 |header, digatal signature
2048- Raw binary

Table 1-4 u-boot layout in flash

The structure of header with digital digital signature layout at address 0 to 2047:

typedef struct tag_second_loader_hdr

{
unsigned char magic[LOADER_MAGIC_SIZE];
unsigned int version;
unsigned int reserved0;

unsigned int loader_load_addr; /* load to DDR address */
unsigned int loader_load_size; /* size in bytes */
unsigned int crc32; /* crc32 */

unsigned int hash_len; /* 20 or 32 , 0 is no hash */
unsigned char hash[LOADER_HASH_SIZE]; /* sha256 */

unsigned int js_hash; /* js hsah */

unsigned char reserved[1024-32-32-4];

unsigned int signTag; /* O0x4E474953, "NGIS" */
unsigned int signlen; /¥ 256 */

unsigned char rsaHash[256]; /% digital signature */
unsigned char reserved2[2048-1024-256-8];

}second_loader_hdr;

Digital signature: unsigned char rsaHash[256];
| Step 1: Get public key from first loader partition

| Step 2: Calculate the hash (sha256) of public key and compare it with hash in OTP, if matched go
to next step, otherwise booting failed.

| Step 3: Calculate the hash(SHA256) of raw binary and compare it with RSA2048 encryption
(have been obtained in step 1) of digital signature, if matched, loading successfully and deliver
the public key to U-Boot, otherwise booting failed.

1.5 U-Boot Boot to Boot Image with Linux kernel

af://n178

HASH in OTP

Get Public Key passing
from first loader

HASH(SHA256) of
public key

m NO

YES

Get raw binary of boot
image

HASH(SHAZ56) of raw
binary

:: MATCH? ——«

Boot failed)

Get digital Signature

v

RSA2048 encryption |4

h 4

Goading boot imaga

-

YES

NO

Figure 1-5 U-Boot to boot sequence

Table 1-2 Boot data layout

boot.img

2048-4095

4096-

0-2047
digital signature

kernel,ramdisk,dtb...

The structure of layout 0-2047(header):

#define BOOT_MAGIC_SIZE 8
#define BOOT_NAME_SIZE 16
#define BOOT_ARGS_SIZE 512
typedef struct tag_boot_img_hdr

{

unsigned char magic[BOOT_MAGIC_SIZE]; /*
unsigned int kernel_size; ?
unsigned int kernel_addr;
unsigned int ramdisk_size;
unsigned int ramdisk_addr;
unsigned int second_size;
unsigned int second_addr;

Boot failed)

header

"ANDROID!" */

* size in bytes */

* physical Toad addr */
* size in bytes */

* physical Toad addr */
* size in bytes */
physical load addr */

unsigned int tags_addr;
unsigned int page_size;
unsigned int unused[2];
unsigned char name[BOOT_NAME_SIZE];

unsigned char cmd1ine[BOOT_ARGS_SIZE];

/
/
/
/
/4
/7’:
/
/
/
/

* physical addr for kernel tags */
* flash page size we assume */

* future expansion: should be 0 */
* asciiz product name */

unsigned int id[8]; /* timestamp / checksum / shal / etc

unsigned char reserved[0x400-0x260];
unsigned int signTag; /% O0x4E474953 */
unsigned int signlen; /5 128 =/

unsigned char rsaHash[128];
}boot_img_hdr;
Digital signature: unsigned char rsaHash[128];
| Step 1: U-Boot get public key obtained from first loader.

| Step 2: Calculate the hash (sha256) of public key and compare it with hash in OTP, if matched go
to next step, otherwise booting failed.

| Step 3: Hash(SHA256) of raw binary and compare it with RSA2048 encryption (using public key
get in step 1) of digital signature, if matched, boot to linux kernel, otherwise booting failed.

1.6 U-Boot Boot to Recovery

The same as boot to boot image, detail please refer to chapter 1.4.

af://n209

2 eFuse Layout

RK3368, RK3288, RK3229 and RK3228 used 1024 bits eFuse for secure boot, data layout:

Table 2-1 eFuse data layout

32-bit Word Addressing Description

0x00 Security flagBits [7:0] security enable flag Bits [31:8] reserved
0x01-0x3 Reserved

0x04-0x07 Reserved

0x8-0xF RSA public key hash

0x10-0x17 Reserved

0x18 Reserved

0x19-0x1A Reserved

0x1B-0x1D Reserved

Ox1E Reserved

Ox1F eFuse write lock bits

RK3228H and RK3328 used 7680 bits OTP for secure boot, data layout:

Table 2-2 OTP data layout

32-bit Wf)rd Description

Addressing

0-63 Public Key (N)

64-127 Public Key (E)

128 Security flagBits [7:0] Oxff: security enable flagBits [15:8] RSA_E size
(word uint)Bits [31:16] Reserved

129 Trusted Firmware revocation counter (ID #0)

130-131 Non-trusted Firmware revocation counter (ID #1)

132-239 Reserved

RK3326. PX30 and RK3308 used 4096 bits OTP for secure boot, data layout:

Table 2-3 OTP data layout2

af://n213

32-bit Word Addressing Description

0 Secure boot enable flag

1-3 Reserved

4-11 RSA Public key hash(using SHA256)

12-19 Device root key

20-23 FW encryption key

24-25 Trusted Firmware revocation counter (ID #0)
26-31 Non-trusted Firmware revocation counter (ID #1)

32-97 Reserved for OEM

3 Overall Operation Flow

Enable secure boot flow :

1. Package update.img

2. Sign Firmware(update.img)

3. Program EFUSE or OTP

4. Upgrade Firmware(update.img)
5. Check secure boot enable

boot.img
misc.img
FECOvERy . img
system.immg
HH¥bootioader bin

package-file

update.img

publickey . hin

update_signed.img

Figure 3-1 Secure boot operation process

Make update.img

privatekey bin — -

Firmaare Sign

Frogramming EF USE

Firmeare Upgrade

i

Ensure that secure boot has been
enabled

af://n307

4 Make Update.img

4.1 Generate Images

After build Android,use the following script to generate images:

./mkimage.sh ota

projectsifbogon:~/release/RK3288/mid/5.186 . /mkimage.sh ota
TARGET PRODUCT=rk3288

TARGET HARDWARE=rk30board

system_filesysys em is ext4

make ota images...

efeate boot.img with kernel... done,
feate recovery.img with kernel... done.
create misc.img.... done.

create system.img... done.

Figure 4-1 Script to generate images

4.2 Packet Update.img

Refer to RKTools/windows/AndroidTool/rockdev/package-file. This file controls which files will be
packaged.

Take RK3288, for example. Change bootloader path, commentaries resource and kernel lines, set
backup to RESERVED.

| package-£ildd |

MAME Relacive path

3

#HWDEF HWDEF

package-file package-file

bootloader mage,/RE32 BBU‘bDnL‘.Lnad&l{. bin

pArameter rk3Z7BE=-5.10-yboot .paATameTer. LXT

fuboot Image/uboot . img

misc Image/misc.img
__*;escu:ce Image/resource.img
—tkernel Image/kernel.img

boot Image,/boot.img

recovery Image/recovery.img

sSystem Image/system. img

t EE Apackup BRI X HREE S (update.img)

$# SELF ZX@T, FEAZH LM (updare.img) H5

t EERAZ AN, FOASELFXHAAE, BEELFEEEPEFLE
3 ERAAETHN, THEESELFIHFAE.

RESERVED ST A3

I backup RESERVED |
update-script update-script

recover-script recover-script

Figure 4-2 Package-file to control the packaging

Copy RKTools/windows folders to windows system, then run AndroidTool/rockdev/mkupdate.bat
to generate the update.img.

af://n324
af://n325
af://n330

‘;‘;9 + AndroidTool b rockdev »

FHF REE) =8V

backupimage
Image

5| AFPTool.exe
package-file
recover-seript
rk3288-3.10-uboot.parameter.bd
RE3288UbootLoader_V2.19.06.bin

B | REImageMaker.exe

update-script
L Rp 1!

i [

Figure 4-3 Script-to-generate-images

BN Android Firmware Package Tool v1.62

5 Firmware Sign Flow

This instruction is for Windows tools, while Linux has its own.

5.1 Generating RSA key

w SecureBootTool v1.84

Basic Function

. [Generate Key Fairs l S1gn Loader
chip:
S1zn File
Encrpyt:
o =£{ PROMPT 83
INFO:Stas P
INFO: Stay ':0] Generate Key pairs succeed,would you want to save them?
INFO: Gen 4
IHFOD: Gen

Advanced Function

le

=0

Figure 5-1 SecureBootTool generates RSA key

5.2 Save RSA key

This key will be used for signed firmware and for OTA, please back up to a secure storage.

NOTE: The keypair is VERY important! Make sure to save it securely. Once you lost it or leak it,

your product will be exposed in high risk, also the old device will be unable to be updated
anymore.lt should be maintained through the whole product life cycle

af://n339
af://n341
af://n344

%8 SecureBootTool v1.84

Basic Function Advanced Function
Generate Key FPairs Sign Loader
chip: 3288 v| [
Sign File
Encrpyt:
Check 51 File
@ efuse =
| . SecureBootToeol_vl.84
INFD; Start to | bin
INFO:Start to i . config
INFO: Generatin). Loz

INFOQ: Generate x b) Tenp

Figure 5-2 SecureBootTool saves RSA key

5.3 Loading RSA key

u SecureBootTool v1.84

Figure 5-3 SecureBootTool loads RSA key

5.4 Configuration

m;»ﬂgﬂrm&:}bp@'m v sdi2 v |42]]| 2= sak2 p|
min v g =~ 0 @
W SE - a&m) ar wm Foln
= SRR | privateKey.bin 2017/10/30 14:25 BIN 3zf# 2 KB
| _| publicKey.bin 2017/10/30 14:25 BIN i 1KB
L SReHE
= i
=l B 3
o e
4 =F
™ T
i Wi i
STAEEN): | Key File(".bin) -]
| 770 || ws |

chip: 3288

Choose SOC platform

af://n349
af://n352

Encrpyt

@ sfusza soft

Option ‘efuse’ means using eFuse to store the hash of the RSA public key, and will enable secure
boot ROM(recommended).

Option ‘soft’ is for some special applications, will not enable secure boot ROM, used RSA1024 and
SHA160.

Generate Hey Pairs

Every product model will generate RSA KEY only once, please backup in case that you cannot
upgrade firmware or OTA again.

Load Key

Loading backup RSA key (support ‘.pem’ file format generated by openssl)

Sign Firmware

Sign firmware

5.5 Sign Firmware

Make sure the ‘boot.img’ and the ‘recovery.img’ are included in the kernel image.

Refer to the pack command:

¢ith kernel...

ith kernel...

Figure 5-4 Images'pack command

Open firmware image:

af://n364

=t e e =0 b G
T AR B sdk2 2017/11/1 14:22 TigsE
! SecureBootTool_v1.83_foruser-1 2017/11/1 17:34 Srigsk
o) SecureBootTool v1.84 2017/11/1 17:40 3rigsk
| SREME |4 updat_KEVS_1.img 2017/10/30 15:45 sedtusfgeris 439,545 KB
€] updat_KEYS_1_then_keyZimg 2017/10/30 15:47 Feimeicr{d 439,545 KB
H w2 |€] updat KEVS_1_then_key? then keyS.i.. 2017/10/30 15:52 ¥Smsors 439,545 KB
s || update - sourceimg 2017/10/27 10:42 Feilmaigorid 439,529 KB
= | update.mg 2017/1131031 %SRBI 439,545 KB|
< =5 || update_2.img 2017/10/30 14:52 FeEhigorit 439,545 KB
|| update_6.img 2017/10/30 15:23 Feimacrid 439,545 KB
1N €] update_3288_6.0.img 2017/10/31 16:19 FeEm@oris 520,929 KB
|€¥] update_3288_6.0_source.img 2017/10/31 15:59 FEEriorid 520913 KB
€ s P —— TR—
KHEN): updateimg ~ [image File(img) -

Figure 5-5 SecureBootTool selects firmware

Signed firmware:

Basic Function

chip: [3235

7] | Generate Key Pairs |

Encrpyt:

@ efuse soft

INFO Start to sign file(b
INFO: Sign file succeed, E1
INFO:Start to sign filelr
INFO:Sign file succeed E1
INFO:Start to pack androi

INFO:pack android firmwar

ﬁ

Advanced Function

o Sign firmware success.
—=]

INFO Start to pack unien -

[
[

| Check Sign File |

3

Sign Loader J

Sign File]

INFO: pack union firmware OK
INFO:Start to sign check key.
INFO:Sign check key OK.
INFO:S1gn firmware success.

Figure 5-6 Secure Boot Tool-signed firmware

6 Programming eFuse

6.1 Hardware Conditions

For Rockchip AP series, there are two ways to program user secure data. One is "eFuse
programming", the other is "OTP programming"(only few chips support). Following is the
introduction.

6.1.1 eFuse Programming

RK3126, RK3128, RK3228, RK3229, RK3288, RK3368 and RK3399 support eFuse programming,
following is the general requirements:

A. If products do not need eFuse data programming, we advise to connect eFuse Power Pin
directly to GND. Avoiding eFuse data change caused by misoperation. (RK3126/RK3126C eFuse
Power Pin is reused with SARADC function, so that it would not to be grounded.)

B. If products need eFuse programming, then connect a pull down resistance to GND on eFuse
Power Pin, to make sure that eFuse power pin doesn't fluctuate in normal work condition. also to
avoid eFuse data change caused by misoperation. This pull-down resistance value, please refer to
each chip platform's reference schematics, generally it's at a range of 47Q-10KQ.

C. There are two types of power supply for eFuse programming:
a) Onboard power supply mode

e Advantage: PCBA socket test board is not needed, you can program eFuse data first, and
then upgrade the firmware. When system works in normal condition, the firmware must
make sure that eFuse power is not on,keep 0V to prevent misoperation.

e Disadvantange: Power supply circuit must placement on the board. The material cost is
increased, and you need to make sure the firmware is no misoperation at any time.

e Apply to: This power supply mode applies to customers who don't want to add PCBA testing
process. For example some BOX products, their interfaces and assembling are both simple,
not need socket board to use on the PCBA test.

b) Power supply by PCBA test board(recommended)

e Advantage: Only test points needed. It is no power supply circuit on board so users can't
crack through software too.
e Disadvantage: Increase PCBA test process, the test cost is higher.

| Apply to: Products like tablets, their assembling is complicated. If PCBA is abnormal, it 's more
complicated to rework and replace, so these kinds of products usually have PCBA testing process,
Programming eFuse on this process is reasonable.

D. Electronic circuit introduction:

Each chip platform’s eFuse power supply voltage is different(such as 1.5/1.8/2.5V), power supply
pin number and current requirement is also different.

we recommend that power supply capacity should be 50mA above, for detailed voltage and pull-
down resistance value, you can refer to schematic diagram. Summarized advices are below:

Table 6-1 Hardware parameters

af://n377
af://n378
af://n380

Chip Part
Number

RK3126/RK3126C

eFusePower

2.5V

Programming
Mode

Power by PCBA

VQPS Current
Requirement

>50mA

Pull-down
Resistance
Value

None

eFusePower
Pin Number

PIN68

Remark

Reused
with

test board

ADC
Onboard or
powered by
external

RK3128 2.5V >50mA <=10K R10

Onboard or
powered by
external

RK3168/RK3188 1.5V >50mA <=510R Y10

Onboard or
powered by
external

RK3228/RK3229 1.6V >50mA <=100R R10

Onboard or
powered by
external

RK3288 1.5V >50mA <=510R P19

Onboard or
powered by
external

RK3368 1.5V >50mA <=47R Y10

Onboard or
powered by
external

RK3399 1.8V >50mA <=1K AD23

Recommended power supply mode is shown as below diagram.

a) PartA: eFuse power supply circuit, please choose suitable LDO part number according to the
voltage requirement above, this part circuit can be placed on mainboard, and also can be placed
on the PCBA test board.

b) PartB: eFuse power pin with pull down resistance R4(47R-10K), keep the voltage low level to
avoid misoperation. If power supply circuit is placed on the PCBA test board, the SOC mainboard
needs to add responding testing points, to facilitate fixture pin touch.

Attention:
a) RK3126C's eFuse power is reused with ADC function, so it can't connect pull-down resistance.

b) RK3228/RK3229's eFuse power supply is suggest to be adjusted to 1.55-1.6V, to be more
stabled.

¢) If the device uses onboard power supply mode, please make sure eFuse_PWREN, which is in
the following diagram be distributed an independent GPIO to control the LDO. It must make sure
there is no power output on VCC_eFuse PIN in normal work condition. Details refer to reference
schematic that RK released, if there is no GPIO distributed, contact us or use external power
supply mode.

_ ! PartB
Part A: Power Supply Circuit i | Pull down RES and test points
VCC_IO VCC_EFUSE (SOC Side)
c i '| I 1V
o 10 4 ’ - ot 1= 4 VOO_EFUSE
i o m - : e { 0 W
. - e L | -
T o~ RO4O2 RT9163 708 o R 2T
% % S0T_I1_5 "-_ [Codld ATR- 10K
RO402 - Tt i » A%
a2 g1 " ~| ROE0Z
FFUSE_PWRI 11 1 10k 5% |-ss0%0 Eahap Taa
Hi&d: heSOT_I3 = . —

i~y TP

Figure 6-1 eFuse circuit

6.1.2 OTP Programming

RK3328 and RK3228H support OTP programming mode, this mode is no need external power
supply circuit, OTP_VCC18(PIN16) is always powered by VCC_18. you only need to run the special
time sequence for OTP programming, not need the additional changes aboout hardware.

SARADC_AVDD_1v8 e vCC_18
O
OTP/eFUSE oTP vecis |18 910
EFUSE_VP |12 L
= ¥ ::%\ioz
RK3328 ¥ 2

BGA395_14R00X14R00X1R24

Figure 6-2 OTP circuit

6.2 Tool Ul

'a‘? Firmware ‘ ﬁ‘ Luwngt] » Exit

e Fizmwazs Tz
Loades Vas:
Chip:

) Fail Dewice List Device Type =) Upgrade Prormet o Success [

I.Fizst use, Tag USH port plug device in, secord ID showing an the tool. Tag all.
D dfrar pluging Amdas in, acemact ansthar uned]l devics is dedvg upgrads.

Fail
A, Ll 4o e, plog devies Se:lad S ead,ds ook plig Sewvics 58 ar sk =
4. Afrmr finishing upgrads, gresn to show success, cs 4 ta show failurs. T o

E. Te zhow zucceazzful davice on tha right of grid and failad davice on the left of grid.

Figure 6-3 eFuse tool Ul

6.3 Load the Signed Firmware

af://n478
af://n482
af://n485

'-‘__L? Fir.rmlo Ran H Lamguage Exit
Ficmwaes | I vindroidTool_Relsass_vZ. 3431 28box\ rockdeyuspdate. img Firmware Ver: 4.4.04
Loader Ver:Z2.31

L 4

Chip; REJ124

] Fail e Cravice Lint Davics Typs 10 Upgrads Prampt T Buccesa
: W My Computer ~ B
= i RootHub20
= Part[1] Huls 31
| == Pan

Wizard:
l.First wee, Tag USH port: plug device in, record ID showing on the tool. Tag all. Success: 4]

2. After pluging dswvics in. cormesct another until dewvics iz doing upgrade. o
Fail
3.1lmd iz gresn, plug device in:lsd ir red. do not plug device in or out. *

4. After finizhing upgrade, gresn to xhow succeszsz, ced to zhow failure. Total 0

E.Te shew succeszazful device on the right of grid and failed device on the left of geid

Figure 6-4 Load signed firmware

6.4 Click 'run' Button to Start

Flemwage | GIE

| Firmware Ver:d.d4.04
Losdar Ver:2.31
Chip: RE3124

mn Fail - Drevice List Device Type mw Upgrade Prampt n SUCCEEE
= My Computer -~
= m RootHub20
= Port[1] Hub 31

== Portil]

== Port]2]

== Porni3]

=% Portfd]

-2 Porif3]

=% Portle]

=& Portl7]

| & Port(2]
= Port[3]

[&= RootHub2D
| = Parn)

) B8 Part[3] Hulbs 2.3
-2 Pert[i] v

Wizmrd:

L.First use, Tag USHE port plug device in, record ID showing on the tool. Tag all. Success: '0
2. After pluging device in. connect ancther until device iz doing upgrade.
3. led iz gresn plug device in-led is red. do not plug device in or out. BT D
d.afrer finishing upgrade, green to show success, red to zhow failure.

5. To show successful device on the right of grid and failed device on the left of grid,

Total: 0

Figure 6-5 Programming the chip

6.5 Programming eFuse

Connect the device to the PC by USB cable; the tool will program the hash of RSA public key to
eFuse automatically.

Programming eFuse needs an external power supply, the detail information please refer to SOC's
DATASHEET.

Notice:RK3228H,RK3328,RK3336,RK3308 and PX30 don't need step 6.2 to 6.4. Programming will
be done by upgrading firmware which has been signed.

6.6 Programming OTP

af://n488
af://n491
af://n495

RK3228H,RK3328,RK3326,RK3308 and PX30 support OTP programming. Public key hash need

program to OTP. Programming OTP performs are :

1. First, follow the above steps to burn signed firmware. If the machine can start normally , the

signature process is correct. Then OTP can be programed.

2. The signature tool uses version of SecureBootTool V1.9 or more. Open the config.ini file in
the tools directory. Find "sign_flag=", set"sign_flag=0x20"(bit 5 set 1) which enable write OTP
in RKloader. Save config.ini file. Reopen SecureBootTool.exe to sign firmware or RKLoader.

§ » AHEEEE (D0) » work » SecureBootTool v1.9

Fat

=i EHER

bin 2016/11/7 15:26

Log 2018/5/11 10:17
| config.ini 2018/5/14 18:01
|_'| libcrypto-1_1.4dll 2017/5/25 21:20
|_'| libssl-1_1.4dll 2017/5/25 21:20
|_'| mswver20.4dll 2017/5/25 21:20
|:| PrivateKey.pem 2018/4/2 10:46
|] Publickey.pem 2018/4/2 10:46
SecureBootTool.exe 2018/5/11 1014

Figure 6-6-1 SecureBootTool

=i |

=
i
ESi=E
RIFRfERT 2
RIFEEFTE
KRR 2
PEM 3245
PEM {4
RIFRTERF

Foh

KB
KB
KE
KB
KB
KE

3| config.ini - 105
| P R|H|(E) B0 =&V #EEH)
[System]

new_crypto=3308 3326
soft_sign=3128|3036
hard_sign_bigz_hash=3228h|3368|3228]3288
hard _=sign 1itte _hash=3399

hard_sigzn pss=2208|3226|3229

sign flag=0xZ0
gign soft version=
=ign nonce=

Figure 6-6-2 config.ini

3. Use re-signed firmware or RKLoader burnning. After burnning, restart the machine. The

support_chip=2208 2226|2299 | 32280 | 3220 | 3368 | 3228 | 3288 | 2128 | 2036

#using software to check signature, using shalf0 ,belong to “soft_sign”
#using hardware to check signature, using big shaZ56, belons to “hard si=
#using hardware to check signature, using little shaZ5R, belong to “hard :

#using hardware to checlk signature,using pss padding , at the bheginning

RKLoader will be responsible for generating hash of public key and writing it to OTP during

startup and enable secure boot.

[RKLoader 1

v

YES
Go to secure

boot flow

Secure boot enable?

Get secure header from

flash
v

Get public key from

secure header

v

Signature
encryption (RSA2048)

. MO
Booting system HASH (5HA256) of
secure header

YES ¢

Booti st
OOHNg system Enable OTP write?

HASH(SHA256) of public
key

v

Program hash to OTP and

enable secure boot

Figure 6-6-3 OTP program flow

4. If OTP program success, serial port print “otp write key success!!!”. If OTP program fail, serial
port print"otp write error: 1",

7 Firmware Upgrade

7.1 Firmware Upgrade

Open the signed firmware and connect the device which has programmed eFuse to the PC by
USB cable:

B EluseTool v1.26 =] @ |

- Run. |H Language

\F Firmears

Firmware Ver: 5 0. 00
Loader Ver:2. 30 |
Chip:RE32

Ficaware

- Diewice List Device Type o Upgrade Prompt] Sucress L
= B My Computer -
=-2 RootHub20
- Port]l]
-« Port[2]
o Port[3]
g Portid)
{2 Port[5] Maskrom 1-5
- sigp Port[6]
e Port7]
+2 Part[8]
|- % Port[9]
- Dort[10]
L= Port[11]
*2 Port[13]
i g Port[13]
- wp Port[14]
- Port[15]
+3 Port[16] -

D Fail

Wizard:

l.First use, Tag U5E portiplug device in, record ID chowing on the tool. Tag all. Success: 0

2. &fter pluging device in, cormect another wntil dewice iz doing upegrade. 0
Fail:

3.led 1z green,plug device in;led ix red,do not plug dewice in or out.

4, After finishing upgrads, green To show success, red to show failure. Toral: 0

5.To show successful device on the right of grid and failed dewvice on the left of grid

Figure 7-1 Upgrade tool 1

Click the ‘Upgrade’ button to start firmware upgrade and wait it to be completed:

af://n516
af://n517

i]
LoaderR3F: 2, 30
AL K iER:RE32

= BEFE PEEE jie] Fapiz=

{w Ponis) Maskrom 5 FEBooTF 3

LT
L B, $IRUSDIM T R E, TR 8RR RNEID. 48 FRUSER0. R; 00000
2. Wi B, SN LEFRHORERAT—4.

. . £ 00000
3. FEREHE b, ST, iR, (AT, TR E.

4. HBEF, GMUHRETRET, R ERREET. e 00000

5. R RESEENEEADT, FASh kS E L UARATT.

Figure 7-2 Upgrade tool 2

8 Verification

8.1 Check Secure Flag

Use serial port tools (e.g. SecureCRT) to get the log of system boot. These words show that the
security boot is on:

Secure Boot Mode: 0x1 or SecureMode = 0x1

FRr VOAMy UEAGULL TAYALLAISIN

GetParam

108 check pArameCer SUCCESS
Unknow param: MACHINE MODEL:rk328a!
Unknow pazam: MACHINE ID:007!

111 Upkneow param: MANUFACTURER:RK3288!
Unknow pazam: PWR_HLD: 0,0,A,0,1!
power key: bank-0 pin-5

114 can't find dgs node for ricohél9
Pmigiact8i4s

116 fg:icwz
117 Boot Mode: Oxl
reBootEn = 1, SecursBootlock = 1

120 #Boot yer: 2015-02-06%#2.19
empty serial no.
checkEey
whua = 0

Figure 8-1 Log of system boot

8.2 Secure Boot Test

The device which had programmed eFuse will enable secure boot rom, and could not boot from
the un-signed firmware.

So try to upgrade un-signed firmware or unmatched key signed firmware will fail;
And upgrade matched signed firmware will boot success.

SOC RK3128 and RK3126 will fail at “wait for loader":

af://n526
af://n527
af://n532

Firmware Ver:b.0.00

Loader Wer:2.30

Deno Chip:RE32

Iu} Fall Drevice List Drewice Type ID Upgrade Prompt
| || = B My Computer .
- RootHub2D
--=r Porif1)
- Porif2]
--#2 Port{3)]
== Ponjd] 1
CoRes Wekom 5 TemDmimrd
--ei Portfd)
—#2r Port{7]
=% PortiB]
=5 Port{d)
iy Ponf10)
-+ Portf11]
=2 Port{12]
=% Port{13]
= Ponfid)
-~ Prari[15)
-+ Port{16] .

Wizard:

1.First use, Tag USE port:plug dewice im, record ID showing on the toel. Teg all
2 &fter pluging device in, connect another untal dewice i1x doing upgrade.
3.1led iz green,plug device in;led iz red,do not plug dewice in or out,

4. &fter finizhing upgrade, gresn to show =zucceszsz, red to zhow failure.

B. To show acecezsful dewice on the right of zrid and failed dewice om the laft of grid.

Success:

Fail:

Total:

Success

00000

00001

00001

Figure 8-2 Upgrade fail 1

Other SOC will fail at “Download Boot":

Firmware Wer:5.0.00

Loader Ver:Z.30

Dena Chip:FRE32

10 Fall Device List Drevice Type (1] Upgrade Prompt
| 1 = M My Computer
-3 RootHub20
--wige Portf1]
e Pori]]
=2 Port{3)
=% Porfd] L
penl Mekom 5 TemDeicefal
=2 Portfé)
--#% Port{7)
=5 Port{B]
=% Porfd]
--ogp Portii0]
o Pori{11]
-#Z¥ Port{13]
=% Port{l3]
-« Portfi4)
|
-2 Port{16] .

Wizard:

1.Firat uze, Tag USE port:plug dewica im, record ID showing on the tool. Tag all.
2 After pluging device in, comnect another until device iz doing upgrade.
3.1led iz green,plug device in;led iz red,do not plug dewice in or out.

4 After finizhing upgoade, green to show success, red to show failuze.

B. To show sceoeszeful device on the right of zrid and failed dewice om the laft of grid.

Success:

Fail:

Total:

Sucoess -

00000

00001

00001

Figure 8-3 Upgrade fail 2

9 Secure Debug

9.1 Introduction

The secure debug only support disabled secure boot verification feature for upgrade unsigned
kernel to speed up debugging.

There has a 128-bit unique CPU ID for each SOC. The Signed Tools read the CPU ID and using RSA
private key to Decryption and got a certificate, then the device using RSA public key to verify it.
After the certificate is verified, the device will disable secure boot verification in uboot.

9.2 Secure Debug Process

. KSA . KSA /P%%H disable
- Slgned Decryption Certl_ Encryp + .,.‘ ’,“.
CPU “.. uboot

/".
o
.
o
.

TN [

PASS

af://n544
af://n545
af://n548

	Rockchip Secure Boot Application Note
	Preface
	1 Architecture
	1.1 Secure Boot Process
	1.2 Secure Boot Sequence
	1.3 MaskRom Boot to the First Loader (RKminiLoader/U-Boot)
	1.4 First Loader boot to u-boot(Secondary Boot Loader,option)
	1.5 U-Boot Boot to Boot Image with Linux kernel
	1.6 U-Boot Boot to Recovery

	2 eFuse Layout
	3 Overall Operation Flow
	4 Make Update.img
	4.1 Generate Images
	4.2 Packet Update.img

	5 Firmware Sign Flow
	5.1 Generating RSA key
	5.2 Save RSA key
	5.3 Loading RSA key
	5.4 Configuration
	5.5 Sign Firmware

	6 Programming eFuse
	6.1 Hardware Conditions
	6.1.1 eFuse Programming
	6.1.2 OTP Programming

	6.2 Tool UI
	6.3 Load the Signed Firmware
	6.4 Click 'run' Button to Start
	6.5 Programming eFuse
	6.6 Programming OTP

	7 Firmware Upgrade
	7.1 Firmware Upgrade

	8 Verification
	8.1 Check Secure Flag
	8.2 Secure Boot Test

	9 Secure Debug
	9.1 Introduction
	9.2 Secure Debug Process

