From 9999e48639b3cecb08ffb37358bcba3b48161b29 Mon Sep 17 00:00:00 2001 From: hc <hc@nodka.com> Date: Fri, 10 May 2024 08:50:17 +0000 Subject: [PATCH] add ax88772_rst --- kernel/arch/x86/mm/fault.c | 1010 ++++++++++++++++++++++++++++++---------------------------- 1 files changed, 521 insertions(+), 489 deletions(-) diff --git a/kernel/arch/x86/mm/fault.c b/kernel/arch/x86/mm/fault.c index c61acf6..e9afbf8 100644 --- a/kernel/arch/x86/mm/fault.c +++ b/kernel/arch/x86/mm/fault.c @@ -8,7 +8,8 @@ #include <linux/sched/task_stack.h> /* task_stack_*(), ... */ #include <linux/kdebug.h> /* oops_begin/end, ... */ #include <linux/extable.h> /* search_exception_tables */ -#include <linux/bootmem.h> /* max_low_pfn */ +#include <linux/memblock.h> /* max_low_pfn */ +#include <linux/kfence.h> /* kfence_handle_page_fault */ #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */ #include <linux/mmiotrace.h> /* kmmio_handler, ... */ #include <linux/perf_event.h> /* perf_sw_event */ @@ -16,15 +17,20 @@ #include <linux/prefetch.h> /* prefetchw */ #include <linux/context_tracking.h> /* exception_enter(), ... */ #include <linux/uaccess.h> /* faulthandler_disabled() */ +#include <linux/efi.h> /* efi_recover_from_page_fault()*/ #include <linux/mm_types.h> #include <asm/cpufeature.h> /* boot_cpu_has, ... */ #include <asm/traps.h> /* dotraplinkage, ... */ -#include <asm/pgalloc.h> /* pgd_*(), ... */ #include <asm/fixmap.h> /* VSYSCALL_ADDR */ #include <asm/vsyscall.h> /* emulate_vsyscall */ #include <asm/vm86.h> /* struct vm86 */ #include <asm/mmu_context.h> /* vma_pkey() */ +#include <asm/efi.h> /* efi_recover_from_page_fault()*/ +#include <asm/desc.h> /* store_idt(), ... */ +#include <asm/cpu_entry_area.h> /* exception stack */ +#include <asm/pgtable_areas.h> /* VMALLOC_START, ... */ +#include <asm/kvm_para.h> /* kvm_handle_async_pf */ #define CREATE_TRACE_POINTS #include <asm/trace/exceptions.h> @@ -42,28 +48,13 @@ return 0; } -static nokprobe_inline int kprobes_fault(struct pt_regs *regs) -{ - int ret = 0; - - /* kprobe_running() needs smp_processor_id() */ - if (kprobes_built_in() && !user_mode(regs)) { - preempt_disable(); - if (kprobe_running() && kprobe_fault_handler(regs, 14)) - ret = 1; - preempt_enable(); - } - - return ret; -} - /* * Prefetch quirks: * * 32-bit mode: * * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. - * Check that here and ignore it. + * Check that here and ignore it. This is AMD erratum #91. * * 64-bit mode: * @@ -92,11 +83,7 @@ #ifdef CONFIG_X86_64 case 0x40: /* - * In AMD64 long mode 0x40..0x4F are valid REX prefixes - * Need to figure out under what instruction mode the - * instruction was issued. Could check the LDT for lm, - * but for now it's good enough to assume that long - * mode only uses well known segments or kernel. + * In 64-bit mode 0x40..0x4F are valid REX prefixes */ return (!user_mode(regs) || user_64bit_mode(regs)); #endif @@ -108,7 +95,7 @@ return !instr_lo || (instr_lo>>1) == 1; case 0x00: /* Prefetch instruction is 0x0F0D or 0x0F18 */ - if (probe_kernel_address(instr, opcode)) + if (get_kernel_nofault(opcode, instr)) return 0; *prefetch = (instr_lo == 0xF) && @@ -136,94 +123,32 @@ instr = (void *)convert_ip_to_linear(current, regs); max_instr = instr + 15; - if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX) - return 0; + /* + * This code has historically always bailed out if IP points to a + * not-present page (e.g. due to a race). No one has ever + * complained about this. + */ + pagefault_disable(); while (instr < max_instr) { unsigned char opcode; - if (probe_kernel_address(instr, opcode)) - break; + if (user_mode(regs)) { + if (get_user(opcode, instr)) + break; + } else { + if (get_kernel_nofault(opcode, instr)) + break; + } instr++; if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) break; } + + pagefault_enable(); return prefetch; -} - -/* - * A protection key fault means that the PKRU value did not allow - * access to some PTE. Userspace can figure out what PKRU was - * from the XSAVE state, and this function fills out a field in - * siginfo so userspace can discover which protection key was set - * on the PTE. - * - * If we get here, we know that the hardware signaled a X86_PF_PK - * fault and that there was a VMA once we got in the fault - * handler. It does *not* guarantee that the VMA we find here - * was the one that we faulted on. - * - * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); - * 2. T1 : set PKRU to deny access to pkey=4, touches page - * 3. T1 : faults... - * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); - * 5. T1 : enters fault handler, takes mmap_sem, etc... - * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really - * faulted on a pte with its pkey=4. - */ -static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info, - u32 *pkey) -{ - /* This is effectively an #ifdef */ - if (!boot_cpu_has(X86_FEATURE_OSPKE)) - return; - - /* Fault not from Protection Keys: nothing to do */ - if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV)) - return; - /* - * force_sig_info_fault() is called from a number of - * contexts, some of which have a VMA and some of which - * do not. The X86_PF_PK handing happens after we have a - * valid VMA, so we should never reach this without a - * valid VMA. - */ - if (!pkey) { - WARN_ONCE(1, "PKU fault with no VMA passed in"); - info->si_pkey = 0; - return; - } - /* - * si_pkey should be thought of as a strong hint, but not - * absolutely guranteed to be 100% accurate because of - * the race explained above. - */ - info->si_pkey = *pkey; -} - -static void -force_sig_info_fault(int si_signo, int si_code, unsigned long address, - struct task_struct *tsk, u32 *pkey, int fault) -{ - unsigned lsb = 0; - siginfo_t info; - - clear_siginfo(&info); - info.si_signo = si_signo; - info.si_errno = 0; - info.si_code = si_code; - info.si_addr = (void __user *)address; - if (fault & VM_FAULT_HWPOISON_LARGE) - lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); - if (fault & VM_FAULT_HWPOISON) - lsb = PAGE_SHIFT; - info.si_addr_lsb = lsb; - - fill_sig_info_pkey(si_signo, si_code, &info, pkey); - - force_sig_info(si_signo, &info, tsk); } DEFINE_SPINLOCK(pgd_lock); @@ -273,47 +198,19 @@ return pmd_k; } -static void vmalloc_sync(void) -{ - unsigned long address; - - if (SHARED_KERNEL_PMD) - return; - - for (address = VMALLOC_START & PMD_MASK; - address >= TASK_SIZE_MAX && address < VMALLOC_END; - address += PMD_SIZE) { - struct page *page; - - spin_lock(&pgd_lock); - list_for_each_entry(page, &pgd_list, lru) { - spinlock_t *pgt_lock; - - /* the pgt_lock only for Xen */ - pgt_lock = &pgd_page_get_mm(page)->page_table_lock; - - spin_lock(pgt_lock); - vmalloc_sync_one(page_address(page), address); - spin_unlock(pgt_lock); - } - spin_unlock(&pgd_lock); - } -} - -void vmalloc_sync_mappings(void) -{ - vmalloc_sync(); -} - -void vmalloc_sync_unmappings(void) -{ - vmalloc_sync(); -} - /* - * 32-bit: - * * Handle a fault on the vmalloc or module mapping area + * + * This is needed because there is a race condition between the time + * when the vmalloc mapping code updates the PMD to the point in time + * where it synchronizes this update with the other page-tables in the + * system. + * + * In this race window another thread/CPU can map an area on the same + * PMD, finds it already present and does not synchronize it with the + * rest of the system yet. As a result v[mz]alloc might return areas + * which are not mapped in every page-table in the system, causing an + * unhandled page-fault when they are accessed. */ static noinline int vmalloc_fault(unsigned long address) { @@ -347,6 +244,30 @@ return 0; } NOKPROBE_SYMBOL(vmalloc_fault); + +void arch_sync_kernel_mappings(unsigned long start, unsigned long end) +{ + unsigned long addr; + + for (addr = start & PMD_MASK; + addr >= TASK_SIZE_MAX && addr < VMALLOC_END; + addr += PMD_SIZE) { + struct page *page; + + spin_lock(&pgd_lock); + list_for_each_entry(page, &pgd_list, lru) { + spinlock_t *pgt_lock; + + /* the pgt_lock only for Xen */ + pgt_lock = &pgd_page_get_mm(page)->page_table_lock; + + spin_lock(pgt_lock); + vmalloc_sync_one(page_address(page), addr); + spin_unlock(pgt_lock); + } + spin_unlock(&pgd_lock); + } +} /* * Did it hit the DOS screen memory VA from vm86 mode? @@ -412,96 +333,6 @@ #else /* CONFIG_X86_64: */ -void vmalloc_sync_mappings(void) -{ - /* - * 64-bit mappings might allocate new p4d/pud pages - * that need to be propagated to all tasks' PGDs. - */ - sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END); -} - -void vmalloc_sync_unmappings(void) -{ - /* - * Unmappings never allocate or free p4d/pud pages. - * No work is required here. - */ -} - -/* - * 64-bit: - * - * Handle a fault on the vmalloc area - */ -static noinline int vmalloc_fault(unsigned long address) -{ - pgd_t *pgd, *pgd_k; - p4d_t *p4d, *p4d_k; - pud_t *pud; - pmd_t *pmd; - pte_t *pte; - - /* Make sure we are in vmalloc area: */ - if (!(address >= VMALLOC_START && address < VMALLOC_END)) - return -1; - - /* - * Copy kernel mappings over when needed. This can also - * happen within a race in page table update. In the later - * case just flush: - */ - pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address); - pgd_k = pgd_offset_k(address); - if (pgd_none(*pgd_k)) - return -1; - - if (pgtable_l5_enabled()) { - if (pgd_none(*pgd)) { - set_pgd(pgd, *pgd_k); - arch_flush_lazy_mmu_mode(); - } else { - BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k)); - } - } - - /* With 4-level paging, copying happens on the p4d level. */ - p4d = p4d_offset(pgd, address); - p4d_k = p4d_offset(pgd_k, address); - if (p4d_none(*p4d_k)) - return -1; - - if (p4d_none(*p4d) && !pgtable_l5_enabled()) { - set_p4d(p4d, *p4d_k); - arch_flush_lazy_mmu_mode(); - } else { - BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k)); - } - - BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4); - - pud = pud_offset(p4d, address); - if (pud_none(*pud)) - return -1; - - if (pud_large(*pud)) - return 0; - - pmd = pmd_offset(pud, address); - if (pmd_none(*pmd)) - return -1; - - if (pmd_large(*pmd)) - return 0; - - pte = pte_offset_kernel(pmd, address); - if (!pte_present(*pte)) - return -1; - - return 0; -} -NOKPROBE_SYMBOL(vmalloc_fault); - #ifdef CONFIG_CPU_SUP_AMD static const char errata93_warning[] = KERN_ERR @@ -524,7 +355,7 @@ { unsigned long dummy; - return probe_kernel_address((unsigned long *)p, dummy); + return get_kernel_nofault(dummy, (unsigned long *)p); } static void dump_pagetable(unsigned long address) @@ -637,29 +468,51 @@ return 0; } +/* Pentium F0 0F C7 C8 bug workaround: */ static int is_f00f_bug(struct pt_regs *regs, unsigned long address) { #ifdef CONFIG_X86_F00F_BUG - unsigned long nr; - - /* - * Pentium F0 0F C7 C8 bug workaround: - */ - if (boot_cpu_has_bug(X86_BUG_F00F)) { - nr = (address - idt_descr.address) >> 3; - - if (nr == 6) { - do_invalid_op(regs, 0); - return 1; - } + if (boot_cpu_has_bug(X86_BUG_F00F) && idt_is_f00f_address(address)) { + handle_invalid_op(regs); + return 1; } #endif return 0; } +static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index) +{ + u32 offset = (index >> 3) * sizeof(struct desc_struct); + unsigned long addr; + struct ldttss_desc desc; + + if (index == 0) { + pr_alert("%s: NULL\n", name); + return; + } + + if (offset + sizeof(struct ldttss_desc) >= gdt->size) { + pr_alert("%s: 0x%hx -- out of bounds\n", name, index); + return; + } + + if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset), + sizeof(struct ldttss_desc))) { + pr_alert("%s: 0x%hx -- GDT entry is not readable\n", + name, index); + return; + } + + addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24); +#ifdef CONFIG_X86_64 + addr |= ((u64)desc.base3 << 32); +#endif + pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n", + name, index, addr, (desc.limit0 | (desc.limit1 << 16))); +} + static void -show_fault_oops(struct pt_regs *regs, unsigned long error_code, - unsigned long address) +show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address) { if (!oops_may_print()) return; @@ -684,9 +537,53 @@ from_kuid(&init_user_ns, current_uid())); } - pr_alert("BUG: unable to handle kernel %s at %px\n", - address < PAGE_SIZE ? "NULL pointer dereference" : "paging request", - (void *)address); + if (address < PAGE_SIZE && !user_mode(regs)) + pr_alert("BUG: kernel NULL pointer dereference, address: %px\n", + (void *)address); + else + pr_alert("BUG: unable to handle page fault for address: %px\n", + (void *)address); + + pr_alert("#PF: %s %s in %s mode\n", + (error_code & X86_PF_USER) ? "user" : "supervisor", + (error_code & X86_PF_INSTR) ? "instruction fetch" : + (error_code & X86_PF_WRITE) ? "write access" : + "read access", + user_mode(regs) ? "user" : "kernel"); + pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code, + !(error_code & X86_PF_PROT) ? "not-present page" : + (error_code & X86_PF_RSVD) ? "reserved bit violation" : + (error_code & X86_PF_PK) ? "protection keys violation" : + "permissions violation"); + + if (!(error_code & X86_PF_USER) && user_mode(regs)) { + struct desc_ptr idt, gdt; + u16 ldtr, tr; + + /* + * This can happen for quite a few reasons. The more obvious + * ones are faults accessing the GDT, or LDT. Perhaps + * surprisingly, if the CPU tries to deliver a benign or + * contributory exception from user code and gets a page fault + * during delivery, the page fault can be delivered as though + * it originated directly from user code. This could happen + * due to wrong permissions on the IDT, GDT, LDT, TSS, or + * kernel or IST stack. + */ + store_idt(&idt); + + /* Usable even on Xen PV -- it's just slow. */ + native_store_gdt(&gdt); + + pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n", + idt.address, idt.size, gdt.address, gdt.size); + + store_ldt(ldtr); + show_ldttss(&gdt, "LDTR", ldtr); + + store_tr(tr); + show_ldttss(&gdt, "TR", tr); + } dump_pagetable(address); } @@ -707,14 +604,32 @@ tsk->comm, address); dump_pagetable(address); - tsk->thread.cr2 = address; - tsk->thread.trap_nr = X86_TRAP_PF; - tsk->thread.error_code = error_code; - if (__die("Bad pagetable", regs, error_code)) sig = 0; oops_end(flags, regs, sig); +} + +static void set_signal_archinfo(unsigned long address, + unsigned long error_code) +{ + struct task_struct *tsk = current; + + /* + * To avoid leaking information about the kernel page + * table layout, pretend that user-mode accesses to + * kernel addresses are always protection faults. + * + * NB: This means that failed vsyscalls with vsyscall=none + * will have the PROT bit. This doesn't leak any + * information and does not appear to cause any problems. + */ + if (address >= TASK_SIZE_MAX) + error_code |= X86_PF_PROT; + + tsk->thread.trap_nr = X86_TRAP_PF; + tsk->thread.error_code = error_code | X86_PF_USER; + tsk->thread.cr2 = address; } static noinline void @@ -725,8 +640,17 @@ unsigned long flags; int sig; + if (user_mode(regs)) { + /* + * This is an implicit supervisor-mode access from user + * mode. Bypass all the kernel-mode recovery code and just + * OOPS. + */ + goto oops; + } + /* Are we prepared to handle this kernel fault? */ - if (fixup_exception(regs, X86_TRAP_PF)) { + if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) { /* * Any interrupt that takes a fault gets the fixup. This makes * the below recursive fault logic only apply to a faults from @@ -742,13 +666,10 @@ * faulting through the emulate_vsyscall() logic. */ if (current->thread.sig_on_uaccess_err && signal) { - tsk->thread.trap_nr = X86_TRAP_PF; - tsk->thread.error_code = error_code | X86_PF_USER; - tsk->thread.cr2 = address; + set_signal_archinfo(address, error_code); /* XXX: hwpoison faults will set the wrong code. */ - force_sig_info_fault(signal, si_code, address, - tsk, NULL, 0); + force_sig_fault(signal, si_code, (void __user *)address); } /* @@ -766,7 +687,7 @@ if (is_vmalloc_addr((void *)address) && (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) || address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) { - unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *); + unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *); /* * We're likely to be running with very little stack space * left. It's plausible that we'd hit this condition but @@ -806,6 +727,19 @@ return; /* + * Buggy firmware could access regions which might page fault, try to + * recover from such faults. + */ + if (IS_ENABLED(CONFIG_EFI)) + efi_recover_from_page_fault(address); + + /* Only not-present faults should be handled by KFENCE. */ + if (!(error_code & X86_PF_PROT) && + kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs)) + return; + +oops: + /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice: */ @@ -815,10 +749,6 @@ if (task_stack_end_corrupted(tsk)) printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); - - tsk->thread.cr2 = address; - tsk->thread.trap_nr = X86_TRAP_PF; - tsk->thread.error_code = error_code; sig = SIGKILL; if (__die("Oops", regs, error_code)) @@ -857,14 +787,23 @@ show_opcodes(regs, loglvl); } +/* + * The (legacy) vsyscall page is the long page in the kernel portion + * of the address space that has user-accessible permissions. + */ +static bool is_vsyscall_vaddr(unsigned long vaddr) +{ + return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR); +} + static void __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, - unsigned long address, u32 *pkey, int si_code) + unsigned long address, u32 pkey, int si_code) { struct task_struct *tsk = current; /* User mode accesses just cause a SIGSEGV */ - if (error_code & X86_PF_USER) { + if (user_mode(regs) && (error_code & X86_PF_USER)) { /* * It's possible to have interrupts off here: */ @@ -880,18 +819,6 @@ if (is_errata100(regs, address)) return; -#ifdef CONFIG_X86_64 - /* - * Instruction fetch faults in the vsyscall page might need - * emulation. - */ - if (unlikely((error_code & X86_PF_INSTR) && - ((address & ~0xfff) == VSYSCALL_ADDR))) { - if (emulate_vsyscall(regs, address)) - return; - } -#endif - /* * To avoid leaking information about the kernel page table * layout, pretend that user-mode accesses to kernel addresses @@ -903,11 +830,14 @@ if (likely(show_unhandled_signals)) show_signal_msg(regs, error_code, address, tsk); - tsk->thread.cr2 = address; - tsk->thread.error_code = error_code; - tsk->thread.trap_nr = X86_TRAP_PF; + set_signal_archinfo(address, error_code); - force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0); + if (si_code == SEGV_PKUERR) + force_sig_pkuerr((void __user *)address, pkey); + + force_sig_fault(SIGSEGV, si_code, (void __user *)address); + + local_irq_disable(); return; } @@ -920,35 +850,29 @@ static noinline void bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, - unsigned long address, u32 *pkey) + unsigned long address) { - __bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR); + __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR); } static void __bad_area(struct pt_regs *regs, unsigned long error_code, - unsigned long address, struct vm_area_struct *vma, int si_code) + unsigned long address, u32 pkey, int si_code) { struct mm_struct *mm = current->mm; - u32 pkey; - - if (vma) - pkey = vma_pkey(vma); - /* * Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ - up_read(&mm->mmap_sem); + mmap_read_unlock(mm); - __bad_area_nosemaphore(regs, error_code, address, - (vma) ? &pkey : NULL, si_code); + __bad_area_nosemaphore(regs, error_code, address, pkey, si_code); } static noinline void bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) { - __bad_area(regs, error_code, address, NULL, SEGV_MAPERR); + __bad_area(regs, error_code, address, 0, SEGV_MAPERR); } static inline bool bad_area_access_from_pkeys(unsigned long error_code, @@ -977,19 +901,39 @@ * But, doing it this way allows compiler optimizations * if pkeys are compiled out. */ - if (bad_area_access_from_pkeys(error_code, vma)) - __bad_area(regs, error_code, address, vma, SEGV_PKUERR); - else - __bad_area(regs, error_code, address, vma, SEGV_ACCERR); + if (bad_area_access_from_pkeys(error_code, vma)) { + /* + * A protection key fault means that the PKRU value did not allow + * access to some PTE. Userspace can figure out what PKRU was + * from the XSAVE state. This function captures the pkey from + * the vma and passes it to userspace so userspace can discover + * which protection key was set on the PTE. + * + * If we get here, we know that the hardware signaled a X86_PF_PK + * fault and that there was a VMA once we got in the fault + * handler. It does *not* guarantee that the VMA we find here + * was the one that we faulted on. + * + * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); + * 2. T1 : set PKRU to deny access to pkey=4, touches page + * 3. T1 : faults... + * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); + * 5. T1 : enters fault handler, takes mmap_lock, etc... + * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really + * faulted on a pte with its pkey=4. + */ + u32 pkey = vma_pkey(vma); + + __bad_area(regs, error_code, address, pkey, SEGV_PKUERR); + } else { + __bad_area(regs, error_code, address, 0, SEGV_ACCERR); + } } static void do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, - u32 *pkey, unsigned int fault) + vm_fault_t fault) { - struct task_struct *tsk = current; - int code = BUS_ADRERR; - /* Kernel mode? Handle exceptions or die: */ if (!(error_code & X86_PF_USER)) { no_context(regs, error_code, address, SIGBUS, BUS_ADRERR); @@ -1000,24 +944,30 @@ if (is_prefetch(regs, error_code, address)) return; - tsk->thread.cr2 = address; - tsk->thread.error_code = error_code; - tsk->thread.trap_nr = X86_TRAP_PF; + set_signal_archinfo(address, error_code); #ifdef CONFIG_MEMORY_FAILURE if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { - printk(KERN_ERR + struct task_struct *tsk = current; + unsigned lsb = 0; + + pr_err( "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", tsk->comm, tsk->pid, address); - code = BUS_MCEERR_AR; + if (fault & VM_FAULT_HWPOISON_LARGE) + lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); + if (fault & VM_FAULT_HWPOISON) + lsb = PAGE_SHIFT; + force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb); + return; } #endif - force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault); + force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address); } static noinline void mm_fault_error(struct pt_regs *regs, unsigned long error_code, - unsigned long address, u32 *pkey, vm_fault_t fault) + unsigned long address, vm_fault_t fault) { if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) { no_context(regs, error_code, address, 0, 0); @@ -1041,27 +991,21 @@ } else { if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| VM_FAULT_HWPOISON_LARGE)) - do_sigbus(regs, error_code, address, pkey, fault); + do_sigbus(regs, error_code, address, fault); else if (fault & VM_FAULT_SIGSEGV) - bad_area_nosemaphore(regs, error_code, address, pkey); + bad_area_nosemaphore(regs, error_code, address); else BUG(); } } -static int spurious_fault_check(unsigned long error_code, pte_t *pte) +static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte) { if ((error_code & X86_PF_WRITE) && !pte_write(*pte)) return 0; if ((error_code & X86_PF_INSTR) && !pte_exec(*pte)) return 0; - /* - * Note: We do not do lazy flushing on protection key - * changes, so no spurious fault will ever set X86_PF_PK. - */ - if ((error_code & X86_PF_PK)) - return 1; return 1; } @@ -1088,7 +1032,7 @@ * (Optional Invalidation). */ static noinline int -spurious_fault(unsigned long error_code, unsigned long address) +spurious_kernel_fault(unsigned long error_code, unsigned long address) { pgd_t *pgd; p4d_t *p4d; @@ -1119,27 +1063,27 @@ return 0; if (p4d_large(*p4d)) - return spurious_fault_check(error_code, (pte_t *) p4d); + return spurious_kernel_fault_check(error_code, (pte_t *) p4d); pud = pud_offset(p4d, address); if (!pud_present(*pud)) return 0; if (pud_large(*pud)) - return spurious_fault_check(error_code, (pte_t *) pud); + return spurious_kernel_fault_check(error_code, (pte_t *) pud); pmd = pmd_offset(pud, address); if (!pmd_present(*pmd)) return 0; if (pmd_large(*pmd)) - return spurious_fault_check(error_code, (pte_t *) pmd); + return spurious_kernel_fault_check(error_code, (pte_t *) pmd); pte = pte_offset_kernel(pmd, address); if (!pte_present(*pte)) return 0; - ret = spurious_fault_check(error_code, pte); + ret = spurious_kernel_fault_check(error_code, pte); if (!ret) return 0; @@ -1147,12 +1091,12 @@ * Make sure we have permissions in PMD. * If not, then there's a bug in the page tables: */ - ret = spurious_fault_check(error_code, (pte_t *) pmd); + ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd); WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); return ret; } -NOKPROBE_SYMBOL(spurious_fault); +NOKPROBE_SYMBOL(spurious_kernel_fault); int show_unhandled_signals = 1; @@ -1191,60 +1135,44 @@ return 1; /* read, not present: */ - if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) + if (unlikely(!vma_is_accessible(vma))) return 1; return 0; } -static int fault_in_kernel_space(unsigned long address) +bool fault_in_kernel_space(unsigned long address) { + /* + * On 64-bit systems, the vsyscall page is at an address above + * TASK_SIZE_MAX, but is not considered part of the kernel + * address space. + */ + if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address)) + return false; + return address >= TASK_SIZE_MAX; } -static inline bool smap_violation(int error_code, struct pt_regs *regs) -{ - if (!IS_ENABLED(CONFIG_X86_SMAP)) - return false; - - if (!static_cpu_has(X86_FEATURE_SMAP)) - return false; - - if (error_code & X86_PF_USER) - return false; - - if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC)) - return false; - - return true; -} - /* - * This routine handles page faults. It determines the address, - * and the problem, and then passes it off to one of the appropriate - * routines. + * Called for all faults where 'address' is part of the kernel address + * space. Might get called for faults that originate from *code* that + * ran in userspace or the kernel. */ -static noinline void -__do_page_fault(struct pt_regs *regs, unsigned long error_code, - unsigned long address) +static void +do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code, + unsigned long address) { - struct vm_area_struct *vma; - struct task_struct *tsk; - struct mm_struct *mm; - vm_fault_t fault, major = 0; - unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; - u32 pkey; - - tsk = current; - mm = tsk->mm; - - prefetchw(&mm->mmap_sem); - - if (unlikely(kmmio_fault(regs, address))) - return; - /* - * We fault-in kernel-space virtual memory on-demand. The + * Protection keys exceptions only happen on user pages. We + * have no user pages in the kernel portion of the address + * space, so do not expect them here. + */ + WARN_ON_ONCE(hw_error_code & X86_PF_PK); + +#ifdef CONFIG_X86_32 + /* + * We can fault-in kernel-space virtual memory on-demand. The * 'reference' page table is init_mm.pgd. * * NOTE! We MUST NOT take any locks for this case. We may @@ -1252,41 +1180,85 @@ * only copy the information from the master page table, * nothing more. * - * This verifies that the fault happens in kernel space - * (error_code & 4) == 0, and that the fault was not a - * protection error (error_code & 9) == 0. + * Before doing this on-demand faulting, ensure that the + * fault is not any of the following: + * 1. A fault on a PTE with a reserved bit set. + * 2. A fault caused by a user-mode access. (Do not demand- + * fault kernel memory due to user-mode accesses). + * 3. A fault caused by a page-level protection violation. + * (A demand fault would be on a non-present page which + * would have X86_PF_PROT==0). + * + * This is only needed to close a race condition on x86-32 in + * the vmalloc mapping/unmapping code. See the comment above + * vmalloc_fault() for details. On x86-64 the race does not + * exist as the vmalloc mappings don't need to be synchronized + * there. */ - if (unlikely(fault_in_kernel_space(address))) { - if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) { - if (vmalloc_fault(address) >= 0) - return; - } - - /* Can handle a stale RO->RW TLB: */ - if (spurious_fault(error_code, address)) + if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) { + if (vmalloc_fault(address) >= 0) return; - - /* kprobes don't want to hook the spurious faults: */ - if (kprobes_fault(regs)) - return; - /* - * Don't take the mm semaphore here. If we fixup a prefetch - * fault we could otherwise deadlock: - */ - bad_area_nosemaphore(regs, error_code, address, NULL); - - return; } +#endif + + /* Was the fault spurious, caused by lazy TLB invalidation? */ + if (spurious_kernel_fault(hw_error_code, address)) + return; /* kprobes don't want to hook the spurious faults: */ - if (unlikely(kprobes_fault(regs))) + if (kprobe_page_fault(regs, X86_TRAP_PF)) return; - if (unlikely(error_code & X86_PF_RSVD)) - pgtable_bad(regs, error_code, address); + /* + * Note, despite being a "bad area", there are quite a few + * acceptable reasons to get here, such as erratum fixups + * and handling kernel code that can fault, like get_user(). + * + * Don't take the mm semaphore here. If we fixup a prefetch + * fault we could otherwise deadlock: + */ + bad_area_nosemaphore(regs, hw_error_code, address); +} +NOKPROBE_SYMBOL(do_kern_addr_fault); - if (unlikely(smap_violation(error_code, regs))) { - bad_area_nosemaphore(regs, error_code, address, NULL); +/* Handle faults in the user portion of the address space */ +static inline +void do_user_addr_fault(struct pt_regs *regs, + unsigned long hw_error_code, + unsigned long address) +{ + struct vm_area_struct *vma = NULL; + struct task_struct *tsk; + struct mm_struct *mm; + vm_fault_t fault; + unsigned int flags = FAULT_FLAG_DEFAULT; + + tsk = current; + mm = tsk->mm; + + /* kprobes don't want to hook the spurious faults: */ + if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF))) + return; + + /* + * Reserved bits are never expected to be set on + * entries in the user portion of the page tables. + */ + if (unlikely(hw_error_code & X86_PF_RSVD)) + pgtable_bad(regs, hw_error_code, address); + + /* + * If SMAP is on, check for invalid kernel (supervisor) access to user + * pages in the user address space. The odd case here is WRUSS, + * which, according to the preliminary documentation, does not respect + * SMAP and will have the USER bit set so, in all cases, SMAP + * enforcement appears to be consistent with the USER bit. + */ + if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) && + !(hw_error_code & X86_PF_USER) && + !(regs->flags & X86_EFLAGS_AC))) + { + bad_area_nosemaphore(regs, hw_error_code, address); return; } @@ -1295,7 +1267,7 @@ * in a region with pagefaults disabled then we must not take the fault */ if (unlikely(faulthandler_disabled() || !mm)) { - bad_area_nosemaphore(regs, error_code, address, NULL); + bad_area_nosemaphore(regs, hw_error_code, address); return; } @@ -1308,7 +1280,6 @@ */ if (user_mode(regs)) { local_irq_enable(); - error_code |= X86_PF_USER; flags |= FAULT_FLAG_USER; } else { if (regs->flags & X86_EFLAGS_IF) @@ -1317,35 +1288,62 @@ perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); - if (error_code & X86_PF_WRITE) + if (hw_error_code & X86_PF_WRITE) flags |= FAULT_FLAG_WRITE; - if (error_code & X86_PF_INSTR) + if (hw_error_code & X86_PF_INSTR) flags |= FAULT_FLAG_INSTRUCTION; +#ifdef CONFIG_X86_64 /* - * When running in the kernel we expect faults to occur only to - * addresses in user space. All other faults represent errors in - * the kernel and should generate an OOPS. Unfortunately, in the - * case of an erroneous fault occurring in a code path which already - * holds mmap_sem we will deadlock attempting to validate the fault - * against the address space. Luckily the kernel only validly - * references user space from well defined areas of code, which are - * listed in the exceptions table. + * Faults in the vsyscall page might need emulation. The + * vsyscall page is at a high address (>PAGE_OFFSET), but is + * considered to be part of the user address space. * - * As the vast majority of faults will be valid we will only perform - * the source reference check when there is a possibility of a - * deadlock. Attempt to lock the address space, if we cannot we then - * validate the source. If this is invalid we can skip the address - * space check, thus avoiding the deadlock: + * The vsyscall page does not have a "real" VMA, so do this + * emulation before we go searching for VMAs. + * + * PKRU never rejects instruction fetches, so we don't need + * to consider the PF_PK bit. */ - if (unlikely(!down_read_trylock(&mm->mmap_sem))) { - if (!(error_code & X86_PF_USER) && - !search_exception_tables(regs->ip)) { - bad_area_nosemaphore(regs, error_code, address, NULL); + if (is_vsyscall_vaddr(address)) { + if (emulate_vsyscall(hw_error_code, regs, address)) + return; + } +#endif + + /* + * Do not try to do a speculative page fault if the fault was due to + * protection keys since it can't be resolved. + */ + if (!(hw_error_code & X86_PF_PK)) { + fault = handle_speculative_fault(mm, address, flags, &vma, regs); + if (fault != VM_FAULT_RETRY) + goto done; + } + + /* + * Kernel-mode access to the user address space should only occur + * on well-defined single instructions listed in the exception + * tables. But, an erroneous kernel fault occurring outside one of + * those areas which also holds mmap_lock might deadlock attempting + * to validate the fault against the address space. + * + * Only do the expensive exception table search when we might be at + * risk of a deadlock. This happens if we + * 1. Failed to acquire mmap_lock, and + * 2. The access did not originate in userspace. + */ + if (unlikely(!mmap_read_trylock(mm))) { + if (!user_mode(regs) && !search_exception_tables(regs->ip)) { + /* + * Fault from code in kernel from + * which we do not expect faults. + */ + bad_area_nosemaphore(regs, hw_error_code, address); return; } retry: - down_read(&mm->mmap_sem); + mmap_read_lock(mm); } else { /* * The above down_read_trylock() might have succeeded in @@ -1355,31 +1353,20 @@ might_sleep(); } - vma = find_vma(mm, address); + if (!vma || !can_reuse_spf_vma(vma, address)) + vma = find_vma(mm, address); if (unlikely(!vma)) { - bad_area(regs, error_code, address); + bad_area(regs, hw_error_code, address); return; } if (likely(vma->vm_start <= address)) goto good_area; if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { - bad_area(regs, error_code, address); + bad_area(regs, hw_error_code, address); return; } - if (error_code & X86_PF_USER) { - /* - * Accessing the stack below %sp is always a bug. - * The large cushion allows instructions like enter - * and pusha to work. ("enter $65535, $31" pushes - * 32 pointers and then decrements %sp by 65535.) - */ - if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) { - bad_area(regs, error_code, address); - return; - } - } if (unlikely(expand_stack(vma, address))) { - bad_area(regs, error_code, address); + bad_area(regs, hw_error_code, address); return; } @@ -1388,8 +1375,8 @@ * we can handle it.. */ good_area: - if (unlikely(access_error(error_code, vma))) { - bad_area_access_error(regs, error_code, address, vma); + if (unlikely(access_error(hw_error_code, vma))) { + bad_area_access_error(regs, hw_error_code, address, vma); return; } @@ -1397,94 +1384,139 @@ * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if - * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked. + * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked. * - * Note that handle_userfault() may also release and reacquire mmap_sem + * Note that handle_userfault() may also release and reacquire mmap_lock * (and not return with VM_FAULT_RETRY), when returning to userland to * repeat the page fault later with a VM_FAULT_NOPAGE retval * (potentially after handling any pending signal during the return to * userland). The return to userland is identified whenever * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags. - * Thus we have to be careful about not touching vma after handling the - * fault, so we read the pkey beforehand. */ - pkey = vma_pkey(vma); - fault = handle_mm_fault(vma, address, flags); - major |= fault & VM_FAULT_MAJOR; + fault = handle_mm_fault(vma, address, flags, regs); + + /* Quick path to respond to signals */ + if (fault_signal_pending(fault, regs)) { + if (!user_mode(regs)) + no_context(regs, hw_error_code, address, SIGBUS, + BUS_ADRERR); + return; + } /* - * If we need to retry the mmap_sem has already been released, + * If we need to retry the mmap_lock has already been released, * and if there is a fatal signal pending there is no guarantee * that we made any progress. Handle this case first. */ - if (unlikely(fault & VM_FAULT_RETRY)) { - /* Retry at most once */ - if (flags & FAULT_FLAG_ALLOW_RETRY) { - flags &= ~FAULT_FLAG_ALLOW_RETRY; - flags |= FAULT_FLAG_TRIED; - if (!fatal_signal_pending(tsk)) - goto retry; - } + if (unlikely((fault & VM_FAULT_RETRY) && + (flags & FAULT_FLAG_ALLOW_RETRY))) { + flags |= FAULT_FLAG_TRIED; - /* User mode? Just return to handle the fatal exception */ - if (flags & FAULT_FLAG_USER) - return; + /* + * Do not try to reuse this vma and fetch it + * again since we will release the mmap_sem. + */ + vma = NULL; - /* Not returning to user mode? Handle exceptions or die: */ - no_context(regs, error_code, address, SIGBUS, BUS_ADRERR); - return; + goto retry; } - up_read(&mm->mmap_sem); + mmap_read_unlock(mm); + +done: if (unlikely(fault & VM_FAULT_ERROR)) { - mm_fault_error(regs, error_code, address, &pkey, fault); + mm_fault_error(regs, hw_error_code, address, fault); return; - } - - /* - * Major/minor page fault accounting. If any of the events - * returned VM_FAULT_MAJOR, we account it as a major fault. - */ - if (major) { - tsk->maj_flt++; - perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); - } else { - tsk->min_flt++; - perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); } check_v8086_mode(regs, address, tsk); } -NOKPROBE_SYMBOL(__do_page_fault); +NOKPROBE_SYMBOL(do_user_addr_fault); -static nokprobe_inline void -trace_page_fault_entries(unsigned long address, struct pt_regs *regs, - unsigned long error_code) +static __always_inline void +trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code, + unsigned long address) { + if (!trace_pagefault_enabled()) + return; + if (user_mode(regs)) trace_page_fault_user(address, regs, error_code); else trace_page_fault_kernel(address, regs, error_code); } -/* - * We must have this function blacklisted from kprobes, tagged with notrace - * and call read_cr2() before calling anything else. To avoid calling any - * kind of tracing machinery before we've observed the CR2 value. - * - * exception_{enter,exit}() contains all sorts of tracepoints. - */ -dotraplinkage void notrace -do_page_fault(struct pt_regs *regs, unsigned long error_code) +static __always_inline void +handle_page_fault(struct pt_regs *regs, unsigned long error_code, + unsigned long address) { - unsigned long address = read_cr2(); /* Get the faulting address */ - enum ctx_state prev_state; + trace_page_fault_entries(regs, error_code, address); - prev_state = exception_enter(); - if (trace_pagefault_enabled()) - trace_page_fault_entries(address, regs, error_code); + if (unlikely(kmmio_fault(regs, address))) + return; - __do_page_fault(regs, error_code, address); - exception_exit(prev_state); + /* Was the fault on kernel-controlled part of the address space? */ + if (unlikely(fault_in_kernel_space(address))) { + do_kern_addr_fault(regs, error_code, address); + } else { + do_user_addr_fault(regs, error_code, address); + /* + * User address page fault handling might have reenabled + * interrupts. Fixing up all potential exit points of + * do_user_addr_fault() and its leaf functions is just not + * doable w/o creating an unholy mess or turning the code + * upside down. + */ + local_irq_disable(); + } } -NOKPROBE_SYMBOL(do_page_fault); + +DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault) +{ + unsigned long address = read_cr2(); + irqentry_state_t state; + + prefetchw(¤t->mm->mmap_lock); + + /* + * KVM uses #PF vector to deliver 'page not present' events to guests + * (asynchronous page fault mechanism). The event happens when a + * userspace task is trying to access some valid (from guest's point of + * view) memory which is not currently mapped by the host (e.g. the + * memory is swapped out). Note, the corresponding "page ready" event + * which is injected when the memory becomes available, is delived via + * an interrupt mechanism and not a #PF exception + * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()). + * + * We are relying on the interrupted context being sane (valid RSP, + * relevant locks not held, etc.), which is fine as long as the + * interrupted context had IF=1. We are also relying on the KVM + * async pf type field and CR2 being read consistently instead of + * getting values from real and async page faults mixed up. + * + * Fingers crossed. + * + * The async #PF handling code takes care of idtentry handling + * itself. + */ + if (kvm_handle_async_pf(regs, (u32)address)) + return; + + /* + * Entry handling for valid #PF from kernel mode is slightly + * different: RCU is already watching and rcu_irq_enter() must not + * be invoked because a kernel fault on a user space address might + * sleep. + * + * In case the fault hit a RCU idle region the conditional entry + * code reenabled RCU to avoid subsequent wreckage which helps + * debugability. + */ + state = irqentry_enter(regs); + + instrumentation_begin(); + handle_page_fault(regs, error_code, address); + instrumentation_end(); + + irqentry_exit(regs, state); +} -- Gitblit v1.6.2