
Chip Name Kernel Version

RV1126/RV1109 Linux 4.19

Rockchip_Driver_Guide_VI_EN
ID: RK-YH-GX-604

Release Version: V1.0.8

Release Date: 2021-08-24

Security Level: □Top-Secret □Secret □Internal ■Public

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES NOT
PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH RESPECT TO
THE ACCURACY, RELIABILITY, COMPLETENESS,MERCHANTABILITY, FITNESS FOR ANY PARTICULAR
PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION AND CONTENT IN
THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS DOCUMENT MAY BE UPDATED
OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE UPGRADES OF THE PRODUCT OR
ANY OTHER REASONS.

Trademark Statement

"Rockchip", "瑞芯微", "瑞芯" shall be Rockchip’s registered trademarks and owned by Rockchip. All
the other trademarks or registered trademarks mentioned in this document shall be owned by
their respective owners.

All rights reserved. ©2021. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this
document in any form in whole or in part without the written approval of Rockchip.

Rockchip Electronics Co., Ltd.

No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590

Customer service Fax: +86-591-83951833

Customer service e-Mail: [fae@rock-chips.com]mailto:fae@rock-chips.com)

Foreword

Overview

This article aims to describe the role of the RKISP (Rockchip Image Signal Processing) module, the
overall workflow, and related API interfaces. Mainly to driver engineers provide assistance in
debugging Camera.

Product Version''

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com
mailto:mailto:fae@rock-chips.com

Chip Name Software System Support Status

RV1126 Linux(Kernel-4.19) Y

RV1109 Linux(Kernel-4.19) Y

RK3566 Linux(Kernel-4.19) Y

RK3568 Linux(Kernel-4.19) Y

Version
Number

Author
Revision
Date

Revision Description

v0.1.0
Cain
Cai

2020-06-
11

Initial version

v1.0.0
Zefa
Chen

2020-10-
30

Added focus, zoom, iris, ircut descriptions

v1.0.1
Zefa
Chen

2021-01-
04

Modified format error

v1.0.2
Cain
Cai

2021-01-
21

RV1109/RV1126 memory optimization guide

v1.0.3
Allon
Huang

2021-02-
04

Added VICAP LVDS/DVP/MIPI and other interface
device node registration instructions

v1.0.4
Cain
Cai

2021-04-
08

Add chip version different and mulit sensor dts for
rk356x

v1.0.5
Zefa
Chen

2021-04-
24

Added MS41908 stepper motor driver description

Improve the collection of RAW/YUV command
instructions

v1.0.6
Zefa
Chen

2021-07-
23

The description of the vicap node falls back to be
consistent with the driver

v1.0.7
Cain
Cai

2021-08-
03

RV1109/RV1126 delay optimization guide

v1.0.8
Zefa
Chen

2021-08-
24

Added FAQ: preview flickering, purple light source
overflow problem

Target Audience

This document (this guide) is mainly applicable to the following engineers:

Drive development engineer

System Integration Software Development Engineer

Applicable platforms and systems

Revision History

 Contents

Rockchip_Driver_Guide_VI_EN
VI difference of the chip
Camera software driver catalog description
Link relationship between ISP and VICAP
RKISP driver

Brief description of the framework
ISP HDR mode description

RKVICAP driver
Frame description

Chip version different
CIS (cmos image sensor) driver

CIS Device Registration (DTS)
Single registration

MIPI interface
Link to ISP

DVP interface
Link to VICAP

Multi-sensor registration
CIS driver description

Brief description of data type
struct i2c_driver
struct v4l2_subdev_ops
struct v4l2_subdev_core_ops
struct v4l2_subdev_video_ops
struct v4l2_subdev_pad_ops
struct v4l2_ctrl_ops
struct xxxx_mode
struct v4l2_mbus_framefmt
struct rkmodule_base_inf
struct rkmodule_fac_inf
struct rkmodule_awb_inf
struct rkmodule_lsc_inf
struct rkmodule_af_inf
struct rkmodule_inf
struct rkmodule_awb_cfg
struct rkmodule_lsc_cfg
struct rkmodule_hdr_cfg
struct preisp_hdrae_exp_s

API brief description
xxxx_set_fmt
xxxx_get_fmt
xxxx_enum_mbus_code
xxxx_enum_frame_sizes
xxxx_g_frame_interval
xxxx_s_stream
xxxx_runtime_resume
xxxx_runtime_suspend
xxxx_set_ctrl
xxx_enum_frame_interval
xxxx_g_mbus_config
xxxx_get_selection

Drive migration steps
VCM Drive

VCM Device Registration (DTS)
VCM driver description

Brief description of data type
struct i2c_driver
struct v4l2_subdev_core_ops

struct v4l2_ctrl_ops
API brief description

xxxx_get_ctrl
xxxx_set_ctrl
xxxx_ioctl xxxx_compat_ioctl

Drive migration steps
FlashLight driver

FLASHLight Device Registration (DTS)
FLASHLight driver description

Brief description of data type
struct i2c_driver
struct v4l2_subdev_core_ops
struct v4l2_ctrl_ops

API brief description
xxxx_set_ctrl
xxxx_get_ctrl
xxxx_ioctl xxxx_compat_ioctl

Drive migration steps
FOCUS ZOOM P-IRIS driver

MP6507 device registration(DTS)
Brief description of data type

struct platform_driver
struct v4l2_subdev_core_ops
struct v4l2_ctrl_ops

API brief description
xxxx_set_ctrl
xxxx_get_ctrl
xxxx_ioctl xxxx_compat_ioctl

Drive migration steps
MS41908 device registration(DTS)

Basic description：
FOCUS description：
ZOOM description：
ZOOM1 description：
PIRIS description：
DCIRIS description：
Brief description of data type

struct spi_driver
struct v4l2_subdev_core_ops
struct v4l2_ctrl_ops

API brief description
xxxx_set_ctrl
xxxx_ioctl xxxx_compat_ioctl

Drive migration steps
DC-IRIS drive

DC-IRIS Device Registration (DTS)
Brief description of data type

struct platform_driver
struct v4l2_subdev_core_ops
struct v4l2_ctrl_ops

API brief description
xxxx_set_ctrl
xxxx_ioctl xxxx_compat_ioctl

Drive migration steps
RK-IRCUT driver

RK-IRCUT Device Registration (DTS)
Brief description of data type

struct platform_driver

struct v4l2_subdev_core_ops
struct v4l2_ctrl_ops

API brief description
xxxx_set_ctrl
xxxx_ioctl xxxx_compat_ioctl

Drive migration steps
media-ctl v4l2-ctl tool
RV1109/RV1126 Memory Optimization Guide
RV1109/RV1126 Delay Optimization Guide
FAQ

How to get the driver version number
How to judge the RKISP driver loading status
How to capture RAW and YUV data output by CIS

List of equipment support
RV1109/RV1126
RK356X

Raw data storage format
Non-compact storage format RAW
Compact storage format RAW

Reference use case：
VICAP output Raw
ISP maipath output non-compact Raw
VICAP output YUV：
ISP output YUV：
ISPP output YUV：

How to switch CIS driver output resolution
How to set the exposure parameters of CIS
How to support black and white cameras
How to support odd and even field synthesis
How to view debug information
How to troubleshoot flicker issues
How to troubleshoot the problem of purple overflow at the light source
Sensor Info Filling Guide

Appendix A CIS driver V4L2-controls list
Appendix B MEDIA_BUS_FMT table
Appendix C CIS Reference Driver List
Appendix D VCM driver ic reference driver list
Appendix E Flash light driver ic reference driver list

VI difference of the chip

af://n115

SOC VI IP VI Interface
Bayer CIS max
resolution

Feature

RV1109

ISP20 (ISP +
ISPP): 1

VICAP Full: 1

VICAP Lite: 1

MIPI DPHY:

2 x 4Lanes 2.5Gbps/Lane

LVDS:

2 x 4Lanes 1.0Gbps/Lane

DVP:

BT601 / BT656 / BT1120
pclk: 150MHz

3072x2048
Upto 3
frames HDR

RK3566
ISP21 Lite: 1

VICAP Full: 1

MIPI DPHY:

2 x 2Lanes or 1 x 4Lanes
2.5Gbps/Lane

DVP:

BT601 / BT656 / BT1120
pclk: 150MHz

4096x2304 No HDR

RK3568
ISP21：1

VICAP Full: 1

MIPI DPHY:

2 x 2Lanes or 1 x 4Lanes
2.5Gbps/Lane

DVP:

BT601 / BT656 / BT1120
pclk: 150MHz

4096x2304
Upto 2
frames HDR

RV1126

ISP20 (ISP +
ISPP): 1

VICAP Full: 1

VICAP Lite: 1

MIPI DPHY:

2 x 4Lanes 2.5Gbps/Lane

LVDS:

2 x 4Lanes 1.0Gbps/Lane

DVP:

BT601 / BT656 / BT1120
pclk: 150MHz

4416x3312
Upto 3
frames HDR

Camera software driver catalog description
Linux Kernel-4.19

|-- arch/arm/boot/dts DTS configuration file

|-- drivers/phy/rockchip

 |-- phy-rockchip-mipi-rx.c mipi dphy driver

​ |-- phy-rockchip-csi2-dphy-common.h

​ |-- phy-rockchip-csi2-dphy-hw.c

​ |-- phy-rockchip-csi2-dphy.c

|-- drivers/media

 |-- platform/rockchip/cif

 |-- platform/rockchip/isp

 |-- dev Including probe, asynchronous registration, clock, pipeline, iommu and media/v4l2
framework

 |-- capture Including mp/sp/rawwr configuration and vb2, frame interrupt processing

af://n147

 |-- dmarx Including rawrd configuration and vb2, frame interrupt processing

 |-- isp_params 3A related parameter settings

 |-- isp_stats 3A related statistics

 |-- isp_mipi_luma mipi data brightness statistics

 |-- regs Register-related read and write operations

 |-- rkisp isp subdev and entity registration

 |-- csi csi subdev and mipi configuration

 |-- bridge bridge subdev, isp and ispp interactive bridge

 |-- platform/rockchip/ispp

 |-- dev Including probe, asynchronous registration, clock, pipeline, iommu and media/v4l2
framework

 |-- stream Including 4 video output configuration and vb2, frame interrupt processing

 |-- rkispp ispp subdev and entity registration

 |-- params TNR/NR/SHP/FEC/ORB parameter setting

 |-- stats ORB statistics

​ |-- i2c

 |-- os04a10.c CIS (cmos image sensor) driver

Link relationship between ISP and VICAP
For the RV1126/RV1109 and RK356X platforms, VICAP and ISP are two independent image
processing IPs. If the images collected by VICAP are processed by ISP, the v4l2 sub device of the
VICAP corresponding interface needs to be generated at the driver level to link to the node
corresponding to the ISP. , To provide parameters for the ISP driver to use. Please refer to RKISP
driver for ISP driver description and RKVICAP driver for VICAP driver description. The overall block
diagram of the specific VICAP interfaces and the ISP link is as follows:

RKISP driver

af://n173
af://n177

Brief description of the framework

The RKISP driver is mainly based on the v4l2/media framework to implement hardware
configuration, interrupt processing, control buffer rotation, and control the power on and off of
subdevices (such as MIPI DPHY and sensor).

The following block diagram describes the topology of the RKISP driver:

af://n178

Name Type Description

rkisp_mainpath v4l2_vdevcapture Format: YUV, RAW Bayer; Support: Crop

rkisp_selfpath v4l2_vdevcapture Format: YUV, RGB; Support: Crop

rkisp-isp-subdev v4l2_subdev

Internal isp blocks; Support: source/sink pad
crop. The format on sink pad equal to sensor
input format, the size equal to sensor input
size. The format on source pad should be
equal to vdev output format if output format is
raw bayer, otherwise it should be YUYV2X8.
The size should be equal/less than sink pad
size.

rkisp-mipi-luma v42_vdevcapture Provice raw image luma

rkisp-statistics v4l2_vdevcapture Provide Image color Statistics information.

rkisp-input-params v4l2_vdevoutput
Accept params for AWB, BLC...... Image
enhancement blocks.

rkisp_rawrd0_m v4l2_vdevoutput
Raw image read from DDR to ISP, usually using
for the HDR middle frame

rkisp_rawrd1_l v4l2_vdevoutput
Raw image read from DDR to ISP, usually using
for the HDR long frame

rkisp_rawrd2_s v4l2_vdevoutput
Raw image read from DDR to ISP, usually using
for the HDR short frame

rkisp-csi-subdev v4l2_subdev MIPI CSI configure

rkisp_rawwr0 v4l2_vdevcapture
Raw image write to DDR from sensor, usually
using for the HDR middle frame

rkisp_rawwr1 v4l2_vdevcapture
Raw image write to DDRfrom sensor, usually
using for the HDR long frame

rkisp_rawwr2 v4l2_vdevcapture
Raw image write to DDR from sensor, usually
using for the HDR short frame

rkisp_rawwr3 v4l2_vdevcapture Raw image write to DDR from sensor

rockchip-mipi-
dphy-rx

v4l2_subdev MIPI-DPHY Configure.

rkisp-bridge-ispp v4l2_subdev ISP output yuv image to ISPP

rkispp_input_image v4l2_vdevoutput Yuv image read from DDR to ISPP

rkisp-isp-subdev v4l2_subdev
The format and size on sink pad equal to ISP
output. The support max size is 4416x3312,
min size is 66x258

rkispp_m_bypass
v4l2_vdev
capture

Full resolution and yuv format

Name Type Description

rkispp_scale0
v4l2_vdev
capture

Full or scale resolution and yuv format

Scale range:[1 8] ratio

3264 max width for yuv422

2080 max width for yuv420

rkispp_scale1
v4l2_vdev
capture

Full or scale resolution and yuv format

Scale range:[2 8] ratio

1280 max width

rkispp_scale2
v4l2_vdev
capture

Full or scale resolution and yuv format

Scale range:[2 8] ratio

1280 max width

ISP HDR mode description

RKISP2 supports receiving MIPI sensor to output HDR 3 frames or 2 frames mode, the hardware
collects data to DDR through 3 or 2 dmatx, and then reads the ISP through 3 or 2 dmarx, and the
ISP does 3 or 2 frames synthesis, drive chain The road is as follows:

The CSI subdev obtains the output information of the sensor driver in multiple pad formats
through get_fmt, which corresponds to the source pad of the CSI.

Please refer to the specific configuration of MIPI sensor driver Driver migration steps

af://n277

Name Name Description

rkisp-isp-
subdev

Sensor
pad0

ISP capture Sensor vc0 (default) wide and high format output,
commonly used linear mode

rkisp_rawwr0
Sensor
pad1

Rawwr0 capture sensor vcX wide and high format output

rkisp_rawwr1
Sensor
pad2

Rawwr1 capture sensor vcX wide and high format output

rkisp_rawwr2
Sensor
pad3

Rawwr2 capture sensor vcX wide and high format output

rkisp_rawwr3
Sensor
pad4

Rawwr3 capture sensor vcX wide and high format output

RKVICAP driver

Frame description

The RKVICAP driver is mainly based on the v4l2/media framework to implement hardware
configuration, interrupt processing, control buffer rotation, and control the power on and off of
subdevices (such as mipi dphy and sensor).

For RV1126/RV1109, VICAP has two IP cores, one of which is called VICAP FULL and the other is
called VICAP LITE. VICAP FULL has three interfaces: dvp/mipi/lvds, dvp can work with mipi or lvds
interface at the same time, but mipi and lvds cannot work at the same time, VICAP LITE only has
lvds interface, which can work with VICAP FULL interface at the same time; VICAP FULL dvp The
interface corresponds to a rkvicap_dvp node, the VICAP FULL mipi/lvds interface corresponds to a
rkvicap_mipi_lvds node, and the VICAP LITE corresponds to a rkvicap_lite_mipi_lvds node. Each
node can be collected independently.

For the RK356X chip, VICAP has only a single core and has two interfaces, dvp and mipi. The dvp
interface corresponds to a rkvicap_dvp node, and the mipi interface corresponds to a
rkvicap_mipi_lvds node (the same name as the VICAP FULL of RV1126/RV1109), and each node
can be collected independently.

In order to synchronize the data collected by VICAP to the isp driver, it is necessary to link the
logical sditf node generated by the VICAP driver to the virtual node device generated by the isp.
The DVP interface corresponds to the rkvicap_dvp_sditf node, the mipi/lvds interface of VICAP
FULL corresponds to the rkvicap_mipi_lvds_sditf node, and the VICAP LITE corresponds to
rkvicap_lite_sditf.

Please refer to the specific dts link method of each interface CIS Device Registration (DTS)

The following figure describes the topology of the device driven by RKVICAP:

af://n309
af://n310

Chip version different

af://n319

SOC VI IP VI Interface
Bayer CIS max
resolution

Feature

RV1109

ISP20 (ISP +
ISPP): 1

VICAP Full: 1

VICAP Lite: 1

MIPI DPHY:

2 x 4Lanes 2.5Gbps/Lane

LVDS:

2 x 4Lanes 1.0Gbps/Lane

DVP:

BT601 / BT656 / BT1120
pclk: 150MHz

3072x2048
Upto 3
frames HDR

RK3566
ISP21 Lite: 1

VICAP Full: 1

MIPI DPHY:

2 x 2Lanes or 1 x 4Lanes
2.5Gbps/Lane

DVP:

BT601 / BT656 / BT1120
pclk: 150MHz

4096x3072 No HDR

RK3568
ISP21：1

VICAP Full: 1

MIPI DPHY:

2 x 2Lanes or 1 x 4Lanes
2.5Gbps/Lane

DVP:

BT601 / BT656 / BT1120
pclk: 150MHz

4096x3072
Upto 2
frames HDR

RV1126

ISP20 (ISP +
ISPP): 1

VICAP Full: 1

VICAP Lite: 1

MIPI DPHY:

2 x 4Lanes 2.5Gbps/Lane

LVDS:

2 x 4Lanes 1.0Gbps/Lane

DVP:

BT601 / BT656 / BT1120
pclk: 150MHz

4416x3312
Upto 3
frames HDR

CIS (cmos image sensor) driver

CIS Device Registration (DTS)

Single registration

MIPI interface

For the RV1126 and RV1106 platforms, there are two independent and complete standard
physical mipi csi2 dphys, corresponding to csi_dphy0 and csi_dphy1 on dts (see RV1126.dtsi), the
characteristics are as follows:

The maximum data lane is 4 lanes;

The maximum rate is 2.5Gbps/lane;

For the RK356X platform, there is only one standard physical mipi csi2 dphy, which can work in
two modes: full mode and split mode, which can be split into three logical dphys (see rk3568.dtsi):
csi2_dphy0/csi2_dphy1/csi2_dphy2 (see rk3568.dtsi). The features are as follows:

af://n352
af://n353
af://n354
af://n355

 Full mode

Only use csi2_dphy0, csi2_dphy0 and csi2_dphy1/csi2_dphy2 are mutually exclusive and
cannot be used at the same time;

The maximum data lane is 4 lanes;

The maximum rate is 2.5Gbps/lane;

Split mode

Only use csi2_dphy1 and csi2_dphy2, mutually exclusive with csi2_dphy0, and cannot be
used at the same time;

csi2_dphy1 and csi2_dphy2 can be used at the same time;

The maximum data lane of csi2_dphy1 and csi2_dphy2 is 2 lanes;

csi2_dphy1 corresponds to lane0/lane1 of the physical dphy;

csi2_dphy2 corresponds to lane2/lane3 of physical dphy;

Maximum rate 2.5Gbps/lane

For specific dts use cases, see the following examples.

Link to ISP

RV1126/RV1106 platform

Take RV1126 isp and os04a10 as examples below.

Link relationship: sensor->csi_dphy->isp->ispp

arch/arm/boot/dts/RV1126-evb-v10.dtsi

Configuration points

data-lanes must specify the number of lanes used, otherwise it will not be recognized as mipi
type;

cam_ircut0: cam_ircut {

 status = "okay";

 compatible = "rockchip,ircut";

 ircut-open-gpios = <&gpio2 RK_PA7 GPIO_ACTIVE_HIGH>;

 ircut-close-gpios = <&gpio2 RK_PA6 GPIO_ACTIVE_HIGH>;

 rockchip,camera-module-index = <1>;

 rockchip,camera-module-facing = "front";

};

os04a10: os04a10@36 {

 // Need to be consistent with the matching string in the driver

 compatible = "ovti,os04a10";

 reg = <0x36>;// sensor I2CDevice address, 7 bits

 clocks = <&cru CLK_MIPICSI_OUT>;// sensor clickinConfiguration

 clock-names = "xvclk";

 power-domains = <&power RV1126_PD_VI>;

 pinctrl-names = "rockchip,camera_default";

 pinctrl-0 = <&mipi_csi_clk0>;// pinctl Set up

 //power supply

 avdd-supply = <&vcc_avdd>;

 dovdd-supply = <&vcc_dovdd>;

 dvdd-supply = <&vcc_dvdd>;

 // power Pin assignment and effective level

 pwdn-gpios = <&gpio1 RK_PD4 GPIO_ACTIVE_HIGH>;

af://n386

 // Module number, this number should not be repeated

 rockchip,camera-module-index = <1>;

 // Module orientation which are "back" and "front"

 rockchip,camera-module-facing = "front";

 // name of moudle

 rockchip,camera-module-name = "CMK-OT1607-FV1";

 // lens name

 rockchip,camera-module-lens-name = "M12-4IR-4MP-F16";

 //ir cut device

 ir-cut = <&cam_ircut0>;

 port {

 ucam_out0: endpoint {

 // mipi dphy port

 remote-endpoint = <&mipi_in_ucam0>;

 // number of mipi lane，1lane is <1>, 4lanei s <1 2 3 4>

 data-lanes = <1 2 3 4>;

 };

 };

 };

&csi_dphy0 {

 status = "okay";

 ports {

 #address-cells = <1>;

 #size-cells = <0>;

 port@0 {

 reg = <0>;

 #address-cells = <1>;

 #size-cells = <0>;

 mipi_in_ucam0: endpoint@1 {

 reg = <1>;

 // The port name of the sensor

 remote-endpoint = <&ucam_out0>;

 // mipi lane number，1lane is <1>, 4lane is <1 2 3 4>

 data-lanes = <1 2 3 4>;

 };

 };

 port@1 {

 reg = <1>;

 #address-cells = <1>;

 #size-cells = <0>;

 csidphy0_out: endpoint@0 {

 reg = <0>;

 // name of isp port

 remote-endpoint = <&isp_in>;

 };

 };

 };

};

&rkisp {

 status = "okay";

};

&rkisp_vir0 {

 status = "okay";

 ports {

 #address-cells = <1>;

RK356X platform

Let's take rk3566 isp and gc8034 4lane as examples for description:

Link relationship: sensor->csi2_dphy0->isp

Configuration points

Need to configure data-lanes
Need to enable csi2_dphy_hw node

 #size-cells = <0>;

 port@0 {

 reg = <0>;

 #address-cells = <1>;

 #size-cells = <0>;

 isp_in: endpoint@0 {

 reg = <0>;

 // name of mipi dphy port

 remote-endpoint = <&csidphy0_out>;

 };

 };

 port@1 {

 reg = <1>;

 #address-cells = <1>;

 #size-cells = <0>;

 isp0_out: endpoint@1 {

 reg = <1>;

 // ispp port name, isp output to ispp

 remote-endpoint = <&ispp0_in>;

 };

 };

 };

};

&rkispp {

 status = "okay";

};

&rkispp_vir0 {

 status = "okay";

 port {

 #address-cells = <1>;

 #size-cells = <0>;

 Ispp0_in: endpoint@0 {

 reg = <0>;

 // isp port name, ispp input

 remote-endpoint = <&isp0_out>;

 };

 };

};

 /* full mode: lane0-3 */

 gc8034: gc8034@37 {

 //Need to be consistent with the matching string in the driver

 compatible = "galaxycore,gc8034";

 status = "okay";

 // sensor I2C device address, 7 bits

 reg = <0x37>;

 // sensor mclk Source configuration

 clocks = <&cru CLK_CIF_OUT>;

 clock-names = "xvclk";

 //sensor Related power domain enable

 power-domains = <&power RK3568_PD_VI>;

 //sensor mclk pinctl set up

 pinctrl-names = "default";

 pinctrl-0 = <&cif_clk>;

 // resetPin assignment and effective level

 reset-gpios = <&gpio3 RK_PA6 GPIO_ACTIVE_LOW>;

 // powerdownPin assignment and effective level

 pwdn-gpios = <&gpio4 RK_PB2 GPIO_ACTIVE_LOW>;

 // Module number, this number should not be repeated

 rockchip,camera-module-index = <0>;

 // Module orientation, there are "back" and "front"

 rockchip,camera-module-facing = "back";

 // moudle name

 rockchip,camera-module-name = "RK-CMK-8M-2-v1";

 // lens name

 rockchip,camera-module-lens-name = "CK8401";

 port {

 gc8034_out: endpoint {

 // csi2 dphy port name

 remote-endpoint = <&dphy0_in>;

 // csi2 dphy lane number，1lane is <1>, 4lane is <1 2 3 4>

 data-lanes = <1 2 3 4>;

 };

 };

 };

 &csi2_dphy_hw {

 status = "okay";

 };

 &csi2_dphy0 {

 //csi2_dphy0 is not used simultaneously with csi2_dphy1/csi2_dphy2,

mutually exclusive

 status = "okay";

 /*

 * dphy0 only used for full mode,

 * full mode and split mode are mutually exclusive

 */

 ports {

 #address-cells = <1>;

 #size-cells = <0>;

 port@0 {

 reg = <0>;

 #address-cells = <1>;

 #size-cells = <0>;

 dphy0_in: endpoint@1 {

 reg = <1>;

 // The port name of the sensor

 remote-endpoint = <&gc8034_out>;

 // csi2 dphy lane number

 data-lanes = <1 2 3 4>;

 };

Link to VICAP

RV1126/RV1109 platform

Take mipi os04a10 4lane link vicap as an example:

Link relationship: sensor->csi dphy->mipi csi host->vicap

Configuration points:

data-lanes must specify the number of lanes used, otherwise it will not be recognized as
mipi type;
dphy needs to be linked to the csi host node.

 };

 port@1 {

 reg = <1>;

 #address-cells = <1>;

 #size-cells = <0>;

 dphy0_out: endpoint@1 {

 reg = <1>;

 // The port name of the isp

 remote-endpoint = <&isp0_in>;

 };

 };

 };

 };

&rkisp {

 status = "okay";

};

&rkisp_mmu {

 status = "okay";

};

&rkisp_vir0 {

 status = "okay";

 port {

 #address-cells = <1>;

 #size-cells = <0>;

 isp0_in: endpoint@0 {

 reg = <0>;

 // The port name of csi2 dphy

 remote-endpoint = <&dphy0_out>;

 };

 };

};

os04a10: os04a10@36 {

 // Need to be consistent with the matching string in the driver

 compatible = "ovti,os04a10";

 // sensor I2C device address, 7 bits

 reg = <0x36>;

 // sensor mclkSource configuration

af://n408

 clocks = <&cru CLK_MIPICSI_OUT>;

 clock-names = "xvclk";

 //sensor Related power domain enable

 power-domains = <&power RV1126_PD_VI>;

 avdd-supply = <&vcc_avdd>;

 dovdd-supply = <&vcc_dovdd>;

 dvdd-supply = <&vcc_dvdd>;

 //sensor mclk pinctlset up

 pinctrl-names = "rockchip,camera_default";

 pinctrl-0 = <&mipicsi_clk0>;

 // powerdownPin assignment and effective level

 pwdn-gpios = <&gpio1 RK_PD4 GPIO_ACTIVE_HIGH>;

 // Module number, this number should not be repeated

 rockchip,camera-module-index = <1>;

 // Module orientation, there are "back" and "front"

 rockchip,camera-module-facing = "front";

 // module name

 rockchip,camera-module-name = "CMK-OT1607-FV1";

 // lens name

 rockchip,camera-module-lens-name = "M12-40IRC-4MP-F16";

 // ircut name

 ir-cut = <&cam_ircut0>;

 port {

 ucam_out0: endpoint {

 // csi2 dphy port name

 remote-endpoint = <&mipi_in_ucam0>;

 // csi2 dphy lane number，1lane is <1>, 4lane is <1 2 3 4>

 data-lanes = <1 2 3 4>;

 };

 };

 };

&csi_dphy0 {

 //csi2_dphy0 is not simultaneous use with csi2_dphy1/csi2_dphy2 , mutually

exclusive

 status = "okay";

 ports {

 #address-cells = <1>;

 #size-cells = <0>;

 port@0 {

 reg = <0>;

 #address-cells = <1>;

 #size-cells = <0>;

 mipi_in_ucam0: endpoint@1 {

 reg = <1>;

 // The port name of the sensor

 remote-endpoint = <&ucam_out0>;

 // csi2 dphy lane number

 data-lanes = <1 2 3 4>;

 };

 };

 port@1 {

 reg = <1>;

 #address-cells = <1>;

 #size-cells = <0>;

 csidphy0_out: endpoint@0 {

 reg = <0>;

 // csi2 host port name

 remote-endpoint = <&mipi_csi2_input>;

 };

 };

 };

};

&mipi_csi2 {

 status = "okay";

 ports {

 #address-cells = <1>;

 #size-cells = <0>;

 port@0 {

 reg = <0>;

 #address-cells = <1>;

 #size-cells = <0>;

 mipi_csi2_input: endpoint@1 {

 reg = <1>;

 // csi2 dphy port name

 remote-endpoint = <&csidphy0_out>;

 // csi2 host lane number

 data-lanes = <1 2 3 4>;

 };

 };

 port@1 {

 reg = <1>;

 #address-cells = <1>;

 #size-cells = <0>;

 mipi_csi2_output: endpoint@0 {

 reg = <0>;

 // Port name on the vicap side

 remote-endpoint = <&cif_mipi_in>;

 // csi2 host lane number

 data-lanes = <1 2 3 4>;

 };

 };

 };

};

&rkcif_mipi_lvds {

 status = "okay";

 port {

 /* MIPI CSI-2 endpoint */

 cif_mipi_in: endpoint {

 // csi2 hostport name

 remote-endpoint = <&mipi_csi2_output>;

 // vicap lane number

 data-lanes = <1 2 3 4>;

 };

 };

RK356X platform

Take gc5025 2lane linking lane2/lane3 of rk3566 evb2 mipi csi2 dphy as an example:

Link relationship: sensor->csi2 dphy->mipi csi host->vicap

Configuration points

data-lanes must specify the number of lanes used, otherwise it will not be recognized as
mipi type;
dphy needs to be linked to the csi host node;
Need to enable csi2 dphy hw node.

};

&rkcif_mipi_lvds_sditf {

 status = "okay";

 port {

 /* sditf endpoint */

 mipi_lvds_sditf: endpoint {

 //isp Virtual device port name

 remote-endpoint = <&isp_in>;

 //mipi csi2 dphy lane number, consistent with sensor

 data-lanes = <1 2 3 4>;

 };

 };

};

&rkisp {

 status = "okay";

};

&rkisp_vir0 {

 status = "okay";

 ports {

 port@0 {

 reg = <0>;

 #address-cells = <1>;

 #size-cells = <0>;

 isp_in: endpoint@0 {

 reg = <0>;

 //Endpoint name of vicap sditf

 remote-endpoint = <&mipi_lvds_sditf>;

 };

 };

 };

};

/* split mode: lane:2/3 */

gc5025: gc5025@37 {

 status = "okay";

 // Need to be consistent with the matching string in the driver

 compatible = "galaxycore,gc5025";

 // sensor I2C device address, 7 bits

 reg = <0x37>;

 // sensor mclkSource configuration

 clocks = <&pmucru CLK_WIFI>;

 clock-names = "xvclk";

 //sensor mclk pinctlset up

 pinctrl-names = "default";

 pinctrl-0 = <&refclk_pins>;

 // resetPin assignment and effective level

 reset-gpios = <&gpio3 RK_PA5 GPIO_ACTIVE_LOW>;

 // powerdownPin assignment and effective level

 pwdn-gpios = <&gpio3 RK_PB0 GPIO_ACTIVE_LOW>;

 //sensor Related power domain enable

 power-domains = <&power RK3568_PD_VI>;

 /*power-gpios = <&gpio0 RK_PC1 GPIO_ACTIVE_HIGH>;*/

 // Module number, this number should not be repeated

 rockchip,camera-module-index = <1>;

 // Module orientation, there are "back" and "front"

 rockchip,camera-module-facing = "front";

 // module name

 rockchip,camera-module-name = "TongJu";

 // lens name

 rockchip,camera-module-lens-name = "CHT842-MD";

 port {

 gc5025_out: endpoint {

 // csi2 dphy port name

 remote-endpoint = <&dphy2_in>;

 // csi2 dphy lane name，2lane is <1 2>, 4lane is <1 2 3 4>

 data-lanes = <1 2>;

 };

 };

};

 &csi2_dphy_hw {

 status = "okay";

 };

&csi2_dphy2 {

 //csi2_dphy0 is not used simultaneously with csi2_dphy1/csi2_dphy2, mutually

exclusivee;can be used in parallel with csi2_dphy1

 status = "okay";

 /*

 * dphy2 only used for split mode,

 * can be used concurrently with dphy1

 * full mode and split mode are mutually exclusive

 */

 ports {

 #address-cells = <1>;

 #size-cells = <0>;

 port@0 {

 reg = <0>;

 #address-cells = <1>;

 #size-cells = <0>;

 dphy2_in: endpoint@1 {

 reg = <1>;

 // The port name of the sensor

 remote-endpoint = <&gc5025_out>;

 // csi2 dphy lane name

 data-lanes = <1 2>;

 };

 };

 port@1 {

 reg = <1>;

 #address-cells = <1>;

 #size-cells = <0>;

 dphy2_out: endpoint@1 {

 reg = <1>;

 // csi2 host port name

 remote-endpoint = <&mipi_csi2_input>;

 };

 };

 };

};

&mipi_csi2 {

 status = "okay";

 ports {

 #address-cells = <1>;

 #size-cells = <0>;

 port@0 {

 reg = <0>;

 #address-cells = <1>;

 #size-cells = <0>;

 mipi_csi2_input: endpoint@1 {

 reg = <1>;

 // csi2 dphy port name

 remote-endpoint = <&dphy2_out>;

 // csi2 host lane number

 data-lanes = <1 2>;

 };

 };

 port@1 {

 reg = <1>;

 #address-cells = <1>;

 #size-cells = <0>;

 mipi_csi2_output: endpoint@0 {

 reg = <0>;

 // vicapport name

 remote-endpoint = <&cif_mipi_in>;

 // csi2 host lane number

 data-lanes = <1 2>;

 };

 };

 };

};

&rkcif_mipi_lvds {

 status = "okay";

LVDS interface

Link to VICAP

RV1126/RV1109 platform

Take imx327 4lane as an example, the link relationship is as follows:

Link relationship: sensor->csi dphy->vicap

Configuration points

 port {

 cif_mipi_in: endpoint {

 // csi2 hostport name

 remote-endpoint = <&mipi_csi2_output>;

 // vicap lane number

 data-lanes = <1 2>;

 };

 };

};

&rkcif_mipi_lvds_sditf {

 status = "okay";

 port {

 /* MIPI CSI-2 endpoint */

 mipi_lvds_sditf: endpoint {

 //isp Virtual device port name

 remote-endpoint = <&isp_in>;

 //mipi csi2 dphy lane number，consistent with sensor

 data-lanes = <1 2>;

 };

 };

};

&rkisp {

 status = "okay";

};

&rkisp_vir0 {

 status = "okay";

 ports {

 port@0 {

 reg = <0>;

 #address-cells = <1>;

 #size-cells = <0>;

 isp_in: endpoint@0 {

 reg = <0>;

 //vicap mipi sditf port name

 remote-endpoint = <&mipi_lvds_sditf>;

 };

 };

 };

};

af://n435
af://n436

dphy does not need to link to the CSI host node, otherwise it will cause no data to be
received;
data-lanes must specify the specific number of lanes used, otherwise it will cause no
data to be received;
The bus-type must be configured to 3, otherwise it will not be recognized as an LVDS
interface, resulting in link establishment failure;

imx327: imx327@1a {

 // Need to be consistent with the matching string in the driver

 compatible = "sony,imx327";

 // sensor I2C device address, 7 bits

 reg = <0x1a>;

 // sensor mclkSource configuration

 clocks = <&cru CLK_MIPICSI_OUT>;

 clock-names = "xvclk";

 //sensor Related power domain enable

 power-domains = <&power RV1126_PD_VI>;

 avdd-supply = <&vcc_avdd>;

 dovdd-supply = <&vcc_dovdd>;

 dvdd-supply = <&vcc_dvdd>;

 //sensor mclk pinctlset up

 pinctrl-names = "default";

 pinctrl-0 = <&mipicsi_clk0>;

 // powerdownPin assignment and effective level

 pwdn-gpios = <&gpio3 RK_PA6 GPIO_ACTIVE_HIGH>;

 // resetPin assignment and effective level

 reset-gpios = <&gpio1 RK_PD5 GPIO_ACTIVE_HIGH>;

 // Module number, this number should not be repeated

 rockchip,camera-module-index = <1>;

 // Module orientation, there are "back" and "front"

 rockchip,camera-module-facing = "front";

 // module name

 rockchip,camera-module-name = "CMK-OT1607-FV1";

 // lens name

 rockchip,camera-module-lens-name = "M12-4IR-4MP-F16";

 // ircut name

 ir-cut = <&cam_ircut0>;

 port {

 ucam_out0: endpoint {

 // csi2 dphy port name

 remote-endpoint = <&mipi_in_ucam0>;

 // lvds lane number，1lane is <1>, 4lane is <4>，must be

specified

 data-lanes = <4>;

 // Type of lvds interface, must be specified

 bus-type = <3>;

 };

 };

};

&csi_dphy0 {

 //csi2_dphy0 is not simultaneous use with csi2_dphy1/csi2_dphy2, mutually

exclusive

 status = "okay";

 ports {

 #address-cells = <1>;

 #size-cells = <0>;

 port@0 {

 reg = <0>;

 #address-cells = <1>;

 #size-cells = <0>;

 mipi_in_ucam0: endpoint@1 {

 reg = <1>;

 // The port name of the sensor

 remote-endpoint = <&ucam_out0>;

 // lvds lane number，1lane is <1>, 4lane is <4>，must be

specified

 data-lanes = <4>;

 // Type of lvds interface, must be specified

 bus-type = <3>;

 };

 };

 port@1 {

 reg = <1>;

 #address-cells = <1>;

 #size-cells = <0>;

 csidphy0_out: endpoint@0 {

 reg = <0>;

 // vicap liteport name

 remote-endpoint = <&cif_lite_lvds_in>;

 // lvds lane number，1lane is <1>, 4lane is <4>，must be

specified

 data-lanes = <4>;

 // Type of lvds interface, must be specified

 bus-type = <3>;

 };

 };

 };

};

&rkcif_lite_mipi_lvds {

 status = "okay";

 port {

 /* lvds endpoint */

 cif_lite_lvds_in: endpoint {

 // csi2 dphy port name

 remote-endpoint = <&csidphy0_out>;

 //csi2 dphy lvds lane name，1lane is <1>, 4lane is <4>，must be

specified

 data-lanes = <4>;

 //Type of lvds interface, must be specified

 bus-type = <3>;

 };

 };

};

&rkcif_lite_sditf {

 status = "okay";

 port {

 /* lvds endpoint */

DVP interface

Link to VICAP

On the RV1126/RV1106/RK356X platform, the dts configuration of each related interface of DVP is
the same.

BT601

Take ar0230 BT601 as an example, the link relationship is as follows:

Link relationship: sensor->vicap

Configuration points

hsync-active/vsync-active must be configured for asynchronous registration of the v4l2
framework to identify the BT601 interface, if not configured, it will be identified as the BT656
interface;
pclk-sample/bus-width is optional;
In the g_mbus_config interface of the sensor driver, the valid polarity of the hsync-
acitve/vsync-active/pclk-ative of the current sensor must be indicated by the flag, otherwise
the data will not be received;
pinctrl needs to be quoted in order to do corresponding iomux for BT601 related gpio,
otherwise it will lead to failure to receive data;

The sample code of the g_mbus_config interface is as follows:

 lite_sditf: endpoint {

 //isp Virtual device port name

 remote-endpoint = <&isp_in>;

 //csi2 dphy lane number， consistent with sensor

 data-lanes = <4>;

 };

 };

};

&rkisp {

 status = "okay";

};

&rkisp_vir0 {

 status = "okay";

 ports {

 port@0 {

 reg = <0>;

 #address-cells = <1>;

 #size-cells = <0>;

 isp_in: endpoint@0 {

 reg = <0>;

 //lite vicap lvds sditf port name

 remote-endpoint = <&lite_sditf>;

 };

 };

 };

};

af://n449
af://n450

The DTS configuration example is as follows:

static int ar0230_g_mbus_config(struct v4l2_subdev *sd,

 struct v4l2_mbus_config *config)

{

 config->type = V4L2_MBUS_PARALLEL;

 config->flags = V4L2_MBUS_HSYNC_ACTIVE_HIGH |

 V4L2_MBUS_VSYNC_ACTIVE_HIGH |

 V4L2_MBUS_PCLK_SAMPLE_FALLING;

 return 0;

}

ar0230: ar0230@10 {

 // Need to be consistent with the matching string in the driver

 compatible = "aptina,ar0230";

 // sensor I2C device address, 7 bits

 reg = <0x10>;

 // sensor mclkSource configuration

 clocks = <&cru CLK_CIF_OUT>;

 clock-names = "xvclk";

 //sensor Related power domain enable

 avdd-supply = <&vcc_avdd>;

 dovdd-supply = <&vcc_dovdd>;

 dvdd-supply = <&vcc_dvdd>;

 power-domains = <&power RV1126_PD_VI>;

 // powerdownPin assignment and effective level

 pwdn-gpios = <&gpio2 RK_PA6 GPIO_ACTIVE_HIGH>;

 /*reset-gpios = <&gpio2 RK_PC5 GPIO_ACTIVE_HIGH>;*/

 //Configure dvp related data pins and clock pins

 pinctrl-names = "default";

 pinctrl-0 = <&cifm0_dvp_ctl>;

 // Module number, this number should not be repeated

 rockchip,camera-module-index = <0>;

 // Module orientation, there are "back" and "front"

 rockchip,camera-module-facing = "back";

 // module name

 rockchip,camera-module-name = "CMK-OT0836-PT2";

 // lens name

 rockchip,camera-module-lens-name = "YT-2929";

 port {

 cam_para_out1: endpoint {

 remote-endpoint = <&cif_para_in>;

 };

 };

};

&rkcif_dvp {

 status = "okay";

 port {

 /* Parallel bus endpoint */

 cif_para_in: endpoint {

 //sensor port endpoint name

 remote-endpoint = <&cam_para_out1>;

 //Sensor configuration parameters

 bus-width = <12>;

BT656/BT1120

The dts usage of BT656/BT1120 is the same.

Take ava fpga bt1120 as an example, the link relationship is as follows:

Link relationship: sensor->vicap

Configuration points

Do not configure hsync-active/vsync-active, otherwise the v4l2 framework will recognize it as
BT601 during asynchronous registration;

 hsync-active = <1>;

 vsync-active = <1>;

 pclk-sample = <0>;

 };

 };

};

&rkcif_dvp_sditf {

 status = "okay";

 port {

 /* parallel endpoint */

 dvp_sditf: endpoint {

 //isp Virtual device port name

 remote-endpoint = <&isp_in>;

 //Sensor configuration parameters

 bus-width = <12>;

 hsync-active = <1>;

 vsync-active = <1>;

 pclk-sample = <0>;

 };

 };

};

&rkisp {

 status = "okay";

};

&rkisp_vir0 {

 status = "okay";

 ports {

 port@0 {

 reg = <0>;

 #address-cells = <1>;

 #size-cells = <0>;

 isp_in: endpoint@0 {

 reg = <0>;

 //dvp sditf port name

 remote-endpoint = <&dvp_sditf>;

 };

 };

 };

};

pclk-sample/bus-width is optional;

In the g_mbus_config interface of the sensor driver, the valid polarity of the pclk-ative of the
current sensor must be indicated by the flag, otherwise the data will not be received;

The querystd interface in v4l2_subdev_video_ops must be implemented, indicating that the
current interface is an ATSC interface, otherwise the data will not be received;

pinctrl needs to be quoted in order to do corresponding iomux for bt656/bt1120 related
gpio, otherwise it will result in failure to receive data.

The sample code of the g_mbus_config interface is as follows:

An example of the querystd interface is as follows:

The dts configuration example is as follows:

static int avafpga_g_mbus_config(struct v4l2_subdev *sd,

 struct v4l2_mbus_config *config)

{

 config->type = V4L2_MBUS_BT656;

 config->flags = V4L2_MBUS_PCLK_SAMPLE_RISING;

 return 0;

}

static int avafpga_querystd(struct v4l2_subdev *sd, v4l2_std_id *std)

{

 *std = V4L2_STD_ATSC;

 return 0;

}

avafpga: avafpga@70 {

 // Need to be consistent with the matching string in the driver

 compatible = "ava,fpga";

 // sensor I2C device address, 7 bits

 reg = <0x10>;

 // sensor mclkSource configuration

 clocks = <&cru CLK_CIF_OUT>;

 clock-names = "xvclk";

 //sensor Related power domain enable

 avdd-supply = <&vcc_avdd>;

 dovdd-supply = <&vcc_dovdd>;

 dvdd-supply = <&vcc_dvdd>;

 // powerdownPin assignment and effective level

 power-domains = <&power RV1126_PD_VI>;

 pwdn-gpios = <&gpio2 RK_PA6 GPIO_ACTIVE_HIGH>;

 /*reset-gpios = <&gpio2 RK_PC5 GPIO_ACTIVE_HIGH>;*/

 //Configure dvp related data pins and clock pins

 pinctrl-names = "default";

 pinctrl-0 = <&cifm0_dvp_ctl>;

 // Module number, this number should not be repeated

 rockchip,camera-module-index = <0>;

 // Module orientation, there are "back" and "front"

 rockchip,camera-module-facing = "back";

 // module name

 rockchip,camera-module-name = "CMK-OT0836-PT2";

 // lens name

 rockchip,camera-module-lens-name = "YT-2929";

 port {

 cam_para_out2: endpoint {

 remote-endpoint = <&cif_para_in>;

 };

 };

};

&rkcif_dvp {

 status = "okay";

 port {

 /* Parallel bus endpoint */

 cif_para_in: endpoint {

 //sensor port endpoint name

 remote-endpoint = <&cam_para_out2>;

 //Sensor configuration parameters，Optional

 bus-width = <16>;

 pclk-sample = <1>;

 };

 };

};

&rkcif_dvp_sditf {

 status = "okay";

 port {

 /* parallel endpoint */

 dvp_sditf: endpoint {

 //isp Virtual device port name

 remote-endpoint = <&isp_in>;

 bus-width = <16>;

 pclk-sample = <1>;

 };

 };

};

&rkisp {

 status = "okay";

};

&rkisp_vir0 {

 status = "okay";

 ports {

 port@0 {

 reg = <0>;

 #address-cells = <1>;

 #size-cells = <0>;

 isp_in: endpoint@0 {

 reg = <0>;

 //dvp sditf port name

 remote-endpoint = <&dvp_sditf>;

 };

Multi-sensor registration

A single hardware isp virtualizes multiple devices and processes multiple raw sensor data in time
division multiplexing.

On the RV1126/RV1106 platform

Link relationship, isp0->ispp0 and isp1->ispp1 are fixed configuration RV1126.dtsi

Mipi into isp or cif into isp is optional.

E.g:

sensor0->csi_dphy0->csi2->vicap->isp0->ispp0

sensor1->csi_dphy1->isp1->ispp1

Example reference arch/arm/boot/dts/RV1109-evb-ddr3-v12-facial-gate.dts

gc2053->csi_dphy0->csi2->cif->isp1->ispp1

ov2718->csi_dphy1->isp0->ispp0

The following configuration is very important for different resolutions

&rkispp {

status = "okay";

/* the max input w h and fps of mulit sensor */
max-input = <2688 1520 30>;//Take the maximum width and height and frame rate of different
sensors

};

On the RK3566/RK3568 platform

E.g:

ov5695->dphy1->isp_vir0

gc5025->dphy2->csi2->vicap->isp_vir1

 };

 };

};

ov5695: ov5695@36 {

 status = "okay";

 ...

 port {

 ov5695_out: endpoint {

 remote-endpoint = <&dphy1_in>;

 data-lanes = <1 2>;

 };

 };

};

gc5025: gc5025@37 {

 status = "okay";

 ...

 port {

 gc5025_out: endpoint {

 remote-endpoint = <&dphy2_in>;

 data-lanes = <1 2>;

af://n492

 };

 };

};

 &csi2_dphy_hw {

 status = "okay";

 };

&csi2_dphy1 {

 status = "okay";

 ports {

 #address-cells = <1>;

 #size-cells = <0>;

 port@0 {

 reg = <0>;

 #address-cells = <1>;

 #size-cells = <0>;

 dphy1_in: endpoint@1 {

 reg = <1>;

 remote-endpoint = <&ov5695_out>;

 data-lanes = <1 2>;

 };

 };

 port@1 {

 reg = <1>;

 #address-cells = <1>;

 #size-cells = <0>;

 dphy1_out: endpoint@1 {

 reg = <1>;

 remote-endpoint = <&isp0_in>;

 };

 };

 };

};

&csi2_dphy2 {

 status = "okay";

 ports {

 #address-cells = <1>;

 #size-cells = <0>;

 port@0 {

 reg = <0>;

 #address-cells = <1>;

 #size-cells = <0>;

 dphy2_in: endpoint@1 {

 reg = <1>;

 remote-endpoint = <&gc5025_out>;

 data-lanes = <1 2>;

 };

 };

 port@1 {

 reg = <1>;

 #address-cells = <1>;

 #size-cells = <0>;

 dphy2_out: endpoint@1 {

 reg = <1>;

 remote-endpoint = <&mipi_csi2_input>;

 };

 };

 };

};

&mipi_csi2 {

 status = "okay";

 ports {

 #address-cells = <1>;

 #size-cells = <0>;

 port@0 {

 reg = <0>;

 #address-cells = <1>;

 #size-cells = <0>;

 mipi_csi2_input: endpoint@1 {

 reg = <1>;

 remote-endpoint = <&dphy2_out>;

 data-lanes = <1 2>;

 };

 };

 port@1 {

 reg = <1>;

 #address-cells = <1>;

 #size-cells = <0>;

 mipi_csi2_output: endpoint@0 {

 reg = <0>;

 remote-endpoint = <&cif_mipi_in>;

 data-lanes = <1 2>;

 };

 };

 };

};

&rkcif_mipi_lvds {

 status = "okay";

 port {

 cif_mipi_in: endpoint {

 remote-endpoint = <&mipi_csi2_output>;

 data-lanes = <1 2>;

 };

 };

};

&rkcif_mipi_lvds_sditf {

 status = "okay";

 port {

 mipi_lvds_sditf: endpoint {

 remote-endpoint = <&isp1_in>;

 data-lanes = <1 2>;

 };

 };

};

&rkisp {

 status = "okay";

 /* the max input w h and fps of mulit sensor */

 max-input = <2592 1944 30>;

};

&rkisp_vir0 {

 status = "okay";

 ports {

 port@0 {

 reg = <0>;

 #address-cells = <1>;

 #size-cells = <0>;

 isp0_in: endpoint@0 {

 reg = <0>;

 remote-endpoint = <&dphy1_out>;

 };

 };

 };

};

&rkisp_vir1 {

 status = "okay";

 ports {

 port@0 {

 reg = <0>;

 #address-cells = <1>;

 #size-cells = <0>;

 isp1_in: endpoint@0 {

 reg = <0>;

 remote-endpoint = <&mipi_lvds_sditf>;

 };

 };

 };

};

Member
name

Description

@driver

Device driver model driver mainly contains the name of the driver and the
of_match_table that matches the DTS registered device. When the compatible
field in of_match_table matches the compatible field in the dts file, the .probe
function will be called

@id_table
List of I2C devices supported by this driver If the kernel does not use
of_match_table and dts registered devices for matching, the kernel uses this
table for matching

@probe Callback for device binding

@remove Callback for device unbinding

CIS driver description

Camera Sensor uses I2C to interact with the host. The sensor driver is currently implemented in
accordance with the I2C device driver. The sensor driver also uses the v4l2 subdev method to
interact with the host driver.

Brief description of data type

struct i2c_driver

[Description]

Define i2c device driver information

[Definition]

[Key Member]

[Example]

struct i2c_driver {

 ……

 /* Standard driver model interfaces */

 int (*probe)(struct i2c_client *, const struct i2c_device_id *);

 int (*remove)(struct i2c_client *);

 ……

 struct device_driver driver;

 const struct i2c_device_id *id_table;

 ……

};

#if IS_ENABLED(CONFIG_OF)

static const struct of_device_id os04a10_of_match[] = {

 { .compatible = "ovti,os04a10" },

 {},

};

MODULE_DEVICE_TABLE(of, os04a10_of_match);

#endif

static const struct i2c_device_id os04a10_match_id[] = {

af://n504
af://n506
af://n507

Member name Description

.core Define core ops callbacks for subdevs

.video Callbacks used when v4l device was opened in video mode.

.pad v4l2-subdev pad level operations

struct v4l2_subdev_ops

[Description]

Define ops callbacks for subdevs.

[definition]

[Key Member]

[Example]

 { "ovti,os04a10", 0 },

 { },

};

static struct i2c_driver os04a10_i2c_driver = {

 .driver = {

 .name = OS04A10_NAME,

 .pm = &os04a10_pm_ops,

 .of_match_table = of_match_ptr(os04a10_of_match),

 },

 .probe = &os04a10_probe,

 .remove = &os04a10_remove,

 .id_table = os04a10_match_id,

};

static int __init sensor_mod_init(void)

{

 return i2c_add_driver(&os04a10_i2c_driver);

}

static void __exit sensor_mod_exit(void)

{

 i2c_del_driver(&os04a10_i2c_driver);

}

device_initcall_sync(sensor_mod_init);

module_exit(sensor_mod_exit);

struct v4l2_subdev_ops {

 const struct v4l2_subdev_core_ops *core;

 ……

 const struct v4l2_subdev_video_ops *video;

 ……

 const struct v4l2_subdev_pad_ops *pad;

};

af://n531

Member name Description

.s_power
puts subdevice in power saving mode (on == 0) or normal operation
mode (on == 1).

.ioctl
called at the end of ioctl() syscall handler at the V4L2 core.used to
provide support for private ioctls used on the driver.

.compat_ioctl32
called when a 32 bits application uses a 64 bits Kernel, in order to fix
data passed from/to userspace.in order to fix data passed from/to
userspace.

struct v4l2_subdev_core_ops

[Description]

Define core ops callbacks for subdevs.

[Definition]

[Key Member]

[Example]

At present, the following private ioctl is used to realize the query of module information
and the query setting of OTP information

static const struct v4l2_subdev_ops os04a10_subdev_ops = {

 .core = &os04a10_core_ops,

 .video = &os04a10_video_ops,

 .pad = &os04a10_pad_ops,

};

struct v4l2_subdev_core_ops {

 ……

 int (*s_power)(struct v4l2_subdev *sd, int on);

 long (*ioctl)(struct v4l2_subdev *sd, unsigned int cmd, void *arg);

#ifdef CONFIG_COMPAT

 long (*compat_ioctl32)(struct v4l2_subdev *sd, unsigned int cmd,

 unsigned long arg);

#endif

 ……

};

static const struct v4l2_subdev_core_ops os04a10_core_ops = {

 .s_power = os04a10_s_power,

 .ioctl = os04a10_ioctl,

#ifdef CONFIG_COMPAT

 .compat_ioctl32 = os04a10_compat_ioctl32,

#endif

};

af://n552

Private ioctl description

RKMODULE_GET_MODULE_INFO
Get module information, refer to struct
rkmodule_inf;

RKMODULE_AWB_CFG

Switch sensor's compensation function for AWB; if
the module does not burn the golden AWB value,
you can set it here; for details, please refer to struct
rkmodule awb_cfg;

RKMODULE_LSC_CFG
Switch sensor's compensation function for LSC;
refer to struct rkmodule_lsc_cfg;

PREISP_CMD_SET_HDRAE_EXP
HDR exposure setting detailed reference struct
preisp_hdrae_exp_s

RKMODULE_SET_HDR_CFG

Set the HDR mode to switch between normal and
HDR modes. Need to drive to adapt to normal and
HDR 2 groups of configuration information, please
refer to struct rkmodule_hdr_cfg for details

RKMODULE_GET_HDR_CFG
To get the current HDR mode, please refer to struct
rkmodule_hdr_cfg for details

RKMODULE_SET_CONVERSION_GAIN

Set the conversion gain of linear mode, such as
imx347, os04a10 sensor with conversion gain
function, if the sensor does not support conversion
gain, it may not be implemented

struct v4l2_subdev_video_ops

[Description]

Callbacks used when v4l device was opened in video mode.

[Definition]

[Key Member]

struct v4l2_subdev_video_ops {

 ……

 int (*s_stream)(struct v4l2_subdev *sd, int enable);

 ……

 int (*g_frame_interval)(struct v4l2_subdev *sd,

 struct v4l2_subdev_frame_interval *interval);

 int (*g_mbus_config)(struct v4l2_subdev *sd,

 struct v4l2_mbus_config *cfg);

 ……

};

af://n599

Member name Description

.g_frame_interval callback for VIDIOC_SUBDEV_G_FRAME_INTERVAL ioctl handler code

.s_stream used to notify the driver that a video stream will start or has stopped

.g_mbus_config get supported mediabus configurations

[Example]

struct v4l2_subdev_pad_ops

[Description]

v4l2-subdev pad level operations

[Definition]

[Key Member]

static const struct v4l2_subdev_video_ops os04a10_video_ops = {

 .s_stream = os04a10_s_stream,

 .g_frame_interval = os04a10_g_frame_interval,

 .g_mbus_config = os04a10_g_mbus_config,

};

struct v4l2_subdev_pad_ops {

 ……

 int (*enum_mbus_code)(struct v4l2_subdev *sd,

 struct v4l2_subdev_pad_config *cfg,

 struct v4l2_subdev_mbus_code_enum *code);

 int (*enum_frame_size)(struct v4l2_subdev *sd,

 struct v4l2_subdev_pad_config *cfg,

 struct v4l2_subdev_frame_size_enum *fse);

 int (*get_fmt)(struct v4l2_subdev *sd,

 struct v4l2_subdev_pad_config *cfg,

 struct v4l2_subdev_format *format);

 int (*set_fmt)(struct v4l2_subdev *sd,

 struct v4l2_subdev_pad_config *cfg,

 struct v4l2_subdev_format *format);

 int (*enum_frame_interval)(struct v4l2_subdev *sd,

 struct v4l2_subdev_pad_config *cfg,

 struct v4l2_subdev_frame_interval_enum *fie);

 int (*get_selection)(struct v4l2_subdev *sd,

 struct v4l2_subdev_pad_config *cfg,

 struct v4l2_subdev_selection *sel);

 ……

};

af://n620

Member name Description

. enum_mbus_code
callback for VIDIOC_SUBDEV_ENUM_MBUS_CODE ioctl handler
code.

. enum_frame_size
callback for VIDIOC_SUBDEV_ENUM_FRAME_SIZE ioctl handler
code.

.s_fmt callback for VIDIOC_SUBDEV_S_FMT ioctl handler code.

.g_fmt callback for VIDIOC_SUBDEV_G_FMT ioctl handler code

.enum_frame_interval
callback for VIDIOC_SUBDEV_ENUM_FRAME_INTERVAL() ioctl
handler code.

.get_selection callback for VIDIOC_SUBDEV_G_SELECTION() ioctl handler code.

Member name Description

.s_ctrl actually set the new control value.

[Example]

struct v4l2_ctrl_ops

[Description]

The control operations that the driver has to provide.

[Definition]

[Key Member]

[Example]

The RKISP driver requires the use of user controls provided by the framework. The cameras
sensor driver must implement the following control functions, refer to CIS driver V4L2-controls list
1

static const struct v4l2_subdev_pad_ops os04a10_pad_ops = {

 .enum_mbus_code = os04a10_enum_mbus_code,

 .enum_frame_size = os04a10_enum_frame_sizes,

 .enum_frame_interval = os04a10_enum_frame_interval,

 .get_fmt = os04a10_get_fmt,

 .set_fmt = os04a10_set_fmt,

};

struct v4l2_ctrl_ops {

 int (*s_ctrl)(struct v4l2_ctrl *ctrl);

};

static const struct v4l2_ctrl_ops os04a10_ctrl_ops = {

 .s_ctrl = os04a10_set_ctrl,

};

af://n650

Member
name

Description

.bus_fmt Sensor output format, reference MEDIA_BUS_FMT table

.width
The effective image width, which needs to be consistent with the width
output of the sensor currently configured

.height
The effective image height, which needs to be consistent with the height
output of the sensor currently configured

.max_fps Image FPS, denominator/numerator is fps

hts_def Default HTS, which is the effective image width + HBLANK

vts_def Default VTS, which is the effective image height + VBLANK

exp_def Default exposure time

*reg_list Register list

.hdr_mode
Sensor working mode, support linear mode, two-frame synthesis HDR,
three-frame synthesis HDR

.vc[PAD_MAX] Configure MIPI VC channel

struct xxxx_mode

[Description]

Sensor can support the information of each mode.

This structure can often be seen in the sensor driver, although it is not required by the v4l2
standard.

[Definition]

[Key Member]

[Example]

struct xxxx_mode {

 u32 bus_fmt;

 u32 width;

 u32 height;

 struct v4l2_fract max_fps;

 u32 hts_def;

 u32 vts_def;

 u32 exp_def;

 const struct regval *reg_list;

 u32 hdr_mode;

 u32 vc[PAD_MAX];

};

 enum os04a10_max_pad {

 PAD0, /* link to isp */

 PAD1, /* link to csi rawwr0 | hdr x2:L x3:M */

 PAD2, /* link to csi rawwr1 | hdr x3:L */

af://n666

struct v4l2_mbus_framefmt

[Description]

frame format on the media bus

[Definition]

 PAD3, /* link to csi rawwr2 | hdr x2:M x3:S */

 PAD_MAX,

};

static const struct os04a10_mode supported_modes[] = {

 {

 .bus_fmt = MEDIA_BUS_FMT_SBGGR12_1X12,

 .width = 2688,

 .height = 1520,

 .max_fps = {

 .numerator = 10000,

 .denominator = 300372,

 },

 .exp_def = 0x0240,

 .hts_def = 0x05c4 * 2,

 .vts_def = 0x0984,

 .reg_list = os04a10_linear12bit_2688x1520_regs,

 .hdr_mode = NO_HDR,

 .vc[PAD0] = V4L2_MBUS_CSI2_CHANNEL_0,

 }, {

 .bus_fmt = MEDIA_BUS_FMT_SBGGR12_1X12,

 .width = 2688,

 .height = 1520,

 .max_fps = {

 .numerator = 10000,

 .denominator = 225000,

 },

 .exp_def = 0x0240,

 .hts_def = 0x05c4 * 2,

 .vts_def = 0x0658,

 .reg_list = os04a10_hdr12bit_2688x1520_regs,

 .hdr_mode = HDR_X2,

 .vc[PAD0] = V4L2_MBUS_CSI2_CHANNEL_1,

 .vc[PAD1] = V4L2_MBUS_CSI2_CHANNEL_0,//L->csi wr0

 .vc[PAD2] = V4L2_MBUS_CSI2_CHANNEL_1,

 .vc[PAD3] = V4L2_MBUS_CSI2_CHANNEL_1,//M->csi wr2

 },

};

af://n709

Member
name

Description

width Frame width

height Frame height

code Reference to MEDIA_BUS_FMT table

field
V4L2_FIELD_NONE: Frame output mode V4L2_FIELD_INTERLACED: Field
output mode

Member name Description

sensor sensor name, obtained from the sensor driver

module module name, obtained from DTS configuration, subject to module data

lens Lens name, obtained from DTS configuration, subject to module data

[Key Member]

[Example]

struct rkmodule_base_inf

[Description]

Basic module information, the upper layer uses this information to match with IQ

[Definition]

[Key Member]

[Example]

struct v4l2_mbus_framefmt {

 __u32 width;

 __u32 height;

 __u32 code;

 __u32 field;

 __u32 colorspace;

 __u16 ycbcr_enc;

 __u16 quantization;

 __u16 xfer_func;

 __u16 reserved[11];

};

struct rkmodule_base_inf {

 char sensor[RKMODULE_NAME_LEN];

 char module[RKMODULE_NAME_LEN];

 char lens[RKMODULE_NAME_LEN];

} __attribute__ ((packed));

af://n732

Member
name

Description

flag Whether the group information is valid or not

module
module name, get the number from OTP, get the module name from the
number

lens Lens name, get the number from OTP, get the lens name from the number

year Year of production, such as 12 for 2012

month Production month

day Production date

struct rkmodule_fac_inf

[Description]

Module OTP factory information

[Definition]

[Key Member]

[Example]

struct rkmodule_awb_inf

[Description]

Module OTP awb measurement information

[Definition]

[Key Member]

struct rkmodule_fac_inf {

 __u32 flag;

 char module[RKMODULE_NAME_LEN];

 char lens[RKMODULE_NAME_LEN];

 __u32 year;

 __u32 month;

 __u32 day;

} __attribute__ ((packed));

struct rkmodule_awb_inf {

 __u32 flag;

 __u32 r_value;

 __u32 b_value;

 __u32 gr_value;

 __u32 gb_value;

 __u32 golden_r_value;

 __u32 golden_b_value;

 __u32 golden_gr_value;

 __u32 golden_gb_value;

} __attribute__ ((packed));

af://n752
af://n781

Member name Description

flag Whether the group information is valid or not

r_value AWB R measurement information of the current module

b_value AWB B measurement information of the current module

gr_value AWB GR measurement information of the current module

gb_value AWB GB measurement information of the current module

golden_r_value
AWB R measurement information of a typical module, if not
programmed, set to 0

golden_b_value
AWB B measurement information of a typical module, if not
programmed, set to 0

golden_gr_value
AWB GR measurement information of a typical module, if not
programmed, set to 0

golden_gb_value
AWB GB measurement information of a typical module, if not
programmed, set to 0

[Example]

struct rkmodule_lsc_inf

[Description]

Module OTP lsc measurement information

[Definition]

[Key Member]

struct rkmodule_lsc_inf {

 __u32 flag;

 __u16 lsc_w;

 __u16 lsc_h;

 __u16 decimal_bits;

 __u16 lsc_r[RKMODULE_LSCDATA_LEN];

 __u16 lsc_b[RKMODULE_LSCDATA_LEN];

 __u16 lsc_gr[RKMODULE_LSCDATA_LEN];

 __u16 lsc_gb[RKMODULE_LSCDATA_LEN];

} __attribute__ ((packed));

af://n819

Member
name

Description

flag Whether the group information is valid or not

lsc_w The actual width of the lsc table

lsc_h lsc table actual height

decimal_bits
The number of decimal places of the lsc measurement information, if it is
not available, set it to 0

lsc_r lsc r measurement information

lsc_b lsc b measurement information

lsc_gr lsc gr measurement information

lsc_gb lsc gb measurement information

Member name Description

flag Whether the group information is valid or not

vcm_start vcm start current

vcm_end vcm end current

vcm_dir vcm determination direction

[Example]

struct rkmodule_af_inf

[Description]

Module OTP af measurement information

[Definition]

[Key Member]

[Example]

struct rkmodule_inf

[Description]

Module information

[Definition]

struct rkmodule_af_inf {

 __u32 flag; // Whether this group of information is a valid flag

 __u32 vcm_start; // vcm start current

 __u32 vcm_end; // vcm termination current

 __u32 vcm_dir; // vcm measurement direction

} __attribute__ ((packed));

af://n854
af://n877

Member name Description

base Module basic information

fac Module OTP Factory Information

awb Module OTP awb measurement information

lsc Module OTP lsc measurement information

af Module OTP af measurement information

Member name Description

enable Identifies whether awb correction is enabled

golden_r_value AWB R measurement information of a typical module

golden_b_value AWB B measurement information of a typical module

golden_gr_value AWB GR measurement information of a typical module

golden_gb_value AWB GB measurement information of a typical module

[Key Member]

[Example]

struct rkmodule_awb_cfg

[Description]

Module OTP awb configuration information

[Definition]

[Key Member]

[Example]

struct rkmodule_inf {

 struct rkmodule_base_inf base;

 struct rkmodule_fac_inf fac;

 struct rkmodule_awb_inf awb;

 struct rkmodule_lsc_inf lsc;

 struct rkmodule_af_inf af;

} __attribute__ ((packed));

struct rkmodule_awb_cfg {

 __u32 enable;

 __u32 golden_r_value;

 __u32 golden_b_value;

 __u32 golden_gr_value;

 __u32 golden_gb_value;

} __attribute__ ((packed));

af://n903

Member name Description

enable Identifies whether lsc correction is enabled

struct rkmodule_lsc_cfg

[Description]

Module OTP lsc configuration information

[Definition]

[Key Member]

[Example]

struct rkmodule_hdr_cfg

[Description]

hdr configuration information

[Definition]

[Key Member]

struct rkmodule_lsc_cfg {

 __u32 enable;

} __attribute__ ((packed));

struct rkmodule_hdr_cfg {

 __u32 hdr_mode;

 struct rkmodule_hdr_esp esp;

} __attribute__ ((packed));

struct rkmodule_hdr_esp {

 enum hdr_esp_mode mode;

 union {

 struct {

 __u32 padnum;

 __u32 padpix;

 } lcnt;

 struct {

 __u32 efpix;

 __u32 obpix;

 } idcd;

 } val;

};

af://n929
af://n943

Member name Description

hdr_mode
NO_HDR=0 //normal mode

HDR_X2=5 //hdr 2 frame mode
HDR_X3=6 //hdr 3 frame mode

struct rkmodule_hdr_esp hdr especial mode

enum hdr_esp_mode
HDR_NORMAL_VC=0 //Normal virtual channel mode

HDR_LINE_CNT=1 //Line counter mode (AR0239)

HDR_ID_CODE=2 //Identification code mode(IMX327)

[Example]

struct preisp_hdrae_exp_s

[Description]

HDR exposure parameters

[Definition]

[Key Member]

struct preisp_hdrae_exp_s {

 unsigned int long_exp_reg;

 unsigned int long_gain_reg;

 unsigned int middle_exp_reg;

 unsigned int middle_gain_reg;

 unsigned int short_exp_reg;

 unsigned int short_gain_reg;

 unsigned int long_exp_val;

 unsigned int long_gain_val;

 unsigned int middle_exp_val;

 unsigned int middle_gain_val;

 unsigned int short_exp_val;

 unsigned int short_gain_val;

 unsigned char long_cg_mode;

 unsigned char middle_cg_mode;

 unsigned char short_cg_mode;

};

af://n963

Member name Description

long_exp_reg Long frame exposure register value

long_gain_reg Long frame gain register value

middle_exp_reg Middle frame exposure register value

middle_gain_reg; Middle frame gain register value

short_exp_reg Short frame exposure register value

short_gain_reg Short frame gain register value

long_cg_mode Long frame conversion gain, 0 LCG, 1 HCG

middle_cg_mode middle frame conversion gain, 0 LCG, 1 HCG

short_cg_mode Short frame conversion gain, 0 LCG, 1 HCG

Parameter name Description Input and output

*sd v4l2 subdev structure pointer input

*cfg subdev pad information structure pointer input

*fmt Pad-level media bus format structure pointer Input

[Description]

In the preisp_hdrae_exp_s structure, you only need to pay attention to several parameters
described by [key members]. The formula for converting exposure and gain values into registers
is in iq xml. Please refer to the iq xml format description for specific conversion. The conversion
gain requires the Sensor itself to support this function. If senosr not support conversion gain, you
don’t need to pay attention to the conversion parameter, For HDR2X, you should set the passed
mid-frame and short-frame parameters into the exposure parameter register
corresponding to the two frames of the sensor output.

[Example]

API brief description

xxxx_set_fmt

[description]

Set the sensor output format.

[grammar]

[parameter]

[return value]

static int xxxx_set_fmt(struct v4l2_subdev *sd,

 struct v4l2_subdev_pad_config *cfg,

 struct v4l2_subdev_format *fmt)

af://n1003
af://n1004

Return value Description

0 Success

Not 0 Failed

Parameter name Description Input and output

*sd v4l2 subdev structure pointer input

*cfg subdev pad information structure pointer input

*fmt Pad-level media bus format structure pointer Output

Return value Description

0 Success

Not 0 Failed

xxxx_get_fmt

[description]

Get the sensor output format.

[grammar]

[parameter]

[return value]

 reference to MEDIA_BUS_FMT table

xxxx_enum_mbus_code

[description]

Enumerate sensor output bus format.

[grammar]

[parameter]

static int xxxx_get_fmt(struct v4l2_subdev *sd,

 struct v4l2_subdev_pad_config *cfg,

 struct v4l2_subdev_format *fmt)

static int xxxx_enum_mbus_code(struct v4l2_subdev *sd,

 struct v4l2_subdev_pad_config *cfg,

 struct v4l2_subdev_mbus_code_enum *code)

af://n1038
af://n1073

Parameter
name

Description
Input and
output

*sd v4l2 subdev structure pointer input

*cfg subdev pad information structure pointer input

*code
media bus format enumeration structure
pointer

output

Return value Description

0 Success

Not 0 Failed

Parameter name Description Input and output

*sd v4l2 subdev structure pointer input

*cfg subdev pad information structure pointer input

*fse media bus frame size structure pointer output

Return value Description

0 Success

Not 0 Failed

[return value]

The following table summarizes the corresponding format of various image types, refer to
MEDIA_BUS_FMT 表

xxxx_enum_frame_sizes

[description]

Enumerate sensor output size.

[grammar]

[parameter]

[return value]

static int xxxx_enum_frame_sizes(struct v4l2_subdev *sd,

 struct v4l2_subdev_pad_config *cfg,

 struct v4l2_subdev_frame_size_enum *fse)

af://n1109

Parameter name Description Input and output

*sd v4l2 subdev structure pointer input

*fi pad-level frame rate structure pointer output

Return value Description

0 Success

Not 0 Failed

Parameter name Description Input and output

*sd v4l2 subdev structure pointer input

on 1: Start stream output; 0: Stop stream output Input

Return value Description

0 Success

Not 0 Failed

xxxx_g_frame_interval

[description]

Get the sensor output fps.

[grammar]

[parameter]

[return value]

xxxx_s_stream

[description]

Set stream input and output.

[grammar]

[parameter]

[return value]

static int xxxx_g_frame_interval(struct v4l2_subdev *sd,

 struct v4l2_subdev_frame_interval *fi)

static int xxxx_s_stream(struct v4l2_subdev *sd, int on)

af://n1143
af://n1173

Parameter name Description Input and output

*dev device structure pointer input

Return value Description

0 Success

Not 0 Failed

Parameter name Description Input and output

*dev device structure pointer input

Return value Description

0 Success

Not 0 Failed

xxxx_runtime_resume

[description]

The callback function when the sensor is powered on.

[grammar]

[parameter]

[return value]

xxxx_runtime_suspend

[description]

The callback function when the sensor is powered off.

[grammar]

[parameter]

[return value]

xxxx_set_ctrl

[description]

Set the value of each control.

[grammar]

static int xxxx_runtime_resume(struct device *dev)

static int xxxx_runtime_suspend(struct device *dev)

af://n1203
af://n1229
af://n1255

Parameter name Description Input and output

*ctrl v4l2_ctrl structure pointer input

Return value Description

0 Success

Not 0 Failed

Parameter name Description Input and output

*sd Sub-device instance Input

*cfg pad configuration parameters input

*fie Frame interval parameter Output

Return value Description

0 Success

Not 0 Failed

[parameter]

[return value]

xxx_enum_frame_interval

[description]

Enumerate the frame interval parameters supported by the sensor.

[grammar]

[parameter]

[return value]

xxxx_g_mbus_config

[description]

Obtain the supported bus configuration. For example, when MIPI is used, when the Sensor
supports multiple MIPI transmission modes, the parameters can be uploaded according to the
MIPI mode currently used by the Sensor.

[grammar]

static int xxxx_set_ctrl(struct v4l2_ctrl *ctrl)

static int xxxx_enum_frame_interval(struct v4l2_subdev *sd,

 struct v4l2_subdev_pad_config *cfg,

 struct v4l2_subdev_frame_interval_enum *fie)

af://n1281
af://n1315

Parameter name Description Input and output

*config Bus configuration parameters Output

Return value Description

0 Success

Not 0 Failed

Parameter name Description Input and output

*sd Sub-device instance Input

*cfg pad configuration parameters input

*sel Cutting parameters Output

Return value Description

0 Success

Not 0 Failed

[parameter]

[return value]

xxxx_get_selection

[description]

Configure the cropping parameters. The width of the ISP input requires 16 alignment and the
height 8 alignment. For the sensor output resolution that does not meet the alignment or the
sensor output resolution is not a standard resolution, this function can be implemented to crop
the input isp resolution.

[grammar]

[parameter]

[return value]

static int xxxx_g_mbus_config(struct v4l2_subdev *sd,

 struct v4l2_mbus_config *config)

static int xxxx_get_selection(struct v4l2_subdev *sd,

struct v4l2_subdev_pad_config *cfg,

struct v4l2_subdev_selection *sel)

af://n1341

Member
name

Description

CIS device
working
reference
clock

The external independent crystal oscillator solution does not need to be
obtained. The RK reference design generally uses the AP output clock. This
solution needs to be obtained, and the general name is xvclk

CIS device
control
GPIO

For example: Resst pin, Powerdown pin

CIS
equipment
control
power
supply

According to the actual hardware design, obtain matching software power
control resources, such as gpio, regulator

Drive migration steps

1. Implement the standard I2C sub-device driver part.

1.1 Implement the following members according to struct i2c_driver instructions:

struct driver.name

struct driver.pm

struct driver. of_match_table

probe function

remove function

1.2 Detailed description of the probe function implementation:

1). The acquisition of CIS equipment resources is mainly to analyze the resources defined in the
DTS file, refer to CIS Device Registration (DTS).

1.1) RK private resource definition, the naming method is as follows: rockchip, camera-module-
xxx, this part of the resource will be uploaded to the camera_engine in the user mode by the
driver to determine the matching of the IQ effect parameters;

1.2) CIS equipment resource definition, RK related reference drivers generally include the
following items:

1.3) CIS device ID number check. After obtaining the necessary resources through the above
steps, it is recommended that the driver read the device ID number to check the accuracy of the
hardware. Of course, this step is not necessary.

1.4) Initialization of CIS v4l2 equipment and media entities;

v4l2 sub-device: v4l2_i2c_subdev_init, RK CIS driver requires subdev to have its own device node
for user mode rk_aiq to access, and realize exposure control through this device node;

media entity: media_entity_init

2. Refer to struct v4l2_subdev_ops instructions to implement the v4l2 sub-device driver, which
mainly implements the following 3 members:

af://n1376

成员名称 描述

RKMODULE_GET_MODULE_INFO
The module information defined by the DTS file
(module name, etc.), upload camera_engine
through this command

RKMODULE_AWB_CFG

When the module OTP information is enabled, the
camera_engine transmits the typical module AWB
calibration value through this command, and the
CIS driver is responsible for comparing with the
current module AWB calibration value, and then
generate the R/B Gain value and set it to the CIS
MWB module;

RKMODULE_LSC_CFG
When the module OTP information is enabled,
camera_engine controls the LSC calibration value to
be enabled through this command;

PREISP_CMD_SET_HDRAE_EXP
Refer to this document for details on HDR exposure
settings struct preisp_hdrae_exp_s

RKMODULE_SET_HDR_CFG

Set HDR mode, can realize normal and HDR switch,
need to drive to adapt HDR and normal 2 sets of
configuration information, please refer to this
document for details struct rkmodule_hdr_cfg

RKMODULE_GET_HDR_CFG
Get the current HDR mode and refer to this
document struct rkmodule_hdr_cfg

RKMODULE_SET_CONVERSION_GAIN

Set the conversion gain of linear mode, such as
imx347, os04a10 sensor with conversion gain
function, high conversion conversion gain can get a
better signal-to-noise ratio under low illumination, if
the sensor does not support conversion gain, it may
not be realized

2.1 Refer to struct v4l2_subdev_core_ops to explain the implementation of its callback function,
which mainly implements the following callbacks:

.s_power.ioctl

.compat_ioctl32

The RK private control commands mainly implemented by ioctl involve:

2.2 Refer to struct v4l2_subdev_video_ops to explain the realization of its callback function,
which mainly realizes the following callback functions:

struct v4l2_subdev_core_ops

struct v4l2_subdev_video_ops

struct v4l2_subdev_pad_ops

Member name Description

.s_stream

The function to switch the data stream. For mipi clk is a continuous
mode, the data stream must be opened in this callback function. If the
data stream is opened in advance, the MIPI LP status will not be
recognized

.g_frame_interval Get frame interval parameters (frame rate)

.g_mbus_config
Get the bus configuration. For the MIPI interface, if the sensor driver
supports different lane configurations or supports HDR, this interface
returns the MIPI configuration in the current sensor working mode

Member name Description

.enum_mbus_code Enumerate data formats supported by the current CIS driver

.enum_frame_size Enumerate the resolutions supported by the current CIS driver

.get_fmt

RKISP driver obtains the data format output by CIS through this
callback, which must be realized; for the definition of data type
output by Bayer raw sensor, SOC yuv sensor, and BW raw sensor,
please refer to MEDIA_BUS_FMT table for field output mode
Support, refer to struct v4l2_mbus_framefmt definition;

.set_fmt
Set the output data format and resolution of the CIS driver, which
must be realized

.enum_frame_interval
Enumerate the frame interval supported by the sensor, including
the resolution

.get_selection
Configure the cropping parameters, the width of the ISP input
requires 16 alignment, and the height 8 alignment

Member
name

Description

.s_ctrl
RKISP driver and camera_engine realize CIS exposure control by setting
different commands;

2.3 Refer to struct v4l2_subdev_pad_ops to explain the realization of its callback function, mainly
to realize the following callback functions:

2.4 Refer to the description of struct v4l2_ctrl_ops to implement, mainly implement the following
callbacks

Refer to CIS driver V4L2-controls list to implement each control ID. The following IDs belong to the
information acquisition category, and this part of the implementation is implemented in
accordance with standard integer menu controls;

Member name Description

V4L2_CID_LINK_FREQ
Refer to the standard definition inCIS driver V4L2-controls list,
currently RKISP driver obtains MIPI bus frequency according to this
command;

V4L2_CID_PIXEL_RATE
For MIPI bus: pixel_rate = link_freq * 2 * nr_of_lanes /
bits_per_sample

V4L2_CID_HBLANK Refer to the standard definition inCIS driver V4L2-controls list

V4L2_CID_VBLANK Refer to the standard definition in CIS driver V4L2-controls list

Formula

line_time = HTS / PIXEL_RATE;

PIXEL_RATE = HTS * VTS * FPS

HTS = sensor_width_out + HBLANK;

VTS = sensor_height_out + VBLANK;

Member name Description

V4L2_CID_VBLANK
Adjust VBLANK, and then adjust frame rate and Exposure
time max;

V4L2_CID_EXPOSURE Set the exposure time, unit: number of exposure lines

V4L2_CID_ANALOGUE_GAIN
Set exposure gain, actually total gain = analog gain*digital
gain; Unit: gain register value

RK camera_engine will obtain the necessary information to calculate the exposure through the
above command, and the formula involved is as follows:

Among them, the following IDs belong to the control category, and RK camera_engine controls CIS
through this type of command

3. CIS driver does not involve the definition of hardware data interface information. The
interface connection relationship between CIS device and AP is reflected by the port of the
DTS device node. Refer to CIS Device Registration (DTS) Description of Port information.

4. CIS Reference Driver List

VCM Drive

VCM Device Registration (DTS)

RK VCM driver private parameter description:

af://n1528
af://n1529

Name Description

Starting
current

VCM can just drive the module lens to move from the nearest end of the
movable stroke of the module lens (module far focus). At this time, the output
current value of the VCM driver ic is defined as the starting current

Rated
current

VCM just pushes the module lens to the far end of the movable stroke of the
module lens (the module is near focus), at this time the output current value of
the VCM driver ic is defined as the rated current

VCM
current
output
mode

Oscillation occurs during VCM movement. VCM driver ic current output changes
need to consider the oscillation period of vcm to minimize oscillation. The output
mode determines the time for the output current to change to the target value;

VCM driver description

Brief description of data type

struct i2c_driver

[Description]

Define i2c device driver information

[Definition]

vm149c: vm149c@0c { // vcm driver configuration, this set up is required when

supporting AF

 compatible = "silicon touch,vm149c";

 status = "okay";

 reg = <0x0c>;

 rockchip,vcm-start-current = <0>;// Starting current of the motor

 rockchip,vcm-rated-current = <100>; // Motor rated current

 rockchip,vcm-step-mode = <4>; // Current output mode of motor drive IC

 rockchip,camera-module-index = <0>; // Module number

 rockchip,camera-module-facing = "back"; // Module orientation, there are

"back" and "front"

};

ov13850: ov13850@10 {

 lens-focus = <&vm149c>; // vcm driver set up, need to have this set up when

supporting AF

};

af://n1545
af://n1546
af://n1547

Member
name

Description

@driver

Device driver model driver mainly contains the name of the driver and the
of_match_table that matches the DTS registered device. When the compatible
field in of_match_table matches the compatible field in the dts file, the .probe
function will be called

@id_table
List of I2C devices supported by this driver If the kernel does not use
of_match_table and dts registered devices for matching, the kernel uses this
table for matching

@probe Callback for device binding

@remove Callback for device unbinding

[Key Member]

[Example]

struct i2c_driver {

 ……

 /* Standard driver model interfaces */

 int (*probe)(struct i2c_client *, const struct i2c_device_id *);

 int (*remove)(struct i2c_client *);

 ……

 struct device_driver driver;

 const struct i2c_device_id *id_table;

 ……

};

static const struct i2c_device_id vm149c_id_table[] = {

 { VM149C_NAME, 0 },

 { { 0 } }

};

MODULE_DEVICE_TABLE(i2c, vm149c_id_table);

static const struct of_device_id vm149c_of_table[] = {

 { .compatible = "silicon touch,vm149c" },

 { { 0 } }

};

MODULE_DEVICE_TABLE(of, vm149c_of_table);

static const struct dev_pm_ops vm149c_pm_ops = {

 SET_SYSTEM_SLEEP_PM_OPS(vm149c_vcm_suspend, vm149c_vcm_resume)

 SET_RUNTIME_PM_OPS(vm149c_vcm_suspend, vm149c_vcm_resume, NULL)

};

static struct i2c_driver vm149c_i2c_driver = {

 .driver = {

 .name = VM149C_NAME,

 .pm = &vm149c_pm_ops,

 .of_match_table = vm149c_of_table,

 },

 .probe = &vm149c_probe,

 .remove = &vm149c_remove,

 .id_table = vm149c_id_table,

};

module_i2c_driver(vm149c_i2c_driver);

Member name Description

.ioctl
called at the end of ioctl() syscall handler at the V4L2 core.used to
provide support for private ioctls used on the driver.

.compat_ioctl32
called when a 32 bits application uses a 64 bits Kernel, in order to fix
data passed from/to userspace.in order to fix data passed from/to
userspace.

struct v4l2_subdev_core_ops

[Description]

Define core ops callbacks for subdevs.

[Definition]

[Key Member]

[Example]

At present, the following private ioctl is used to query the time information of the motor
movement.

RK_VIDIOC_VCM_TIMEINFO

struct v4l2_ctrl_ops

[Description]

The control operations that the driver has to provide.

[Definition]

struct v4l2_subdev_core_ops {

 ……

 long (*ioctl)(struct v4l2_subdev *sd, unsigned int cmd, void *arg);

#ifdef CONFIG_COMPAT

 long (*compat_ioctl32)(struct v4l2_subdev *sd, unsigned int cmd,

 unsigned long arg);

#endif

 ……

};

static const struct v4l2_subdev_core_ops vm149c_core_ops = {

 .ioctl = vm149c_ioctl,

#ifdef CONFIG_COMPAT

 .compat_ioctl32 = vm149c_compat_ioctl32

#endif

};

af://n1571
af://n1592

Member
name

Description

.g_volatile_ctrl
Get a new value for this control. Generally only relevant for volatile (and
usually read-only) controls such as a control that returns the current signal
strength which changes continuously.

.s_ctrl
Actually set the new control value. s_ctrl is compulsory. The ctrl->handler-
>lock is held when these ops are called, so no one else can access controls
owned by that handler.

Parameter name Description Input and output

*ctrl v4l2 control structure pointer output

[Key Member]

[Example]

vm149c_get_ctrl and vm149c_set_ctrl support the following controls

V4L2_CID_FOCUS_ABSOLUTE

API brief description

xxxx_get_ctrl

[description]

Get the moving position of the motor.

[grammar]

[parameter]

[return value]

struct v4l2_ctrl_ops {

 int (*g_volatile_ctrl)(struct v4l2_ctrl *ctrl);

 int (*try_ctrl)(struct v4l2_ctrl *ctrl);

 int (*s_ctrl)(struct v4l2_ctrl *ctrl);

};

static const struct v4l2_ctrl_ops vm149c_vcm_ctrl_ops = {

 .g_volatile_ctrl = vm149c_get_ctrl,

 .s_ctrl = vm149c_set_ctrl,

};

static int xxxx_get_ctrl(struct v4l2_ctrl *ctrl)

af://n1613
af://n1614

Return value Description

0 Success

Not 0 Failed

Parameter name Description Input and output

*ctrl v4l2 control structure pointer input

Return value Description

0 Success

Not 0 Failed

Parameter name Description Input and output

*sd v4l2 subdev structure pointer input

cmd ioctl command input

*arg/arg Parameter pointer Output

xxxx_set_ctrl

[description]

Set the moving position of the motor.

[grammar]

[parameter]

[return value]

xxxx_ioctl xxxx_compat_ioctl

[description]

The realization function of custom ioctl mainly includes obtaining the time information of motor
movement,

Implemented a custom RK_VIDIOC_COMPAT_VCM_TIMEINFO.

[grammar]

[parameter]

[return value]

static int xxxx_set_ctrl(struct v4l2_ctrl *ctrl)

static int xxxx_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)

static long xxxx_compat_ioctl32(struct v4l2_subdev *sd, unsigned int cmd,

unsigned long arg)

af://n1640
af://n1666

Return value Description

0 Success

Not 0 Failed

Drive migration steps

1. Implement the standard i2c sub-device driver part.

1.1 According to the description of struct i2c_driver, the following parts are mainly realized:

struct driver.name

struct driver.pm

struct driver. of_match_table

probe function

remove function

1.2 Detailed description of the probe function implementation:

1. Acquisition of VCM equipment resources, mainly to obtain DTS resources, refer to VCM
device registration（DTS）

1.1) RK private resource definition, naming methods such as rockchip, camera-module-xxx, mainly
to provide equipment parameters and Camera equipment to match.

1.2) VCM parameter definition, naming methods such as rockchip, vcm-xxx, mainly related to
hardware parameters start current, rated current, movement mode, parameters are related to
the range and speed of motor movement.

2. Initialization of VCM v4l2 device and media entity.

v4l2 sub-device: v4l2_i2c_subdev_init, the RK VCM driver requires subdev to have its own device
node for user-mode camera_engine to access, and realize focusing control through this device
node;

media entity: media_entity_init;

3. The RK AF algorithm defines the position parameter of the entire movable stroke of the
module lens as [0,64]. The corresponding variation range of the entire movable stroke of the
module lens on the VCM drive current is [starting current, rated current]. It is recommended
to implement the mapping conversion relationship between these two in the function;

2. Implement the v4l2 sub-device driver, which mainly implements the following 2
members:

2.1 Refer to v4l2_subdev_core_ops to explain the implementation of the callback function, which
mainly implements the following callback functions:

.ioctl.compat_ioctl32

This callback mainly implements RK private control commands, involving:

struct v4l2_subdev_core_ops

struct v4l2_ctrl_ops

af://n1702

Member name Description

RK_VIDIOC_VCM_TIMEINFO

camera_engine uses this command to obtain the time
required for the lens movement, and judges when the lens
stops and whether the CIS frame exposure time period
overlaps with the lens movement time period based on this
command; lens movement time and lens movement
distance, VCM driver ic The current output mode is related.

Member name Description

V4L2_CID_FOCUS_ABSOLUTE

camera_engine uses this command to set and obtain the
absolute position of the lens. In the RK AF algorithm, the
position parameter of the entire movable stroke of the lens
is defined as [0,64].

2.2 Refer to the description of v4l2_ctrl_ops to implement the callback function, which mainly
implements the following callback functions:

.g_volatile_ctrl.s_ctrl

.g_volatile_ctrl and .s_ctrl implement the following commands with standard v4l2 control:

FlashLight driver

FLASHLight Device Registration (DTS)

SGM378 DTS reference:

&i2c1 {

 ...

 sgm3784: sgm3784@30 {//Flash equipment

 #address-cells = <1>;

 #size-cells = <0>;

 compatible = "sgmicro,gsm3784";

 reg = <0x30>;

 rockchip,camera-module-index = <0>;//The flash corresponds to the camera

module number

 rockchip,camera-module-facing = "back";//The flash corresponds to the

orientation of the camera module

 enable-gpio = <&gpio2 RK_PB4 GPIO_ACTIVE_HIGH>;//enable gpio

 strobe-gpio = <&gpio1 RK_PA3 GPIO_ACTIVE_HIGH>;//flash trigger gpio

 status = "okay";

 sgm3784_led0: led@0 {//led0 device information

 reg = <0x0>;//index

 led-max-microamp = <299200>;//Torch mode maximum current

 flash-max-microamp = <1122000>;//flash mode maximum current

 flash-max-timeout-us = <1600000>;//maximum flash time

 };

 sgm3784_led1: led@1 {//led1 device information

 reg = <0x1>;//index

 led-max-microamp = <299200>;//Torch mode maximum current

 flash-max-microamp = <1122000>;//flash mode maximum current

 flash-max-timeout-us = <1600000>;//maximum flash time

 };

af://n1747
af://n1748

GPIO, PWM control dts reference:

Note:

1. The software needs to distinguish the processing flow according to the type of the fill light. If
it is an infrared fill light, the dts fill light node label needs to have the word ir to identify the
hardware type, and the ir field of the led fill light can be removed.

2. For this single-pin controlled hardware circuit, there are two situations, one is to fix the
brightness, directly use gpio control. The other is the brightness controllable, using pwm, set
the brightness by adjusting the duty cycle, dts pwms or enable-gpio, choose one of the two
configurations.

FLASHLight driver description

Brief description of data type

struct i2c_driver

[Description]

Define i2c device driver information

[Definition]

 };

 ...

 ov13850: ov13850@10 {

 ...

 flash-leds = <&sgm3784_led0 &sgm3784_led1>;//The flash device is hooked

to the camera

 ...

 };

 ...

}

flash_ir: flash-ir {

 status = "okay";

 compatible = "led,rgb13h";

 label = "pwm-flash-ir";

 led-max-microamp = <20000>;

 flash-max-microamp = <20000>;

 flash-max-timeout-us = <1000000>;

 pwms=<&pwm3 0 25000 0>;

 //enable-gpio = <&gpio0 RK_PA1 GPIO_ACTIVE_HIGH>;

 rockchip,camera-module-index = <1>;

 rockchip,camera-module-facing = "front";

};

&i2c1 {

 imx415: imx415@1a {

 ...

 flash-leds = <&flash_ir>;

 ...

 }

}

af://n1759
af://n1760
af://n1761

Member
name

Description

@driver

Device driver model driver mainly contains the name of the driver and the
of_match_table that matches the DTS registered device. When the compatible
field in of_match_table matches the compatible field in the dts file, the .probe
function will be called

@id_table
List of I2C devices supported by this driver If the kernel does not use
of_match_table and dts registered devices for matching, the kernel uses this
table for matching

@probe Callback for device binding

@remove Callback for device unbinding

[Key Member]

[Example]

struct i2c_driver {

 ……

 /* Standard driver model interfaces */

 int (*probe)(struct i2c_client *, const struct i2c_device_id *);

 int (*remove)(struct i2c_client *);

 ……

 struct device_driver driver;

 const struct i2c_device_id *id_table;

 ……

};

static const struct i2c_device_id sgm3784_id_table[] = {

 { SGM3784_NAME, 0 },

 { { 0 } }

};

MODULE_DEVICE_TABLE(i2c, sgm3784_id_table);

static const struct of_device_id sgm3784_of_table[] = {

 { .compatible = "sgmicro,sgm3784" },

 { { 0 } }

};

MODULE_DEVICE_TABLE(of, sgm3784_of_table);

static const struct dev_pm_ops sgm3784_pm_ops = {

 SET_RUNTIME_PM_OPS(sgm3784_runtime_suspend, sgm3784_runtime_resume, NULL)

};

static struct i2c_driver sgm3784_i2c_driver = {

 .driver = {

 .name = sgm3784_NAME,

 .pm = &sgm3784_pm_ops,

 .of_match_table = sgm3784_of_table,

 },

 .probe = &sgm3784_probe,

 .remove = &sgm3784_remove,

 .id_table = sgm3784_id_table,

};

Member name Description

.ioctl
called at the end of ioctl() syscall handler at the V4L2 core.used to
provide support for private ioctls used on the driver.

.compat_ioctl32
called when a 32 bits application uses a 64 bits Kernel, in order to fix
data passed from/to userspace.in order to fix data passed from/to
userspace.

struct v4l2_subdev_core_ops

[Description]

Define core ops callbacks for subdevs.

[Definition]

[Key Member]

[Example]

Currently, the following private ioctl is used to query the flash lighting time information.

RK_VIDIOC_FLASH_TIMEINFO

struct v4l2_ctrl_ops

[Description]

The control operations that the driver has to provide.

[Definition]

module_i2c_driver(vm149c_i2c_driver);

struct v4l2_subdev_core_ops {

 ……

 long (*ioctl)(struct v4l2_subdev *sd, unsigned int cmd, void *arg);

#ifdef CONFIG_COMPAT

 long (*compat_ioctl32)(struct v4l2_subdev *sd, unsigned int cmd,

 unsigned long arg);

#endif

 ……

};

static const struct v4l2_subdev_core_ops sgm3784_core_ops = {

 .ioctl = sgm3784_ioctl,

#ifdef CONFIG_COMPAT

 .compat_ioctl32 = sgm3784_compat_ioctl32

#endif

};

struct v4l2_ctrl_ops {

 int (*g_volatile_ctrl)(struct v4l2_ctrl *ctrl);

 int (*s_ctrl)(struct v4l2_ctrl *ctrl);

};

af://n1786
af://n1806

Member
name

Description

.g_volatile_ctrl
Get a new value for this control. Generally only relevant for volatile (and
usually read-only) controls such as a control that returns the current signal
strength which changes continuously.

.s_ctrl
Actually set the new control value. s_ctrl is compulsory. The ctrl->handler-
>lock is held when these ops are called, so no one else can access controls
owned by that handler.

Parameter name Description Input and output

*ctrl v4l2 control structure pointer input

Return value Description

0 Success

Not 0 Failed

[Key Member]

[Example]

API brief description

xxxx_set_ctrl

[description]

Set the flash mode, current and flash timeout time.

[grammar]

[parameter]

[return value]

static const struct v4l2_ctrl_ops sgm3784_ctrl_ops[LED_MAX] = {

 [LED0] = {

 .g_volatile_ctrl = sgm3784_led0_get_ctrl,

 .s_ctrl = sgm3784_led0_set_ctrl,

 },

 [LED1] = {

 .g_volatile_ctrl = sgm3784_led1_get_ctrl,

 .s_ctrl = sgm3784_led1_set_ctrl,

 }

};

static int xxxx_set_ctrl(struct v4l2_ctrl *ctrl)

af://n1824
af://n1825

Parameter name Description Input and output

*ctrl v4l2 control structure pointer output

Return value Description

0 Success

Not 0 Failed

Parameter name Description Input and output

*sd v4l2 subdev structure pointer input

cmd ioctl command input

*arg/arg Parameter pointer Output

Return value Description

0 Success

Not 0 Failed

xxxx_get_ctrl

[description]

Get the flash fault status.

[grammar]

[parameter]

[return value]

xxxx_ioctl xxxx_compat_ioctl

[description]

The implementation function of custom ioctl mainly includes obtaining the time information of
the flash light,

Implemented a custom RK_VIDIOC_COMPAT_FLASH_TIMEINFO.

[grammar]

[parameter]

[return value]

static int xxxx_get_ctrl(struct v4l2_ctrl *ctrl)

static int xxxx_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)

static long xxxx_compat_ioctl32(struct v4l2_subdev *sd, unsigned int cmd,

unsigned long arg)

af://n1851
af://n1877

Drive migration steps

For ordinary gpio to directly control leds, please refer to kernel/drivers/leds/leds-rgb13h.c and

kernel/Documentation/devicetree/bindings/leds/leds-rgb13h.txt

The flashlight driver IC can be transplanted as follows

1. Implement the standard i2c sub-device driver part.

1.1 According to the description of struct i2c_driver, the following parts are mainly realized:

struct driver.name

struct driver.pm

struct driver. of_match_table

probe function

remove function

1.2 Detailed description of the probe function implementation:

1. Acquisition of flashlight device resources, mainly to obtain DTS resources, refer to
FLASHLIGHT device registration (DTS);

1.1) RK private resource definition, naming methods such as rockchip, camera-module-xxx, mainly
to provide equipment parameters and Camera equipment to match.

2. Flash device name:

For dual led flash, use led0 and led1 device names to distinguish.

3. Initialization of FLASH v4l2 device and media entity.

v4l2 sub-device: v4l2_i2c_subdev_init, the RK flashlight driver requires subdev to have its own
device node for user-mode camera_engine to access, and realize led control through this device
node;

media entity: media_entity_init;

2. Implement the v4l2 sub-device driver, which mainly implements the following 2
members:

2.1 Refer to v4l2_subdev_core_ops to explain the implementation of the callback function, which
mainly implements the following callback functions:

/* NOTE: to distinguish between two led

 * name: led0 meet the main led

 * name: led1 meet the secondary led

 */

snprintf(sd->name, sizeof(sd->name),

 "m%02d_%s_%s_led%d %s",

 flash->module_index, facing,

 SGM3784_NAME, i, dev_name(sd->dev));

struct v4l2_subdev_core_ops

struct v4l2_ctrl_ops

af://n1913

Member name Description

RK_VIDIOC_FLASH_TIMEINFO
camera_engine uses this command to obtain the time when
the LED is on, and then judges whether the CIS frame
exposure time is after the flash is on.

Member name Description

V4L2_CID_FLASH_FAULT Get flash fault information

V4L2_CID_FLASH_LED_MODE

Set LED mode

V4L2_FLASH_LED_MODE_NONE

V4L2_FLASH_LED_MODE_TORCH

V4L2_FLASH_LED_MODE_FLASH

V4L2_CID_FLASH_STROBE Control the flashlight on

V4L2_CID_FLASH_STROBE_STOP Control flash off

V4L2_CID_FLASH_TIMEOUT
Set the maximum continuous light time of flash
mode

V4L2_CID_FLASH_INTENSITY Set flash mode current

V4L2_CID_FLASH_TORCH_INTENSITY Set Torch Mode Current

.ioctl.compat_ioctl32

This callback mainly implements RK private control commands, involving:

2.2 Refer to the description of v4l2_ctrl_ops to implement the callback function, which mainly
implements the following callback functions:

.g_volatile_ctrl.s_ctrl

.g_volatile_ctrl and .s_ctrl implement the following commands with standard v4l2 control:

FOCUS ZOOM P-IRIS driver
The drive here refers to the auto focus (FOCUS), zoom (ZOOM), and auto iris (P-IRIS) controlled by
a stepping motor. Due to the same stepping motor control method and hardware design factors,
the three function drives are integrated into one drive. According to the driver chip used, such as
a SPI controlled chip, the driver can be packaged into a SPI frame sub-device. This chapter
describes the data structure, framework and precautions that the driver needs to implement
around the MP6507 and MS41908 driver chips.

MP6507 device registration(DTS)

mp6507: mp6507 {

 status = "okay";

 compatible = "monolithicpower,mp6507";

 #pwm-cells = <3>;

 pwms = <&pwm6 0 25000 0>,

 <&pwm10 0 25000 0>,

af://n1980
af://n1982

 <&pwm9 0 25000 0>,

 <&pwm8 0 25000 0>;

 pwm-names = "ain1","ain2","bin1","bin2";

 rockchip,camera-module-index = <1>;

 rockchip,camera-module-facing = "front";

 iris_en-gpios = <&gpio0 RK_PC2 GPIO_ACTIVE_HIGH>;

 focus_en-gpios = <&gpio0 RK_PC3 GPIO_ACTIVE_HIGH>;

 zoom_en-gpios = <&gpio0 RK_PC0 GPIO_ACTIVE_HIGH>;

 iris-step-max = <80>;

 focus-step-max = <7500>;

 zoom-step-max = <7500>;

 iris-start-up-speed = <1200>;

 focus-start-up-speed = <1200>;

 focus-max-speed = <2500>;

 zoom-start-up-speed = <1200>;

 zoom-max-speed = <2500>;

 focus-first-speed-step = <8>;

 zoom-first-speed-step = <8>;

 focus-speed-up-table = < 1176 1181 1188 1196

 1206 1217 1231 1246

 1265 1286 1309 1336

 1365 1396 1429 1464

 1500 1535 1570 1603

 1634 1663 1690 1713

 1734 1753 1768 1782

 1793 1803 1811 1818>;

 focus-speed-down-table = < 1796 1788 1779 1768

 1756 1743 1728 1712

 1694 1674 1653 1630

 1605 1580 1554 1527

 1500 1472 1445 1419

 1394 1369 1346 1325

 1305 1287 1271 1256

 1243 1231 1220 1211

 1203 1195 1189 1184

 1179 1175>;

 zoom-speed-up-table = < 1198 1205 1212 1220

 1228 1238 1249 1260

 1272 1285 1299 1313

 1328 1343 1359 1375

 1390 1406 1421 1436

 1450 1464 1477 1489

 1500 1511 1521 1529

 1537 1544 1551>;

 zoom-speed-down-table = < 1547 1540 1531 1522

 1511 1499 1487 1473

 1458 1443 1426 1409

 1392 1375 1357 1340

 1323 1306 1291 1276

 1262 1250 1238 1227

 1218 1209 1202 1195

 1189 1184 1179 1175

 1171 1168>;

};

&i2c1 {

 imx334: imx334@1a {

 ...

RK private definition description:

 lens-focus = <&mp6507>;

 ...

 }

}

&pwm6 {

 status = "okay";

 pinctrl-names = "active";

 pinctrl-0 = <&pwm6m1_pins_pull_up>;

};

&pwm8 {

 status = "okay";

 pinctrl-names = "active";

 pinctrl-0 = <&pwm8m1_pins_pull_down>;

 center-aligned;

};

&pwm9 {

 status = "okay";

 pinctrl-names = "active";

 pinctrl-0 = <&pwm9m1_pins_pull_down>;

 center-aligned;

};

&pwm10 {

 status = "okay";

 pinctrl-names = "active";

 pinctrl-0 = <&pwm10m1_pins_pull_down>;

};

Member
name

Description

rockchip,
camera-

module-index
camera serial number, field matching camera

rockchip,
camera-

module-facing
camera orientation, field matching camera

iris_en-gpios IRIS enable GPIO

focus_en-gpios focus enable GPIO

zoom_en-gpios zoom enable GPIO

rockchip,iris-
step-max

P-IRIS stepper motor moves the maximum number of steps

rockchip,focus-
step-max

The maximum number of steps the focus stepper motor can move

zoom-step-
max

The maximum number of steps that the zoom stepper motor can move

iris-start-up-
speed

Starting speed of the stepper motor used by IRIS

focus-start-up-
speed

Starting speed of the stepper motor used by focus

focus-max-
speed

The maximum operating speed of the stepper motor used by focus

zoom-start-up-
speed

Starting speed of the stepper motor used by zoom

zoom-max-
speed

The maximum operating speed of the stepping motor used by zoom

focus-first-
speed-step

The number of steps at which focus starts speed, and the number of
steps is increased proportionally in the subsequent acceleration interval,
so that the running time of each speed stage is as close as possible to the
same

zoom-first-
speed-step

The number of steps at the start speed of zoom, and the number of steps
is increased proportionally in the subsequent acceleration interval, so
that the running time of each speed stage is as close as possible to the
same

Member
name

Description

focus-speed-
up-table

The focus acceleration curve uses the table lookup method, adjusts the
parameters to generate the acceleration curve, and configures the
generated trapezoidal acceleration curve or the S-shaped acceleration
curve data table. If you do not configure or configure a single data, just
press The starting speed runs at a constant speed; the minimum value of
the acceleration curve does not exceed the maximum starting speed of
the motor, and the maximum value does not exceed the maximum
operating speed of the stepper motor.

focus-speed-
down-table

focus deceleration curve, the maximum value of the deceleration curve
must be less than the maximum value of the acceleration curve; if the
acceleration curve is invalid, the deceleration curve is also invalid, and the
whole process runs at a constant speed at the starting speed; if there is
no deceleration curve configured, the deceleration curve is decelerated
The curve is obtained symmetrically from the acceleration curve.

zoom-speed-
up-table

zoom acceleration curve adopts table lookup method, adjusts
parameters to generate acceleration curve, and configures the generated
trapezoidal acceleration curve or S-shaped acceleration curve data table.
If you do not configure or configure a single data, press directly The
starting speed runs at a constant speed; the minimum value of the
acceleration curve does not exceed the maximum starting speed of the
motor, and the maximum value does not exceed the maximum operating
speed of the stepper motor.

zoom-speed-
down-table

zoom deceleration curve, the maximum value of the deceleration curve
must be less than the maximum value of the acceleration curve; if the
acceleration curve is invalid, the deceleration curve is also invalid, and the
whole process runs at the starting speed at a constant speed; if there is
no deceleration curve configured, the deceleration curve is decelerated
The curve is obtained symmetrically from the acceleration curve.

Brief description of data type

struct platform_driver

[Description]

Define platform device driver information

[Definition]

struct platform_driver {

 int (*probe)(struct platform_device *);

 int (*remove)(struct platform_device *);

 void (*shutdown)(struct platform_device *);

 int (*suspend)(struct platform_device *, pm_message_t state);

 int (*resume)(struct platform_device *);

 struct device_driver driver;

 const struct platform_device_id *id_table;

 bool prevent_deferred_probe;

};

af://n2046
af://n2047

Member
name

Description

@driver

struct device_driver driver mainly contains the name of the driver and
of_match_table for matching with DTS registered devices. When the
compatible field in of_match_table matches the compatible field in the dts file,
the .probe function will be called

@id_table
If the kernel does not use of_match_table and dts registered equipment for
matching, the kernel uses the table for matching

@probe Callback for device binding

@remove Callback for device unbinding

[Key Member]

[Example]

struct v4l2_subdev_core_ops

[Description]

Define core ops callbacks for subdevs.

[Definition]

#if defined(CONFIG_OF)

static const struct of_device_id motor_dev_of_match[] = {

 { .compatible = "monolithicpower,mp6507", },

 {},

};

#endif

static struct platform_driver motor_dev_driver = {

 .driver = {

 .name = DRIVER_NAME,

 .owner = THIS_MODULE,

 .of_match_table = of_match_ptr(motor_dev_of_match),

 },

 .probe = motor_dev_probe,

 .remove = motor_dev_remove,

};

module_platform_driver(motor_dev_driver);

struct v4l2_subdev_core_ops {

 ……

 long (*ioctl)(struct v4l2_subdev *sd, unsigned int cmd, void *arg);

#ifdef CONFIG_COMPAT

 long (*compat_ioctl32)(struct v4l2_subdev *sd, unsigned int cmd,

 unsigned long arg);

#endif

 ……

};

af://n2072

Member name Description

.ioctl
called at the end of ioctl() syscall handler at the V4L2 core.used to
provide support for private ioctls used on the driver.

.compat_ioctl32
called when a 32 bits application uses a 64 bits Kernel, in order to fix
data passed from/to userspace.in order to fix data passed from/to
userspace.

Member
name

Description

.g_volatile_ctrl
Get a new value for this control. Generally only relevant for volatile (and
usually read-only) controls such as a control that returns the current signal
strength which changes continuously.

.s_ctrl
Actually set the new control value. s_ctrl is compulsory. The ctrl->handler-
>lock is held when these ops are called, so no one else can access controls
owned by that handler.

[Key Member]

[Example]

struct v4l2_ctrl_ops

[Description]

The control operations that the driver has to provide.

[Definition]

[Key Member]

[Example]

static const struct v4l2_subdev_core_ops motor_core_ops = {

 .ioctl = motor_ioctl,

};

static const struct v4l2_subdev_ops motor_subdev_ops = {

 .core = &motor_core_ops,

};

struct v4l2_ctrl_ops {

 int (*g_volatile_ctrl)(struct v4l2_ctrl *ctrl);

 int (*s_ctrl)(struct v4l2_ctrl *ctrl);

};

static const struct v4l2_ctrl_ops motor_ctrl_ops = {

 .s_ctrl = motor_s_ctrl,

};

af://n2090

Member name Description

V4L2_CID_FOCUS_ABSOLUTE
Control the focus, 0 means the smallest focal length, clear
close up

V4L2_CID_ZOOM_ABSOLUTE
Control the zoom factor, 0 means the zoom factor is the
smallest and the field of view is the largest

V4L2_CID_IRIS_ABSOLUTE
Control the size of the P aperture opening, 0 means the
aperture is closed

Parameter name Description Input and output

*ctrl v4l2 control structure pointer input

Return value Description

0 Success

Not 0 Failed

Member name Description

V4L2_CID_FOCUS_ABSOLUTE
Control the focus, 0 means the smallest focal length, clear
close up

V4L2_CID_ZOOM_ABSOLUTE
Control the zoom factor, 0 means the zoom factor is the
smallest and the field of view is the largest

V4L2_CID_IRIS_ABSOLUTE
Control the size of the P aperture opening, 0 means the
aperture is closed

API brief description

xxxx_set_ctrl

[description]

Call standard v4l2_control to set focus, zoom, and P aperture position.

The following v4l2 standard commands are implemented:

[grammar]

[parameter]

[return value]

xxxx_get_ctrl

[description]

Call standard v4l2_control to get the current position of focus, zoom and P aperture.

The following v4l2 standard commands are implemented:

static int xxxx_set_ctrl(struct v4l2_ctrl *ctrl)

af://n2108
af://n2109
af://n2149

Parameter name Description Input and output

*ctrl v4l2 control structure pointer output

Return value Description

0 Success

Not 0 Failed

Member name Description

RK_VIDIOC_VCM_TIMEINFO
Focusing time information, used to confirm whether the
current frame is the effective frame after focusing

RK_VIDIOC_ZOOM_TIMEINFO
Zoom time information, used to confirm whether the
current frame is the effective frame after zooming

RK_VIDIOC_IRIS_TIMEINFO
Time information of the aperture, used to confirm
whether the current frame is the effective frame after
aperture adjustment

RK_VIDIOC_FOCUS_CORRECTION Focus position correction (reset)

RK_VIDIOC_ZOOM_CORRECTION Zoom position correction (reset)

RK_VIDIOC_IRIS_CORRECTION Iris position correction (reset)

[grammar]

[parameter]

[return value]

xxxx_ioctl xxxx_compat_ioctl

[description]

The realization function of custom ioctl mainly includes the time information of obtaining focus,
zoom and P aperture (time stamp of start and end movement). Since the lens used does not have
a positioning device, it is necessary to reset the position of the lens motor when necessary .

Implemented customization:

[grammar]

[parameter]

static int xxxx_get_ctrl(struct v4l2_ctrl *ctrl)

static int xxxx_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)

static long xxxx_compat_ioctl32(struct v4l2_subdev *sd, unsigned int cmd,

unsigned long arg)

af://n2189

Parameter name Description Input and output

*sd v4l2 subdev structure pointer input

cmd ioctl command input

*arg/arg Parameter pointer Output

Return value Description

0 Success

Not 0 Failed

[return value]

Drive migration steps

For SPI-controlled driver chips, you can use the SPI framework for device driver transplantation.
The RK reference driver uses MP6507, directly uses pwm to output the control waveform, and
uses MP6507 for power amplification, so the platform framework is directly transplanted.

Driver reference: /kernel/drivers/media/i2c/mp6507.c

The migration steps are as follows:

1. Implement the standard platform sub-device driver part.

1.1 According to the description of struct platform_driver, the following parts are mainly
realized:

struct driver.name

struct driver. of_match_table

probe function

remove function

1.2 Detailed description of the probe function implementation:

1. Acquisition of equipment resources, mainly to obtain DTS resources, refer to MP6507 device
registration(DTS);

 1.1) RK private resource definition, naming methods such as rockchip, camera-module-xxx,
mainly to provide equipment parameters and Camera equipment to match.

 1.2) Obtain the pwm configuration. According to the control method of the motor, the phase
difference of AB phase is 90 degrees. This can be achieved by aligning the center of the PWM
setting of the B phase. Configure center-aligned at the dts pwm node. For details, seeMP6507
device registration(DTS);

af://n2247

1.3) To obtain the enable pin, MP6507 needs to use 4 PWMs to generate stepper motor control
waveforms. Due to the limited hardware PWM, the focus, zoom, and P iris stepper motors each
use a MP6507 driver to drive, so use gpio to enable It can correspond to the MP6507 driver, so as
to realize PWM time-sharing multiplexing. Of course, this also has a drawback. Only one stepper
motor can be driven at the same time, and the other two stepper motors need to wait for the end
of the previous operation to continue operation;

 1.4) Obtain hardware-related constraints and resources such as the maximum step, maximum
starting speed, maximum operating speed, acceleration curve data of each motor;

2. hrtimer_init, timer initialization, pwm uses continuous mode, timer timing is required, after
reaching the specified number of output pwm waveforms, the timer interrupt closes pwm,
and the acceleration process also needs to enter timing after the specified number of
waveforms The device interrupts to modify the pwm frequency, so as to realize the
acceleration of the stepper motor;

3. init_completion, the synchronization mechanism is realized through completion, and the
next motor operation can only be carried out after the previous motor movement operation
ends;

4. Initialization of v4l2 device and media entity.

v4l2 sub-device: v4l2_i2c_subdev_init, the driver requires subdev to have its own device node for
user mode rkaiq to access, and realize the control of the motor through this device node;

media entity: media_entity_init;

5. Flash device name:

2. Implement the v4l2 sub-device driver, which mainly implements the following 2
members:

2.1 Refer to v4l2_subdev_core_ops to explain the implementation of the callback function, which
mainly implements the following callback functions:

This callback mainly implements RK private control commands, involving:

snprintf(sd->name, sizeof(sd->name), "m%02d_%s_%s",

 motor->module_index, facing,

 DRIVER_NAME);

struct v4l2_subdev_core_ops

struct v4l2_ctrl_ops

.ioctl

.compat_ioctl32

Member name Description

RK_VIDIOC_VCM_TIMEINFO
Focusing time information, used to confirm whether the
current frame is the effective frame after focusing

RK_VIDIOC_ZOOM_TIMEINFO
Zoom time information, used to confirm whether the
current frame is the effective frame after zooming

RK_VIDIOC_IRIS_TIMEINFO
Time information of the aperture, used to confirm
whether the current frame is the effective frame after
aperture adjustment

RK_VIDIOC_FOCUS_CORRECTION Focus position correction (reset)

RK_VIDIOC_ZOOM_CORRECTION Zoom position correction (reset)

RK_VIDIOC_IRIS_CORRECTION Iris position correction (reset)

Parameter name Description

V4L2_CID_FOCUS_ABSOLUTE
Control the focus, 0 means the smallest focal length, clear
close up

V4L2_CID_ZOOM_ABSOLUTE
Control the zoom factor, 0 means the zoom factor is the
smallest and the field of view is the largest

V4L2_CID_IRIS_ABSOLUTE
Control the size of the P aperture opening, 0 means the
aperture is closed**

2.2 Refer to the description of v4l2_ctrl_ops to implement the callback function, which mainly
implements the following callback functions:

.g_volatile_ctrl

.s_ctrl

.g_volatile_ctrl and .s_ctrl implement the following commands with standard v4l2 control:

3. Reference for stepping motor acceleration curve:

3.1 Trapezoidal curve

You can simply accelerate and decelerate at equal intervals and speeds as shown in the figure.

3.2 S-curve

If the trapezoidal acceleration is not ideal, you can consider the S-shaped acceleration, you can
refer to the following formula:

Speed = Vmin + ((Vmax-Vmin) / (1 + exp(-fac * (i-Num) / Num)));

	 among them,

Vmin refers to the motor starting speed

Vmax refers to the target speed of the motor

fac is the curve coefficient, generally in the range of 4~6, the larger the value, the steeper the
middle of the curve

i is the speed segment number, if it is divided into 32 segments to accelerate, the value is 0~31

Num is half of the number of speed segments. If divided into 32 segments, num is 16

MS41908 device registration(DTS)

Because some lenses support PIRIS, FOCUS, ZOOM, ZOOM1 or a combination of DC-IRIS, FOCUS,
ZOOM, MS41908 is made into PIRIS, FOCUS, ZOOM, ZOOM1, DC-IRIS functions configurable, and
can be loaded and driven multiple times to achieve multiple The combination of driver chips will
cause dts to be more complicated. Please read the description of each parameter carefully.

&spi0 {

 status = "okay";

 pinctrl-names = "default";

 pinctrl-0 = <&spi0m0_clk &spi0m0_cs0n &spi0m0_miso &spi0m0_mosi>;

 //If pinctrl is not configured, confirm whether the default pinctrl is the

actual pin group

 assigned-clocks = <&pmucru CLK_SPI0>;

 assigned-clock-rates = <100000000>;

 ms41908: ms41908@00 {

 status = "okay";

 compatible = "relmon,ms41908";

 reg = <0>;

 pinctrl-names = "default";

 focus-start-up-speed = <800>;

 zoom-start-up-speed = <800>;

 focus-step-max = <3160>;

 zoom-step-max = <1520>;

 focus-backlash = <18>;

 vd_fz-period-us = <10000>;

 vd_fz-gpios = <&gpio3 RK_PC6 GPIO_ACTIVE_HIGH>;

 rockchip,camera-module-index = <1>;

 rockchip,camera-module-facing = "front";

 use-focus;

 use-zoom;

 focus-used-pin = "cd";

af://n2323

Member name description

pinctrl-0

SPI pin definition, according to the actual pin configuration, the pin can
be mapped to the spi function

ag. pinctrl-0 = <&spi0m0_clk &spi0m0_cs0n &spi0m0_miso
&spi0m0_mosi>;

assigned-clocks

assigned-clock-

rates
SPI Clock configuration, it is recommended to configure at 100MHz

reg
reg = <0>; to use cs0

reg = <1>; to use cs1

rockchip,camera-
module-index

Camera serial number, the field that matches the camera

rockchip,camera-
module-facing

Camera orientation, field matching camera

reset-gpios
The reset pin of ms41908 can not be configured when the hardware is
fixed and pulled up

vd_fz-period-us

The pulse signal period required for the update of the stepping motor
drive register. The pulse signal of the two stepping motors is the same.
The motor running time exceeds the vd period will cause out of step,
and the drive will ensure that the motor's single motion cycle time is
within the vd period

Basic description：

FOCUS description：

 zoom-used-pin = "ab";

 };

};

&i2c1 {

 imx335: imx335@1a{

 ...

 lens-focus = <&ms41908>;

 //Multiple device registration，lens-focus = <&ms41908_0 &ms41908_1>;

 ...

 };

};

af://n2326
af://n2352

Member
name

description

use-focus Whether to use the focus function

focus-
used-pin

Each ms41908 chip can drive two stepping motors, the corresponding pin
groups are called "ab" and "cd", according to the actual hardware connection
configuration

focus-
backlash

The error caused by the gear gap, the number of steps to be compensated
when the motor direction changes, and the data obtained according to the
actual lens test

focus-
start-up-

speed
The starting speed of the stepping motor, in PPS

focus-
step-max

The effective movement range of the motor, the unit is the number of steps

focus-
ppw

Set ms41908 output pwm duty cycle, 0-255, the larger the value, the stronger
the drive capacity, adjust according to the motor load

focus-
phmode

Set ms41908 output PWM waveform phase correction, generally not
configured, it depends on the situation

focus-
micro

Set the number of microsteps, divided into 64, 128, 256 subdivisions, the
default is 256 subdivisions

focus-
reback-
distance

The focus curve needs to go in the same direction for the position to be
accurate.

For example, the current position is 100. If you want to go back to 90, you need
to go back to 80 and then to 90. The position is accurate. The parameter
configured here is the number of steps for multiple callbacks.

focus-1-
2phase-

excitation

The default motor excitation mode is 2-2 phase excitation, this parameter can
be configured using 1-2 phase excitation

ag. focus-1-2phase-excitation;

focus-dir-
opposite

If the current motor movement direction is opposite to the actual focus curve,
this parameter can be configured to reverse the motor movement direction

ag. focus-dir-opposite;

Optocoupler description：

Member
name

description

focus-pic
The C pin of the optocoupler is used to detect the level transition. The junction
point of the level transition is the origin point of the optocoupler

focus-
pia

The A pin of the optocoupler drives the photodiode. When the optocoupler is
calibrated, it should be pulled up, and it should be pulled down during normal
operation, otherwise the photodiode will affect the imaging.

focus-
pie

When the hardware is designed, it can be directly grounded. If it is designed to
be controlled by gpio, it needs to configure the pin to be low level.

focus-
min-pos

The number of steps on the left and right of the optocoupler origin needs to be
measured, and then filled in dts, which can be larger than actual

focus-
min-pos

The number of steps on the left and right of the optocoupler origin needs to be
measured, and then filled in dts, which can be larger than actual

Note: The lens without optocoupler positioning does not need to configure optocoupler
parameters.

ZOOM description：

af://n2411

Member
name

description

use-zoom Whether to use the zoom function

zoom-
used-pin

Each ms41908 chip can drive two stepping motors, the corresponding pin
groups are called "ab" and "cd", according to the actual hardware connection
configuration

zoom-
backlash

The error caused by the gear gap, the number of steps to be compensated
when the motor direction changes, and the data obtained according to the
test

zoom-
start-up-

speed
The starting speed of the stepping motor, in PPS

zoom-
step-max

The effective movement range of the motor, the unit is the number of steps

zoom-
ppw

Set ms41908 output pwm duty cycle, 0-255, the larger the value, the stronger
the drive capacity, adjust according to the motor load

zoom-
phmode

Set ms41908 output PWM waveform phase correction, generally not
configured, it depends on the situation

zoom-
micro

Set the number of microsteps, divided into 64, 128, 256 subdivisions, the
default is 256 subdivisions

zoom-1-
2phase-

excitation

The default motor excitation mode is 2-2 phase excitation, this parameter can
be configured using 1-2 phase excitation

ag. zoom-1-2phase-excitation;

zoom-dir-
opposite

If the current motor movement direction is opposite to the actual focus curve,
this parameter can be configured to reverse the motor movement direction

ag. zoom-dir-opposite;

Member
name

description

zoom-
pic

The C pin of the optocoupler is used to detect the level transition. The junction
point of the level transition is the origin point of the optocoupler

zoom-
min-pos

The number of steps on the left and right of the optocoupler origin needs to be
measured, and then filled in dts, which can be larger than actual

zoom-
min-pos

The number of steps on the left and right of the optocoupler origin needs to be
measured, and then filled in dts, which can be larger than actual

Optocoupler description：

Note: The lens without optocoupler positioning does not need to configure optocoupler
parameters.

Member
name

description

use-
zoom1

Whether to use the function of zoom1, some lenses support the control of 2
zooms

zoom1-
used-pin

Each ms41908 chip can drive two stepping motors, the corresponding pin
groups are called "ab" and "cd", according to the actual hardware connection
configuration

zoom1-
backlash

The error caused by the gear gap, the number of steps to be compensated
when the motor direction changes, and the data obtained according to the
test

zoom1-
start-up-

speed
The starting speed of the stepping motor, in PPS

zoom1-
step-max

The effective movement range of the motor, the unit is the number of steps

zoom1-
ppw

Set ms41908 output pwm duty cycle, 0-255, the larger the value, the stronger
the drive capacity, adjust according to the motor load

zoom1-
phmode

Set ms41908 output PWM waveform phase correction, generally not
configured, it depends on the situation

zoom1-
micro

Set the number of microsteps, divided into 64, 128, 256 subdivisions, the
default is 256 subdivisions

zoom1-1-
2phase-

excitation

The default motor excitation mode is 2-2 phase excitation, this parameter can
be configured using 1-2 phase excitation

ag. zoom1-1-2phase-excitation;

zoom1-
dir-

opposite

If the current motor movement direction is opposite to the actual focus curve,
this parameter can be configured to reverse the motor movement direction

ag. zoom1-dir-opposite;

ZOOM1 description：

Optocoupler description：

af://n2462

Member
name

description

zoom1-
pic

The C pin of the optocoupler is used to detect the level transition. The junction
point of the level transition is the origin point of the optocoupler

zoom1-
pia

The A pin of the optocoupler drives the photodiode. When the optocoupler is
calibrated, it should be pulled up, and it should be pulled down during normal
operation, otherwise the photodiode will affect the imaging.

zoom1-
pie

When the hardware is designed, it can be directly grounded. If it is designed to
be controlled by gpio, it needs to configure the pin to be low level.

zoom1-
min-pos

The number of steps on the left and right of the optocoupler origin needs to be
measured, and then filled in dts, which can be larger than actual

zoom1-
min-pos

The number of steps on the left and right of the optocoupler origin needs to be
measured, and then filled in dts, which can be larger than actual

Note: The lens without optocoupler positioning does not need to configure optocoupler
parameters.

PIRIS description：

af://n2519

Member
name

description

use-p-iris Whether to use the function of P-IRIS

piris-
used-pin

Each ms41908 chip can drive two stepping motors, the corresponding pin
groups are called "ab" and "cd", according to the actual hardware connection
configuration

piris-
backlash

The error caused by the gear gap, the number of steps to be compensated
when the motor direction changes, and the data obtained according to the
actual lens test

piris-
start-up-

speed
The starting speed of the stepping motor, in PPS

piris-
step-max

The effective movement range of the motor, the unit is the number of steps

piris-ppw
Set ms41908 output pwm duty cycle, 0-255, the larger the value, the stronger
the drive capacity, adjust according to the motor load

piris-
phmode

Set ms41908 output PWM waveform phase correction, generally not
configured, it depends on the situation

piris-
micro

Set the number of microsteps, divided into 64, 128, 256 subdivisions, the
default is 256 subdivisions

piris-1-
2phase-

excitation

The default motor excitation mode is 2-2 phase excitation, this parameter can
be configured using 1-2 phase excitation

ag. piris-1-2phase-excitation;

piris-dir-
opposite

If the current motor movement direction is opposite to the actual focus curve,
this parameter can be configured to reverse the motor movement direction

ag. piris-dir-opposite;

Optocoupler description：

Member
name

description

piris-pic
The C pin of the optocoupler is used to detect the level transition. The junction
point of the level transition is the origin point of the optocoupler

piris-pia
The A pin of the optocoupler drives the photodiode. When the optocoupler is
calibrated, it should be pulled up, and it should be pulled down during normal
operation, otherwise the photodiode will affect the imaging.

piris-pie
When the hardware is designed, it can be directly grounded. If it is designed to
be controlled by gpio, it needs to configure the pin to be low level.

piris-
min-pos

The number of steps on the left and right of the optocoupler origin needs to be
measured, and then filled in dts, which can be larger than actual

piris-
min-pos

The number of steps on the left and right of the optocoupler origin needs to be
measured, and then filled in dts, which can be larger than actual

Member
name

description

use-dc-
iris

Whether to use the function of DC-IRIS

vd_iris-
gpios

Synchronous pulse pin for DC aperture related registers to take effect

dc-iris-
reserved-
polarity

DC aperture polarity setting, if 0 means the aperture is fully open, you can set
this property to reverse

dc-iris-
max-log

The target value range of the DC iris is 0~1023, the actual effective range may
be relatively small, this parameter can be configured to limit the effective
range

Note: The lens without optocoupler positioning does not need to configure optocoupler
parameters.

DCIRIS description：

Brief description of data type

struct spi_driver

[Description]

Define platform device driver information

[Definition]

af://n2576
af://n2593
af://n2594

Member
name

description

@driver

struct device_driver driver mainly contains the name of the driver and
of_match_table for matching with DTS registered devices. When the
compatible field in of_match_table matches the compatible field in the dts file,
the .probe function will be called

@id_table
If the kernel does not use of_match_table and dts registered equipment for
matching, the kernel uses the table for matching

@probe Callback for device binding

@remove Callback for device unbinding

[Key Member]

[Example]

struct v4l2_subdev_core_ops

[Description]

Define core ops callbacks for subdevs.

[Definition]

struct spi_driver {

 int (*probe)(struct spi_device *spi);

 int (*remove)(struct spi_device *spi);

 struct device_driver driver;

 const struct spi_device_id *id_table;

};

static const struct spi_device_id motor_match_id[] = {

 {"relmon,ms41908", 0 },

 { }

};

static struct spi_driver motor_dev_driver = {

 .driver = {

 .name = DRIVER_NAME,

 .of_match_table = of_match_ptr(motor_dev_of_match),

 },

 .probe = &motor_dev_probe,

 .remove = &motor_dev_remove,

 .id_table = motor_match_id,

};

af://n2619

Member name description

.ioctl
called at the end of ioctl() syscall handler at the V4L2 core.used to
provide support for private ioctls used on the driver.

.compat_ioctl32
called when a 32 bits application uses a 64 bits Kernel, in order to fix
data passed from/to userspace.in order to fix data passed from/to
userspace.

Member
name

description

.g_volatile_ctrl
Get a new value for this control. Generally only relevantfor volatile (and
usually read-only) controls such as a control that returns the current signal
strength which changes continuously.

.s_ctrl
Actually set the new control value. s_ctrl is compulsory. The ctrl->handler-
>lock is held when these ops are called, so no one else can access controls
owned by that handler.

[Key Member]

[Example]

struct v4l2_ctrl_ops

[Description]

The control operations that the driver has to provide.

[Definition]

[Key Member]

struct v4l2_subdev_core_ops {

 ……

 long (*ioctl)(struct v4l2_subdev *sd, unsigned int cmd, void *arg);

#ifdef CONFIG_COMPAT

 long (*compat_ioctl32)(struct v4l2_subdev *sd, unsigned int cmd,

 unsigned long arg);

#endif

 ……

};

static const struct v4l2_subdev_core_ops motor_core_ops = {

 .ioctl = motor_ioctl,

};

static const struct v4l2_subdev_ops motor_subdev_ops = {

 .core = &motor_core_ops,

};

struct v4l2_ctrl_ops {

 int (*g_volatile_ctrl)(struct v4l2_ctrl *ctrl);

 int (*s_ctrl)(struct v4l2_ctrl *ctrl);

};

af://n2637

Parameter name Description

V4L2_CID_FOCUS_ABSOLUTE
Control the focus, 0 means the minimum focal length,
clear near

V4L2_CID_ZOOM_ABSOLUTE
Control the zoom factor, 0 means the zoom factor is the
smallest and the angle of view is the largest

V4L2_CID_IRIS_ABSOLUTE
Control the size of the aperture opening, 0 means the
aperture is closed

V4L2_CID_ZOOM_CONTINUOUS
Control the zoom factor zoom1, used when multiple
zoom groups are controlled

Parameter name Description Input and output

*ctrl v4l2 control structure pointer input

[Example]

API brief description

xxxx_set_ctrl

[description]

Call standard v4l2_control to set focus, zoom, P aperture position

The driver implements the following v4l2 standard commands：

[grammar]

[parameter]

xxxx_ioctl xxxx_compat_ioctl

[description]

The realization function of custom ioctl mainly includes the time information of obtaining focus,
zoom and P aperture (time stamp of start and end movement). Since the lens used does not have
a positioning device, it is necessary to reset the position of the lens motor when necessary .

The driver implements custom commands:：

static const struct v4l2_ctrl_ops motor_ctrl_ops = {

 .s_ctrl = motor_s_ctrl,

};

static int xxxx_set_ctrl(struct v4l2_ctrl *ctrl)

af://n2655
af://n2656
af://n2689

Parameter name Description

RK_VIDIOC_VCM_TIMEINFO
Focusing time information, used to confirm whether
the current frame is the effective frame after focusing

RK_VIDIOC_ZOOM_TIMEINFO
Time information of zooming, used to confirm whether
the current frame is the effective frame after zooming
is completed

RK_VIDIOC_IRIS_TIMEINFO
The time information of the aperture, used to confirm
whether the current frame is the effective frame after
P aperture adjustment

RK_VIDIOC_ZOOM1_TIMEINFO

When there are multiple zoom groups, the time
information of zoom1 is used to confirm whether the
current frame is the effective frame after zooming is
completed

RK_VIDIOC_IRIS_CORRECTION Aperture position reset, only works on P-IRIS

RK_VIDIOC_FOCUS_CORRECTION Focus position reset

RK_VIDIOC_ZOOM_CORRECTION Zoom position reset

RK_VIDIOC_ZOOM1_CORRECTION
Double zoom lens, the second group of zoom position
reset

RK_VIDIOC_FOCUS_SET_POSITION Set the focus position

RK_VIDIOC_ZOOM_SET_POSITION
Set the follow focus parameters and realize multi-step
zoom and focus linkage according to the zoom curve

Note:

1. In order to solve the problem of the inaccuracy of the absolute position of the motor caused
by the gear gap, by fixing one direction as the positive direction and the other as the
negative direction, the initial position of the gear is stuck in the positive direction. When the
motor goes in the negative direction, it must go more than the gear. The number of
clearance steps is n, and then the number of steps in the positive direction is n, so that the
gear can remain stuck in the positive direction, which is called callback. The callback ensures
the accuracy of the absolute position. However, the number of callback steps is greater than
the gear gap. During manual focusing or automatic focusing, if you move in the negative
direction for multiple times, the continuous callback will give people the feeling of jitters, so
you cannot callback every time you move in the negative direction. The newly added
RK_VIDIOC_FOCUS_SET_POSITION and RK_VIDIOC_ZOOM_SET_POSITION interfaces are
determined by the af algorithm whether to call back. The standard v4l2 commands
V4L2_CID_FOCUS_ABSOLUTE and V4L2_CID_ZOOM_ABSOLUTE do not call back and are only
used in manual mode. RK_VIDIOC_ZOOM_SET_POSITION contains focus and zoom
parameters. The focus is adjusted synchronously during the zooming process to make the
picture excessively natural.

2. In order to solve the gear gap in the early stage, by configuring the focus-backlash, when
walking in the negative direction, take more steps of the gear gap to offset the gear gap.
However, due to the individual difference of the lens gear gap, there is an error in the
calibration and the calibration workload Is large, so this parameter is discarded. The drive
retains its design, and it can still be used if the position accuracy of the motor is not high.

Parameter name Description Input and output

*sd v4l2 subdev structure pointer input

cmd ioctl command input

*arg/arg Parameter pointer output

Return value Description

0 Success

Not 0 Failed

[grammar]

[parameter]

[return value]

Drive migration steps

For SPI controlled driver chips, you can use the SPI framework for device driver migration,
MS41908 as a reference.

Driver reference： /kernel/drivers/media/spi/ms41908.c

The migration steps are as follows:

1.Implement the standard spi sub-device driver part.

1.1 According to the description of struct spi_driver，the following parts are mainly realized：

struct driver.name

struct driver. of_match_table

probe function

remove function

1.2 Probe function implementation details description：

1） Equipment resource acquisition, mainly to obtain DTS resources, reference MS41908 device
registration(DTS);

 1.1) RK private resource definition, naming methods such as rockchip, camera-module-xxx,
mainly to provide equipment parameters and Camera equipment to match.

 1.2) Obtain motor-related configuration parameters, which are defined according to the function
requirements of the chip, and try to make the parameters related to motor motion configurable.

static int xxxx_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)

static long xxxx_compat_ioctl32(struct v4l2_subdev *sd, unsigned int cmd,

unsigned long arg)

af://n2766

2. hrtimer_init，Timer initialization, ms41908 uses the vd signal as the trigger signal. The timer
is used to fix the period of each vd, which is convenient for operation. The register of
ms41908 takes effect after the vd signal. Every time the register value needs to be modified,
it can be advanced before the vd signal. Configuration register. It should be noted that the
movement speed and the number of movement steps configured by the register must be
within the range of the vd period, and the number of steps that exceed the vd period will be
lost.

3）init_completion，The synchronization mechanism is realized through completion. For the
same motor, the next operation can only be performed after the previous operation is over.

4. Initialization of v4l2 device and media entity

v4l2 sub-device: v4l2_i2c_subdev_init, the driver requires subdev to have its own device node for
user mode rkaiq to access, and realize the control of the motor through this device node;

media entity: media_entity_init;

5. Device name:

2.Implement v4l2 sub-device driver, mainly implement the following 2 members:

2.1 Refer to v4l2_subdev_core_ops instructions to implement the callback function, mainly
implement the following callback functions：

2.2 Refer to v4l2_ctrl_ops instructions to implement the callback function, mainly implement the
following callback functions：

.g_volatile_ctrl

.s_ctrl

DC-IRIS drive
Compared with P-IRIS, DC-IRIS cannot accurately know the size of the aperture opening.
Generally, the scene is fully opened by default. When the exposure is adjusted to the minimum,
the image is still overexposed, and then enters the aperture adjustment. When the exposure is
set to the maximum, the image is still Under exposure, enter the aperture adjustment. The DC-
IRIS motor is a DC motor, which buffers the adjustment speed of the motor through the negative
feedback of the Hall device. For the drive, as long as the motor is controlled by a PWM, when the
PWM duty cycle is less than 20%, the iris will slowly close until it is completely closed. The smaller
the duty cycle, the faster the iris closes; when the duty cycle is greater than The 40% aperture will
slowly open, the larger the duty cycle, the faster the opening speed; the aperture in the 20%~40%
range is in a hold state. The 20% and 40% here are not fixed values, which are related to the

snprintf(sd->name, sizeof(sd->name), "m%02d_%s_%s",

 motor->module_index, facing,

 DRIVER_NAME);

struct v4l2_subdev_core_ops

struct v4l2_ctrl_ops

.ioctl

.compat_ioctl32

af://n2801

frequency of pwm and the accuracy of the actual hardware devices.

Reference driver: /kernel/drivers/media/i2c/hall-dc-motor.c

DC-IRIS Device Registration (DTS)

Brief description of data type

struct platform_driver

[Description]

Define platform device driver information

[Definition]

[Key Member]

hal_dc_motor: hal_dc_motor{

 status = "okay";

 compatible = "rockchip,hall-dc";

 pwms = <&pwm6 0 2500 0>;

 rockchip,camera-module-index = <1>;

 rockchip,camera-module-facing = "front";

};

&pwm6 {

 status = "okay";

 pinctrl-names = "active";

 pinctrl-0 = <&pwm6m0_pins_pull_down>;

};

&i2c1 {

 imx334: imx334@1a {

 ...

 lens-focus = <&hal_dc_motor>;

 ...

 }

}

struct platform_driver {

 int (*probe)(struct platform_device *);

 int (*remove)(struct platform_device *);

 void (*shutdown)(struct platform_device *);

 int (*suspend)(struct platform_device *, pm_message_t state);

 int (*resume)(struct platform_device *);

 struct device_driver driver;

 const struct platform_device_id *id_table;

 bool prevent_deferred_probe;

};

af://n2803
af://n2805
af://n2806

Member
name

Description

@driver

struct device_driver driver mainly contains the name of the driver and
of_match_table for matching with DTS registered devices. When the
compatible field in of_match_table matches the compatible field in the dts file,
the .probe function will be called

@id_table
If the kernel does not use of_match_table and dts registered equipment for
matching, the kernel uses the table for matching

@probe Callback for device binding

@remove Callback for device unbinding

[Example]

struct v4l2_subdev_core_ops

[Description]

Define core ops callbacks for subdevs.

[Definition]

[Key Member]

#if defined(CONFIG_OF)

static const struct of_device_id motor_dev_of_match[] = {

 { .compatible = "rockchip,hall-dc", },

 {},

};

#endif

static struct platform_driver motor_dev_driver = {

 .driver = {

 .name = DRIVER_NAME,

 .owner = THIS_MODULE,

 .of_match_table = of_match_ptr(motor_dev_of_match),

 },

 .probe = motor_dev_probe,

 .remove = motor_dev_remove,

};

module_platform_driver(motor_dev_driver);

struct v4l2_subdev_core_ops {

 ……

 long (*ioctl)(struct v4l2_subdev *sd, unsigned int cmd, void *arg);

#ifdef CONFIG_COMPAT

 long (*compat_ioctl32)(struct v4l2_subdev *sd, unsigned int cmd,

 unsigned long arg);

#endif

 ……

};

af://n2830

Member name Description

.ioctl
called at the end of ioctl() syscall handler at the V4L2 core.used to
provide support for private ioctls used on the driver.

.compat_ioctl32
called when a 32 bits application uses a 64 bits Kernel, in order to fix
data passed from/to userspace.in order to fix data passed from/to
userspace.

Member
name

Description

.s_ctrl
Actually set the new control value. s_ctrl is compulsory. The ctrl->handler->lock
is held when these ops are called, so no one else can access controls owned by
that handler.

[Example]

struct v4l2_ctrl_ops

[Description]

The control operations that the driver has to provide.

[Definition]

[Key Member]

[Example]

API brief description

xxxx_set_ctrl

[description]

Call the standard v4l2_control iris position, the DC iris actually cannot know the specific position
of the iris, the value set here is the duty ratio of pwm.

The following v4l2 standard commands are implemented:

static const struct v4l2_subdev_core_ops motor_core_ops = {

 .ioctl = motor_ioctl,

};

static const struct v4l2_subdev_ops motor_subdev_ops = {

 .core = &motor_core_ops,

};

struct v4l2_ctrl_ops {

 int (*s_ctrl)(struct v4l2_ctrl *ctrl);

};

static const struct v4l2_ctrl_ops motor_ctrl_ops = {

 .s_ctrl = motor_s_ctrl,

};

af://n2848
af://n2863
af://n2864

Parameter name Description

V4L2_CID_IRIS_ABSOLUTE Set the duty cycle of pwm that controls the iris, range (0~100)

Parameter name Description Input and output

*ctrl v4l2 control structure pointer input

Return value Description

0 Success

Not 0 Failed

Parameter name Description Input and output

*sd v4l2 subdev structure pointer input

cmd ioctl command input

*arg/arg Parameter pointer Output

Return value Description

0 Success

Not 0 Failed

[grammar]

[parameter]

[return value]

xxxx_ioctl xxxx_compat_ioctl

[description]

Currently, there is no private definition to be implemented, and v4l2 framework registration is
required to implement empty functions.

[grammar]

[parameter]

[return value]

static int xxxx_set_ctrl(struct v4l2_ctrl *ctrl)

static int xxxx_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)

static long xxxx_compat_ioctl32(struct v4l2_subdev *sd, unsigned int cmd,

unsigned long arg)

af://n2898

Drive migration steps

Driver reference: /kernel/drivers/media/i2c/hall-dc-motor.c

The migration steps are as follows:

1. Implement the standard platform sub-device driver part.

1.1 According to the description of struct platform_driver, the following parts are mainly
realized:

struct driver.name

struct driver. of_match_table

probe function

remove function

1.2 Detailed description of the probe function implementation:

1. Device resource acquisition, mainly to obtain DTS resources, refer to DC-IRIS Device
Registration (DTS);

1.1) RK private resource definition, naming methods such as rockchip, camera-module-xxx, mainly
to provide equipment parameters and Camera equipment to match.

To

1.2) To obtain pwm resources, pay attention to whether the pwm node is enabled.

2. Initialization of v4l2 device and media entity.

v4l2 sub-device: v4l2_i2c_subdev_init, the driver requires subdev to have its own device node for
user mode rkaiq to access, and realize the control of the motor through this device node;

media entity: media_entity_init;

3. Flash device name:

2. Implement the v4l2 sub-device driver, which mainly implements the following 2
members:

2.1 Refer to v4l2_subdev_core_ops to explain the implementation of the callback function, which
mainly implements the following callback functions:

The callback currently does not need to implement specific commands, but as a sub-device of
v4l2, the operation function must be implemented, so an empty function is implemented here.

snprintf(sd->name, sizeof(sd->name), "m%02d_%s_%s",

 motor->module_index, facing,

 DRIVER_NAME);

struct v4l2_subdev_core_ops

struct v4l2_ctrl_ops

ioctl

.compat_ioctl32

af://n2934

Member name Description

V4L2_CID_IRIS_ABSOLUTE Set the duty cycle of pwm that controls the iris, range (0~100)

2.2 Refer to the description of v4l2_ctrl_ops to implement the callback function, which mainly
implements the following callback functions:

.g_volatile_ctrl.s_ctrl

.g_volatile_ctrl and .s_ctrl implement the following commands with standard v4l2 control:

RK-IRCUT driver
The IRCUT is controlled by two wires. A 3.5v~6v power supply is applied to the two wires. The
IRCUT can be switched by reversing the positive and negative poles of the IRCUT power supply
and meeting the power-on time of 100ms±10%. The driver controls the current output direction
of the motor driver through two gpio. The gpio commands are open (red line) and close (black
line). The current flows from open to close, which is the infrared cut filter, working during the day;
the current flows from close to open, which is a white glass sheet and works at night.

RK-IRCUT Device Registration (DTS)

Brief description of data type

struct platform_driver

[Description]

Define platform device driver information

[Definition]

cam_ircut0: cam_ircut {

 status = "okay";

 compatible = "rockchip,ircut";

 ircut-open-gpios = <&gpio2 RK_PA7 GPIO_ACTIVE_HIGH>;

 ircut-close-gpios = <&gpio2 RK_PA6 GPIO_ACTIVE_HIGH>;

 rockchip,camera-module-index = <1>;

 rockchip,camera-module-facing = "front";

};

&i2c1 {

 imx334: imx334@1a {

 ...

 ir-cut = <&cam_ircut0>;

 ...

 }

}

af://n2973
af://n2975
af://n2977
af://n2978

Member
name

Description

@driver

struct device_driver driver mainly contains the name of the driver and
of_match_table for matching with DTS registered devices. When the
compatible field in of_match_table matches the compatible field in the dts file,
the .probe function will be called

@id_table
If the kernel does not use of_match_table and dts registered equipment for
matching, the kernel uses the table for matching

@probe Callback for device binding

@remove Callback for device unbinding

[Key Member]

[Example]

struct platform_driver {

 int (*probe)(struct platform_device *);

 int (*remove)(struct platform_device *);

 void (*shutdown)(struct platform_device *);

 int (*suspend)(struct platform_device *, pm_message_t state);

 int (*resume)(struct platform_device *);

 struct device_driver driver;

 const struct platform_device_id *id_table;

 bool prevent_deferred_probe;

};

#if defined(CONFIG_OF)

static const struct of_device_id ircut_of_match[] = {

 { .compatible = "rockchip,ircut", },

 {},

};

#endif

static struct platform_driver ircut_driver = {

 .driver = {

 .name = RK_IRCUT_NAME,

 .of_match_table = of_match_ptr(ircut_of_match),

 },

 .probe = ircut_probe,

 .remove = ircut_drv_remove,

};

module_platform_driver(ircut_driver);

Member name Description

.ioctl
called at the end of ioctl() syscall handler at the V4L2 core.used to
provide support for private ioctls used on the driver.

.compat_ioctl32
called when a 32 bits application uses a 64 bits Kernel, in order to fix
data passed from/to userspace.in order to fix data passed from/to
userspace.

struct v4l2_subdev_core_ops

[Description]

Define core ops callbacks for subdevs.

[Definition]

[Key Member]

[Example]

struct v4l2_ctrl_ops

[Description]

The control operations that the driver has to provide.

[Definition]

[Key Member]

struct v4l2_subdev_core_ops {

 ……

 long (*ioctl)(struct v4l2_subdev *sd, unsigned int cmd, void *arg);

#ifdef CONFIG_COMPAT

 long (*compat_ioctl32)(struct v4l2_subdev *sd, unsigned int cmd,

 unsigned long arg);

#endif

 ……

};

static const struct v4l2_subdev_core_ops ircut_core_ops = {

 .ioctl = ircut_ioctl,

};

static const struct v4l2_subdev_ops ircut_subdev_ops = {

 .core = &ircut_core_ops,

};

struct v4l2_ctrl_ops {

 int (*s_ctrl)(struct v4l2_ctrl *ctrl);

};

af://n3003
af://n3021

Member
name

Description

.s_ctrl
Actually set the new control value. s_ctrl is compulsory. The ctrl->handler->lock
is held when these ops are called, so no one else can access controls owned by
that handler.

Parameter name Description

V4L2_CID_BAND_STOP_FILTER
0 is CLOSE state, infrared light can enter;

3 is OPEN state, infrared light cannot enter;

Parameter name Description Input and output

*ctrl v4l2 control structure pointer input

Return value Description

0 Success

Not 0 Failed

[Example]

API brief description

xxxx_set_ctrl

[description]

Call standard v4l2_control to switch IRCUT.

The following v4l2 standard commands are implemented:

[grammar]

[parameter]

[return value]

xxxx_ioctl xxxx_compat_ioctl

[description]

Currently, there is no private definition to be implemented, and v4l2 framework registration is
required to implement empty functions.

static const struct v4l2_ctrl_ops ircut_ctrl_ops = {

 .s_ctrl = ircut_s_ctrl,

};

static int xxxx_set_ctrl(struct v4l2_ctrl *ctrl)

af://n3036
af://n3037
af://n3072

Parameter name Description Input and output

*sd v4l2 subdev structure pointer input

cmd ioctl command input

*arg/arg Parameter pointer Output

Return value Description

0 Success

Not 0 Failed

[grammar]

[parameter]

[return value]

Drive migration steps

Driver reference: /kernel/drivers/media/i2c/rk_ircut.c

The migration steps are as follows:

1. Implement the standard platform sub-device driver part.

1.1 According to the description of struct platform_driver, the following parts are mainly
realized:

struct driver.name

struct driver. of_match_table

probe function

remove function

1.2 Detailed description of the probe function implementation:

1. Equipment resource acquisition, mainly to obtain DTS resources, refer to RK-IRCUT
Equipment Registration (DTS);

 1.1) RK private resource definition, naming methods such as rockchip, camera-module-xxx,
mainly to provide equipment parameters and Camera equipment to match.

 1.2) Get open and close gpio resources;

2. init_completion, the synchronization mechanism is realized through completion. Since it
takes about 100ms to switch the IRCUT, the completion synchronization mechanism is

static int xxxx_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)

static long xxxx_compat_ioctl32(struct v4l2_subdev *sd, unsigned int cmd,

unsigned long arg)

af://n3108

Member name Description

V4L2_CID_BAND_STOP_FILTER
0 is CLOSE state, infrared light can enter;

3 is OPEN state, infrared light cannot enter;

required to ensure that the last IRCUT switch has been completed before the operation can
be performed again;

3. Create a work queue and place the switching operation on the work queue to avoid long-
term blocking;

4. Initialization of v4l2 device and media entity.

v4l2 sub-device: v4l2_i2c_subdev_init, the driver requires subdev to have its own device node for
user-mode rkaiq to access, and control IRCUT through this device node;

media entity: media_entity_init;

5. Device name:

2. Implement the v4l2 sub-device driver, which mainly implements the following 2
members:

2.1 Refer to v4l2_subdev_core_ops to explain the implementation of the callback function, which
mainly implements the following callback functions:

This callback currently does not need to implement private commands, but v4l2 framework
registration requires it, so an empty function is implemented, and the content of the function can
be supplemented according to needs in the future.

2.2 Refer to the description of v4l2_ctrl_ops to implement the callback function, which mainly
implements the following callback functions:

.s_ctrl

.s_ctrl implements the following commands with standard v4l2 control:

media-ctl v4l2-ctl tool

sd->entity.function = MEDIA_ENT_F_LENS;

sd->entity.flags = 1;//flag is fixed to 1, used to distinguish other sub-devices

of MEDIA_ENT_F_LENS type

snprintf(sd->name, sizeof(sd->name), "m%02d_%s_%s",

 ircut->module_index, facing,

 RK_IRCUT_NAME);

struct v4l2_subdev_core_ops

struct v4l2_ctrl_ops

.ioctl

.compat_ioctl32

af://n3153

The media-ctl tool operates through media devices such as /dev/medio0. It manages the format,
size, and link of each node in the Media topology.

The v4l2-ctl tool is for video devices such as /dev/video0 and /dev/video1. It performs a series of
operations such as set_fmt, reqbuf, qbuf, dqbuf, stream_on, stream_off, etc. on the video device.

For specific usage, please refer to the help information of the command. The following are some
common usages.

1. Print topology

Note: There are many device nodes in isp2, and media0/media1/media2 nodes may exist. You
need to enumerate and view device information one by one.

2. Link

Note: Disconnect the path of ispp, link to main_path, grab the raw image from main_path, media-
ctl does not add -d to specify the device, the default is /dev/media0 device, you need to confirm
which device rkisp-isp-subdev is hung on On the node, it is usually /dev/media1.

3. Modify fmt/size

Note: You need to confirm which media device the camera device node (ov5695 7-0036) is
mounted on.

4. Set fmt and grab the frame

5. Set exposure, gain and other controls

 Note: The isp driver will call the control command of the camera sub-device, so the specified
device as video3 (main_path or self_path) can be set to exposure, vicap will not call the control
command of the camera sub-device, and setting the control command directly on the acquisition
node will fail. The correct way is to find the camera device node is /dev/v4l-subdevX and directly
configure the terminal node.

media-ctl -p -d /dev/media0

media-ctl -l'"rkisp-isp-subdev":2->"rkisp-bridge-ispp":0[0]'

media-ctl -l'"rkisp-isp-subdev":2->"rkisp_mainpath":0[1]'

media-ctl -d /dev/media0 \

--set-v4l2'"ov5695 7-0036":0[fmt:SBGGR10_1X10/640x480]'

v4l2-ctl -d /dev/video0 \

--set-fmt-video=width=720,height=480,pixelformat=NV12 \

--stream-mmap=3 \

--stream-skip=3 \

--stream-to=/tmp/cif.out \

--stream-count=1 \

--stream-poll

v4l2-ctl -d /dev/video3 --set-ctrl'exposure=1216,analogue_gain=10'

af://n3182

RV1109/RV1126 Memory Optimization Guide
MIPI -> DDR_1 -> ISP -> DDR_2 -> ISPP(TNR) -> DDR_3 -> ISPP(NR&Sharp) -> DDR_4 -> ISPP(FEC) ->
DDR_5

1. DDR_1: Vicap raw data is written to ddr, or isp mipi raw data is written to ddr, and isp reads
raw data from ddr for processing

Occupied memory: buf_cnt * buf_size * N, (N = 1: linear mode, 2: hdr2 frame mode 3: hdr3 frame
mode).

buf_size: ALIGN(width * bpp / 8, 256) * height; //bpp is the bit width, raw8 raw10 or raw12

buf_cnt: 4 by default, define the aiq library code hwi/isp20/CamHwIsp20.h, 3 at least.

#define ISP_TX_BUF_NUM 4

#define VIPCAP_TX_BUF_NUM 4

2. DDR_2: isp fbc yuv420 and gain data are written to ddr, and ispp reads from ddr for
processing

Occupied memory: buf_size * buf_cnt

buf_size: ALIGN(width, 64) * ALIGN(height, 128) / 16 + ALIGN(width, 16) * ALIGN(hieght, 16) *
1.5625

buf_cnt: 4 bufs in tnr 3to1 mode, 3 bufs in 2to1 mode, the mode is configured in iq xml

3. DDR_3: ispp tnr fbc yuv420 and gain data written to ddr, ispp NR&Sharp reads and processes
from ddr again

Occupied memory: buf_size * buf_cnt

buf_size: ALIGN(width, 64) * ALIGN(height, 128) / 16 + ALIGN(width, 16) * ALIGN(hieght, 16) *
1.5625

buf_cnt: 2, which is the smallest

4. DDR_4: ispp NR&Sharp yuyv data is written to ddr, and ispp fec is read from ddr for
processing

Occupied memory: buf_size * buf_cnt (fec function does not open and does not occupy memory)

buf_size: width * height * 2

buf_cnt: 2, which is the smallest

5. DDR_5: ispp 4-channel output image buffer, the buffer size is calculated according to the
resolution, format and buf_cnt set by the user

The above buf_cnt is where the memory can be optimally configured

af://n3182

isp cma memory reserved size, can configure more memory and get the actual size after camera
app running.

RV1109/RV1126 Delay Optimization Guide
1、config vicap wait-line

config wait-line to vicap node on dts, such as height is 1520, and wait-line is 760, the buffer is
output to the isp in advance after half of the image is collected. Adjust the wait-line according to
the speed at which the isp reads the buffer.

&rkcif_mipi_lvds {

	 	 wait-line = <760>;

};

It can also be configured by the following command, which supports dynamic configuration

Note: The wait-line configuration is too small, the isp accesses the buffer memory too early, and
some data has not yet been collected. The part of the buffer that has not collected data is
buffered by the previous image. When the screen changes drastically, the end of the image will be
abnormal, showing a split state. You need to select the appropriate wait-line based on the actual
test.

2、config isp wait-line

config wait-line to isp node on dts, such as height is 1520, and wait-line is 760, that the image is
processed to line 760 output to ispp. Adjust the wait-line according to the ISP processing time
and ISPP processing time.

isp_reserved: isp {

 compatible = "shared-dma-pool";

 inactive;

 reusable;

 size = <0x10000000>;//256M and need 4M align

};

enable cma debug

+++ b/arch/arm/configs/rv1126_defconfig

@@ -62,6 +62,8 @@ CONFIG_IOSCHED_BFQ=y

 CONFIG_KSM=y

 CONFIG_DEFAULT_MMAP_MIN_ADDR=32768

 CONFIG_CMA=y

+CONFIG_CMA_DEBUG=y

+CONFIG_CMA_DEBUGFS=y

one page is 4K, 26091 page is 104364K and need 4M align, so config 104M to

isp_reserved

[root@RV1126_RV1109:/sys/kernel/debug/cma/cma-isp@0]# ls

alloc base_pfn bitmap count free maxchunk order_per_bit used

[root@RV1126_RV1109:/sys/kernel/debug/cma/cma-isp@0]# cat used

26091

echo 1000 > /sys/devices/platform/rkcif_mipi_lvds/wait_line

af://n3221

&rkisp_vir0 {

	 	 wait-line = <760>;

};

Also config /sys/module/video_rkisp/parameters/wait_line to debug，config it before isp video
open。

NOTE: The wait-line configuration is too small, and ISPP processing speed is faster than ISP, due
to the use of FBC compression format, hold situation occurs. Motion function and multi-sensor
not support this.

3、config ispp wait-line for four streams output

config wait-line to ispp node on dts, such as height is 1520, and wait-line is 896, that the image is
processed to line 896 output to the backend. Adjust the wait-line according to the ISPP
processing time (nr or fec) and the backend processing time.

&rkispp_vir0 {

 status = "okay";

 wait-line = <896>;

};

Also config /sys/module/video_rkispp/parameters/wait_line to debug，config it before ispp video
open。

Note: The wait-line configuration is too small, and the back-end processing speed is faster than
ISPP, the back-end image processing will be abnormal. The multi-sensor not supported.

4、Improve hardware processing speed

1）Improve isp/ispp clk

 drivers/media/platform/rockchip/isp/hw.c

 static const struct isp_clk_info rv1126_isp_clk_rate[] = {

 {

 .clk_rate = 20,

 .refer_data = 0,

 }, {

 .clk_rate = 600,

 .refer_data = 1920, //width

 }, {

 .clk_rate = 600,

 .refer_data = 2688,

 }, {

 .clk_rate = 600,

 .refer_data = 3072,

 }, {

 .clk_rate = 600,

 .refer_data = 3840,

 }

 };

 drivers/media/platform/rockchip/ispp/hw.c

 static const struct ispp_clk_info rv1126_ispp_clk_rate[] = {

 {

 .clk_rate = 150,

 .refer_data = 0,

 }, {

 .clk_rate = 500,

 .refer_data = 1920 //width

 }, {

 .clk_rate = 500,

 .refer_data = 2688,

 }, {

 .clk_rate = 500,

 .refer_data = 3072,

 }, {

 .clk_rate = 500,

 .refer_data = 3840,

 }

 };

2）Disable iommu and using memory reserved

 &rkisp_mmu {

 status = "disabled";

 };

 &rkisp {

 memory-region = <&isp_reserved>;

 };

 &rkispp_mmu {

 status = "disabled";

 };

 &rkispp {

 memory-region = <&isp_reserved>;

 };

FAQ

How to get the driver version number

Obtained from the kernel startup log

Obtained by

rkisp ffb50000.rkisp: rkisp driver version: v00.01.00

rkispp ffb60000.rkispp: rkispp driver version: v00.01.00

cat /sys/module/video_rkisp/parameters/version

cat /sys/module/video_rkispp/parameters/version

af://n3261
af://n3262

How to judge the RKISP driver loading status

If the RKISP driver is successfully loaded, video and media devices will exist in the /dev/ directory.
There may be multiple /dev/video devices in the system, and the video node registered by RKISP
can be queried through /sys.

You can also use the media-ctl command to print the topology to check whether the pipeline is
normal.

Determine whether the camera driver is loaded successfully. When all cameras are registered, the
kernel will print out the following log.

If you find that the kernel does not have the Async subdev notifier completed line of log, please
first check whether the sensor has related errors and whether the I2C communication is
successful.

How to capture RAW and YUV data output by CIS

After the driver development is completed, you can directly operate the driver through the
standard v4l2-ctl command to obtain the output data of the CIS. You can refer to the v4l2-ctl
usage help：https://www.mankier.com/1/v4l2-ctl

Example：

-d：Specify the device name

--set-fmt-video：Set the resolution, which must be consistent with the output resolution of the
sensor. The current resolution of the sensor can be viewed through media-ctl -p -d /dev/mediaX.

pixelformat：Output data format,such as BG12、NV12.

--stream-mmap：mmap buffer number.

--stream-count：The number of captured frames, multiple frames also exist in the same file.

--stream-to：Specify the storage path.

--stream-skip：The number of frames skipped.

List of equipment support

RV1109/RV1126

localhost ~ # grep'' /sys/class/video4linux/video*/name

localhost ~ # dmesg | grep Async

[0.682982] RKISP: Async subdev notifier completed

v4l2-ctl -d /dev/video0 --set-fmt-video=width=1920,height=1080,pixelformat=RG10

--stream-mmap=4 --stream-count=1 --stream-to=/tmp/cap.raw --stream-skip=2

af://n3267
af://n3274
https://www.mankier.com/1/v4l2-ctl
af://n3286
af://n3287

device interface format
Device node
name

Output Raw
Output
YUV

VICAP DVP RAW video0~video3
Non-compact
Raw

no

VICAP MIPI/LVDS RAW video0~video3
Non-compact
Raw

Compact Raw

no

VICAP
DVP / MIPI /

LVDS
YUV video0~video3 no

nv12

nv16

ISP
DVP / MIPI /

LVDS
RAW

rkisp_rawwr0

rkisp_rawwr1

rkisp_rawwr2

rkisp_rawwr3

Non-compact
Raw

Compact Raw

no

ISP MIPI / LVDS YUV rkisp_mainpath
Non-compact
Raw

nv12

nv16

ISPP Read ddr only YUV

rkispp_m_bypass

rkispp_scale0
rkispp_scale1
rkispp_scale2

no
nv12

nv16

device interface format
Device node
name

Output Raw
Output
YUV

VICAP DVP RAW video0~video3
Non-compact
Raw

no

VICAP MIPI/LVDS RAW video0~video3
Non-compact
Raw

Compact Raw

no

VICAP
DVP / MIPI /

LVDS
YUV video0~video3 no

nv12

nv16

ISP
DVP / MIPI /

LVDS
RAW

rkisp_rawwr0

rkisp_rawwr1

rkisp_rawwr2

rkisp_rawwr3

Non-compact
Raw

Compact Raw

no

ISP MIPI / LVDS YUV rkisp_mainpath
Non-compact
Raw

nv12

nv16

RK356X

Note:

1. Device node name query command: media-ctl -p -d /dev/mediaX (X refers to 0, 1, 2, 3...)

af://n3338

Raw data storage format

Non-compact storage format RAW

Non-compact type refers to storing raw10 and raw12 data output by the sensor in 16 bits, aligned
with high bits. Regarding the storage arrangement of raw12 data in the memory, taking a 4-byte
memory segment as an example, the data storage method is as follows:

Compact storage format RAW

Regarding the storage arrangement of raw12 data in the memory, taking a 4-byte memory
segment as an example, the data storage method is as follows:

Important reminder：

	 ISP mainpath device, when the input data is Raw10, Raw12, the unified output is the non-
compact storage format RAW of Raw12

Reference use case：

VICAP output Raw

1、The default value is compact. You can switch between compact and non-compact formats by
using the following commands:：

Among them, 0 means non-compact type, 1 means compact type; for devices that use multiple
channels at the same time, the command can be modified to：

the numbers after echo correspond to the data storage types of channels vc0, vc1, vc2, and vc3 in
turn.

2、 video0~3 correspond to vc0~vc3.

3、v4l2-ctl command

 echo 0 > /sys/devices/platform/rkcif_mipi_lvds/compact_test

 echo 0 0 0 0 > /sys/devices/platform/rkcif_mipi_lvds/compact_test

v4l2-ctl -d /dev/video0 --set-fmt-video=width=1920,height=1080,pixelformat=RG10

--stream-mmap=4 --stream-count=1 --stream-to=/tmp/cap.raw --stream-skip=2

af://n3386
af://n3387
af://n3390
af://n3395
af://n3396

ISP maipath output non-compact Raw

1、You need to capture the image of the mainpath. The default output link of the isp is rkisp-
bridge-ispp. You need to switch to the mainpath according to the following command：

	 	 	 Note: If -d is not used, the media0 node is used by default. If rkisp-isp-subdev is not in
media0, you need to specify -d to the media node where it is located.

	 	 	 	 	 The 0 behind "rkisp-bridge-ispp" means pad0, sink, and detailed instructions to consult
v4l2 related documents.

2、isp output format默认是YUYV8_2X8，使用如下命令切换到bayer raw格式：	 	

	 	 	 Note: The rkisp-isp-subdev node is not necessarily in media0, -d specifies the device, you
need to confirm which media node rkisp-isp-subdev is in.

	 	 	 	 	 The 2 behind "rkisp-isp-subdev" means pad2, source, for detailed instructions, please
refer to v4l2 related documents.

	 	 	 	 	 After the modification, you must use media-ctl -p -d /dev/mediaX (X=0,1,2,...) to check
whether the modification takes effect, and the raw data captured after it takes effect is the
original raw data.

3、v4l2-ctl command

VICAP output YUV：

Only the input data is in YUV format. If the input is in RAW format, vicap cannot output YUV
format.

ISP output YUV：

Note:

 media-ctl -l '"rkisp-isp-subdev":2->"rkisp-bridge-ispp":0[0]'

 media-ctl -l '"rkisp-isp-subdev":2->"rkisp_mainpath":0[1]'

 media-ctl -d /dev/media0 --set-v4l2 '"rkisp-isp-

subdev":2[fmt:SBGGR12_1X12/2688x1520]'

v4l2-ctl -d /dev/video0 --set-fmt-video=width=1920,height=1080,pixelformat=RG10

--stream-mmap=4 --stream-count=1 --stream-to=/tmp/cap.raw --stream-skip=2

v4l2-ctl -d /dev/video0 --set-fmt-video=width=1920,height=1080,pixelformat=NV12

--stream-mmap=4 --stream-count=1 --stream-to=/tmp/cap.raw --stream-skip=2

v4l2-ctl -d /dev/video5 --set-fmt-video=width=1920,height=1080,pixelformat=NV12

--stream-mmap=4 --stream-count=1 --stream-to=/tmp/cap.raw --stream-skip=2

af://n3406
af://n3419
af://n3423

rkispp_m_bypass Full resolution and yuv format

rkispp_scale0
Full or scale resolution and yuv formatScale range:[1 8] ratio, 3264
max width

rkispp_scale1
Full or scale resolution and yuv formatScale range:[2 8] ratio, 1280
max width

rkispp_scale2
Full or scale resolution and yuv formatScale range:[2 8] ratio, 1280
max width

ISPP output YUV：

The ispp input data source rkisp-bridge-ispp；

rkisp_mainpath, rkisp_selfpath and rkispp_input_image link need to be closed.

rkisp-isp-subdev pad2: Source format must be fmt:YUYV8_2X8,

isp is linked to ispp by default, the reference command is as follows,

Note: The -d device name can select the following nodes according to the requirements of the
screenshot, and the corresponding node names can be viewed through media-ctl -p -d
/dev/mediaX.

How to switch CIS driver output resolution

	 1、For the sensor driver that supports multiple resolutions, when you need to capture the raw
data of another resolution, you can switch the resolution currently used by the sensor with the
following command：

1. For isp, you can grab mainpath or selfpath, video5 is just an example, please

set according to actual parameters.

2. When the ISP input data is Raw, the ISP can convert the Raw data into YUV

data, which also includes various image processing operations. Such image

processing operations require RK AIQ to control the various image processing

modules of the ISP. The current commands are only In the data flow part, the

image processing module parameters adopt the driver default values, and the image

effect is generally in an abnormal state.

media-ctl -l '"rkisp-isp-subdev":2->"rkisp_mainpath":0[0]'

media-ctl -l '"rkisp-isp-subdev":2->"rkisp_selfpath":0[0]'

media-ctl -l '"rkisp-isp-subdev":2->"rkisp-bridge-ispp":0[1]'

media-ctl -d /dev/media1 -l '"rkispp_input_image":0->"rkispp-subdev":0[1]'

v4l2-ctl -d /dev/video13 \

--set-fmt-video=width=2688,height=1520,pixelformat=NV12 \

--stream-mmap=3 --stream-to=/tmp/nv12.out --stream-count=20 --stram-poll

af://n3427
af://n3447

Note: m01_f_os04a10 1-0036-1 is the name of the sensor node, followed by the required format,
provided that the format configuration is supported in the sensor driver

	 2、For vicap, you only need to set the sensor node, and for the isp, you also need to set the
input and output format of the isp. The reference command is as follows:

How to set the exposure parameters of CIS

	 1、Find the sensor node name through media-ctl -p -d /dev/mediaX, the format of the node
name is /dev/v4l-subdevX, the reference command is as follows：

Can also be set separately：

2、The maximum exposure is limited by sensor vts. The maximum limit may be vts-4 or vts-10.
Different sensors are restricted according to the sensor manual. Assuming that the current frame
rate is 30fps and the maximum exposure time is 33.3ms, if you want to set the exposure of 40ms,
you have to increase the vts to set the exposure of 40ms. It can be converted proportionally,
vts_30fps * 30fps = vts_25fps * 25fps, so as to convert the corresponding 25fps vts, (vts-height) is
vblank, set the converted vblank to the sensor driver to set a larger exposure, the command
reference is as follows：

vts is the frame length, including valid lines and blanking lines

How to support black and white cameras

The CIS driver needs to change the output format of the black and white sensor to one of the
following three formats.

media-ctl -d /dev/media0 --set-v4l2 '"m01_f_os04a10 1-0036-

1":0[fmt:SBGGR12_1X12/2688x1520]'

media-ctl -d /dev/media0 --set-v4l2 '"rkisp-isp-

subdev":0[fmt:SBGGR12_1X12/2688x1520]'

media-ctl -d /dev/media0 --set-v4l2 '"rkisp-isp-subdev":0[crop:(0,0)/2688x1520]'

media-ctl -d /dev/media0 --set-v4l2 '"rkisp-isp-

subdev":2[fmt:SBGGR12_1X12/2688x1520]'

media-ctl -d /dev/media0 --set-v4l2 '"rkisp-isp-subdev":2[crop:(0,0)/2688x1520]'

v4l2-ctl -d /dev/v4l-subdev4 --set-ctrl 'exposure=1216,analogue_gain=10'

v4l2-ctl -d /dev/v4l-subdev4 --set-ctrl exposure=1216

v4l2-ctl -d /dev/v4l-subdev4 --set-ctrl analogue_gain=10

v4l2-ctl -d /dev/v4l-subdev4 --set-ctrl vertical_blanking=200

MEDIA_BUS_FMT_Y8_1X8 (sensor 8bit output)

MEDIA_BUS_FMT_Y10_1X10 (sensor 10bit output)

MEDIA_BUS_FMT_Y12_1X12 (sensor 12bit output)

af://n3453
af://n3462

That is, the above format is returned in the functions xxxx_get_fmt and xxxx_enum_mbus_code.

RKISP driver will make special settings for these three formats to support the acquisition of black
and white images.

In addition, if the application layer needs to obtain images in Y8 format, SP Path can only be used,
because only SP Path can support Y8 format output.

How to support odd and even field synthesis

RKISP driver supports odd and even field synthesis function, restriction requirements:

1. MIPI interface: Support output frame count number (from frame start and frame end short
packets), RKISP driver uses this to judge the parity of the current field;

2. BT656 interface: support the output standard SAV/EAV, that is, bit6 is the odd and even field
flag information, and the RKISP driver uses this to determine the parity of the current field;

3. The RKISP1_selfpath video device node in the RKISP driver has this function, but other video
device nodes do not have this function. If the app layer calls other device nodes by mistake,
the driver prompts the following error message:

"Only selfpath support interlaced"

RKISP_selfpath information can be viewed with media-ctl -p:

The device driver is implemented as follows:

The device driver format.field needs to be set to V4L2_FIELD_INTERLACED, which means that the
output format of the current device is an odd and even field, that is, the format.field format is
returned in the function xxxx_get_fmt. Can refer to driver/media/i2c/tc35874x.c driver;

How to view debug information

1. Check the media pipeline information, this corresponds to the dts camera configuration

2. View the proc information, this is the pre-isp/ispp single state and frame input and output
information, you can cat several times

3. View the driver debug information, set the debug level to isp and ispp nodes, the larger the
level value, the more information

entity 3: rkisp_selfpath (1 pad, 1 link)

 type Node subtype V4L flags 0

 device node name /dev/video1

 pad0: Sink

 <- "rkisp-isp-subdev":2 [ENABLED]

media-ctl -p -d /dev/mediaX (X = 0, 1, 2 ..)

cat /proc/rkisp*

echo n> /sys/module/video_rkisp/parameters/debug (n = 0, 1, 2, 3; 0 is off)

echo n> /sys/module/video_rkispp/parameters/debug

echo 8 > /proc/sys/kernel/printk

af://n3469
af://n3483

4. Check the register information and pull out reg file

For RV1109/RV1126

For RK3566/RK3568

5. Steps to provide debug information

1. Problem site 1->2->4->3
2. Reproduce the problem 3->Start->Reproduce->1->2->4

6, proc information description

io -4 -l 0x10000 0xffb50000> /tmp/isp.reg

io -4 -l 0x1000 0xffb60000> /tmp/ispp.reg

io -4 -l 0x10000 0xfdff0000> /tmp/isp.reg

[root@RV1126_RV1109:/]# cat /proc/rkisp*

rkisp-vir0 Version:v01.06.00

clk_isp 400000000

aclk_isp 500000000

hclk_isp 250000000

Interrupt Cnt:7521 ErrCnt:0

Input rkcif_mipi_lvds Format:SBGGR10_1X10 Size:2688x1520@30fps Offset(0,0)

Isp Read mode:frame2 (frame:1522 rate:33ms idle time:10ms) cnt(total:1522

X1:1503 X2:18 X3:-1)

Output rkispp0 Format:FBC420 Size:2688x1520 (frame:1522 rate:32ms)

DPCC0 ON(0x5)

DPCC1 ON(0x5)

DPCC2 ON(0x5)

BLS ON(0x1)

SDG OFF(0x80446197)

LSC ON(0x1)

AWBGAIN ON(0x80446197) (gain: 0x01110111, 0x028a0202)

DEBAYER ON(0x7000111)

CCM ON(0x80000001)

GAMMA_OUT ON(0x80000001)

CPROC ON(0xf)

IE OFF(0x0) (effect: BLACKWHITE)

WDR OFF(0x30cf0)

HDRTMO ON(0xa4f05a27)

HDRMGE ON(0x80000005)

RAWNR ON(0x80100001)

GIC OFF(0x0)

DHAZ ON(0x80101119)

3DLUT OFF(0x2)

GAIN ON(0x80010111)

LDCH OFF(0x0)

CSM FULL(0x80446197)

SIAF OFF(0x0)

SIAWB OFF(0x0)

YUVAE ON(0x400100f3)

SIHST ON(0x38000107)

RAWAF ON(0x7)

RAWAWB ON(0x776887)

RAWAE0 ON(0x40000003)

clk_isp: isp clock frequency

Interrupt: Includes the mipi interrupt, the interrupt of each module in the isp, the data is
incremented, indicating that there is data into the isp, ErrCnt error interrupt statistics information

Input: Input source, input format, resolution and crop information

Isp read: mode: one or hdr2/3, frame: sequence number, rate: frame interval, idle/working: isp
work state, time: isp hardware working time, cnt: read back number of total, of one time, of two
times, of three times

Output: Output object, output format, resolution, frame: sequence number, rate: frame interval

Other: Switch status of each module of isp

Monitor: anomaly detection and reset

clk_ispp: ispp clock frequency

Interrupt: Processing interruption in ispp, data increment indicates that there is data entering
ispp, ErrCnt error interruption statistics

Input: Input source, input format, resolution, frame: sequence number, rate: frame interval,
delay: input frame time - mipi frame time

Output: Output object, output format, resolution, frame: sequence number, rate: frame interval,
delay: output frame time - mipi frame time, also relate to output frame buffer

RAWAE1 ON(0x400000f5)

RAWAE2 ON(0x400000f5)

RAWAE3 ON(0x400000f5)

RAWHIST0 ON(0x40000501)

RAWHIST1 ON(0x60000501)

RAWHIST2 ON(0x60000501)

RAWHIST3 ON(0x60000501)

Monitor OFF Cnt:0

[root@RV1126_RV1109:/]# cat /proc/rkisp*

rkispp-vir0 Version:v01.06.00

clk_ispp 350000000

aclk_ispp 500000000

hclk_ispp 250000000

Interrupt Cnt:79532 ErrCnt:0

Input rkisp0 Format:FBC420 Size:2688x1520 (frame:26510 rate:32ms

delay:13ms)

Output rkispp_m_bypass Format:NV12 Size:2688x1520 (frame:26509 rate:32ms

delay:30ms)

TNR ON(0xf00000f) (mode: 3to1) (global gain: disable) (frame:26510

time:8ms idle) CNT:0x0 STATE:0x1e000000

NR ON(0x57) (external gain: enable) (frame:26510 time:6ms working)

0x5f0:0x19 0x5f4:0x780f

SHARP ON(0x19) (YNR input filter: ON) (local ratio: OFF) 0x630:0x19

FEC OFF(0x2) (frame:0 time:0ms idle) 0xc90:0x0

ORB OFF(0x0)

Monitor ON Cnt:0

Other: Switch status of each module of ispp, frame: sequence number, time: module hardware
working time, idle/working: module work state

Monitor: anomaly detection and reset

Work Mode： After rv1109, ping pong is used by default, and ping pong mode is recommended.

Monitor Mode: Monitor mode. After the monitor mode is turned on, if mipi detects an
abnormality, reset the vicap.

Input Info: Summary of input information

	 	 src subdev: Input device, generally refers to sensor device, including camera orientation,
index number, device name, i2c bus, 7bit slave address and other information

	 	 interface: Data physical interface, mipi, lvds, dvp, etc.

	 	 vc channel: The vc channel actually used refers to the virtual channel of multi-channel
transmission on the mipi protocol.

	 	 hdr mode: The working mode of sensor is divided into normal, hdr_x2, hdr_x3.

	 	 format: Input data type

	 	 crop.bounds：The trimming parameters can be configured in the sensor driver
.get_selection, so as to appropriately trim the data of the input source.

Output Info: Summary of output information

[root@RV1126_RV1109:/]# cat /proc/rkcif_mipi_lvds

Driver Version:v00.01.0a

Work Mode:ping pong

Monitor Mode:idle

aclk_cif:500000000

hclk_cif:250000000

dclk_cif:297000000

Input Info:

 src subdev:m01_f_os04a10 1-0036-1

 interface:mipi csi2

 lanes:4

 vc channel: 0 1

 hdr mode: hdr_x2

 format:SBGGR10_1X10/2688x1520@30

 crop.bounds:(0, 0)/2688x1520

Output Info:

 format:BG10/2688x1520(0,0)

 compact:enable

 frame amount:264

 early:10 ms

 single readout:30 ms

 total readout:30 ms

 rate:33 ms

 fps:30

 irq statistics:

 total:515

 csi over flow:0

 csi bandwidth lack:0

 all err count:0

 frame dma end:515

	 	 format: Output data type

	 	 compact: The default compact output, please refer to the following chapters for related
definitions: How to capture RAW and YUV data output by CIS

	 	 frame amount:

	 	 early: In the wake up mode, after the wait_line line data is collected, the buffer is sent to the
isp for processing in advance. The default mode is to send the isp for processing after the
complete frame is collected. Early is the optimized time for the isp to be sent to the buffer before
the complete frame is collected. Wake up mode configuration instructions are in：
RV1109/RV1126 Delay Optimization Guide

	 	 single readout: In hdr mode, the transmission time of a single frame is the transmission
time of a long frame.

	 	 total readout: In hdr mode, the time difference between the start of long frame
transmission and the end of short frame transmission is the original transmission time of a
composite frame.

	 	 rate: Frame interval time。

	 	 fps: Frame rate。

	 	 irq statistics: Interrupt information

	 	 	 	 total: The total number of interrupts, including frame end and err

	 	 	 	 csi over flow: Number of interrupts for overflow

	 	 	 	 csi bandwidth lack: Number of interruptions of bandwidth lack

	 	 	 	 frame dma end: The number of frame end interrupts, this number of interrupts is equal
to the number of frames output by the sensor starting from stream start。

How to troubleshoot flicker issues

To investigate the cause of flicker, first confirm the source of flicker, which can be analyzed from
the AE log.

AE log printing is turned on as follows：

1、Terminal (serial port or adb shell) execution: export persist_camera_engine_log=0x1ff3

2、Run librkaiq.so in the same terminal in step 1, through rkisp_demo, RkLunch.sh and other
programs.

3、On the basis of steps 1 and 2, still unable to print out the AE log, maybe the default
compilation method does not compile the log in, please refer to the following modification:

czf@ISP:~/rk356x_sdk/external/camera_engine_rkaiq$ git diff

diff --git a/CMakeLists.txt b/CMakeLists.txt

index 46fba20..f5ea67f 100755

--- a/CMakeLists.txt

+++ b/CMakeLists.txt

@ -6,9 +6,9 @ if(NOT CMAKE_BUILD_TYPE)

FORCE)

endif()

http://how%20to%20capture%20raw%20and%20yuv%20data%20output%20by%20cis/
http://rv1109/RV1126%20Delay%20Optimization%20Guide
af://n3554

AE log contains information such as MeanLuma (brightness statistics), TmoMeanLuma (brightness
statistics after TMO), exposure parameters, etc. Through these parameter information, the cause
of flicker can be analyzed preliminarily.

Flicker analysis:

	 1. The flicker caused by TMO synthesis is as shown in the figure below. After the log is filtered,
you can clearly see the statistical values of the short frame and the medium frame (the statistical
value of the medium frame in the two-frame mode is the statistical value of the long frame) has
been stable, but the statistical value after TMO But there is a jump, indicating that the relevant
parameters of TMO are not applicable in some scenarios. At this step, you can refer to the
tunning guide document to adjust the parameters. If it still cannot be solved, please contact the
IQ engineer of RK for assistance.

	 2. The statistic value on raw is very stable, and the statistic value after TMO is also very stable,
but flickering can still be seen on the screen, indicating that there is a problem that caused
flickering in the subsequent modules of the isp. Please contact the RK engineer for further
analysis after troubleshooting. .

	 3. When flickering occurs when time and gain change at the same time, it indicates that there
may be a problem with the configuration of the effective time of time gain. Generally, the time of
the sensor is n+2 to take effect, and gain n+2, n+1 are more frequent. If you know the time, For
the gain effective frame, you can fill in the parameters in the iq file for testing. The following is the
xml version of the iq file description. The value 2 means that n+2 is effective, and n means that
the frame header of the nth frame will set the exposure parameters down. The json version
parameters are similar, please refer to the document configuration by yourself.

-if(NOT CMAKE_BUILD_TYPE STREQUAL "Release")

#if(NOT CMAKE_BUILD_TYPE STREQUAL "Release")

add_definitions(-DBUILD_TYPE_DEBUG)

-endif()

#endif()

<EXP_DELAY index="1" type="struct" size="[1 1]">

 <Normal index="1" type="struct" size="[1 1]">

 <time_delay index="1" type="double" size="[1 1]">

 [2]

 </time_delay>

 <gain_delay index="1" type="double" size="[1 1]">

 [2]

 </gain_delay>

 <dcg_delay index="1" type="double" size="[1 1]">

 [1]

 </dcg_delay>

 </Normal>

 <Hdr index="1" type="struct" size="[1 1]">

 <time_delay index="1" type="double" size="[1 1]">

If the effective frame cannot be determined, there is an AecSyncTest node in the AE module in the
iq file for testing. The principle of this module is two sets of exposure parameters, which are
switched back and forth at a certain number of frames. You can set the time of the two sets of
parameters to the same value, and set the gain to different values, and then analyze the
MeanLuma statistical value of the AE log and the corresponding time gain parameter value.

4. If the time is stable when flashing, and the gain value is called back, there may be a problem
with the conversion formula of gain, or the linearity of the sensor itself is relatively poor.

	 4.1 The conversion formula is related to sensor conversion instructions and driver writing. For
detailed instructions, please refer to Sensor Info Filling Guide. You can calculate the value
converted from the time gain on the AE log to the register, and compare it with the time gain
register value printed by the driver to see if the register value calculated by yourself is consistent
with the value calculated by the program. If it is inconsistent, you need to confirm the conversion
formula and driver. To see if there is a problem.

	 4.2 Linearity problem, you can confirm the linearity by grabbing the raw image and using the
image viewing tool to obtain image statistics.

	 	 	 4.2.1 Time linearity test:

	 	 	 	 a. Cover with frosted glass (it can be replaced by thin paper towels, the function is to
make the entire image light evenly in the linear region), fix the gain value to 1, respectively grab
10ms, 20ms, and 30ms raw maps to obtain statistical values (the statistical value of general
software is 8bit, range 0~255), record form

	 	 	 	 b. The lens is completely black, grab a raw image, the statistical value of this image is the
black level value. (Because the accuracy requirements are not high, the time gain value here is not
required. Don’t be too exaggerated. For example, the gain of the test is set at 1x, and the raw map
of the black level is set at 1000x. This will affect the statistical value, not advisable)

	 	 	 	 c. In the table, subtract the black level of step b from the statistical value recorded in step
a, and make a broken line graph of the statistical value of the subtracted black level and the
exposure time. If it is a straight line or close to a straight line, the linearity can be considered as
good.

	 	 	 Note：

	 	 	 1. There are supported_modes in the driver. There are vts_def (frame length in the default
configuration, including field blanking) and frame rate in the configuration table. The exposure
time can be easily converted through two parameters. Assuming that the frame rate is 30fps,
vts_def is 1200, and the frame interval is 1s/30fps=33.333ms, the exposure behavior
corresponding to 10ms is 10/33.333*1200=360 lines, and the exposure parameter settings refer
to How to set the exposure parameters of CIS

	 	 	 2. The statistical value of the raw image captured in step a must be greater than the black
level and less than 180

 [2]

 </time_delay>

 <gain_delay index="1" type="double" size="[1 1]">

 [2]

 </gain_delay>

 <dcg_delay index="1" type="double" size="[1 1]">

 [1]

 </dcg_delay>

 </Hdr>

</EXP_DELAY>

http://sensor%20info%20filling%20guide/
http://how%20to%20set%20the%20exposure%20parameters%20of%20cis/

	 	 	 4.2.2 Gain linearity

	 	 	 	 a. Cover the frosted glass and fix the time value to 10ms. Grab the raw graphs of gain
values such as 1x 2x 4x 8x to obtain the statistical values (the statistical value of general software
is 8bit, the range is 0~255), and record the table. If some gain values are under When the
statistical value of is not below 180, the time value can be adjusted and the test can be performed
in sections.

	 	 	 	 b. The lens is completely black, grab a raw image, the statistical value of this image is the
black level value.

	 	 	 	 c. In the table, subtract the black level of step b from the statistical value recorded in step
a, and make a line graph with the statistical value of the subtracted black level and the gain. If it is
a straight line or close to a straight line, the linearity can be considered as good.

	 	 	 	 Note：

	 	 	 	 	 1. The statistical value of the raw image captured in step a must be greater than the
black level and less than 180

	 	 	 	 	 2. If you suspect that there is a problem with the linearity of a certain gain value, you
can test the linearity of this section separately, and you do not need to test the linearity of the
complete gain interval.

5. In a high-bright environment, such as when the outdoor sunlight is strong, there may be
flickering. There may be a problem with the exposure value and the register conversion. For
example, the application layer thinks that 5 lines, through the register conversion, the actual
effect may be 4 lines. There is a row of brightness deviation, and the brightness deviation of
a row can easily lead to flicker in an outdoor strong light environment. It is necessary to
compare the description of the exposure calculation in the sensor manual to carefully check
whether the driver is implemented correctly.

How to troubleshoot the problem of purple overflow at the
light source

	 1. Linear mode

	 	 In the linear mode, the light source is purple. It is possible that the gain value of the sensor is
set to an illegal value, resulting in an abnormal image. It is necessary to check whether the gain
value register of the drive conversion meets the restriction conditions described in the sensor
manual.

	 2. HDR mode

	 	 In HDR mode, there are mainly the following two reasons:

	 	 2.1 The short-frame image offset causes the HDR synthesis to be misaligned. In this case, you
can see if there are mipi-related errors in the kernel log. If there is no mipi error, further confirm
whether there is any problem with the exposure parameters set to the sensor. HDR sensors
usually have more restrictions on long and short frame exposure. For these restrictions, please
refer to Sensor Info Filling Guide. Print out the register value written by the driver to the sensor,
and compare it with the restriction conditions described in the sensor manual to see if there is a
register value that does not meet the requirements.

	 	 2.2 The exposure parameter ratio of the long and short frames does not match the effective
ratio of the actual image. In this case, refer to 2.1 to confirm whether there is a problem with the
conversion of the exposure parameter. A more common problem is that most sensors have a
limitation on the maximum exposure of short frames. Assume that the maximum exposure of a

af://n3592
http://sensor%20info%20filling%20guide/

sensor is 2ms, and the sensor info and AEC parameters in the iq file do not configure the
maximum short frame or short frame. The maximum limit condition is set larger than the drive
limit. For example, AEC may decompose a short frame exposure of 3ms. When set to the drive,
the actual maximum can only be set to 2ms, but the drive does not directly return an error to AEC,
so AEC thinks that 3ms The setting is successful, and the exposure parameters are passed to the
TMO module, resulting in incorrect ratio and incorrect brightness of the synthesized image. The
place where the short frame is merged is usually the overexposed area, which is usually
manifested in the light source, that is, the common light source is purple. Therefore, the image
light source is purple, and the key point is to check whether the exposure parameters
decomposed by AEC are different from the actual exposure parameters set in the sensor.

Sensor Info Filling Guide

Take imx290 as an example：

[imx290]

CISAgainRange=1 31.6

CISDgainRange=1 125.89

When using analog gain (again) alone, when the brightness is insufficient, digital gain (dgain) is
usually used to compensate. The general approach of rk is to mix dgain with again to issue, and
then separate again and dgain by the driver, and set them to the corresponding sensor registers;

The Imx290 manual describes the distribution of gain values as follows:

0dB to 30 dB：Analog Gain 30 dB (step pitch 0.3dB)

30.3 dB to 72 dB: Analog Gain 30dB + Digital Gain 0.3 to 42dB (step pitch 0.3dB)

That is, again 30dB, dgain 42dB

By formula:

db = 20 * log10(gain multiple format)

reg_gain = 20 * log10(gain multiple forma) * 10 / 3

Calculate multiple unitsagain = 10^(30db/20)=31.6 x

 Dgain = 10^(42db/20) = 125.89 x

CISExtraAgainRange=2 63.2

CISExtraAgainRange is the range value of again * dcg ratio. Some sensors support HCG/LCG. HCG
can obtain a better signal-to-noise ratio in a dark environment. If the driver implements related
functions, you need to fill in the corresponding conversion gain value here. The Imx290 manual
describes the conversion efficiency ratio with a typical value of 2, that is, when the 2x again is set,
and the HCG mode is set, the actual gain value is 4x, so CISExtraAgainRange=2*[1 31.6], if the
driver does not implement HCG/LCG, Fill in by default [1 1]

CISIspDgainRange=1 1

Isp dgain，Not currently used, just press the default value

af://n3599

CISMinFps=10

The minimum allowable frame rate, assuming that the frame needs to be downgraded to 5fps,
and the sensor supports the frame down to 5fps, here must also be synchronously modified to 5
before the frame can be downgraded through iq configuration or api.

CISTimeRegMin=1

In linear mode, the smallest unit of exposure line, please refer to sensor manual for description

CISLinTimeRegMaxFac=1.00 2.00

Maximum exposure line in linear mode, please refer to sensor manual for description

CISTimeRegOdevity=1 0

The parity of the exposure line in linear mode, as described in the sensor manual, shs1 can be
incremented by one, and the exposure line can also be incremented by one.

The Imx290 manual has the following: descriptionIntegration time = 1 frame period - (SHS1 + 1)
X(1H period)

The Rk framework currently sends the exposure unit from aiq to the driver in line time. If part of
the sensor is half line unit, it needs to be converted into line unit. From the exposure formula of
imx290, it can be seen that it is line unit. The above formula is re-described below for

exposure lines: time_lines = vts -shs1 - 1

From the description of shs1 in the sensor manual, the limit is 1~(Number of lines per frame -
2),the same as 1~（vts-2）

So CISTimeRegMin = vts -shs1 - 1 = vts -（vts-2）- 1 = 1

CISLinTimeRegMaxFac = vts - shs1 - 1 = vts - 1 - 1 = vts - 2

Vts is the total number of lines in a frame, including vertical blanking. The descriptions of different
manuals are slightly different. 1 frame period and Number of lines per frame both describe vts.

CISHdrTimeRegMin=1

Hdr minimum exposure line, please refer to sensor manual for description

CISHdrTimeRegMax=8 0 0

Hdr maximum exposure line. This variable is increased because some sensors have a limit on the
maximum exposure line of short frames, and it cannot increase with the decrease of long frame
exposure, nor can it increase with the decrease of frame rate. Imx290 is such a sensor. According
to Sony’s standard configuration, the maximum number of short frame exposure lines is 8 lines.
The imx307 DOL document describes the decreasing exposure ratio mode. According to the
configuration inside, the maximum number of short frame exposure lines is 222 lines. The
imx290 DOL document does not see the description. Please consult Sony for details. support.

CISHdrTimeRegOdevity=1.00 0.00

CISHdrTimeRegSumFac=1.00 6.00

The Sony DOL document has the following description:

CISHdrTimeRegMin：

The minimum exposure value of long frames can be calculated through the table:

	 exposure of long frame = FSC-SHS2-1=FSC-(FSC-2)-1=1

	 exposure of short frame = RHS1-SHS1-1=RHS1-(SHS1-2)-1=1

So the minimum exposure behavior under HDR is 1

CISHdrTimeRegOdevity： From the table, shs1 and shs2 have no restrictions like 2n or 2n+1, so
the corresponding exposure line can be incremented by 1

CISHdrTimeRegSumFac：

The sum of long and short frame exposures =（FSC-SHS2-1）+ （RHS1-SHS1-1）

SHS2 and SHS1 take the minimum value at the same time to maximize the exposure of both the
long and short frames

The sum of long and short frame exposures =（FSC-（RHS1+2）-1）+ （RHS1-2-1）=FSC-6

For 2 frames of DOL hdr, FSC=2vts, so the maximum exposure sum of long and short frames is =2vts-
6

That is, CISHdrTimeRegSumFac=[2 6], but for the convenience of calculation, Sony’s DOL hdr
driver will use FSC as the aec uploaded by vts, that is, the uploaded vts has actually been doubled,
so CISHdrTimeRegSumFac=[1 6]

CISTimeRegUnEqualEn=1

Whether the time of the long and short frames can be equal, due to the imx290 short frame
limitation, it cannot be equal under any circumstances

CISHdrGainIndSetEn=1

Whether the gain of the long and short frames needs to be set to the same, 1 means it can be set
to different values, 0 means the gain of the long and short frames must be the same, see the
sensor description for details, some sensors share a set of registers for the long and short frames,
and some sensors have different gains in the long and short frames. However, for design reasons,
the two sets of registers need to be set to the same value. In order to expose the correctness of
the decomposition, this parameter needs to be filled in accurately.

Note:

	 imx290 needs to pay attention to the setting of FPGC PFGC_1 value, the DOL document has
specific description.

FullResolution=1920x1080

GainRange=1 2 20 20 1 0 20 2 4 10 0 1 20 40 4 8 5 -20 1 40 60 8 16 2.5 -40 1 60 80 16 32 1.25 -60 1
80 100 32 64 0.625 -80 1 100 120 64 128 0.3125 -100 1 120 140 128 256 0.15625 -120 1 140 160
256 512 0.078125 -140 1 160 180 512 1024 0.0390625 -160 1 180 200

IsLinear=0

The Rk platform supports the gain value setting in multiples and the gain value setting in the sony
db mode. 0 means db is used. The db method can be used directly for imx290, or the above
GainRange decomposition formula can be used. The GainRange decomposition formula will have
a slight error, after all The non-linear curve is broken down into multiple linear curves.

NonLinear=DB_MODE

PatternMode=RGGB

TimeFactor=0 0 1 0.5

Time decomposition formula, it is recommended to keep this formula, if the calculation does not
meet the formula, the sensor driver will do the conversion.

hdr_dcg_ratio=2

normal_dcg_ratio=2

Dcg ratio has been described above

SensorFlip=0

The default mirror flip state, bit0 mirror, bit1 flip

Appendix A CIS driver V4L2-controls list

af://n3682

CID description

V4L2_CID_VBLANK

Vertical blanking. The idle period after every frame during
which no image data is produced. The unit of vertical
blanking is a line. Every line has length of the image width
plus horizontal blanking at the pixel rate defined by
V4L2_CID_PIXEL_RATE control in the same sub-device.

V4L2_CID_HBLANK
Horizontal blanking. The idle period after every line of image
data during which no image data is produced. The unit of
horizontal blanking is pixels.

V4L2_CID_EXPOSURE
Determines the exposure time of the camera sensor. The
exposure time is limited by the frame interval.

V4L2_CID_ANALOGUE_GAIN
Analogue gain is gain affecting all colour components in the
pixel matrix. The gain operation is performed in the
analogue domain before A/D conversion.

V4L2_CID_PIXEL_RATE
Pixel rate in the source pads of the subdev. This control is
read-only and its unit is pixels / second. Ex mipi bus：
pixel_rate = link_freq * 2 * nr_of_lanes / bits_per_sample

V4L2_CID_LINK_FREQ

Data bus frequency. Together with the media bus pixel code,
bus type (clock cycles per sample), the data bus frequency
defines the pixel rate (V4L2_CID_PIXEL_RATE) in the pixel
array (or possibly elsewhere, if the device is not an image
sensor). The frame rate can be calculated from the pixel
clock, image width and height and horizontal and vertical
blanking. While the pixel rate control may be defined
elsewhere than in the subdev containing the pixel array, the
frame rate cannot be obtained from that information. This is
because only on the pixel array it can be assumed that the
vertical and horizontal blanking information is exact: no
other blanking is allowed in the pixel array. The selection of
frame rate is performed by selecting the desired horizontal
and vertical blanking. The unit of this control is Hz.

Appendix B MEDIA_BUS_FMT table

af://n3706

CIS sensor type Sensor output format

Bayer RAW

MEDIA_BUS_FMT_SBGGR10_1X10

MEDIA_BUS_FMT_SRGGB10_1X10

MEDIA_BUS_FMT_SGBRG10_1X10

MEDIA_BUS_FMT_SGRBG10_1X10

MEDIA_BUS_FMT_SRGGB12_1X12

MEDIA_BUS_FMT_SBGGR12_1X12

MEDIA_BUS_FMT_SGBRG12_1X12

MEDIA_BUS_FMT_SGRBG12_1X12

MEDIA_BUS_FMT_SRGGB8_1X8

MEDIA_BUS_FMT_SBGGR8_1X8

MEDIA_BUS_FMT_SGBRG8_1X8

MEDIA_BUS_FMT_SGRBG8_1X8

YUV

MEDIA_BUS_FMT_YUYV8_2X8

MEDIA_BUS_FMT_YVYU8_2X8

MEDIA_BUS_FMT_UYVY8_2X8

MEDIA_BUS_FMT_VYUY8_2X8

MEDIA_BUS_FMT_YUYV10_2X10

MEDIA_BUS_FMT_YVYU10_2X10

MEDIA_BUS_FMT_UYVY10_2X10

MEDIA_BUS_FMT_VYUY10_2X10

MEDIA_BUS_FMT_YUYV12_2X12

MEDIA_BUS_FMT_YVYU12_2X12

MEDIA_BUS_FMT_UYVY12_2X12

MEDIA_BUS_FMT_VYUY12_2X12

Only Y (black and white) is raw bw sensor
MEDIA_BUS_FMT_Y8_1X8

MEDIA_BUS_FMT_Y10_1X10

MEDIA_BUS_FMT_Y12_1X12

Appendix C CIS Reference Driver List

af://n3721

CIS Data interface CIS Output data type Frame/Field Reference drive

MIPI Bayer RAW frame

0.3M

ov7750.c

gc0403.c

1.2M

ov9750.c

jx-h65.c

2M

ov2685.c

ov2680.c

ov2735.c
gc2385.c

gc2355.c

gc2053.c

sc2239.c

sc210iot.c

4M

gc4c33.c

5M

ov5695.c

ov5648.c

ov5670.c

gc5024.c

gc5025.c

gc5035.c

8M

ov8858.c

imx378.c

imx317.c

imx219.c

gc8034.c

13M

ov13850.c

imx258.c

CIS Data interface CIS Output data type Frame/Field Reference drive

MIPI Bayer raw hdr frame

2M

imx307.c

imx327.c

gc2093.c

ov02k10

ov2718.c

sc200ai.c

sc2310.c

jx-f37.c

4M

ov4689.c

os04a10.c

imx347.c

sc4238.c

5M

imx335.c

8M

imx334.c

imx415.c

MIPI YUV frame
2M

gc2145.c

MIPI RAW BW frame

0.3M

ov7251.c

1M

ov9281.c

1.3M

sc132gs.c

MIPI YUV field tc35874x.c

ITU.BT601 Bayer RAW
2M

imx323.c

ar0230.c

CIS Data interface CIS Output data type Frame/Field Reference drive

ITU.BT601 YUV

0.3M

gc0329.c

gc0312.c

gc032a.c

2M

gc2145.c

gc2155.c

gc2035.c

bf3925.c

ITU.BT601 RAW BW

ITU.BT656 Bayer RAW
2M

imx323(Can support)

Reference Drive

vm149c.c

dw9714.c

fp5510.c

Reference Drive

sgm3784.c

leds-rgb13h.c (GPIO control)

Appendix D VCM driver ic reference driver list

Appendix E Flash light driver ic reference driver list

af://n3774
af://n3785

	Rockchip_Driver_Guide_VI_EN
	VI difference of the chip
	Camera software driver catalog description
	Link relationship between ISP and VICAP
	RKISP driver
	Brief description of the framework
	ISP HDR mode description

	RKVICAP driver
	Frame description

	Chip version different
	CIS (cmos image sensor) driver
	CIS Device Registration (DTS)
	Single registration
	MIPI interface
	Link to ISP

	DVP interface
	Link to VICAP

	Multi-sensor registration

	CIS driver description
	Brief description of data type
	struct i2c_driver
	struct v4l2_subdev_ops
	struct v4l2_subdev_core_ops
	struct v4l2_subdev_video_ops
	struct v4l2_subdev_pad_ops
	struct v4l2_ctrl_ops
	struct xxxx_mode
	struct v4l2_mbus_framefmt
	struct rkmodule_base_inf
	struct rkmodule_fac_inf
	struct rkmodule_awb_inf
	struct rkmodule_lsc_inf
	struct rkmodule_af_inf
	struct rkmodule_inf
	struct rkmodule_awb_cfg
	struct rkmodule_lsc_cfg
	struct rkmodule_hdr_cfg
	struct preisp_hdrae_exp_s

	API brief description
	xxxx_set_fmt
	xxxx_get_fmt
	xxxx_enum_mbus_code
	xxxx_enum_frame_sizes
	xxxx_g_frame_interval
	xxxx_s_stream
	xxxx_runtime_resume
	xxxx_runtime_suspend
	xxxx_set_ctrl
	xxx_enum_frame_interval
	xxxx_g_mbus_config
	xxxx_get_selection

	Drive migration steps

	VCM Drive
	VCM Device Registration (DTS)
	VCM driver description
	Brief description of data type
	struct i2c_driver
	struct v4l2_subdev_core_ops
	struct v4l2_ctrl_ops

	API brief description
	xxxx_get_ctrl
	xxxx_set_ctrl
	xxxx_ioctl xxxx_compat_ioctl

	Drive migration steps

	FlashLight driver
	FLASHLight Device Registration (DTS)
	FLASHLight driver description
	Brief description of data type
	struct i2c_driver
	struct v4l2_subdev_core_ops
	struct v4l2_ctrl_ops

	API brief description
	xxxx_set_ctrl
	xxxx_get_ctrl
	xxxx_ioctl xxxx_compat_ioctl

	Drive migration steps

	FOCUS ZOOM P-IRIS driver
	MP6507 device registration(DTS)
	Brief description of data type
	struct platform_driver
	struct v4l2_subdev_core_ops
	struct v4l2_ctrl_ops

	API brief description
	xxxx_set_ctrl
	xxxx_get_ctrl
	xxxx_ioctl xxxx_compat_ioctl

	Drive migration steps

	MS41908 device registration(DTS)
	Basic description：
	FOCUS description：
	ZOOM description：
	ZOOM1 description：
	PIRIS description：
	DCIRIS description：
	Brief description of data type
	struct spi_driver
	struct v4l2_subdev_core_ops
	struct v4l2_ctrl_ops

	API brief description
	xxxx_set_ctrl
	xxxx_ioctl xxxx_compat_ioctl

	Drive migration steps

	DC-IRIS drive
	DC-IRIS Device Registration (DTS)
	Brief description of data type
	struct platform_driver
	struct v4l2_subdev_core_ops
	struct v4l2_ctrl_ops

	API brief description
	xxxx_set_ctrl
	xxxx_ioctl xxxx_compat_ioctl

	Drive migration steps

	RK-IRCUT driver
	RK-IRCUT Device Registration (DTS)
	Brief description of data type
	struct platform_driver
	struct v4l2_subdev_core_ops
	struct v4l2_ctrl_ops

	API brief description
	xxxx_set_ctrl
	xxxx_ioctl xxxx_compat_ioctl

	Drive migration steps

	media-ctl v4l2-ctl tool
	RV1109/RV1126 Memory Optimization Guide
	RV1109/RV1126 Delay Optimization Guide
	FAQ
	How to get the driver version number
	How to judge the RKISP driver loading status
	How to capture RAW and YUV data output by CIS
	List of equipment support
	RV1109/RV1126
	RK356X

	Raw data storage format
	Non-compact storage format RAW
	Compact storage format RAW

	Reference use case：
	VICAP output Raw
	ISP maipath output non-compact Raw
	VICAP output YUV：
	ISP output YUV：
	ISPP output YUV：

	How to switch CIS driver output resolution
	How to set the exposure parameters of CIS
	How to support black and white cameras
	How to support odd and even field synthesis
	How to view debug information
	How to troubleshoot flicker issues
	How to troubleshoot the problem of purple overflow at the light source
	Sensor Info Filling Guide

	Appendix A CIS driver V4L2-controls list
	Appendix B MEDIA_BUS_FMT table
	Appendix C CIS Reference Driver List
	Appendix D VCM driver ic reference driver list
	Appendix E Flash light driver ic reference driver list

