import numpy as np import cv2 from rknn.api import RKNN import torchvision.models as models import torch import os def show_outputs(output): output_sorted = sorted(output, reverse=True) top5_str = '\n-----TOP 5-----\n' for i in range(5): value = output_sorted[i] index = np.where(output == value) for j in range(len(index)): if (i + j) >= 5: break if value > 0: topi = '{}: {}\n'.format(index[j], value) else: topi = '-1: 0.0\n' top5_str += topi print(top5_str) def show_perfs(perfs): perfs = 'perfs: {}\n'.format(perfs) print(perfs) def softmax(x): return np.exp(x)/sum(np.exp(x)) def torch_version(): import torch torch_ver = torch.__version__.split('.') torch_ver[2] = torch_ver[2].split('+')[0] return [int(v) for v in torch_ver] if __name__ == '__main__': if torch_version() < [1, 9, 0]: import torch print("Your torch version is '{}', in order to better support the Quantization Aware Training (QAT) model,\n" "Please update the torch version to '1.9.0' or higher!".format(torch.__version__)) exit(0) model = './resnet18_i8.pt' input_size_list = [[1, 3, 224, 224]] # Create RKNN object rknn = RKNN(verbose=True) # Pre-process config print('--> Config model') rknn.config(mean_values=[123.675, 116.28, 103.53], std_values=[58.395, 58.395, 58.395]) print('done') # Load model print('--> Loading model') ret = rknn.load_pytorch(model=model, input_size_list=input_size_list) if ret != 0: print('Load model failed!') exit(ret) print('done') # Build model print('--> Building model') ret = rknn.build(do_quantization=False) if ret != 0: print('Build model failed!') exit(ret) print('done') # Export rknn model print('--> Export rknn model') ret = rknn.export_rknn('./resnet_18.rknn') if ret != 0: print('Export rknn model failed!') exit(ret) print('done') # Set inputs img = cv2.imread('./space_shuttle_224.jpg') img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Init runtime environment print('--> Init runtime environment') ret = rknn.init_runtime() if ret != 0: print('Init runtime environment failed!') exit(ret) print('done') # Inference print('--> Running model') outputs = rknn.inference(inputs=[img]) np.save('./pytorch_resnet18_qat_0.npy', outputs[0]) show_outputs(softmax(np.array(outputs[0][0]))) print('done') rknn.release()