From a5969cabbb4660eab42b6ef0412cbbd1200cf14d Mon Sep 17 00:00:00 2001 From: hc <hc@nodka.com> Date: Sat, 12 Oct 2024 07:10:09 +0000 Subject: [PATCH] 修改led为gpio --- kernel/arch/x86/include/asm/pgtable-3level.h | 97 +++++++++++++----------------------------------- 1 files changed, 26 insertions(+), 71 deletions(-) diff --git a/kernel/arch/x86/include/asm/pgtable-3level.h b/kernel/arch/x86/include/asm/pgtable-3level.h index f8b1ad2..e896ebe 100644 --- a/kernel/arch/x86/include/asm/pgtable-3level.h +++ b/kernel/arch/x86/include/asm/pgtable-3level.h @@ -36,39 +36,41 @@ #define pmd_read_atomic pmd_read_atomic /* - * pte_offset_map_lock on 32bit PAE kernels was reading the pmd_t with - * a "*pmdp" dereference done by gcc. Problem is, in certain places - * where pte_offset_map_lock is called, concurrent page faults are - * allowed, if the mmap_sem is hold for reading. An example is mincore + * pte_offset_map_lock() on 32-bit PAE kernels was reading the pmd_t with + * a "*pmdp" dereference done by GCC. Problem is, in certain places + * where pte_offset_map_lock() is called, concurrent page faults are + * allowed, if the mmap_lock is hold for reading. An example is mincore * vs page faults vs MADV_DONTNEED. On the page fault side - * pmd_populate rightfully does a set_64bit, but if we're reading the + * pmd_populate() rightfully does a set_64bit(), but if we're reading the * pmd_t with a "*pmdp" on the mincore side, a SMP race can happen - * because gcc will not read the 64bit of the pmd atomically. To fix - * this all places running pmd_offset_map_lock() while holding the - * mmap_sem in read mode, shall read the pmdp pointer using this - * function to know if the pmd is null nor not, and in turn to know if - * they can run pmd_offset_map_lock or pmd_trans_huge or other pmd + * because GCC will not read the 64-bit value of the pmd atomically. + * + * To fix this all places running pte_offset_map_lock() while holding the + * mmap_lock in read mode, shall read the pmdp pointer using this + * function to know if the pmd is null or not, and in turn to know if + * they can run pte_offset_map_lock() or pmd_trans_huge() or other pmd * operations. * - * Without THP if the mmap_sem is hold for reading, the pmd can only - * transition from null to not null while pmd_read_atomic runs. So + * Without THP if the mmap_lock is held for reading, the pmd can only + * transition from null to not null while pmd_read_atomic() runs. So * we can always return atomic pmd values with this function. * - * With THP if the mmap_sem is hold for reading, the pmd can become + * With THP if the mmap_lock is held for reading, the pmd can become * trans_huge or none or point to a pte (and in turn become "stable") - * at any time under pmd_read_atomic. We could read it really - * atomically here with a atomic64_read for the THP enabled case (and + * at any time under pmd_read_atomic(). We could read it truly + * atomically here with an atomic64_read() for the THP enabled case (and * it would be a whole lot simpler), but to avoid using cmpxchg8b we * only return an atomic pmdval if the low part of the pmdval is later - * found stable (i.e. pointing to a pte). And we're returning a none - * pmdval if the low part of the pmd is none. In some cases the high - * and low part of the pmdval returned may not be consistent if THP is - * enabled (the low part may point to previously mapped hugepage, - * while the high part may point to a more recently mapped hugepage), - * but pmd_none_or_trans_huge_or_clear_bad() only needs the low part - * of the pmd to be read atomically to decide if the pmd is unstable - * or not, with the only exception of when the low part of the pmd is - * zero in which case we return a none pmd. + * found to be stable (i.e. pointing to a pte). We are also returning a + * 'none' (zero) pmdval if the low part of the pmd is zero. + * + * In some cases the high and low part of the pmdval returned may not be + * consistent if THP is enabled (the low part may point to previously + * mapped hugepage, while the high part may point to a more recently + * mapped hugepage), but pmd_none_or_trans_huge_or_clear_bad() only + * needs the low part of the pmd to be read atomically to decide if the + * pmd is unstable or not, with the only exception when the low part + * of the pmd is zero, in which case we return a 'none' pmd. */ static inline pmd_t pmd_read_atomic(pmd_t *pmdp) { @@ -284,53 +286,6 @@ #define __pte_to_swp_entry(pte) (__swp_entry(__pteval_swp_type(pte), \ __pteval_swp_offset(pte))) - -#define gup_get_pte gup_get_pte -/* - * WARNING: only to be used in the get_user_pages_fast() implementation. - * - * With get_user_pages_fast(), we walk down the pagetables without taking - * any locks. For this we would like to load the pointers atomically, - * but that is not possible (without expensive cmpxchg8b) on PAE. What - * we do have is the guarantee that a PTE will only either go from not - * present to present, or present to not present or both -- it will not - * switch to a completely different present page without a TLB flush in - * between; something that we are blocking by holding interrupts off. - * - * Setting ptes from not present to present goes: - * - * ptep->pte_high = h; - * smp_wmb(); - * ptep->pte_low = l; - * - * And present to not present goes: - * - * ptep->pte_low = 0; - * smp_wmb(); - * ptep->pte_high = 0; - * - * We must ensure here that the load of pte_low sees 'l' iff pte_high - * sees 'h'. We load pte_high *after* loading pte_low, which ensures we - * don't see an older value of pte_high. *Then* we recheck pte_low, - * which ensures that we haven't picked up a changed pte high. We might - * have gotten rubbish values from pte_low and pte_high, but we are - * guaranteed that pte_low will not have the present bit set *unless* - * it is 'l'. Because get_user_pages_fast() only operates on present ptes - * we're safe. - */ -static inline pte_t gup_get_pte(pte_t *ptep) -{ - pte_t pte; - - do { - pte.pte_low = ptep->pte_low; - smp_rmb(); - pte.pte_high = ptep->pte_high; - smp_rmb(); - } while (unlikely(pte.pte_low != ptep->pte_low)); - - return pte; -} #include <asm/pgtable-invert.h> -- Gitblit v1.6.2