From 8ac6c7a54ed1b98d142dce24b11c6de6a1e239a5 Mon Sep 17 00:00:00 2001 From: hc <hc@nodka.com> Date: Tue, 22 Oct 2024 10:36:11 +0000 Subject: [PATCH] 修改4g拨号为QMI,需要在系统里后台执行quectel-CM --- kernel/net/sched/sch_pie.c | 404 +++++++++++++++++++++++++++++---------------------------- 1 files changed, 204 insertions(+), 200 deletions(-) diff --git a/kernel/net/sched/sch_pie.c b/kernel/net/sched/sch_pie.c index 18d30bb..c65077f 100644 --- a/kernel/net/sched/sch_pie.c +++ b/kernel/net/sched/sch_pie.c @@ -1,14 +1,5 @@ +// SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2013 Cisco Systems, Inc, 2013. - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License - * as published by the Free Software Foundation; either version 2 - * of the License. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. * * Author: Vijay Subramanian <vijaynsu@cisco.com> * Author: Mythili Prabhu <mysuryan@cisco.com> @@ -17,9 +8,7 @@ * University of Oslo, Norway. * * References: - * IETF draft submission: http://tools.ietf.org/html/draft-pan-aqm-pie-00 - * IEEE Conference on High Performance Switching and Routing 2013 : - * "PIE: A * Lightweight Control Scheme to Address the Bufferbloat Problem" + * RFC 8033: https://tools.ietf.org/html/rfc8033 */ #include <linux/module.h> @@ -30,110 +19,68 @@ #include <linux/skbuff.h> #include <net/pkt_sched.h> #include <net/inet_ecn.h> - -#define QUEUE_THRESHOLD 10000 -#define DQCOUNT_INVALID -1 -#define MAX_PROB 0xffffffff -#define PIE_SCALE 8 - -/* parameters used */ -struct pie_params { - psched_time_t target; /* user specified target delay in pschedtime */ - u32 tupdate; /* timer frequency (in jiffies) */ - u32 limit; /* number of packets that can be enqueued */ - u32 alpha; /* alpha and beta are between 0 and 32 */ - u32 beta; /* and are used for shift relative to 1 */ - bool ecn; /* true if ecn is enabled */ - bool bytemode; /* to scale drop early prob based on pkt size */ -}; - -/* variables used */ -struct pie_vars { - u32 prob; /* probability but scaled by u32 limit. */ - psched_time_t burst_time; - psched_time_t qdelay; - psched_time_t qdelay_old; - u64 dq_count; /* measured in bytes */ - psched_time_t dq_tstamp; /* drain rate */ - u32 avg_dq_rate; /* bytes per pschedtime tick,scaled */ - u32 qlen_old; /* in bytes */ -}; - -/* statistics gathering */ -struct pie_stats { - u32 packets_in; /* total number of packets enqueued */ - u32 dropped; /* packets dropped due to pie_action */ - u32 overlimit; /* dropped due to lack of space in queue */ - u32 maxq; /* maximum queue size */ - u32 ecn_mark; /* packets marked with ECN */ -}; +#include <net/pie.h> /* private data for the Qdisc */ struct pie_sched_data { - struct pie_params params; struct pie_vars vars; + struct pie_params params; struct pie_stats stats; struct timer_list adapt_timer; struct Qdisc *sch; }; -static void pie_params_init(struct pie_params *params) +bool pie_drop_early(struct Qdisc *sch, struct pie_params *params, + struct pie_vars *vars, u32 backlog, u32 packet_size) { - params->alpha = 2; - params->beta = 20; - params->tupdate = usecs_to_jiffies(30 * USEC_PER_MSEC); /* 30 ms */ - params->limit = 1000; /* default of 1000 packets */ - params->target = PSCHED_NS2TICKS(20 * NSEC_PER_MSEC); /* 20 ms */ - params->ecn = false; - params->bytemode = false; -} - -static void pie_vars_init(struct pie_vars *vars) -{ - vars->dq_count = DQCOUNT_INVALID; - vars->avg_dq_rate = 0; - /* default of 100 ms in pschedtime */ - vars->burst_time = PSCHED_NS2TICKS(100 * NSEC_PER_MSEC); -} - -static bool drop_early(struct Qdisc *sch, u32 packet_size) -{ - struct pie_sched_data *q = qdisc_priv(sch); - u32 rnd; - u32 local_prob = q->vars.prob; + u64 rnd; + u64 local_prob = vars->prob; u32 mtu = psched_mtu(qdisc_dev(sch)); /* If there is still burst allowance left skip random early drop */ - if (q->vars.burst_time > 0) + if (vars->burst_time > 0) return false; /* If current delay is less than half of target, and * if drop prob is low already, disable early_drop */ - if ((q->vars.qdelay < q->params.target / 2) - && (q->vars.prob < MAX_PROB / 5)) + if ((vars->qdelay < params->target / 2) && + (vars->prob < MAX_PROB / 5)) return false; - /* If we have fewer than 2 mtu-sized packets, disable drop_early, + /* If we have fewer than 2 mtu-sized packets, disable pie_drop_early, * similar to min_th in RED */ - if (sch->qstats.backlog < 2 * mtu) + if (backlog < 2 * mtu) return false; /* If bytemode is turned on, use packet size to compute new * probablity. Smaller packets will have lower drop prob in this case */ - if (q->params.bytemode && packet_size <= mtu) - local_prob = (local_prob / mtu) * packet_size; + if (params->bytemode && packet_size <= mtu) + local_prob = (u64)packet_size * div_u64(local_prob, mtu); else - local_prob = q->vars.prob; + local_prob = vars->prob; - rnd = prandom_u32(); - if (rnd < local_prob) + if (local_prob == 0) + vars->accu_prob = 0; + else + vars->accu_prob += local_prob; + + if (vars->accu_prob < (MAX_PROB / 100) * 85) + return false; + if (vars->accu_prob >= (MAX_PROB / 2) * 17) return true; + + prandom_bytes(&rnd, 8); + if ((rnd >> BITS_PER_BYTE) < local_prob) { + vars->accu_prob = 0; + return true; + } return false; } +EXPORT_SYMBOL_GPL(pie_drop_early); static int pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) @@ -146,7 +93,8 @@ goto out; } - if (!drop_early(sch, skb->len)) { + if (!pie_drop_early(sch, &q->params, &q->vars, sch->qstats.backlog, + skb->len)) { enqueue = true; } else if (q->params.ecn && (q->vars.prob <= MAX_PROB / 10) && INET_ECN_set_ce(skb)) { @@ -159,6 +107,10 @@ /* we can enqueue the packet */ if (enqueue) { + /* Set enqueue time only when dq_rate_estimator is disabled. */ + if (!q->params.dq_rate_estimator) + pie_set_enqueue_time(skb); + q->stats.packets_in++; if (qdisc_qlen(sch) > q->stats.maxq) q->stats.maxq = qdisc_qlen(sch); @@ -168,17 +120,19 @@ out: q->stats.dropped++; + q->vars.accu_prob = 0; return qdisc_drop(skb, sch, to_free); } static const struct nla_policy pie_policy[TCA_PIE_MAX + 1] = { - [TCA_PIE_TARGET] = {.type = NLA_U32}, - [TCA_PIE_LIMIT] = {.type = NLA_U32}, - [TCA_PIE_TUPDATE] = {.type = NLA_U32}, - [TCA_PIE_ALPHA] = {.type = NLA_U32}, - [TCA_PIE_BETA] = {.type = NLA_U32}, - [TCA_PIE_ECN] = {.type = NLA_U32}, - [TCA_PIE_BYTEMODE] = {.type = NLA_U32}, + [TCA_PIE_TARGET] = {.type = NLA_U32}, + [TCA_PIE_LIMIT] = {.type = NLA_U32}, + [TCA_PIE_TUPDATE] = {.type = NLA_U32}, + [TCA_PIE_ALPHA] = {.type = NLA_U32}, + [TCA_PIE_BETA] = {.type = NLA_U32}, + [TCA_PIE_ECN] = {.type = NLA_U32}, + [TCA_PIE_BYTEMODE] = {.type = NLA_U32}, + [TCA_PIE_DQ_RATE_ESTIMATOR] = {.type = NLA_U32}, }; static int pie_change(struct Qdisc *sch, struct nlattr *opt, @@ -192,7 +146,8 @@ if (!opt) return -EINVAL; - err = nla_parse_nested(tb, TCA_PIE_MAX, opt, pie_policy, NULL); + err = nla_parse_nested_deprecated(tb, TCA_PIE_MAX, opt, pie_policy, + NULL); if (err < 0) return err; @@ -209,7 +164,8 @@ /* tupdate is in jiffies */ if (tb[TCA_PIE_TUPDATE]) - q->params.tupdate = usecs_to_jiffies(nla_get_u32(tb[TCA_PIE_TUPDATE])); + q->params.tupdate = + usecs_to_jiffies(nla_get_u32(tb[TCA_PIE_TUPDATE])); if (tb[TCA_PIE_LIMIT]) { u32 limit = nla_get_u32(tb[TCA_PIE_LIMIT]); @@ -230,6 +186,10 @@ if (tb[TCA_PIE_BYTEMODE]) q->params.bytemode = nla_get_u32(tb[TCA_PIE_BYTEMODE]); + if (tb[TCA_PIE_DQ_RATE_ESTIMATOR]) + q->params.dq_rate_estimator = + nla_get_u32(tb[TCA_PIE_DQ_RATE_ESTIMATOR]); + /* Drop excess packets if new limit is lower */ qlen = sch->q.qlen; while (sch->q.qlen > sch->limit) { @@ -245,133 +205,163 @@ return 0; } -static void pie_process_dequeue(struct Qdisc *sch, struct sk_buff *skb) +void pie_process_dequeue(struct sk_buff *skb, struct pie_params *params, + struct pie_vars *vars, u32 backlog) { + psched_time_t now = psched_get_time(); + u32 dtime = 0; - struct pie_sched_data *q = qdisc_priv(sch); - int qlen = sch->qstats.backlog; /* current queue size in bytes */ + /* If dq_rate_estimator is disabled, calculate qdelay using the + * packet timestamp. + */ + if (!params->dq_rate_estimator) { + vars->qdelay = now - pie_get_enqueue_time(skb); + + if (vars->dq_tstamp != DTIME_INVALID) + dtime = now - vars->dq_tstamp; + + vars->dq_tstamp = now; + + if (backlog == 0) + vars->qdelay = 0; + + if (dtime == 0) + return; + + goto burst_allowance_reduction; + } /* If current queue is about 10 packets or more and dq_count is unset * we have enough packets to calculate the drain rate. Save * current time as dq_tstamp and start measurement cycle. */ - if (qlen >= QUEUE_THRESHOLD && q->vars.dq_count == DQCOUNT_INVALID) { - q->vars.dq_tstamp = psched_get_time(); - q->vars.dq_count = 0; + if (backlog >= QUEUE_THRESHOLD && vars->dq_count == DQCOUNT_INVALID) { + vars->dq_tstamp = psched_get_time(); + vars->dq_count = 0; } - /* Calculate the average drain rate from this value. If queue length - * has receded to a small value viz., <= QUEUE_THRESHOLD bytes,reset + /* Calculate the average drain rate from this value. If queue length + * has receded to a small value viz., <= QUEUE_THRESHOLD bytes, reset * the dq_count to -1 as we don't have enough packets to calculate the - * drain rate anymore The following if block is entered only when we + * drain rate anymore. The following if block is entered only when we * have a substantial queue built up (QUEUE_THRESHOLD bytes or more) * and we calculate the drain rate for the threshold here. dq_count is * in bytes, time difference in psched_time, hence rate is in * bytes/psched_time. */ - if (q->vars.dq_count != DQCOUNT_INVALID) { - q->vars.dq_count += skb->len; + if (vars->dq_count != DQCOUNT_INVALID) { + vars->dq_count += skb->len; - if (q->vars.dq_count >= QUEUE_THRESHOLD) { - psched_time_t now = psched_get_time(); - u32 dtime = now - q->vars.dq_tstamp; - u32 count = q->vars.dq_count << PIE_SCALE; + if (vars->dq_count >= QUEUE_THRESHOLD) { + u32 count = vars->dq_count << PIE_SCALE; + + dtime = now - vars->dq_tstamp; if (dtime == 0) return; count = count / dtime; - if (q->vars.avg_dq_rate == 0) - q->vars.avg_dq_rate = count; + if (vars->avg_dq_rate == 0) + vars->avg_dq_rate = count; else - q->vars.avg_dq_rate = - (q->vars.avg_dq_rate - - (q->vars.avg_dq_rate >> 3)) + (count >> 3); + vars->avg_dq_rate = + (vars->avg_dq_rate - + (vars->avg_dq_rate >> 3)) + (count >> 3); /* If the queue has receded below the threshold, we hold * on to the last drain rate calculated, else we reset * dq_count to 0 to re-enter the if block when the next * packet is dequeued */ - if (qlen < QUEUE_THRESHOLD) - q->vars.dq_count = DQCOUNT_INVALID; - else { - q->vars.dq_count = 0; - q->vars.dq_tstamp = psched_get_time(); + if (backlog < QUEUE_THRESHOLD) { + vars->dq_count = DQCOUNT_INVALID; + } else { + vars->dq_count = 0; + vars->dq_tstamp = psched_get_time(); } - if (q->vars.burst_time > 0) { - if (q->vars.burst_time > dtime) - q->vars.burst_time -= dtime; - else - q->vars.burst_time = 0; - } + goto burst_allowance_reduction; } } -} -static void calculate_probability(struct Qdisc *sch) + return; + +burst_allowance_reduction: + if (vars->burst_time > 0) { + if (vars->burst_time > dtime) + vars->burst_time -= dtime; + else + vars->burst_time = 0; + } +} +EXPORT_SYMBOL_GPL(pie_process_dequeue); + +void pie_calculate_probability(struct pie_params *params, struct pie_vars *vars, + u32 backlog) { - struct pie_sched_data *q = qdisc_priv(sch); - u32 qlen = sch->qstats.backlog; /* queue size in bytes */ psched_time_t qdelay = 0; /* in pschedtime */ - psched_time_t qdelay_old = q->vars.qdelay; /* in pschedtime */ - s32 delta = 0; /* determines the change in probability */ - u32 oldprob; - u32 alpha, beta; + psched_time_t qdelay_old = 0; /* in pschedtime */ + s64 delta = 0; /* determines the change in probability */ + u64 oldprob; + u64 alpha, beta; + u32 power; bool update_prob = true; - q->vars.qdelay_old = q->vars.qdelay; + if (params->dq_rate_estimator) { + qdelay_old = vars->qdelay; + vars->qdelay_old = vars->qdelay; - if (q->vars.avg_dq_rate > 0) - qdelay = (qlen << PIE_SCALE) / q->vars.avg_dq_rate; - else - qdelay = 0; + if (vars->avg_dq_rate > 0) + qdelay = (backlog << PIE_SCALE) / vars->avg_dq_rate; + else + qdelay = 0; + } else { + qdelay = vars->qdelay; + qdelay_old = vars->qdelay_old; + } - /* If qdelay is zero and qlen is not, it means qlen is very small, less - * than dequeue_rate, so we do not update probabilty in this round + /* If qdelay is zero and backlog is not, it means backlog is very small, + * so we do not update probabilty in this round. */ - if (qdelay == 0 && qlen != 0) + if (qdelay == 0 && backlog != 0) update_prob = false; /* In the algorithm, alpha and beta are between 0 and 2 with typical * value for alpha as 0.125. In this implementation, we use values 0-32 * passed from user space to represent this. Also, alpha and beta have * unit of HZ and need to be scaled before they can used to update - * probability. alpha/beta are updated locally below by 1) scaling them - * appropriately 2) scaling down by 16 to come to 0-2 range. - * Please see paper for details. - * - * We scale alpha and beta differently depending on whether we are in - * light, medium or high dropping mode. + * probability. alpha/beta are updated locally below by scaling down + * by 16 to come to 0-2 range. */ - if (q->vars.prob < MAX_PROB / 100) { - alpha = - (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 7; - beta = - (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 7; - } else if (q->vars.prob < MAX_PROB / 10) { - alpha = - (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 5; - beta = - (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 5; - } else { - alpha = - (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4; - beta = - (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4; + alpha = ((u64)params->alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4; + beta = ((u64)params->beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4; + + /* We scale alpha and beta differently depending on how heavy the + * congestion is. Please see RFC 8033 for details. + */ + if (vars->prob < MAX_PROB / 10) { + alpha >>= 1; + beta >>= 1; + + power = 100; + while (vars->prob < div_u64(MAX_PROB, power) && + power <= 1000000) { + alpha >>= 2; + beta >>= 2; + power *= 10; + } } /* alpha and beta should be between 0 and 32, in multiples of 1/16 */ - delta += alpha * ((qdelay - q->params.target)); - delta += beta * ((qdelay - qdelay_old)); + delta += alpha * (qdelay - params->target); + delta += beta * (qdelay - qdelay_old); - oldprob = q->vars.prob; + oldprob = vars->prob; /* to ensure we increase probability in steps of no more than 2% */ - if (delta > (s32) (MAX_PROB / (100 / 2)) && - q->vars.prob >= MAX_PROB / 10) + if (delta > (s64)(MAX_PROB / (100 / 2)) && + vars->prob >= MAX_PROB / 10) delta = (MAX_PROB / 100) * 2; /* Non-linear drop: @@ -382,12 +372,12 @@ if (qdelay > (PSCHED_NS2TICKS(250 * NSEC_PER_MSEC))) delta += MAX_PROB / (100 / 2); - q->vars.prob += delta; + vars->prob += delta; if (delta > 0) { /* prevent overflow */ - if (q->vars.prob < oldprob) { - q->vars.prob = MAX_PROB; + if (vars->prob < oldprob) { + vars->prob = MAX_PROB; /* Prevent normalization error. If probability is at * maximum value already, we normalize it here, and * skip the check to do a non-linear drop in the next @@ -397,32 +387,38 @@ } } else { /* prevent underflow */ - if (q->vars.prob > oldprob) - q->vars.prob = 0; + if (vars->prob > oldprob) + vars->prob = 0; } /* Non-linear drop in probability: Reduce drop probability quickly if * delay is 0 for 2 consecutive Tupdate periods. */ - if ((qdelay == 0) && (qdelay_old == 0) && update_prob) - q->vars.prob = (q->vars.prob * 98) / 100; + if (qdelay == 0 && qdelay_old == 0 && update_prob) + /* Reduce drop probability to 98.4% */ + vars->prob -= vars->prob / 64; - q->vars.qdelay = qdelay; - q->vars.qlen_old = qlen; + vars->qdelay = qdelay; + vars->backlog_old = backlog; /* We restart the measurement cycle if the following conditions are met * 1. If the delay has been low for 2 consecutive Tupdate periods * 2. Calculated drop probability is zero - * 3. We have atleast one estimate for the avg_dq_rate ie., - * is a non-zero value + * 3. If average dq_rate_estimator is enabled, we have atleast one + * estimate for the avg_dq_rate ie., is a non-zero value */ - if ((q->vars.qdelay < q->params.target / 2) && - (q->vars.qdelay_old < q->params.target / 2) && - (q->vars.prob == 0) && - (q->vars.avg_dq_rate > 0)) - pie_vars_init(&q->vars); + if ((vars->qdelay < params->target / 2) && + (vars->qdelay_old < params->target / 2) && + vars->prob == 0 && + (!params->dq_rate_estimator || vars->avg_dq_rate > 0)) { + pie_vars_init(vars); + } + + if (!params->dq_rate_estimator) + vars->qdelay_old = qdelay; } +EXPORT_SYMBOL_GPL(pie_calculate_probability); static void pie_timer(struct timer_list *t) { @@ -431,13 +427,12 @@ spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch)); spin_lock(root_lock); - calculate_probability(sch); + pie_calculate_probability(&q->params, &q->vars, sch->qstats.backlog); /* reset the timer to fire after 'tupdate'. tupdate is in jiffies. */ if (q->params.tupdate) mod_timer(&q->adapt_timer, jiffies + q->params.tupdate); spin_unlock(root_lock); - } static int pie_init(struct Qdisc *sch, struct nlattr *opt, @@ -468,20 +463,23 @@ struct pie_sched_data *q = qdisc_priv(sch); struct nlattr *opts; - opts = nla_nest_start(skb, TCA_OPTIONS); - if (opts == NULL) + opts = nla_nest_start_noflag(skb, TCA_OPTIONS); + if (!opts) goto nla_put_failure; /* convert target from pschedtime to us */ if (nla_put_u32(skb, TCA_PIE_TARGET, - ((u32) PSCHED_TICKS2NS(q->params.target)) / + ((u32)PSCHED_TICKS2NS(q->params.target)) / NSEC_PER_USEC) || nla_put_u32(skb, TCA_PIE_LIMIT, sch->limit) || - nla_put_u32(skb, TCA_PIE_TUPDATE, jiffies_to_usecs(q->params.tupdate)) || + nla_put_u32(skb, TCA_PIE_TUPDATE, + jiffies_to_usecs(q->params.tupdate)) || nla_put_u32(skb, TCA_PIE_ALPHA, q->params.alpha) || nla_put_u32(skb, TCA_PIE_BETA, q->params.beta) || nla_put_u32(skb, TCA_PIE_ECN, q->params.ecn) || - nla_put_u32(skb, TCA_PIE_BYTEMODE, q->params.bytemode)) + nla_put_u32(skb, TCA_PIE_BYTEMODE, q->params.bytemode) || + nla_put_u32(skb, TCA_PIE_DQ_RATE_ESTIMATOR, + q->params.dq_rate_estimator)) goto nla_put_failure; return nla_nest_end(skb, opts); @@ -489,19 +487,15 @@ nla_put_failure: nla_nest_cancel(skb, opts); return -1; - } static int pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d) { struct pie_sched_data *q = qdisc_priv(sch); struct tc_pie_xstats st = { - .prob = q->vars.prob, - .delay = ((u32) PSCHED_TICKS2NS(q->vars.qdelay)) / + .prob = q->vars.prob << BITS_PER_BYTE, + .delay = ((u32)PSCHED_TICKS2NS(q->vars.qdelay)) / NSEC_PER_USEC, - /* unscale and return dq_rate in bytes per sec */ - .avg_dq_rate = q->vars.avg_dq_rate * - (PSCHED_TICKS_PER_SEC) >> PIE_SCALE, .packets_in = q->stats.packets_in, .overlimit = q->stats.overlimit, .maxq = q->stats.maxq, @@ -509,24 +503,33 @@ .ecn_mark = q->stats.ecn_mark, }; + /* avg_dq_rate is only valid if dq_rate_estimator is enabled */ + st.dq_rate_estimating = q->params.dq_rate_estimator; + + /* unscale and return dq_rate in bytes per sec */ + if (q->params.dq_rate_estimator) + st.avg_dq_rate = q->vars.avg_dq_rate * + (PSCHED_TICKS_PER_SEC) >> PIE_SCALE; + return gnet_stats_copy_app(d, &st, sizeof(st)); } static struct sk_buff *pie_qdisc_dequeue(struct Qdisc *sch) { - struct sk_buff *skb; - skb = qdisc_dequeue_head(sch); + struct pie_sched_data *q = qdisc_priv(sch); + struct sk_buff *skb = qdisc_dequeue_head(sch); if (!skb) return NULL; - pie_process_dequeue(sch, skb); + pie_process_dequeue(skb, &q->params, &q->vars, sch->qstats.backlog); return skb; } static void pie_reset(struct Qdisc *sch) { struct pie_sched_data *q = qdisc_priv(sch); + qdisc_reset_queue(sch); pie_vars_init(&q->vars); } @@ -534,12 +537,13 @@ static void pie_destroy(struct Qdisc *sch) { struct pie_sched_data *q = qdisc_priv(sch); + q->params.tupdate = 0; del_timer_sync(&q->adapt_timer); } static struct Qdisc_ops pie_qdisc_ops __read_mostly = { - .id = "pie", + .id = "pie", .priv_size = sizeof(struct pie_sched_data), .enqueue = pie_qdisc_enqueue, .dequeue = pie_qdisc_dequeue, -- Gitblit v1.6.2