From a5969cabbb4660eab42b6ef0412cbbd1200cf14d Mon Sep 17 00:00:00 2001
From: hc <hc@nodka.com>
Date: Sat, 12 Oct 2024 07:10:09 +0000
Subject: [PATCH] 修改led为gpio

---
 kernel/arch/x86/include/asm/pgtable-3level.h |   97 +++++++++++++-----------------------------------
 1 files changed, 26 insertions(+), 71 deletions(-)

diff --git a/kernel/arch/x86/include/asm/pgtable-3level.h b/kernel/arch/x86/include/asm/pgtable-3level.h
index f8b1ad2..e896ebe 100644
--- a/kernel/arch/x86/include/asm/pgtable-3level.h
+++ b/kernel/arch/x86/include/asm/pgtable-3level.h
@@ -36,39 +36,41 @@
 
 #define pmd_read_atomic pmd_read_atomic
 /*
- * pte_offset_map_lock on 32bit PAE kernels was reading the pmd_t with
- * a "*pmdp" dereference done by gcc. Problem is, in certain places
- * where pte_offset_map_lock is called, concurrent page faults are
- * allowed, if the mmap_sem is hold for reading. An example is mincore
+ * pte_offset_map_lock() on 32-bit PAE kernels was reading the pmd_t with
+ * a "*pmdp" dereference done by GCC. Problem is, in certain places
+ * where pte_offset_map_lock() is called, concurrent page faults are
+ * allowed, if the mmap_lock is hold for reading. An example is mincore
  * vs page faults vs MADV_DONTNEED. On the page fault side
- * pmd_populate rightfully does a set_64bit, but if we're reading the
+ * pmd_populate() rightfully does a set_64bit(), but if we're reading the
  * pmd_t with a "*pmdp" on the mincore side, a SMP race can happen
- * because gcc will not read the 64bit of the pmd atomically. To fix
- * this all places running pmd_offset_map_lock() while holding the
- * mmap_sem in read mode, shall read the pmdp pointer using this
- * function to know if the pmd is null nor not, and in turn to know if
- * they can run pmd_offset_map_lock or pmd_trans_huge or other pmd
+ * because GCC will not read the 64-bit value of the pmd atomically.
+ *
+ * To fix this all places running pte_offset_map_lock() while holding the
+ * mmap_lock in read mode, shall read the pmdp pointer using this
+ * function to know if the pmd is null or not, and in turn to know if
+ * they can run pte_offset_map_lock() or pmd_trans_huge() or other pmd
  * operations.
  *
- * Without THP if the mmap_sem is hold for reading, the pmd can only
- * transition from null to not null while pmd_read_atomic runs. So
+ * Without THP if the mmap_lock is held for reading, the pmd can only
+ * transition from null to not null while pmd_read_atomic() runs. So
  * we can always return atomic pmd values with this function.
  *
- * With THP if the mmap_sem is hold for reading, the pmd can become
+ * With THP if the mmap_lock is held for reading, the pmd can become
  * trans_huge or none or point to a pte (and in turn become "stable")
- * at any time under pmd_read_atomic. We could read it really
- * atomically here with a atomic64_read for the THP enabled case (and
+ * at any time under pmd_read_atomic(). We could read it truly
+ * atomically here with an atomic64_read() for the THP enabled case (and
  * it would be a whole lot simpler), but to avoid using cmpxchg8b we
  * only return an atomic pmdval if the low part of the pmdval is later
- * found stable (i.e. pointing to a pte). And we're returning a none
- * pmdval if the low part of the pmd is none. In some cases the high
- * and low part of the pmdval returned may not be consistent if THP is
- * enabled (the low part may point to previously mapped hugepage,
- * while the high part may point to a more recently mapped hugepage),
- * but pmd_none_or_trans_huge_or_clear_bad() only needs the low part
- * of the pmd to be read atomically to decide if the pmd is unstable
- * or not, with the only exception of when the low part of the pmd is
- * zero in which case we return a none pmd.
+ * found to be stable (i.e. pointing to a pte). We are also returning a
+ * 'none' (zero) pmdval if the low part of the pmd is zero.
+ *
+ * In some cases the high and low part of the pmdval returned may not be
+ * consistent if THP is enabled (the low part may point to previously
+ * mapped hugepage, while the high part may point to a more recently
+ * mapped hugepage), but pmd_none_or_trans_huge_or_clear_bad() only
+ * needs the low part of the pmd to be read atomically to decide if the
+ * pmd is unstable or not, with the only exception when the low part
+ * of the pmd is zero, in which case we return a 'none' pmd.
  */
 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
 {
@@ -284,53 +286,6 @@
 
 #define __pte_to_swp_entry(pte)	(__swp_entry(__pteval_swp_type(pte), \
 					     __pteval_swp_offset(pte)))
-
-#define gup_get_pte gup_get_pte
-/*
- * WARNING: only to be used in the get_user_pages_fast() implementation.
- *
- * With get_user_pages_fast(), we walk down the pagetables without taking
- * any locks.  For this we would like to load the pointers atomically,
- * but that is not possible (without expensive cmpxchg8b) on PAE.  What
- * we do have is the guarantee that a PTE will only either go from not
- * present to present, or present to not present or both -- it will not
- * switch to a completely different present page without a TLB flush in
- * between; something that we are blocking by holding interrupts off.
- *
- * Setting ptes from not present to present goes:
- *
- *   ptep->pte_high = h;
- *   smp_wmb();
- *   ptep->pte_low = l;
- *
- * And present to not present goes:
- *
- *   ptep->pte_low = 0;
- *   smp_wmb();
- *   ptep->pte_high = 0;
- *
- * We must ensure here that the load of pte_low sees 'l' iff pte_high
- * sees 'h'. We load pte_high *after* loading pte_low, which ensures we
- * don't see an older value of pte_high.  *Then* we recheck pte_low,
- * which ensures that we haven't picked up a changed pte high. We might
- * have gotten rubbish values from pte_low and pte_high, but we are
- * guaranteed that pte_low will not have the present bit set *unless*
- * it is 'l'. Because get_user_pages_fast() only operates on present ptes
- * we're safe.
- */
-static inline pte_t gup_get_pte(pte_t *ptep)
-{
-	pte_t pte;
-
-	do {
-		pte.pte_low = ptep->pte_low;
-		smp_rmb();
-		pte.pte_high = ptep->pte_high;
-		smp_rmb();
-	} while (unlikely(pte.pte_low != ptep->pte_low));
-
-	return pte;
-}
 
 #include <asm/pgtable-invert.h>
 

--
Gitblit v1.6.2