From d2ccde1c8e90d38cee87a1b0309ad2827f3fd30d Mon Sep 17 00:00:00 2001 From: hc <hc@nodka.com> Date: Mon, 11 Dec 2023 02:45:28 +0000 Subject: [PATCH] add boot partition size --- kernel/security/Kconfig.hardening | 150 +++++++++++++++++++++++++++++++++++++++++++------- 1 files changed, 129 insertions(+), 21 deletions(-) diff --git a/kernel/security/Kconfig.hardening b/kernel/security/Kconfig.hardening index 234250c..a69055b 100644 --- a/kernel/security/Kconfig.hardening +++ b/kernel/security/Kconfig.hardening @@ -22,13 +22,23 @@ config CC_HAS_AUTO_VAR_INIT_PATTERN def_bool $(cc-option,-ftrivial-auto-var-init=pattern) -config CC_HAS_AUTO_VAR_INIT_ZERO +config CC_HAS_AUTO_VAR_INIT_ZERO_BARE + def_bool $(cc-option,-ftrivial-auto-var-init=zero) + +config CC_HAS_AUTO_VAR_INIT_ZERO_ENABLER + # Clang 16 and later warn about using the -enable flag, but it + # is required before then. def_bool $(cc-option,-ftrivial-auto-var-init=zero -enable-trivial-auto-var-init-zero-knowing-it-will-be-removed-from-clang) + depends on !CC_HAS_AUTO_VAR_INIT_ZERO_BARE + +config CC_HAS_AUTO_VAR_INIT_ZERO + def_bool CC_HAS_AUTO_VAR_INIT_ZERO_BARE || CC_HAS_AUTO_VAR_INIT_ZERO_ENABLER choice prompt "Initialize kernel stack variables at function entry" default GCC_PLUGIN_STRUCTLEAK_BYREF_ALL if COMPILE_TEST && GCC_PLUGINS default INIT_STACK_ALL_PATTERN if COMPILE_TEST && CC_HAS_AUTO_VAR_INIT_PATTERN + default INIT_STACK_ALL_ZERO if CC_HAS_AUTO_VAR_INIT_ZERO default INIT_STACK_NONE help This option enables initialization of stack variables at @@ -39,20 +49,50 @@ syscalls. This chooses the level of coverage over classes of potentially - uninitialized variables. The selected class will be + uninitialized variables. The selected class of variable will be initialized before use in a function. config INIT_STACK_NONE - bool "no automatic initialization (weakest)" + bool "no automatic stack variable initialization (weakest)" help Disable automatic stack variable initialization. This leaves the kernel vulnerable to the standard classes of uninitialized stack variable exploits and information exposures. - config GCC_PLUGIN_STRUCTLEAK_BYREF_ALL - bool "zero-init anything passed by reference (very strong)" + config GCC_PLUGIN_STRUCTLEAK_USER + bool "zero-init structs marked for userspace (weak)" depends on GCC_PLUGINS + select GCC_PLUGIN_STRUCTLEAK + help + Zero-initialize any structures on the stack containing + a __user attribute. This can prevent some classes of + uninitialized stack variable exploits and information + exposures, like CVE-2013-2141: + https://git.kernel.org/linus/b9e146d8eb3b9eca + + config GCC_PLUGIN_STRUCTLEAK_BYREF + bool "zero-init structs passed by reference (strong)" + depends on GCC_PLUGINS + depends on !(KASAN && KASAN_STACK) + select GCC_PLUGIN_STRUCTLEAK + help + Zero-initialize any structures on the stack that may + be passed by reference and had not already been + explicitly initialized. This can prevent most classes + of uninitialized stack variable exploits and information + exposures, like CVE-2017-1000410: + https://git.kernel.org/linus/06e7e776ca4d3654 + + As a side-effect, this keeps a lot of variables on the + stack that can otherwise be optimized out, so combining + this with CONFIG_KASAN_STACK can lead to a stack overflow + and is disallowed. + + config GCC_PLUGIN_STRUCTLEAK_BYREF_ALL + bool "zero-init everything passed by reference (very strong)" + depends on GCC_PLUGINS + depends on !(KASAN && KASAN_STACK) select GCC_PLUGIN_STRUCTLEAK help Zero-initialize any stack variables that may be passed @@ -61,33 +101,44 @@ of uninitialized stack variable exploits and information exposures. + As a side-effect, this keeps a lot of variables on the + stack that can otherwise be optimized out, so combining + this with CONFIG_KASAN_STACK can lead to a stack overflow + and is disallowed. + config INIT_STACK_ALL_PATTERN - bool "0xAA-init everything on the stack (strongest)" + bool "pattern-init everything (strongest)" depends on CC_HAS_AUTO_VAR_INIT_PATTERN help - Initializes everything on the stack with a 0xAA - pattern. This is intended to eliminate all classes - of uninitialized stack variable exploits and information - exposures, even variables that were warned to have been - left uninitialized. + Initializes everything on the stack (including padding) + with a specific debug value. This is intended to eliminate + all classes of uninitialized stack variable exploits and + information exposures, even variables that were warned about + having been left uninitialized. Pattern initialization is known to provoke many existing bugs related to uninitialized locals, e.g. pointers receive - non-NULL values, buffer sizes and indices are very big. + non-NULL values, buffer sizes and indices are very big. The + pattern is situation-specific; Clang on 64-bit uses 0xAA + repeating for all types and padding except float and double + which use 0xFF repeating (-NaN). Clang on 32-bit uses 0xFF + repeating for all types and padding. config INIT_STACK_ALL_ZERO - bool "zero-init everything on the stack (strongest and safest)" + bool "zero-init everything (strongest and safest)" depends on CC_HAS_AUTO_VAR_INIT_ZERO help - Initializes everything on the stack with a zero - value. This is intended to eliminate all classes - of uninitialized stack variable exploits and information - exposures, even variables that were warned to have been - left uninitialized. + Initializes everything on the stack (including padding) + with a zero value. This is intended to eliminate all + classes of uninitialized stack variable exploits and + information exposures, even variables that were warned + about having been left uninitialized. - Zero initialization provides safe defaults for strings, - pointers, indices and sizes, and is therefore - more suitable as a security mitigation measure. + Zero initialization provides safe defaults for strings + (immediately NUL-terminated), pointers (NULL), indices + (index 0), and sizes (0 length), so it is therefore more + suitable as a production security mitigation than pattern + initialization. endchoice @@ -101,6 +152,63 @@ initialized. Since not all existing initializers are detected by the plugin, this can produce false positive warnings. +config GCC_PLUGIN_STACKLEAK + bool "Poison kernel stack before returning from syscalls" + depends on GCC_PLUGINS + depends on HAVE_ARCH_STACKLEAK + help + This option makes the kernel erase the kernel stack before + returning from system calls. This has the effect of leaving + the stack initialized to the poison value, which both reduces + the lifetime of any sensitive stack contents and reduces + potential for uninitialized stack variable exploits or information + exposures (it does not cover functions reaching the same stack + depth as prior functions during the same syscall). This blocks + most uninitialized stack variable attacks, with the performance + impact being driven by the depth of the stack usage, rather than + the function calling complexity. + + The performance impact on a single CPU system kernel compilation + sees a 1% slowdown, other systems and workloads may vary and you + are advised to test this feature on your expected workload before + deploying it. + + This plugin was ported from grsecurity/PaX. More information at: + * https://grsecurity.net/ + * https://pax.grsecurity.net/ + +config STACKLEAK_TRACK_MIN_SIZE + int "Minimum stack frame size of functions tracked by STACKLEAK" + default 100 + range 0 4096 + depends on GCC_PLUGIN_STACKLEAK + help + The STACKLEAK gcc plugin instruments the kernel code for tracking + the lowest border of the kernel stack (and for some other purposes). + It inserts the stackleak_track_stack() call for the functions with + a stack frame size greater than or equal to this parameter. + If unsure, leave the default value 100. + +config STACKLEAK_METRICS + bool "Show STACKLEAK metrics in the /proc file system" + depends on GCC_PLUGIN_STACKLEAK + depends on PROC_FS + help + If this is set, STACKLEAK metrics for every task are available in + the /proc file system. In particular, /proc/<pid>/stack_depth + shows the maximum kernel stack consumption for the current and + previous syscalls. Although this information is not precise, it + can be useful for estimating the STACKLEAK performance impact for + your workloads. + +config STACKLEAK_RUNTIME_DISABLE + bool "Allow runtime disabling of kernel stack erasing" + depends on GCC_PLUGIN_STACKLEAK + help + This option provides 'stack_erasing' sysctl, which can be used in + runtime to control kernel stack erasing for kernels built with + CONFIG_GCC_PLUGIN_STACKLEAK. + config INIT_ON_ALLOC_DEFAULT_ON bool "Enable heap memory zeroing on allocation by default" help -- Gitblit v1.6.2