From 9d77db3c730780c8ef5ccd4b66403ff5675cfe4e Mon Sep 17 00:00:00 2001
From: hc <hc@nodka.com>
Date: Mon, 13 May 2024 10:30:14 +0000
Subject: [PATCH] modify sin led gpio

---
 kernel/include/linux/energy_model.h |  186 +++++++++++++++++++++++++++++----------------
 1 files changed, 119 insertions(+), 67 deletions(-)

diff --git a/kernel/include/linux/energy_model.h b/kernel/include/linux/energy_model.h
index aa027f7..9ca1ea0 100644
--- a/kernel/include/linux/energy_model.h
+++ b/kernel/include/linux/energy_model.h
@@ -2,6 +2,7 @@
 #ifndef _LINUX_ENERGY_MODEL_H
 #define _LINUX_ENERGY_MODEL_H
 #include <linux/cpumask.h>
+#include <linux/device.h>
 #include <linux/jump_label.h>
 #include <linux/kobject.h>
 #include <linux/rcupdate.h>
@@ -9,15 +10,16 @@
 #include <linux/sched/topology.h>
 #include <linux/types.h>
 
-#ifdef CONFIG_ENERGY_MODEL
 /**
- * em_cap_state - Capacity state of a performance domain
- * @frequency:	The CPU frequency in KHz, for consistency with CPUFreq
- * @power:	The power consumed by 1 CPU at this level, in milli-watts
+ * em_perf_state - Performance state of a performance domain
+ * @frequency:	The frequency in KHz, for consistency with CPUFreq
+ * @power:	The power consumed at this level, in milli-watts (by 1 CPU or
+		by a registered device). It can be a total power: static and
+		dynamic.
  * @cost:	The cost coefficient associated with this level, used during
  *		energy calculation. Equal to: power * max_frequency / frequency
  */
-struct em_cap_state {
+struct em_perf_state {
 	unsigned long frequency;
 	unsigned long power;
 	unsigned long cost;
@@ -25,101 +27,142 @@
 
 /**
  * em_perf_domain - Performance domain
- * @table:		List of capacity states, in ascending order
- * @nr_cap_states:	Number of capacity states
- * @cpus:		Cpumask covering the CPUs of the domain
+ * @table:		List of performance states, in ascending order
+ * @nr_perf_states:	Number of performance states
+ * @milliwatts:		Flag indicating the power values are in milli-Watts
+ *			or some other scale.
+ * @cpus:		Cpumask covering the CPUs of the domain. It's here
+ *			for performance reasons to avoid potential cache
+ *			misses during energy calculations in the scheduler
+ *			and simplifies allocating/freeing that memory region.
  *
- * A "performance domain" represents a group of CPUs whose performance is
- * scaled together. All CPUs of a performance domain must have the same
- * micro-architecture. Performance domains often have a 1-to-1 mapping with
- * CPUFreq policies.
+ * In case of CPU device, a "performance domain" represents a group of CPUs
+ * whose performance is scaled together. All CPUs of a performance domain
+ * must have the same micro-architecture. Performance domains often have
+ * a 1-to-1 mapping with CPUFreq policies. In case of other devices the @cpus
+ * field is unused.
  */
 struct em_perf_domain {
-	struct em_cap_state *table;
-	int nr_cap_states;
-	unsigned long cpus[0];
+	struct em_perf_state *table;
+	int nr_perf_states;
+	int milliwatts;
+	unsigned long cpus[];
 };
 
-#define EM_CPU_MAX_POWER 0xFFFF
+#define em_span_cpus(em) (to_cpumask((em)->cpus))
+
+#ifdef CONFIG_ENERGY_MODEL
+#define EM_MAX_POWER 0xFFFF
+
+/*
+ * Increase resolution of energy estimation calculations for 64-bit
+ * architectures. The extra resolution improves decision made by EAS for the
+ * task placement when two Performance Domains might provide similar energy
+ * estimation values (w/o better resolution the values could be equal).
+ *
+ * We increase resolution only if we have enough bits to allow this increased
+ * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
+ * are pretty high and the returns do not justify the increased costs.
+ */
+#ifdef CONFIG_64BIT
+#define em_scale_power(p) ((p) * 1000)
+#else
+#define em_scale_power(p) (p)
+#endif
 
 struct em_data_callback {
 	/**
-	 * active_power() - Provide power at the next capacity state of a CPU
-	 * @power	: Active power at the capacity state in mW (modified)
-	 * @freq	: Frequency at the capacity state in kHz (modified)
-	 * @cpu		: CPU for which we do this operation
+	 * active_power() - Provide power at the next performance state of
+	 *		a device
+	 * @power	: Active power at the performance state in mW
+	 *		(modified)
+	 * @freq	: Frequency at the performance state in kHz
+	 *		(modified)
+	 * @dev		: Device for which we do this operation (can be a CPU)
 	 *
-	 * active_power() must find the lowest capacity state of 'cpu' above
+	 * active_power() must find the lowest performance state of 'dev' above
 	 * 'freq' and update 'power' and 'freq' to the matching active power
 	 * and frequency.
 	 *
-	 * The power is the one of a single CPU in the domain, expressed in
-	 * milli-watts. It is expected to fit in the [0, EM_CPU_MAX_POWER]
-	 * range.
+	 * In case of CPUs, the power is the one of a single CPU in the domain,
+	 * expressed in milli-watts. It is expected to fit in the
+	 * [0, EM_MAX_POWER] range.
 	 *
 	 * Return 0 on success.
 	 */
-	int (*active_power)(unsigned long *power, unsigned long *freq, int cpu);
+	int (*active_power)(unsigned long *power, unsigned long *freq,
+			    struct device *dev);
 };
 #define EM_DATA_CB(_active_power_cb) { .active_power = &_active_power_cb }
 
 struct em_perf_domain *em_cpu_get(int cpu);
-int em_register_perf_domain(cpumask_t *span, unsigned int nr_states,
-						struct em_data_callback *cb);
+struct em_perf_domain *em_pd_get(struct device *dev);
+int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
+				struct em_data_callback *cb, cpumask_t *span,
+				bool milliwatts);
+void em_dev_unregister_perf_domain(struct device *dev);
 
 /**
- * em_pd_energy() - Estimates the energy consumed by the CPUs of a perf. domain
+ * em_cpu_energy() - Estimates the energy consumed by the CPUs of a
+		performance domain
  * @pd		: performance domain for which energy has to be estimated
  * @max_util	: highest utilization among CPUs of the domain
  * @sum_util	: sum of the utilization of all CPUs in the domain
  *
+ * This function must be used only for CPU devices. There is no validation,
+ * i.e. if the EM is a CPU type and has cpumask allocated. It is called from
+ * the scheduler code quite frequently and that is why there is not checks.
+ *
  * Return: the sum of the energy consumed by the CPUs of the domain assuming
  * a capacity state satisfying the max utilization of the domain.
  */
-static inline unsigned long em_pd_energy(struct em_perf_domain *pd,
+static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
 				unsigned long max_util, unsigned long sum_util)
 {
 	unsigned long freq, scale_cpu;
-	struct em_cap_state *cs;
+	struct em_perf_state *ps;
 	int i, cpu;
 
-	/*
-	 * In order to predict the capacity state, map the utilization of the
-	 * most utilized CPU of the performance domain to a requested frequency,
-	 * like schedutil.
-	 */
-	cpu = cpumask_first(to_cpumask(pd->cpus));
-	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
-	cs = &pd->table[pd->nr_cap_states - 1];
-	freq = map_util_freq(max_util, cs->frequency, scale_cpu);
+	if (!sum_util)
+		return 0;
 
 	/*
-	 * Find the lowest capacity state of the Energy Model above the
+	 * In order to predict the performance state, map the utilization of
+	 * the most utilized CPU of the performance domain to a requested
+	 * frequency, like schedutil.
+	 */
+	cpu = cpumask_first(to_cpumask(pd->cpus));
+	scale_cpu = arch_scale_cpu_capacity(cpu);
+	ps = &pd->table[pd->nr_perf_states - 1];
+	freq = map_util_freq(max_util, ps->frequency, scale_cpu);
+
+	/*
+	 * Find the lowest performance state of the Energy Model above the
 	 * requested frequency.
 	 */
-	for (i = 0; i < pd->nr_cap_states; i++) {
-		cs = &pd->table[i];
-		if (cs->frequency >= freq)
+	for (i = 0; i < pd->nr_perf_states; i++) {
+		ps = &pd->table[i];
+		if (ps->frequency >= freq)
 			break;
 	}
 
 	/*
-	 * The capacity of a CPU in the domain at that capacity state (cs)
+	 * The capacity of a CPU in the domain at the performance state (ps)
 	 * can be computed as:
 	 *
-	 *             cs->freq * scale_cpu
-	 *   cs->cap = --------------------                          (1)
+	 *             ps->freq * scale_cpu
+	 *   ps->cap = --------------------                          (1)
 	 *                 cpu_max_freq
 	 *
 	 * So, ignoring the costs of idle states (which are not available in
-	 * the EM), the energy consumed by this CPU at that capacity state is
-	 * estimated as:
+	 * the EM), the energy consumed by this CPU at that performance state
+	 * is estimated as:
 	 *
-	 *             cs->power * cpu_util
+	 *             ps->power * cpu_util
 	 *   cpu_nrg = --------------------                          (2)
-	 *                   cs->cap
+	 *                   ps->cap
 	 *
-	 * since 'cpu_util / cs->cap' represents its percentage of busy time.
+	 * since 'cpu_util / ps->cap' represents its percentage of busy time.
 	 *
 	 *   NOTE: Although the result of this computation actually is in
 	 *         units of power, it can be manipulated as an energy value
@@ -129,56 +172,65 @@
 	 * By injecting (1) in (2), 'cpu_nrg' can be re-expressed as a product
 	 * of two terms:
 	 *
-	 *             cs->power * cpu_max_freq   cpu_util
+	 *             ps->power * cpu_max_freq   cpu_util
 	 *   cpu_nrg = ------------------------ * ---------          (3)
-	 *                    cs->freq            scale_cpu
+	 *                    ps->freq            scale_cpu
 	 *
-	 * The first term is static, and is stored in the em_cap_state struct
-	 * as 'cs->cost'.
+	 * The first term is static, and is stored in the em_perf_state struct
+	 * as 'ps->cost'.
 	 *
 	 * Since all CPUs of the domain have the same micro-architecture, they
-	 * share the same 'cs->cost', and the same CPU capacity. Hence, the
+	 * share the same 'ps->cost', and the same CPU capacity. Hence, the
 	 * total energy of the domain (which is the simple sum of the energy of
 	 * all of its CPUs) can be factorized as:
 	 *
-	 *            cs->cost * \Sum cpu_util
+	 *            ps->cost * \Sum cpu_util
 	 *   pd_nrg = ------------------------                       (4)
 	 *                  scale_cpu
 	 */
-	return cs->cost * sum_util / scale_cpu;
+	return ps->cost * sum_util / scale_cpu;
 }
 
 /**
- * em_pd_nr_cap_states() - Get the number of capacity states of a perf. domain
+ * em_pd_nr_perf_states() - Get the number of performance states of a perf.
+ *				domain
  * @pd		: performance domain for which this must be done
  *
- * Return: the number of capacity states in the performance domain table
+ * Return: the number of performance states in the performance domain table
  */
-static inline int em_pd_nr_cap_states(struct em_perf_domain *pd)
+static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
 {
-	return pd->nr_cap_states;
+	return pd->nr_perf_states;
 }
 
 #else
-struct em_perf_domain {};
 struct em_data_callback {};
 #define EM_DATA_CB(_active_power_cb) { }
 
-static inline int em_register_perf_domain(cpumask_t *span,
-			unsigned int nr_states, struct em_data_callback *cb)
+static inline
+int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
+				struct em_data_callback *cb, cpumask_t *span,
+				bool milliwatts)
 {
 	return -EINVAL;
+}
+static inline void em_dev_unregister_perf_domain(struct device *dev)
+{
 }
 static inline struct em_perf_domain *em_cpu_get(int cpu)
 {
 	return NULL;
 }
-static inline unsigned long em_pd_energy(struct em_perf_domain *pd,
+static inline struct em_perf_domain *em_pd_get(struct device *dev)
+{
+	return NULL;
+}
+static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
 			unsigned long max_util, unsigned long sum_util)
 {
 	return 0;
 }
-static inline int em_pd_nr_cap_states(struct em_perf_domain *pd)
+static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
 {
 	return 0;
 }

--
Gitblit v1.6.2