From 9999e48639b3cecb08ffb37358bcba3b48161b29 Mon Sep 17 00:00:00 2001 From: hc <hc@nodka.com> Date: Fri, 10 May 2024 08:50:17 +0000 Subject: [PATCH] add ax88772_rst --- kernel/drivers/pci/endpoint/functions/pci-epf-test.c | 527 +++++++++++++++++++++++++++++++++++++++++++++++++--------- 1 files changed, 443 insertions(+), 84 deletions(-) diff --git a/kernel/drivers/pci/endpoint/functions/pci-epf-test.c b/kernel/drivers/pci/endpoint/functions/pci-epf-test.c index 09a1e44..ef52f50 100644 --- a/kernel/drivers/pci/endpoint/functions/pci-epf-test.c +++ b/kernel/drivers/pci/endpoint/functions/pci-epf-test.c @@ -8,6 +8,7 @@ #include <linux/crc32.h> #include <linux/delay.h> +#include <linux/dmaengine.h> #include <linux/io.h> #include <linux/module.h> #include <linux/slab.h> @@ -39,17 +40,22 @@ #define STATUS_SRC_ADDR_INVALID BIT(7) #define STATUS_DST_ADDR_INVALID BIT(8) +#define FLAG_USE_DMA BIT(0) + #define TIMER_RESOLUTION 1 static struct workqueue_struct *kpcitest_workqueue; struct pci_epf_test { - void *reg[6]; + void *reg[PCI_STD_NUM_BARS]; struct pci_epf *epf; enum pci_barno test_reg_bar; - bool linkup_notifier; - bool msix_available; + size_t msix_table_offset; struct delayed_work cmd_handler; + struct dma_chan *dma_chan; + struct completion transfer_complete; + bool dma_supported; + const struct pci_epc_features *epc_features; }; struct pci_epf_test_reg { @@ -62,6 +68,7 @@ u32 checksum; u32 irq_type; u32 irq_number; + u32 flags; } __packed; static struct pci_epf_header test_header = { @@ -71,20 +78,161 @@ .interrupt_pin = PCI_INTERRUPT_INTA, }; -struct pci_epf_test_data { - enum pci_barno test_reg_bar; - bool linkup_notifier; -}; - static size_t bar_size[] = { 512, 512, 1024, 16384, 131072, 1048576 }; + +static void pci_epf_test_dma_callback(void *param) +{ + struct pci_epf_test *epf_test = param; + + complete(&epf_test->transfer_complete); +} + +/** + * pci_epf_test_data_transfer() - Function that uses dmaengine API to transfer + * data between PCIe EP and remote PCIe RC + * @epf_test: the EPF test device that performs the data transfer operation + * @dma_dst: The destination address of the data transfer. It can be a physical + * address given by pci_epc_mem_alloc_addr or DMA mapping APIs. + * @dma_src: The source address of the data transfer. It can be a physical + * address given by pci_epc_mem_alloc_addr or DMA mapping APIs. + * @len: The size of the data transfer + * + * Function that uses dmaengine API to transfer data between PCIe EP and remote + * PCIe RC. The source and destination address can be a physical address given + * by pci_epc_mem_alloc_addr or the one obtained using DMA mapping APIs. + * + * The function returns '0' on success and negative value on failure. + */ +static int pci_epf_test_data_transfer(struct pci_epf_test *epf_test, + dma_addr_t dma_dst, dma_addr_t dma_src, + size_t len) +{ + enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; + struct dma_chan *chan = epf_test->dma_chan; + struct pci_epf *epf = epf_test->epf; + struct dma_async_tx_descriptor *tx; + struct device *dev = &epf->dev; + dma_cookie_t cookie; + int ret; + + if (IS_ERR_OR_NULL(chan)) { + dev_err(dev, "Invalid DMA memcpy channel\n"); + return -EINVAL; + } + + tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len, flags); + if (!tx) { + dev_err(dev, "Failed to prepare DMA memcpy\n"); + return -EIO; + } + + tx->callback = pci_epf_test_dma_callback; + tx->callback_param = epf_test; + cookie = tx->tx_submit(tx); + reinit_completion(&epf_test->transfer_complete); + + ret = dma_submit_error(cookie); + if (ret) { + dev_err(dev, "Failed to do DMA tx_submit %d\n", cookie); + return -EIO; + } + + dma_async_issue_pending(chan); + ret = wait_for_completion_interruptible(&epf_test->transfer_complete); + if (ret < 0) { + dmaengine_terminate_sync(chan); + dev_err(dev, "DMA wait_for_completion_timeout\n"); + return -ETIMEDOUT; + } + + return 0; +} + +/** + * pci_epf_test_init_dma_chan() - Function to initialize EPF test DMA channel + * @epf_test: the EPF test device that performs data transfer operation + * + * Function to initialize EPF test DMA channel. + */ +static int pci_epf_test_init_dma_chan(struct pci_epf_test *epf_test) +{ + struct pci_epf *epf = epf_test->epf; + struct device *dev = &epf->dev; + struct dma_chan *dma_chan; + dma_cap_mask_t mask; + int ret; + + dma_cap_zero(mask); + dma_cap_set(DMA_MEMCPY, mask); + + dma_chan = dma_request_chan_by_mask(&mask); + if (IS_ERR(dma_chan)) { + ret = PTR_ERR(dma_chan); + if (ret != -EPROBE_DEFER) + dev_err(dev, "Failed to get DMA channel\n"); + return ret; + } + init_completion(&epf_test->transfer_complete); + + epf_test->dma_chan = dma_chan; + + return 0; +} + +/** + * pci_epf_test_clean_dma_chan() - Function to cleanup EPF test DMA channel + * @epf_test: the EPF test device that performs data transfer operation + * + * Helper to cleanup EPF test DMA channel. + */ +static void pci_epf_test_clean_dma_chan(struct pci_epf_test *epf_test) +{ + if (!epf_test->dma_supported) + return; + + dma_release_channel(epf_test->dma_chan); + epf_test->dma_chan = NULL; +} + +static void pci_epf_test_print_rate(const char *ops, u64 size, + struct timespec64 *start, + struct timespec64 *end, bool dma) +{ + struct timespec64 ts; + u64 rate, ns; + + ts = timespec64_sub(*end, *start); + + /* convert both size (stored in 'rate') and time in terms of 'ns' */ + ns = timespec64_to_ns(&ts); + rate = size * NSEC_PER_SEC; + + /* Divide both size (stored in 'rate') and ns by a common factor */ + while (ns > UINT_MAX) { + rate >>= 1; + ns >>= 1; + } + + if (!ns) + return; + + /* calculate the rate */ + do_div(rate, (uint32_t)ns); + + pr_info("\n%s => Size: %llu bytes\t DMA: %s\t Time: %llu.%09u seconds\t" + "Rate: %llu KB/s\n", ops, size, dma ? "YES" : "NO", + (u64)ts.tv_sec, (u32)ts.tv_nsec, rate / 1024); +} static int pci_epf_test_copy(struct pci_epf_test *epf_test) { int ret; + bool use_dma; void __iomem *src_addr; void __iomem *dst_addr; phys_addr_t src_phys_addr; phys_addr_t dst_phys_addr; + struct timespec64 start, end; struct pci_epf *epf = epf_test->epf; struct device *dev = &epf->dev; struct pci_epc *epc = epf->epc; @@ -123,8 +271,36 @@ goto err_dst_addr; } - memcpy(dst_addr, src_addr, reg->size); + ktime_get_ts64(&start); + use_dma = !!(reg->flags & FLAG_USE_DMA); + if (use_dma) { + if (!epf_test->dma_supported) { + dev_err(dev, "Cannot transfer data using DMA\n"); + ret = -EINVAL; + goto err_map_addr; + } + ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr, + src_phys_addr, reg->size); + if (ret) + dev_err(dev, "Data transfer failed\n"); + } else { + void *buf; + + buf = kzalloc(reg->size, GFP_KERNEL); + if (!buf) { + ret = -ENOMEM; + goto err_map_addr; + } + + memcpy_fromio(buf, src_addr, reg->size); + memcpy_toio(dst_addr, buf, reg->size); + kfree(buf); + } + ktime_get_ts64(&end); + pci_epf_test_print_rate("COPY", reg->size, &start, &end, use_dma); + +err_map_addr: pci_epc_unmap_addr(epc, epf->func_no, dst_phys_addr); err_dst_addr: @@ -146,10 +322,14 @@ void __iomem *src_addr; void *buf; u32 crc32; + bool use_dma; phys_addr_t phys_addr; + phys_addr_t dst_phys_addr; + struct timespec64 start, end; struct pci_epf *epf = epf_test->epf; struct device *dev = &epf->dev; struct pci_epc *epc = epf->epc; + struct device *dma_dev = epf->epc->dev.parent; enum pci_barno test_reg_bar = epf_test->test_reg_bar; struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; @@ -175,12 +355,44 @@ goto err_map_addr; } - memcpy_fromio(buf, src_addr, reg->size); + use_dma = !!(reg->flags & FLAG_USE_DMA); + if (use_dma) { + if (!epf_test->dma_supported) { + dev_err(dev, "Cannot transfer data using DMA\n"); + ret = -EINVAL; + goto err_dma_map; + } + + dst_phys_addr = dma_map_single(dma_dev, buf, reg->size, + DMA_FROM_DEVICE); + if (dma_mapping_error(dma_dev, dst_phys_addr)) { + dev_err(dev, "Failed to map destination buffer addr\n"); + ret = -ENOMEM; + goto err_dma_map; + } + + ktime_get_ts64(&start); + ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr, + phys_addr, reg->size); + if (ret) + dev_err(dev, "Data transfer failed\n"); + ktime_get_ts64(&end); + + dma_unmap_single(dma_dev, dst_phys_addr, reg->size, + DMA_FROM_DEVICE); + } else { + ktime_get_ts64(&start); + memcpy_fromio(buf, src_addr, reg->size); + ktime_get_ts64(&end); + } + + pci_epf_test_print_rate("READ", reg->size, &start, &end, use_dma); crc32 = crc32_le(~0, buf, reg->size); if (crc32 != reg->checksum) ret = -EIO; +err_dma_map: kfree(buf); err_map_addr: @@ -198,10 +410,14 @@ int ret; void __iomem *dst_addr; void *buf; + bool use_dma; phys_addr_t phys_addr; + phys_addr_t src_phys_addr; + struct timespec64 start, end; struct pci_epf *epf = epf_test->epf; struct device *dev = &epf->dev; struct pci_epc *epc = epf->epc; + struct device *dma_dev = epf->epc->dev.parent; enum pci_barno test_reg_bar = epf_test->test_reg_bar; struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; @@ -230,7 +446,38 @@ get_random_bytes(buf, reg->size); reg->checksum = crc32_le(~0, buf, reg->size); - memcpy_toio(dst_addr, buf, reg->size); + use_dma = !!(reg->flags & FLAG_USE_DMA); + if (use_dma) { + if (!epf_test->dma_supported) { + dev_err(dev, "Cannot transfer data using DMA\n"); + ret = -EINVAL; + goto err_dma_map; + } + + src_phys_addr = dma_map_single(dma_dev, buf, reg->size, + DMA_TO_DEVICE); + if (dma_mapping_error(dma_dev, src_phys_addr)) { + dev_err(dev, "Failed to map source buffer addr\n"); + ret = -ENOMEM; + goto err_dma_map; + } + + ktime_get_ts64(&start); + ret = pci_epf_test_data_transfer(epf_test, phys_addr, + src_phys_addr, reg->size); + if (ret) + dev_err(dev, "Data transfer failed\n"); + ktime_get_ts64(&end); + + dma_unmap_single(dma_dev, src_phys_addr, reg->size, + DMA_TO_DEVICE); + } else { + ktime_get_ts64(&start); + memcpy_toio(dst_addr, buf, reg->size); + ktime_get_ts64(&end); + } + + pci_epf_test_print_rate("WRITE", reg->size, &start, &end, use_dma); /* * wait 1ms inorder for the write to complete. Without this delay L3 @@ -238,6 +485,7 @@ */ usleep_range(1000, 2000); +err_dma_map: kfree(buf); err_map_addr: @@ -366,14 +614,6 @@ msecs_to_jiffies(1)); } -static void pci_epf_test_linkup(struct pci_epf *epf) -{ - struct pci_epf_test *epf_test = epf_get_drvdata(epf); - - queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler, - msecs_to_jiffies(1)); -} - static void pci_epf_test_unbind(struct pci_epf *epf) { struct pci_epf_test *epf_test = epf_get_drvdata(epf); @@ -382,33 +622,41 @@ int bar; cancel_delayed_work(&epf_test->cmd_handler); - pci_epc_stop(epc); - for (bar = BAR_0; bar <= BAR_5; bar++) { + pci_epf_test_clean_dma_chan(epf_test); + for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { epf_bar = &epf->bar[bar]; if (epf_test->reg[bar]) { - pci_epf_free_space(epf, epf_test->reg[bar], bar); pci_epc_clear_bar(epc, epf->func_no, epf_bar); + pci_epf_free_space(epf, epf_test->reg[bar], bar); } } } static int pci_epf_test_set_bar(struct pci_epf *epf) { - int bar; + int bar, add; int ret; struct pci_epf_bar *epf_bar; struct pci_epc *epc = epf->epc; struct device *dev = &epf->dev; struct pci_epf_test *epf_test = epf_get_drvdata(epf); enum pci_barno test_reg_bar = epf_test->test_reg_bar; + const struct pci_epc_features *epc_features; - for (bar = BAR_0; bar <= BAR_5; bar++) { + epc_features = epf_test->epc_features; + + for (bar = 0; bar < PCI_STD_NUM_BARS; bar += add) { epf_bar = &epf->bar[bar]; + /* + * pci_epc_set_bar() sets PCI_BASE_ADDRESS_MEM_TYPE_64 + * if the specific implementation required a 64-bit BAR, + * even if we only requested a 32-bit BAR. + */ + add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1; - epf_bar->flags |= upper_32_bits(epf_bar->size) ? - PCI_BASE_ADDRESS_MEM_TYPE_64 : - PCI_BASE_ADDRESS_MEM_TYPE_32; + if (!!(epc_features->reserved_bar & (1 << bar))) + continue; ret = pci_epc_set_bar(epc, epf->func_no, epf_bar); if (ret) { @@ -417,38 +665,140 @@ if (bar == test_reg_bar) return ret; } - /* - * pci_epc_set_bar() sets PCI_BASE_ADDRESS_MEM_TYPE_64 - * if the specific implementation required a 64-bit BAR, - * even if we only requested a 32-bit BAR. - */ - if (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) - bar++; } return 0; +} + +static int pci_epf_test_core_init(struct pci_epf *epf) +{ + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + struct pci_epf_header *header = epf->header; + const struct pci_epc_features *epc_features; + struct pci_epc *epc = epf->epc; + struct device *dev = &epf->dev; + bool msix_capable = false; + bool msi_capable = true; + int ret; + + epc_features = pci_epc_get_features(epc, epf->func_no); + if (epc_features) { + msix_capable = epc_features->msix_capable; + msi_capable = epc_features->msi_capable; + } + + ret = pci_epc_write_header(epc, epf->func_no, header); + if (ret) { + dev_err(dev, "Configuration header write failed\n"); + return ret; + } + + ret = pci_epf_test_set_bar(epf); + if (ret) + return ret; + + if (msi_capable) { + ret = pci_epc_set_msi(epc, epf->func_no, epf->msi_interrupts); + if (ret) { + dev_err(dev, "MSI configuration failed\n"); + return ret; + } + } + + if (msix_capable) { + ret = pci_epc_set_msix(epc, epf->func_no, epf->msix_interrupts, + epf_test->test_reg_bar, + epf_test->msix_table_offset); + if (ret) { + dev_err(dev, "MSI-X configuration failed\n"); + return ret; + } + } + + return 0; +} + +static int pci_epf_test_notifier(struct notifier_block *nb, unsigned long val, + void *data) +{ + struct pci_epf *epf = container_of(nb, struct pci_epf, nb); + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + int ret; + + switch (val) { + case CORE_INIT: + ret = pci_epf_test_core_init(epf); + if (ret) + return NOTIFY_BAD; + break; + + case LINK_UP: + queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler, + msecs_to_jiffies(1)); + break; + + default: + dev_err(&epf->dev, "Invalid EPF test notifier event\n"); + return NOTIFY_BAD; + } + + return NOTIFY_OK; } static int pci_epf_test_alloc_space(struct pci_epf *epf) { struct pci_epf_test *epf_test = epf_get_drvdata(epf); struct device *dev = &epf->dev; + struct pci_epf_bar *epf_bar; + size_t msix_table_size = 0; + size_t test_reg_bar_size; + size_t pba_size = 0; + bool msix_capable; void *base; - int bar; + int bar, add; enum pci_barno test_reg_bar = epf_test->test_reg_bar; + const struct pci_epc_features *epc_features; + size_t test_reg_size; - base = pci_epf_alloc_space(epf, sizeof(struct pci_epf_test_reg), - test_reg_bar); + epc_features = epf_test->epc_features; + + test_reg_bar_size = ALIGN(sizeof(struct pci_epf_test_reg), 128); + + msix_capable = epc_features->msix_capable; + if (msix_capable) { + msix_table_size = PCI_MSIX_ENTRY_SIZE * epf->msix_interrupts; + epf_test->msix_table_offset = test_reg_bar_size; + /* Align to QWORD or 8 Bytes */ + pba_size = ALIGN(DIV_ROUND_UP(epf->msix_interrupts, 8), 8); + } + test_reg_size = test_reg_bar_size + msix_table_size + pba_size; + + if (epc_features->bar_fixed_size[test_reg_bar]) { + if (test_reg_size > bar_size[test_reg_bar]) + return -ENOMEM; + test_reg_size = bar_size[test_reg_bar]; + } + + base = pci_epf_alloc_space(epf, test_reg_size, test_reg_bar, + epc_features->align); if (!base) { dev_err(dev, "Failed to allocated register space\n"); return -ENOMEM; } epf_test->reg[test_reg_bar] = base; - for (bar = BAR_0; bar <= BAR_5; bar++) { + for (bar = 0; bar < PCI_STD_NUM_BARS; bar += add) { + epf_bar = &epf->bar[bar]; + add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1; + if (bar == test_reg_bar) continue; - base = pci_epf_alloc_space(epf, bar_size[bar], bar); + + if (!!(epc_features->reserved_bar & (1 << bar))) + continue; + + base = pci_epf_alloc_space(epf, bar_size[bar], bar, + epc_features->align); if (!base) dev_err(dev, "Failed to allocate space for BAR%d\n", bar); @@ -458,56 +808,74 @@ return 0; } +static void pci_epf_configure_bar(struct pci_epf *epf, + const struct pci_epc_features *epc_features) +{ + struct pci_epf_bar *epf_bar; + bool bar_fixed_64bit; + int i; + + for (i = 0; i < PCI_STD_NUM_BARS; i++) { + epf_bar = &epf->bar[i]; + bar_fixed_64bit = !!(epc_features->bar_fixed_64bit & (1 << i)); + if (bar_fixed_64bit) + epf_bar->flags |= PCI_BASE_ADDRESS_MEM_TYPE_64; + if (epc_features->bar_fixed_size[i]) + bar_size[i] = epc_features->bar_fixed_size[i]; + } +} + static int pci_epf_test_bind(struct pci_epf *epf) { int ret; struct pci_epf_test *epf_test = epf_get_drvdata(epf); - struct pci_epf_header *header = epf->header; + const struct pci_epc_features *epc_features; + enum pci_barno test_reg_bar = BAR_0; struct pci_epc *epc = epf->epc; - struct device *dev = &epf->dev; + bool linkup_notifier = false; + bool core_init_notifier = false; if (WARN_ON_ONCE(!epc)) return -EINVAL; - if (epc->features & EPC_FEATURE_NO_LINKUP_NOTIFIER) - epf_test->linkup_notifier = false; - else - epf_test->linkup_notifier = true; - - epf_test->msix_available = epc->features & EPC_FEATURE_MSIX_AVAILABLE; - - epf_test->test_reg_bar = EPC_FEATURE_GET_BAR(epc->features); - - ret = pci_epc_write_header(epc, epf->func_no, header); - if (ret) { - dev_err(dev, "Configuration header write failed\n"); - return ret; + epc_features = pci_epc_get_features(epc, epf->func_no); + if (!epc_features) { + dev_err(&epf->dev, "epc_features not implemented\n"); + return -EOPNOTSUPP; } + + linkup_notifier = epc_features->linkup_notifier; + core_init_notifier = epc_features->core_init_notifier; + test_reg_bar = pci_epc_get_first_free_bar(epc_features); + if (test_reg_bar < 0) + return -EINVAL; + pci_epf_configure_bar(epf, epc_features); + + epf_test->test_reg_bar = test_reg_bar; + epf_test->epc_features = epc_features; ret = pci_epf_test_alloc_space(epf); if (ret) return ret; - ret = pci_epf_test_set_bar(epf); - if (ret) - return ret; - - ret = pci_epc_set_msi(epc, epf->func_no, epf->msi_interrupts); - if (ret) { - dev_err(dev, "MSI configuration failed\n"); - return ret; - } - - if (epf_test->msix_available) { - ret = pci_epc_set_msix(epc, epf->func_no, epf->msix_interrupts); - if (ret) { - dev_err(dev, "MSI-X configuration failed\n"); + if (!core_init_notifier) { + ret = pci_epf_test_core_init(epf); + if (ret) return ret; - } } - if (!epf_test->linkup_notifier) + epf_test->dma_supported = true; + + ret = pci_epf_test_init_dma_chan(epf_test); + if (ret) + epf_test->dma_supported = false; + + if (linkup_notifier || core_init_notifier) { + epf->nb.notifier_call = pci_epf_test_notifier; + pci_epc_register_notifier(epc, &epf->nb); + } else { queue_work(kpcitest_workqueue, &epf_test->cmd_handler.work); + } return 0; } @@ -523,17 +891,6 @@ { struct pci_epf_test *epf_test; struct device *dev = &epf->dev; - const struct pci_epf_device_id *match; - struct pci_epf_test_data *data; - enum pci_barno test_reg_bar = BAR_0; - bool linkup_notifier = true; - - match = pci_epf_match_device(pci_epf_test_ids, epf); - data = (struct pci_epf_test_data *)match->driver_data; - if (data) { - test_reg_bar = data->test_reg_bar; - linkup_notifier = data->linkup_notifier; - } epf_test = devm_kzalloc(dev, sizeof(*epf_test), GFP_KERNEL); if (!epf_test) @@ -541,8 +898,6 @@ epf->header = &test_header; epf_test->epf = epf; - epf_test->test_reg_bar = test_reg_bar; - epf_test->linkup_notifier = linkup_notifier; INIT_DELAYED_WORK(&epf_test->cmd_handler, pci_epf_test_cmd_handler); @@ -553,7 +908,6 @@ static struct pci_epf_ops ops = { .unbind = pci_epf_test_unbind, .bind = pci_epf_test_bind, - .linkup = pci_epf_test_linkup, }; static struct pci_epf_driver test_driver = { @@ -570,6 +924,11 @@ kpcitest_workqueue = alloc_workqueue("kpcitest", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); + if (!kpcitest_workqueue) { + pr_err("Failed to allocate the kpcitest work queue\n"); + return -ENOMEM; + } + ret = pci_epf_register_driver(&test_driver); if (ret) { destroy_workqueue(kpcitest_workqueue); -- Gitblit v1.6.2