From 2f7c68cb55ecb7331f2381deb497c27155f32faf Mon Sep 17 00:00:00 2001
From: hc <hc@nodka.com>
Date: Wed, 03 Jan 2024 09:43:39 +0000
Subject: [PATCH] update kernel to 5.10.198

---
 kernel/kernel/dma/direct.c |  602 ++++++++++++++++++++++++++++++++++++++++++------------
 1 files changed, 468 insertions(+), 134 deletions(-)

diff --git a/kernel/kernel/dma/direct.c b/kernel/kernel/dma/direct.c
index 1d2f147..2be1d33 100644
--- a/kernel/kernel/dma/direct.c
+++ b/kernel/kernel/dma/direct.c
@@ -1,151 +1,395 @@
 // SPDX-License-Identifier: GPL-2.0
 /*
- * DMA operations that map physical memory directly without using an IOMMU or
- * flushing caches.
+ * Copyright (C) 2018-2020 Christoph Hellwig.
+ *
+ * DMA operations that map physical memory directly without using an IOMMU.
  */
+#include <linux/memblock.h> /* for max_pfn */
 #include <linux/export.h>
 #include <linux/mm.h>
-#include <linux/dma-direct.h>
+#include <linux/dma-map-ops.h>
 #include <linux/scatterlist.h>
-#include <linux/dma-contiguous.h>
 #include <linux/pfn.h>
+#include <linux/vmalloc.h>
 #include <linux/set_memory.h>
-
-#define DIRECT_MAPPING_ERROR		0
+#include <linux/slab.h>
+#include "direct.h"
 
 /*
- * Most architectures use ZONE_DMA for the first 16 Megabytes, but
- * some use it for entirely different regions:
+ * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
+ * it for entirely different regions. In that case the arch code needs to
+ * override the variable below for dma-direct to work properly.
  */
-#ifndef ARCH_ZONE_DMA_BITS
-#define ARCH_ZONE_DMA_BITS 24
-#endif
+unsigned int zone_dma_bits __ro_after_init = 24;
 
-/*
- * For AMD SEV all DMA must be to unencrypted addresses.
- */
-static inline bool force_dma_unencrypted(void)
+static inline dma_addr_t phys_to_dma_direct(struct device *dev,
+		phys_addr_t phys)
 {
-	return sev_active();
+	if (force_dma_unencrypted(dev))
+		return phys_to_dma_unencrypted(dev, phys);
+	return phys_to_dma(dev, phys);
 }
 
-static bool
-check_addr(struct device *dev, dma_addr_t dma_addr, size_t size,
-		const char *caller)
+static inline struct page *dma_direct_to_page(struct device *dev,
+		dma_addr_t dma_addr)
 {
-	if (unlikely(dev && !dma_capable(dev, dma_addr, size))) {
-		if (!dev->dma_mask) {
-			dev_err(dev,
-				"%s: call on device without dma_mask\n",
-				caller);
-			return false;
-		}
+	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
+}
 
-		if (*dev->dma_mask >= DMA_BIT_MASK(32)) {
-			dev_err(dev,
-				"%s: overflow %pad+%zu of device mask %llx\n",
-				caller, &dma_addr, size, *dev->dma_mask);
-		}
-		return false;
-	}
-	return true;
+u64 dma_direct_get_required_mask(struct device *dev)
+{
+	phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
+	u64 max_dma = phys_to_dma_direct(dev, phys);
+
+	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
+}
+
+static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
+				  u64 *phys_limit)
+{
+	u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
+
+	/*
+	 * Optimistically try the zone that the physical address mask falls
+	 * into first.  If that returns memory that isn't actually addressable
+	 * we will fallback to the next lower zone and try again.
+	 *
+	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
+	 * zones.
+	 */
+	*phys_limit = dma_to_phys(dev, dma_limit);
+	if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
+		return GFP_DMA;
+	if (*phys_limit <= DMA_BIT_MASK(32) &&
+		!zone_dma32_are_empty())
+		return GFP_DMA32;
+	return 0;
 }
 
 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
 {
-	dma_addr_t addr = force_dma_unencrypted() ?
-		__phys_to_dma(dev, phys) : phys_to_dma(dev, phys);
-	return addr + size - 1 <= dev->coherent_dma_mask;
+	dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
+
+	if (dma_addr == DMA_MAPPING_ERROR)
+		return false;
+	return dma_addr + size - 1 <=
+		min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
 }
 
-void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
-		gfp_t gfp, unsigned long attrs)
+static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
+		gfp_t gfp)
 {
-	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
-	int page_order = get_order(size);
+	int node = dev_to_node(dev);
 	struct page *page = NULL;
-	void *ret;
+	u64 phys_limit;
 
-	/* we always manually zero the memory once we are done: */
-	gfp &= ~__GFP_ZERO;
+	WARN_ON_ONCE(!PAGE_ALIGNED(size));
 
-	/* GFP_DMA32 and GFP_DMA are no ops without the corresponding zones: */
-	if (dev->coherent_dma_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
-		gfp |= GFP_DMA;
-	if (dev->coherent_dma_mask <= DMA_BIT_MASK(32) && !(gfp & GFP_DMA))
-		gfp |= GFP_DMA32;
-
-again:
-	/* CMA can be used only in the context which permits sleeping */
-	if (gfpflags_allow_blocking(gfp)) {
-		page = dma_alloc_from_contiguous(dev, count, page_order,
-						 gfp & __GFP_NOWARN);
-		if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
-			dma_release_from_contiguous(dev, page, count);
-			page = NULL;
-		}
-	}
-	if (!page)
-		page = alloc_pages_node(dev_to_node(dev), gfp, page_order);
-
+	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
+					   &phys_limit);
+	page = dma_alloc_contiguous(dev, size, gfp);
 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
-		__free_pages(page, page_order);
+		dma_free_contiguous(dev, page, size);
+		page = NULL;
+	}
+again:
+	if (!page)
+		page = alloc_pages_node(node, gfp, get_order(size));
+	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
+		dma_free_contiguous(dev, page, size);
 		page = NULL;
 
 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
-		    dev->coherent_dma_mask < DMA_BIT_MASK(64) &&
-		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
+		    phys_limit < DMA_BIT_MASK(64) &&
+		    !(gfp & (GFP_DMA32 | GFP_DMA)) &&
+		    !zone_dma32_are_empty()) {
 			gfp |= GFP_DMA32;
 			goto again;
 		}
 
-		if (IS_ENABLED(CONFIG_ZONE_DMA) &&
-		    dev->coherent_dma_mask < DMA_BIT_MASK(32) &&
-		    !(gfp & GFP_DMA)) {
+		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
 			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
 			goto again;
 		}
 	}
 
+	return page;
+}
+
+static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
+		dma_addr_t *dma_handle, gfp_t gfp)
+{
+	struct page *page;
+	u64 phys_mask;
+	void *ret;
+
+	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
+					   &phys_mask);
+	page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
 	if (!page)
 		return NULL;
-	ret = page_address(page);
-	if (force_dma_unencrypted()) {
-		set_memory_decrypted((unsigned long)ret, 1 << page_order);
-		*dma_handle = __phys_to_dma(dev, page_to_phys(page));
-	} else {
-		*dma_handle = phys_to_dma(dev, page_to_phys(page));
-	}
-	memset(ret, 0, size);
+	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
 	return ret;
 }
 
-/*
- * NOTE: this function must never look at the dma_addr argument, because we want
- * to be able to use it as a helper for iommu implementations as well.
- */
-void dma_direct_free(struct device *dev, size_t size, void *cpu_addr,
-		dma_addr_t dma_addr, unsigned long attrs)
+void *dma_direct_alloc(struct device *dev, size_t size,
+		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
 {
-	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
-	unsigned int page_order = get_order(size);
+	struct page *page;
+	void *ret;
+	int err;
 
-	if (force_dma_unencrypted())
-		set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
-	if (!dma_release_from_contiguous(dev, virt_to_page(cpu_addr), count))
-		free_pages((unsigned long)cpu_addr, page_order);
+	size = PAGE_ALIGN(size);
+	if (attrs & DMA_ATTR_NO_WARN)
+		gfp |= __GFP_NOWARN;
+
+	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
+	    !force_dma_unencrypted(dev)) {
+		page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
+		if (!page)
+			return NULL;
+		/* remove any dirty cache lines on the kernel alias */
+		if (!PageHighMem(page))
+			arch_dma_prep_coherent(page, size);
+		*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
+		/* return the page pointer as the opaque cookie */
+		return page;
+	}
+
+	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
+	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
+	    !dev_is_dma_coherent(dev))
+		return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
+
+	/*
+	 * Remapping or decrypting memory may block. If either is required and
+	 * we can't block, allocate the memory from the atomic pools.
+	 */
+	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
+	    !gfpflags_allow_blocking(gfp) &&
+	    (force_dma_unencrypted(dev) ||
+	     (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev))))
+		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
+
+	/* we always manually zero the memory once we are done */
+	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
+	if (!page)
+		return NULL;
+
+	if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
+	     !dev_is_dma_coherent(dev)) ||
+	    (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
+		/* remove any dirty cache lines on the kernel alias */
+		arch_dma_prep_coherent(page, size);
+
+		/* create a coherent mapping */
+		ret = dma_common_contiguous_remap(page, size,
+				dma_pgprot(dev, PAGE_KERNEL, attrs),
+				__builtin_return_address(0));
+		if (!ret)
+			goto out_free_pages;
+		if (force_dma_unencrypted(dev)) {
+			err = set_memory_decrypted((unsigned long)ret,
+						   PFN_UP(size));
+			if (err)
+				goto out_free_pages;
+		}
+		memset(ret, 0, size);
+		goto done;
+	}
+
+	if (PageHighMem(page)) {
+		/*
+		 * Depending on the cma= arguments and per-arch setup
+		 * dma_alloc_contiguous could return highmem pages.
+		 * Without remapping there is no way to return them here,
+		 * so log an error and fail.
+		 */
+		dev_info(dev, "Rejecting highmem page from CMA.\n");
+		goto out_free_pages;
+	}
+
+	ret = page_address(page);
+	if (force_dma_unencrypted(dev)) {
+		err = set_memory_decrypted((unsigned long)ret,
+					   PFN_UP(size));
+		if (err)
+			goto out_free_pages;
+	}
+
+	memset(ret, 0, size);
+
+	if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
+	    !dev_is_dma_coherent(dev)) {
+		arch_dma_prep_coherent(page, size);
+		ret = arch_dma_set_uncached(ret, size);
+		if (IS_ERR(ret))
+			goto out_encrypt_pages;
+	}
+done:
+	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
+	return ret;
+
+out_encrypt_pages:
+	if (force_dma_unencrypted(dev)) {
+		err = set_memory_encrypted((unsigned long)page_address(page),
+					   PFN_UP(size));
+		/* If memory cannot be re-encrypted, it must be leaked */
+		if (err)
+			return NULL;
+	}
+out_free_pages:
+	dma_free_contiguous(dev, page, size);
+	return NULL;
 }
 
-dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
-		unsigned long offset, size_t size, enum dma_data_direction dir,
-		unsigned long attrs)
+void dma_direct_free(struct device *dev, size_t size,
+		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
 {
-	dma_addr_t dma_addr = phys_to_dma(dev, page_to_phys(page)) + offset;
+	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
+	    !force_dma_unencrypted(dev)) {
+		/* cpu_addr is a struct page cookie, not a kernel address */
+		dma_free_contiguous(dev, cpu_addr, size);
+		return;
+	}
 
-	if (!check_addr(dev, dma_addr, size, __func__))
-		return DIRECT_MAPPING_ERROR;
-	return dma_addr;
+	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
+	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
+	    !dev_is_dma_coherent(dev)) {
+		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
+		return;
+	}
+
+	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
+	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
+	    dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
+		return;
+
+	if (force_dma_unencrypted(dev))
+		set_memory_encrypted((unsigned long)cpu_addr, PFN_UP(size));
+
+	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
+		vunmap(cpu_addr);
+	else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
+		arch_dma_clear_uncached(cpu_addr, size);
+
+	dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
 }
+
+struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
+		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
+{
+	struct page *page;
+	void *ret;
+
+	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
+	    force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp))
+		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
+
+	page = __dma_direct_alloc_pages(dev, size, gfp);
+	if (!page)
+		return NULL;
+	if (PageHighMem(page)) {
+		/*
+		 * Depending on the cma= arguments and per-arch setup
+		 * dma_alloc_contiguous could return highmem pages.
+		 * Without remapping there is no way to return them here,
+		 * so log an error and fail.
+		 */
+		dev_info(dev, "Rejecting highmem page from CMA.\n");
+		goto out_free_pages;
+	}
+
+	ret = page_address(page);
+	if (force_dma_unencrypted(dev)) {
+		if (set_memory_decrypted((unsigned long)ret, PFN_UP(size)))
+			goto out_free_pages;
+	}
+	memset(ret, 0, size);
+	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
+	return page;
+out_free_pages:
+	dma_free_contiguous(dev, page, size);
+	return NULL;
+}
+
+void dma_direct_free_pages(struct device *dev, size_t size,
+		struct page *page, dma_addr_t dma_addr,
+		enum dma_data_direction dir)
+{
+	void *vaddr = page_address(page);
+
+	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
+	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
+	    dma_free_from_pool(dev, vaddr, size))
+		return;
+
+	if (force_dma_unencrypted(dev))
+		set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
+
+	dma_free_contiguous(dev, page, size);
+}
+
+#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
+    defined(CONFIG_SWIOTLB)
+void dma_direct_sync_sg_for_device(struct device *dev,
+		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
+{
+	struct scatterlist *sg;
+	int i;
+
+	for_each_sg(sgl, sg, nents, i) {
+		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
+
+		if (unlikely(is_swiotlb_buffer(paddr)))
+			swiotlb_tbl_sync_single(dev, paddr, sg->length,
+					dir, SYNC_FOR_DEVICE);
+
+		if (!dev_is_dma_coherent(dev))
+			arch_sync_dma_for_device(paddr, sg->length,
+					dir);
+	}
+}
+#endif
+
+#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
+    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
+    defined(CONFIG_SWIOTLB)
+void dma_direct_sync_sg_for_cpu(struct device *dev,
+		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
+{
+	struct scatterlist *sg;
+	int i;
+
+	for_each_sg(sgl, sg, nents, i) {
+		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
+
+		if (!dev_is_dma_coherent(dev))
+			arch_sync_dma_for_cpu(paddr, sg->length, dir);
+
+		if (unlikely(is_swiotlb_buffer(paddr)))
+			swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
+					SYNC_FOR_CPU);
+
+		if (dir == DMA_FROM_DEVICE)
+			arch_dma_mark_clean(paddr, sg->length);
+	}
+
+	if (!dev_is_dma_coherent(dev))
+		arch_sync_dma_for_cpu_all();
+}
+
+void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
+		int nents, enum dma_data_direction dir, unsigned long attrs)
+{
+	struct scatterlist *sg;
+	int i;
+
+	for_each_sg(sgl, sg, nents, i)
+		dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
+			     attrs);
+}
+#endif
 
 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
 		enum dma_data_direction dir, unsigned long attrs)
@@ -154,61 +398,151 @@
 	struct scatterlist *sg;
 
 	for_each_sg(sgl, sg, nents, i) {
-		BUG_ON(!sg_page(sg));
-
-		sg_dma_address(sg) = phys_to_dma(dev, sg_phys(sg));
-		if (!check_addr(dev, sg_dma_address(sg), sg->length, __func__))
-			return 0;
+		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
+				sg->offset, sg->length, dir, attrs);
+		if (sg->dma_address == DMA_MAPPING_ERROR)
+			goto out_unmap;
 		sg_dma_len(sg) = sg->length;
 	}
 
 	return nents;
+
+out_unmap:
+	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
+	return 0;
+}
+
+dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
+		size_t size, enum dma_data_direction dir, unsigned long attrs)
+{
+	dma_addr_t dma_addr = paddr;
+
+	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
+		dev_err_once(dev,
+			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
+			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
+		WARN_ON_ONCE(1);
+		return DMA_MAPPING_ERROR;
+	}
+
+	return dma_addr;
+}
+
+int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
+		void *cpu_addr, dma_addr_t dma_addr, size_t size,
+		unsigned long attrs)
+{
+	struct page *page = dma_direct_to_page(dev, dma_addr);
+	int ret;
+
+	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
+	if (!ret)
+		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
+	return ret;
+}
+
+bool dma_direct_can_mmap(struct device *dev)
+{
+	return dev_is_dma_coherent(dev) ||
+		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
+}
+
+int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
+		void *cpu_addr, dma_addr_t dma_addr, size_t size,
+		unsigned long attrs)
+{
+	unsigned long user_count = vma_pages(vma);
+	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
+	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
+	int ret = -ENXIO;
+
+	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
+
+	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
+		return ret;
+
+	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
+		return -ENXIO;
+	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
+			user_count << PAGE_SHIFT, vma->vm_page_prot);
 }
 
 int dma_direct_supported(struct device *dev, u64 mask)
 {
-#ifdef CONFIG_ZONE_DMA
-	/*
-	 * This check needs to be against the actual bit mask value, so
-	 * use __phys_to_dma() here so that the SME encryption mask isn't
-	 * part of the check.
-	 */
-	if (mask < __phys_to_dma(dev, DMA_BIT_MASK(ARCH_ZONE_DMA_BITS)))
-		return 0;
-#else
+	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
+
 	/*
 	 * Because 32-bit DMA masks are so common we expect every architecture
 	 * to be able to satisfy them - either by not supporting more physical
 	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the
 	 * architecture needs to use an IOMMU instead of the direct mapping.
-	 *
-	 * This check needs to be against the actual bit mask value, so
-	 * use __phys_to_dma() here so that the SME encryption mask isn't
+	 */
+	if (mask >= DMA_BIT_MASK(32))
+		return 1;
+
+	/*
+	 * This check needs to be against the actual bit mask value, so use
+	 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
 	 * part of the check.
 	 */
-	if (mask < __phys_to_dma(dev, DMA_BIT_MASK(32)))
-		return 0;
-#endif
-	/*
-	 * Upstream PCI/PCIe bridges or SoC interconnects may not carry
-	 * as many DMA address bits as the device itself supports.
-	 */
-	if (dev->bus_dma_mask && mask > dev->bus_dma_mask)
-		return 0;
-	return 1;
+	if (IS_ENABLED(CONFIG_ZONE_DMA))
+		min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
+	return mask >= phys_to_dma_unencrypted(dev, min_mask);
 }
 
-int dma_direct_mapping_error(struct device *dev, dma_addr_t dma_addr)
+size_t dma_direct_max_mapping_size(struct device *dev)
 {
-	return dma_addr == DIRECT_MAPPING_ERROR;
+	/* If SWIOTLB is active, use its maximum mapping size */
+	if (is_swiotlb_active() &&
+	    (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
+		return swiotlb_max_mapping_size(dev);
+	return SIZE_MAX;
 }
 
-const struct dma_map_ops dma_direct_ops = {
-	.alloc			= dma_direct_alloc,
-	.free			= dma_direct_free,
-	.map_page		= dma_direct_map_page,
-	.map_sg			= dma_direct_map_sg,
-	.dma_supported		= dma_direct_supported,
-	.mapping_error		= dma_direct_mapping_error,
-};
-EXPORT_SYMBOL(dma_direct_ops);
+bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
+{
+	return !dev_is_dma_coherent(dev) ||
+		is_swiotlb_buffer(dma_to_phys(dev, dma_addr));
+}
+
+/**
+ * dma_direct_set_offset - Assign scalar offset for a single DMA range.
+ * @dev:	device pointer; needed to "own" the alloced memory.
+ * @cpu_start:  beginning of memory region covered by this offset.
+ * @dma_start:  beginning of DMA/PCI region covered by this offset.
+ * @size:	size of the region.
+ *
+ * This is for the simple case of a uniform offset which cannot
+ * be discovered by "dma-ranges".
+ *
+ * It returns -ENOMEM if out of memory, -EINVAL if a map
+ * already exists, 0 otherwise.
+ *
+ * Note: any call to this from a driver is a bug.  The mapping needs
+ * to be described by the device tree or other firmware interfaces.
+ */
+int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
+			 dma_addr_t dma_start, u64 size)
+{
+	struct bus_dma_region *map;
+	u64 offset = (u64)cpu_start - (u64)dma_start;
+
+	if (dev->dma_range_map) {
+		dev_err(dev, "attempt to add DMA range to existing map\n");
+		return -EINVAL;
+	}
+
+	if (!offset)
+		return 0;
+
+	map = kcalloc(2, sizeof(*map), GFP_KERNEL);
+	if (!map)
+		return -ENOMEM;
+	map[0].cpu_start = cpu_start;
+	map[0].dma_start = dma_start;
+	map[0].offset = offset;
+	map[0].size = size;
+	dev->dma_range_map = map;
+	return 0;
+}
+EXPORT_SYMBOL_GPL(dma_direct_set_offset);

--
Gitblit v1.6.2