From a5969cabbb4660eab42b6ef0412cbbd1200cf14d Mon Sep 17 00:00:00 2001 From: hc <hc@nodka.com> Date: Sat, 12 Oct 2024 07:10:09 +0000 Subject: [PATCH] 修改led为gpio --- kernel/arch/x86/include/asm/sync_core.h | 82 +++++++++++++++++++++++++++++++++++++++++ 1 files changed, 82 insertions(+), 0 deletions(-) diff --git a/kernel/arch/x86/include/asm/sync_core.h b/kernel/arch/x86/include/asm/sync_core.h index 43b5e02..ab7382f 100644 --- a/kernel/arch/x86/include/asm/sync_core.h +++ b/kernel/arch/x86/include/asm/sync_core.h @@ -5,6 +5,88 @@ #include <linux/preempt.h> #include <asm/processor.h> #include <asm/cpufeature.h> +#include <asm/special_insns.h> + +#ifdef CONFIG_X86_32 +static inline void iret_to_self(void) +{ + asm volatile ( + "pushfl\n\t" + "pushl %%cs\n\t" + "pushl $1f\n\t" + "iret\n\t" + "1:" + : ASM_CALL_CONSTRAINT : : "memory"); +} +#else +static inline void iret_to_self(void) +{ + unsigned int tmp; + + asm volatile ( + "mov %%ss, %0\n\t" + "pushq %q0\n\t" + "pushq %%rsp\n\t" + "addq $8, (%%rsp)\n\t" + "pushfq\n\t" + "mov %%cs, %0\n\t" + "pushq %q0\n\t" + "pushq $1f\n\t" + "iretq\n\t" + "1:" + : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory"); +} +#endif /* CONFIG_X86_32 */ + +/* + * This function forces the icache and prefetched instruction stream to + * catch up with reality in two very specific cases: + * + * a) Text was modified using one virtual address and is about to be executed + * from the same physical page at a different virtual address. + * + * b) Text was modified on a different CPU, may subsequently be + * executed on this CPU, and you want to make sure the new version + * gets executed. This generally means you're calling this in an IPI. + * + * If you're calling this for a different reason, you're probably doing + * it wrong. + * + * Like all of Linux's memory ordering operations, this is a + * compiler barrier as well. + */ +static inline void sync_core(void) +{ + /* + * The SERIALIZE instruction is the most straightforward way to + * do this, but it is not universally available. + */ + if (static_cpu_has(X86_FEATURE_SERIALIZE)) { + serialize(); + return; + } + + /* + * For all other processors, there are quite a few ways to do this. + * IRET-to-self is nice because it works on every CPU, at any CPL + * (so it's compatible with paravirtualization), and it never exits + * to a hypervisor. The only downsides are that it's a bit slow + * (it seems to be a bit more than 2x slower than the fastest + * options) and that it unmasks NMIs. The "push %cs" is needed, + * because in paravirtual environments __KERNEL_CS may not be a + * valid CS value when we do IRET directly. + * + * In case NMI unmasking or performance ever becomes a problem, + * the next best option appears to be MOV-to-CR2 and an + * unconditional jump. That sequence also works on all CPUs, + * but it will fault at CPL3 (i.e. Xen PV). + * + * CPUID is the conventional way, but it's nasty: it doesn't + * exist on some 486-like CPUs, and it usually exits to a + * hypervisor. + */ + iret_to_self(); +} /* * Ensure that a core serializing instruction is issued before returning -- Gitblit v1.6.2