// SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note /* * * (C) COPYRIGHT 2020-2022 ARM Limited. All rights reserved. * * This program is free software and is provided to you under the terms of the * GNU General Public License version 2 as published by the Free Software * Foundation, and any use by you of this program is subject to the terms * of such GNU license. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you can access it online at * http://www.gnu.org/licenses/gpl-2.0.html. * */ #include #include #include #include #include #include #include #include #include /** * kbase_report_gpu_fault - Report a GPU fault of the device. * * @kbdev: Kbase device pointer * @status: Fault status * @as_nr: Faulty address space * @as_valid: true if address space is valid * * This function is called from the interrupt handler when a GPU fault occurs. */ static void kbase_report_gpu_fault(struct kbase_device *kbdev, u32 status, u32 as_nr, bool as_valid) { u64 address = (u64) kbase_reg_read(kbdev, GPU_CONTROL_REG(GPU_FAULTADDRESS_HI)) << 32; address |= kbase_reg_read(kbdev, GPU_CONTROL_REG(GPU_FAULTADDRESS_LO)); /* Report GPU fault for all contexts in case either * the address space is invalid or it's MCU address space. */ kbase_mmu_gpu_fault_interrupt(kbdev, status, as_nr, address, as_valid); } static void kbase_gpu_fault_interrupt(struct kbase_device *kbdev) { const u32 status = kbase_reg_read(kbdev, GPU_CONTROL_REG(GPU_FAULTSTATUS)); const bool as_valid = status & GPU_FAULTSTATUS_JASID_VALID_FLAG; const u32 as_nr = (status & GPU_FAULTSTATUS_JASID_MASK) >> GPU_FAULTSTATUS_JASID_SHIFT; bool bus_fault = (status & GPU_FAULTSTATUS_EXCEPTION_TYPE_MASK) == GPU_FAULTSTATUS_EXCEPTION_TYPE_GPU_BUS_FAULT; if (bus_fault) { /* If as_valid, reset gpu when ASID is for MCU. */ if (!as_valid || (as_nr == MCU_AS_NR)) { kbase_report_gpu_fault(kbdev, status, as_nr, as_valid); dev_err(kbdev->dev, "GPU bus fault triggering gpu-reset ...\n"); if (kbase_prepare_to_reset_gpu( kbdev, RESET_FLAGS_HWC_UNRECOVERABLE_ERROR)) kbase_reset_gpu(kbdev); } else { /* Handle Bus fault */ if (kbase_mmu_bus_fault_interrupt(kbdev, status, as_nr)) dev_warn(kbdev->dev, "fail to handle GPU bus fault ...\n"); } } else kbase_report_gpu_fault(kbdev, status, as_nr, as_valid); } void kbase_gpu_interrupt(struct kbase_device *kbdev, u32 val) { KBASE_KTRACE_ADD(kbdev, CORE_GPU_IRQ, NULL, val); if (val & GPU_FAULT) kbase_gpu_fault_interrupt(kbdev); if (val & GPU_PROTECTED_FAULT) { struct kbase_csf_scheduler *scheduler = &kbdev->csf.scheduler; unsigned long flags; dev_err_ratelimited(kbdev->dev, "GPU fault in protected mode"); /* Mask the protected fault interrupt to avoid the potential * deluge of such interrupts. It will be unmasked on GPU reset. */ spin_lock_irqsave(&kbdev->hwaccess_lock, flags); kbase_reg_write(kbdev, GPU_CONTROL_REG(GPU_IRQ_MASK), GPU_IRQ_REG_ALL & ~GPU_PROTECTED_FAULT); spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags); kbase_csf_scheduler_spin_lock(kbdev, &flags); if (!WARN_ON(!kbase_csf_scheduler_protected_mode_in_use( kbdev))) { struct base_gpu_queue_group_error const err_payload = { .error_type = BASE_GPU_QUEUE_GROUP_ERROR_FATAL, .payload = { .fatal_group = { .status = GPU_EXCEPTION_TYPE_SW_FAULT_0, } } }; kbase_debug_csf_fault_notify(kbdev, scheduler->active_protm_grp->kctx, DF_GPU_PROTECTED_FAULT); scheduler->active_protm_grp->faulted = true; kbase_csf_add_group_fatal_error( scheduler->active_protm_grp, &err_payload); kbase_event_wakeup(scheduler->active_protm_grp->kctx); } kbase_csf_scheduler_spin_unlock(kbdev, flags); if (kbase_prepare_to_reset_gpu( kbdev, RESET_FLAGS_HWC_UNRECOVERABLE_ERROR)) kbase_reset_gpu(kbdev); /* Defer the clearing to the GPU reset sequence */ val &= ~GPU_PROTECTED_FAULT; } if (val & RESET_COMPLETED) kbase_pm_reset_done(kbdev); /* Defer clearing CLEAN_CACHES_COMPLETED to kbase_clean_caches_done. * We need to acquire hwaccess_lock to avoid a race condition with * kbase_gpu_cache_flush_and_busy_wait */ KBASE_KTRACE_ADD(kbdev, CORE_GPU_IRQ_CLEAR, NULL, val & ~CLEAN_CACHES_COMPLETED); kbase_reg_write(kbdev, GPU_CONTROL_REG(GPU_IRQ_CLEAR), val & ~CLEAN_CACHES_COMPLETED); #ifdef KBASE_PM_RUNTIME if (val & DOORBELL_MIRROR) { unsigned long flags; dev_dbg(kbdev->dev, "Doorbell mirror interrupt received"); spin_lock_irqsave(&kbdev->hwaccess_lock, flags); kbase_pm_disable_db_mirror_interrupt(kbdev); kbdev->pm.backend.exit_gpu_sleep_mode = true; kbase_csf_scheduler_invoke_tick(kbdev); spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags); } #endif /* kbase_pm_check_transitions (called by kbase_pm_power_changed) must * be called after the IRQ has been cleared. This is because it might * trigger further power transitions and we don't want to miss the * interrupt raised to notify us that these further transitions have * finished. The same applies to kbase_clean_caches_done() - if another * clean was queued, it might trigger another clean, which might * generate another interrupt which shouldn't be missed. */ if (val & CLEAN_CACHES_COMPLETED) kbase_clean_caches_done(kbdev); if (val & (POWER_CHANGED_ALL | MCU_STATUS_GPU_IRQ)) { kbase_pm_power_changed(kbdev); } else if (val & CLEAN_CACHES_COMPLETED) { /* If cache line evict messages can be lost when shader cores * power down then we need to flush the L2 cache before powering * down cores. When the flush completes, the shaders' state * machine needs to be re-invoked to proceed with powering down * cores. */ if (kbdev->pm.backend.l2_always_on || kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_TTRX_921)) kbase_pm_power_changed(kbdev); } KBASE_KTRACE_ADD(kbdev, CORE_GPU_IRQ_DONE, NULL, val); } #if !IS_ENABLED(CONFIG_MALI_BIFROST_NO_MALI) bool kbase_is_register_accessible(u32 offset) { #ifdef CONFIG_MALI_BIFROST_DEBUG if (((offset >= MCU_SUBSYSTEM_BASE) && (offset < IPA_CONTROL_BASE)) || ((offset >= GPU_CONTROL_MCU_BASE) && (offset < USER_BASE))) { WARN(1, "Invalid register offset 0x%x", offset); return false; } #endif return true; } #endif /* !IS_ENABLED(CONFIG_MALI_BIFROST_NO_MALI) */ #if IS_ENABLED(CONFIG_MALI_REAL_HW) void kbase_reg_write(struct kbase_device *kbdev, u32 offset, u32 value) { if (WARN_ON(!kbdev->pm.backend.gpu_powered)) return; if (WARN_ON(kbdev->dev == NULL)) return; if (!kbase_is_register_accessible(offset)) return; writel(value, kbdev->reg + offset); #if IS_ENABLED(CONFIG_DEBUG_FS) if (unlikely(kbdev->io_history.enabled)) kbase_io_history_add(&kbdev->io_history, kbdev->reg + offset, value, 1); #endif /* CONFIG_DEBUG_FS */ dev_dbg(kbdev->dev, "w: reg %08x val %08x", offset, value); } KBASE_EXPORT_TEST_API(kbase_reg_write); u32 kbase_reg_read(struct kbase_device *kbdev, u32 offset) { u32 val; if (WARN_ON(!kbdev->pm.backend.gpu_powered)) return 0; if (WARN_ON(kbdev->dev == NULL)) return 0; if (!kbase_is_register_accessible(offset)) return 0; val = readl(kbdev->reg + offset); #if IS_ENABLED(CONFIG_DEBUG_FS) if (unlikely(kbdev->io_history.enabled)) kbase_io_history_add(&kbdev->io_history, kbdev->reg + offset, val, 0); #endif /* CONFIG_DEBUG_FS */ dev_dbg(kbdev->dev, "r: reg %08x val %08x", offset, val); return val; } KBASE_EXPORT_TEST_API(kbase_reg_read); #endif /* !IS_ENABLED(CONFIG_MALI_BIFROST_NO_MALI) */