From 8ac6c7a54ed1b98d142dce24b11c6de6a1e239a5 Mon Sep 17 00:00:00 2001
From: hc <hc@nodka.com>
Date: Tue, 22 Oct 2024 10:36:11 +0000
Subject: [PATCH] 修改4g拨号为QMI,需要在系统里后台执行quectel-CM

---
 kernel/mm/vmalloc.c | 2448 +++++++++++++++++++++++++++++++++++++++--------------------
 1 files changed, 1,628 insertions(+), 820 deletions(-)

diff --git a/kernel/mm/vmalloc.c b/kernel/mm/vmalloc.c
index 3eb3f16..fa1ea48 100644
--- a/kernel/mm/vmalloc.c
+++ b/kernel/mm/vmalloc.c
@@ -1,11 +1,11 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
- *  linux/mm/vmalloc.c
- *
  *  Copyright (C) 1993  Linus Torvalds
  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  *  Numa awareness, Christoph Lameter, SGI, June 2005
+ *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
  */
 
 #include <linux/vmalloc.h>
@@ -18,12 +18,13 @@
 #include <linux/interrupt.h>
 #include <linux/proc_fs.h>
 #include <linux/seq_file.h>
+#include <linux/set_memory.h>
 #include <linux/debugobjects.h>
 #include <linux/kallsyms.h>
 #include <linux/list.h>
 #include <linux/notifier.h>
 #include <linux/rbtree.h>
-#include <linux/radix-tree.h>
+#include <linux/xarray.h>
 #include <linux/rcupdate.h>
 #include <linux/pfn.h>
 #include <linux/kmemleak.h>
@@ -31,13 +32,24 @@
 #include <linux/compiler.h>
 #include <linux/llist.h>
 #include <linux/bitops.h>
+#include <linux/rbtree_augmented.h>
 #include <linux/overflow.h>
+#include <trace/hooks/mm.h>
 
 #include <linux/uaccess.h>
 #include <asm/tlbflush.h>
 #include <asm/shmparam.h>
 
 #include "internal.h"
+#include "pgalloc-track.h"
+
+bool is_vmalloc_addr(const void *x)
+{
+	unsigned long addr = (unsigned long)x;
+
+	return addr >= VMALLOC_START && addr < VMALLOC_END;
+}
+EXPORT_SYMBOL(is_vmalloc_addr);
 
 struct vfree_deferred {
 	struct llist_head list;
@@ -58,7 +70,8 @@
 
 /*** Page table manipulation functions ***/
 
-static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
+static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
+			     pgtbl_mod_mask *mask)
 {
 	pte_t *pte;
 
@@ -67,73 +80,119 @@
 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
 	} while (pte++, addr += PAGE_SIZE, addr != end);
+	*mask |= PGTBL_PTE_MODIFIED;
 }
 
-static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
+static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
+			     pgtbl_mod_mask *mask)
 {
 	pmd_t *pmd;
 	unsigned long next;
+	int cleared;
 
 	pmd = pmd_offset(pud, addr);
 	do {
 		next = pmd_addr_end(addr, end);
-		if (pmd_clear_huge(pmd))
+
+		cleared = pmd_clear_huge(pmd);
+		if (cleared || pmd_bad(*pmd))
+			*mask |= PGTBL_PMD_MODIFIED;
+
+		if (cleared)
 			continue;
 		if (pmd_none_or_clear_bad(pmd))
 			continue;
-		vunmap_pte_range(pmd, addr, next);
+		vunmap_pte_range(pmd, addr, next, mask);
+
+		cond_resched();
 	} while (pmd++, addr = next, addr != end);
 }
 
-static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
+static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
+			     pgtbl_mod_mask *mask)
 {
 	pud_t *pud;
 	unsigned long next;
+	int cleared;
 
 	pud = pud_offset(p4d, addr);
 	do {
 		next = pud_addr_end(addr, end);
-		if (pud_clear_huge(pud))
+
+		cleared = pud_clear_huge(pud);
+		if (cleared || pud_bad(*pud))
+			*mask |= PGTBL_PUD_MODIFIED;
+
+		if (cleared)
 			continue;
 		if (pud_none_or_clear_bad(pud))
 			continue;
-		vunmap_pmd_range(pud, addr, next);
+		vunmap_pmd_range(pud, addr, next, mask);
 	} while (pud++, addr = next, addr != end);
 }
 
-static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
+static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
+			     pgtbl_mod_mask *mask)
 {
 	p4d_t *p4d;
 	unsigned long next;
+	int cleared;
 
 	p4d = p4d_offset(pgd, addr);
 	do {
 		next = p4d_addr_end(addr, end);
-		if (p4d_clear_huge(p4d))
+
+		cleared = p4d_clear_huge(p4d);
+		if (cleared || p4d_bad(*p4d))
+			*mask |= PGTBL_P4D_MODIFIED;
+
+		if (cleared)
 			continue;
 		if (p4d_none_or_clear_bad(p4d))
 			continue;
-		vunmap_pud_range(p4d, addr, next);
+		vunmap_pud_range(p4d, addr, next, mask);
 	} while (p4d++, addr = next, addr != end);
 }
 
-static void vunmap_page_range(unsigned long addr, unsigned long end)
+/**
+ * unmap_kernel_range_noflush - unmap kernel VM area
+ * @start: start of the VM area to unmap
+ * @size: size of the VM area to unmap
+ *
+ * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify
+ * should have been allocated using get_vm_area() and its friends.
+ *
+ * NOTE:
+ * This function does NOT do any cache flushing.  The caller is responsible
+ * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
+ * function and flush_tlb_kernel_range() after.
+ */
+void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
 {
-	pgd_t *pgd;
+	unsigned long end = start + size;
 	unsigned long next;
+	pgd_t *pgd;
+	unsigned long addr = start;
+	pgtbl_mod_mask mask = 0;
 
 	BUG_ON(addr >= end);
 	pgd = pgd_offset_k(addr);
 	do {
 		next = pgd_addr_end(addr, end);
+		if (pgd_bad(*pgd))
+			mask |= PGTBL_PGD_MODIFIED;
 		if (pgd_none_or_clear_bad(pgd))
 			continue;
-		vunmap_p4d_range(pgd, addr, next);
+		vunmap_p4d_range(pgd, addr, next, &mask);
 	} while (pgd++, addr = next, addr != end);
+
+	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
+		arch_sync_kernel_mappings(start, end);
 }
 
 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
-		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
+		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
+		pgtbl_mod_mask *mask)
 {
 	pte_t *pte;
 
@@ -142,7 +201,7 @@
 	 * callers keep track of where we're up to.
 	 */
 
-	pte = pte_alloc_kernel(pmd, addr);
+	pte = pte_alloc_kernel_track(pmd, addr, mask);
 	if (!pte)
 		return -ENOMEM;
 	do {
@@ -155,96 +214,120 @@
 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 		(*nr)++;
 	} while (pte++, addr += PAGE_SIZE, addr != end);
+	*mask |= PGTBL_PTE_MODIFIED;
 	return 0;
 }
 
 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
-		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
+		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
+		pgtbl_mod_mask *mask)
 {
 	pmd_t *pmd;
 	unsigned long next;
 
-	pmd = pmd_alloc(&init_mm, pud, addr);
+	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
 	if (!pmd)
 		return -ENOMEM;
 	do {
 		next = pmd_addr_end(addr, end);
-		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
+		if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
 			return -ENOMEM;
 	} while (pmd++, addr = next, addr != end);
 	return 0;
 }
 
 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
-		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
+		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
+		pgtbl_mod_mask *mask)
 {
 	pud_t *pud;
 	unsigned long next;
 
-	pud = pud_alloc(&init_mm, p4d, addr);
+	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
 	if (!pud)
 		return -ENOMEM;
 	do {
 		next = pud_addr_end(addr, end);
-		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
+		if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
 			return -ENOMEM;
 	} while (pud++, addr = next, addr != end);
 	return 0;
 }
 
 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
-		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
+		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
+		pgtbl_mod_mask *mask)
 {
 	p4d_t *p4d;
 	unsigned long next;
 
-	p4d = p4d_alloc(&init_mm, pgd, addr);
+	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
 	if (!p4d)
 		return -ENOMEM;
 	do {
 		next = p4d_addr_end(addr, end);
-		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
+		if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
 			return -ENOMEM;
 	} while (p4d++, addr = next, addr != end);
 	return 0;
 }
 
-/*
- * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
- * will have pfns corresponding to the "pages" array.
+/**
+ * map_kernel_range_noflush - map kernel VM area with the specified pages
+ * @addr: start of the VM area to map
+ * @size: size of the VM area to map
+ * @prot: page protection flags to use
+ * @pages: pages to map
  *
- * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
+ * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify should
+ * have been allocated using get_vm_area() and its friends.
+ *
+ * NOTE:
+ * This function does NOT do any cache flushing.  The caller is responsible for
+ * calling flush_cache_vmap() on to-be-mapped areas before calling this
+ * function.
+ *
+ * RETURNS:
+ * 0 on success, -errno on failure.
  */
-static int vmap_page_range_noflush(unsigned long start, unsigned long end,
-				   pgprot_t prot, struct page **pages)
+int map_kernel_range_noflush(unsigned long addr, unsigned long size,
+			     pgprot_t prot, struct page **pages)
 {
-	pgd_t *pgd;
+	unsigned long start = addr;
+	unsigned long end = addr + size;
 	unsigned long next;
-	unsigned long addr = start;
+	pgd_t *pgd;
 	int err = 0;
 	int nr = 0;
+	pgtbl_mod_mask mask = 0;
 
 	BUG_ON(addr >= end);
 	pgd = pgd_offset_k(addr);
 	do {
 		next = pgd_addr_end(addr, end);
-		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
+		if (pgd_bad(*pgd))
+			mask |= PGTBL_PGD_MODIFIED;
+		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
 		if (err)
 			return err;
 	} while (pgd++, addr = next, addr != end);
 
-	return nr;
+	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
+		arch_sync_kernel_mappings(start, end);
+
+	return 0;
 }
 
-static int vmap_page_range(unsigned long start, unsigned long end,
-			   pgprot_t prot, struct page **pages)
+int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
+		struct page **pages)
 {
 	int ret;
 
-	ret = vmap_page_range_noflush(start, end, prot, pages);
-	flush_cache_vmap(start, end);
+	ret = map_kernel_range_noflush(start, size, prot, pages);
+	flush_cache_vmap(start, start + size);
 	return ret;
 }
+EXPORT_SYMBOL_GPL(map_kernel_range);
 
 int is_vmalloc_or_module_addr(const void *x)
 {
@@ -324,22 +407,83 @@
 
 /*** Global kva allocator ***/
 
-#define VM_LAZY_FREE	0x02
-#define VM_VM_AREA	0x04
+#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
+#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
+
 
 static DEFINE_SPINLOCK(vmap_area_lock);
+static DEFINE_SPINLOCK(free_vmap_area_lock);
 /* Export for kexec only */
 LIST_HEAD(vmap_area_list);
 static LLIST_HEAD(vmap_purge_list);
 static struct rb_root vmap_area_root = RB_ROOT;
+static bool vmap_initialized __read_mostly;
 
-/* The vmap cache globals are protected by vmap_area_lock */
-static struct rb_node *free_vmap_cache;
-static unsigned long cached_hole_size;
-static unsigned long cached_vstart;
-static unsigned long cached_align;
+/*
+ * This kmem_cache is used for vmap_area objects. Instead of
+ * allocating from slab we reuse an object from this cache to
+ * make things faster. Especially in "no edge" splitting of
+ * free block.
+ */
+static struct kmem_cache *vmap_area_cachep;
 
-static unsigned long vmap_area_pcpu_hole;
+/*
+ * This linked list is used in pair with free_vmap_area_root.
+ * It gives O(1) access to prev/next to perform fast coalescing.
+ */
+static LIST_HEAD(free_vmap_area_list);
+
+/*
+ * This augment red-black tree represents the free vmap space.
+ * All vmap_area objects in this tree are sorted by va->va_start
+ * address. It is used for allocation and merging when a vmap
+ * object is released.
+ *
+ * Each vmap_area node contains a maximum available free block
+ * of its sub-tree, right or left. Therefore it is possible to
+ * find a lowest match of free area.
+ */
+static struct rb_root free_vmap_area_root = RB_ROOT;
+
+/*
+ * Preload a CPU with one object for "no edge" split case. The
+ * aim is to get rid of allocations from the atomic context, thus
+ * to use more permissive allocation masks.
+ */
+static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
+
+static __always_inline unsigned long
+va_size(struct vmap_area *va)
+{
+	return (va->va_end - va->va_start);
+}
+
+static __always_inline unsigned long
+get_subtree_max_size(struct rb_node *node)
+{
+	struct vmap_area *va;
+
+	va = rb_entry_safe(node, struct vmap_area, rb_node);
+	return va ? va->subtree_max_size : 0;
+}
+
+/*
+ * Gets called when remove the node and rotate.
+ */
+static __always_inline unsigned long
+compute_subtree_max_size(struct vmap_area *va)
+{
+	return max3(va_size(va),
+		get_subtree_max_size(va->rb_node.rb_left),
+		get_subtree_max_size(va->rb_node.rb_right));
+}
+
+RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
+	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
+
+static void purge_vmap_area_lazy(void);
+static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
+static unsigned long lazy_max_pages(void);
 
 static atomic_long_t nr_vmalloc_pages;
 
@@ -347,6 +491,7 @@
 {
 	return atomic_long_read(&nr_vmalloc_pages);
 }
+EXPORT_SYMBOL_GPL(vmalloc_nr_pages);
 
 static struct vmap_area *__find_vmap_area(unsigned long addr)
 {
@@ -367,41 +512,638 @@
 	return NULL;
 }
 
-static void __insert_vmap_area(struct vmap_area *va)
+/*
+ * This function returns back addresses of parent node
+ * and its left or right link for further processing.
+ *
+ * Otherwise NULL is returned. In that case all further
+ * steps regarding inserting of conflicting overlap range
+ * have to be declined and actually considered as a bug.
+ */
+static __always_inline struct rb_node **
+find_va_links(struct vmap_area *va,
+	struct rb_root *root, struct rb_node *from,
+	struct rb_node **parent)
 {
-	struct rb_node **p = &vmap_area_root.rb_node;
-	struct rb_node *parent = NULL;
-	struct rb_node *tmp;
+	struct vmap_area *tmp_va;
+	struct rb_node **link;
 
-	while (*p) {
-		struct vmap_area *tmp_va;
-
-		parent = *p;
-		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
-		if (va->va_start < tmp_va->va_end)
-			p = &(*p)->rb_left;
-		else if (va->va_end > tmp_va->va_start)
-			p = &(*p)->rb_right;
-		else
-			BUG();
+	if (root) {
+		link = &root->rb_node;
+		if (unlikely(!*link)) {
+			*parent = NULL;
+			return link;
+		}
+	} else {
+		link = &from;
 	}
 
-	rb_link_node(&va->rb_node, parent, p);
-	rb_insert_color(&va->rb_node, &vmap_area_root);
+	/*
+	 * Go to the bottom of the tree. When we hit the last point
+	 * we end up with parent rb_node and correct direction, i name
+	 * it link, where the new va->rb_node will be attached to.
+	 */
+	do {
+		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
 
-	/* address-sort this list */
-	tmp = rb_prev(&va->rb_node);
-	if (tmp) {
-		struct vmap_area *prev;
-		prev = rb_entry(tmp, struct vmap_area, rb_node);
-		list_add_rcu(&va->list, &prev->list);
-	} else
-		list_add_rcu(&va->list, &vmap_area_list);
+		/*
+		 * During the traversal we also do some sanity check.
+		 * Trigger the BUG() if there are sides(left/right)
+		 * or full overlaps.
+		 */
+		if (va->va_start < tmp_va->va_end &&
+				va->va_end <= tmp_va->va_start)
+			link = &(*link)->rb_left;
+		else if (va->va_end > tmp_va->va_start &&
+				va->va_start >= tmp_va->va_end)
+			link = &(*link)->rb_right;
+		else {
+			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
+				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
+
+			return NULL;
+		}
+	} while (*link);
+
+	*parent = &tmp_va->rb_node;
+	return link;
 }
 
-static void purge_vmap_area_lazy(void);
+static __always_inline struct list_head *
+get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
+{
+	struct list_head *list;
 
-static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
+	if (unlikely(!parent))
+		/*
+		 * The red-black tree where we try to find VA neighbors
+		 * before merging or inserting is empty, i.e. it means
+		 * there is no free vmap space. Normally it does not
+		 * happen but we handle this case anyway.
+		 */
+		return NULL;
+
+	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
+	return (&parent->rb_right == link ? list->next : list);
+}
+
+static __always_inline void
+link_va(struct vmap_area *va, struct rb_root *root,
+	struct rb_node *parent, struct rb_node **link, struct list_head *head)
+{
+	/*
+	 * VA is still not in the list, but we can
+	 * identify its future previous list_head node.
+	 */
+	if (likely(parent)) {
+		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
+		if (&parent->rb_right != link)
+			head = head->prev;
+	}
+
+	/* Insert to the rb-tree */
+	rb_link_node(&va->rb_node, parent, link);
+	if (root == &free_vmap_area_root) {
+		/*
+		 * Some explanation here. Just perform simple insertion
+		 * to the tree. We do not set va->subtree_max_size to
+		 * its current size before calling rb_insert_augmented().
+		 * It is because of we populate the tree from the bottom
+		 * to parent levels when the node _is_ in the tree.
+		 *
+		 * Therefore we set subtree_max_size to zero after insertion,
+		 * to let __augment_tree_propagate_from() puts everything to
+		 * the correct order later on.
+		 */
+		rb_insert_augmented(&va->rb_node,
+			root, &free_vmap_area_rb_augment_cb);
+		va->subtree_max_size = 0;
+	} else {
+		rb_insert_color(&va->rb_node, root);
+	}
+
+	/* Address-sort this list */
+	list_add(&va->list, head);
+}
+
+static __always_inline void
+unlink_va(struct vmap_area *va, struct rb_root *root)
+{
+	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
+		return;
+
+	if (root == &free_vmap_area_root)
+		rb_erase_augmented(&va->rb_node,
+			root, &free_vmap_area_rb_augment_cb);
+	else
+		rb_erase(&va->rb_node, root);
+
+	list_del(&va->list);
+	RB_CLEAR_NODE(&va->rb_node);
+}
+
+#if DEBUG_AUGMENT_PROPAGATE_CHECK
+static void
+augment_tree_propagate_check(void)
+{
+	struct vmap_area *va;
+	unsigned long computed_size;
+
+	list_for_each_entry(va, &free_vmap_area_list, list) {
+		computed_size = compute_subtree_max_size(va);
+		if (computed_size != va->subtree_max_size)
+			pr_emerg("tree is corrupted: %lu, %lu\n",
+				va_size(va), va->subtree_max_size);
+	}
+}
+#endif
+
+/*
+ * This function populates subtree_max_size from bottom to upper
+ * levels starting from VA point. The propagation must be done
+ * when VA size is modified by changing its va_start/va_end. Or
+ * in case of newly inserting of VA to the tree.
+ *
+ * It means that __augment_tree_propagate_from() must be called:
+ * - After VA has been inserted to the tree(free path);
+ * - After VA has been shrunk(allocation path);
+ * - After VA has been increased(merging path).
+ *
+ * Please note that, it does not mean that upper parent nodes
+ * and their subtree_max_size are recalculated all the time up
+ * to the root node.
+ *
+ *       4--8
+ *        /\
+ *       /  \
+ *      /    \
+ *    2--2  8--8
+ *
+ * For example if we modify the node 4, shrinking it to 2, then
+ * no any modification is required. If we shrink the node 2 to 1
+ * its subtree_max_size is updated only, and set to 1. If we shrink
+ * the node 8 to 6, then its subtree_max_size is set to 6 and parent
+ * node becomes 4--6.
+ */
+static __always_inline void
+augment_tree_propagate_from(struct vmap_area *va)
+{
+	/*
+	 * Populate the tree from bottom towards the root until
+	 * the calculated maximum available size of checked node
+	 * is equal to its current one.
+	 */
+	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
+
+#if DEBUG_AUGMENT_PROPAGATE_CHECK
+	augment_tree_propagate_check();
+#endif
+}
+
+static void
+insert_vmap_area(struct vmap_area *va,
+	struct rb_root *root, struct list_head *head)
+{
+	struct rb_node **link;
+	struct rb_node *parent;
+
+	link = find_va_links(va, root, NULL, &parent);
+	if (link)
+		link_va(va, root, parent, link, head);
+}
+
+static void
+insert_vmap_area_augment(struct vmap_area *va,
+	struct rb_node *from, struct rb_root *root,
+	struct list_head *head)
+{
+	struct rb_node **link;
+	struct rb_node *parent;
+
+	if (from)
+		link = find_va_links(va, NULL, from, &parent);
+	else
+		link = find_va_links(va, root, NULL, &parent);
+
+	if (link) {
+		link_va(va, root, parent, link, head);
+		augment_tree_propagate_from(va);
+	}
+}
+
+/*
+ * Merge de-allocated chunk of VA memory with previous
+ * and next free blocks. If coalesce is not done a new
+ * free area is inserted. If VA has been merged, it is
+ * freed.
+ *
+ * Please note, it can return NULL in case of overlap
+ * ranges, followed by WARN() report. Despite it is a
+ * buggy behaviour, a system can be alive and keep
+ * ongoing.
+ */
+static __always_inline struct vmap_area *
+merge_or_add_vmap_area(struct vmap_area *va,
+	struct rb_root *root, struct list_head *head)
+{
+	struct vmap_area *sibling;
+	struct list_head *next;
+	struct rb_node **link;
+	struct rb_node *parent;
+	bool merged = false;
+
+	/*
+	 * Find a place in the tree where VA potentially will be
+	 * inserted, unless it is merged with its sibling/siblings.
+	 */
+	link = find_va_links(va, root, NULL, &parent);
+	if (!link)
+		return NULL;
+
+	/*
+	 * Get next node of VA to check if merging can be done.
+	 */
+	next = get_va_next_sibling(parent, link);
+	if (unlikely(next == NULL))
+		goto insert;
+
+	/*
+	 * start            end
+	 * |                |
+	 * |<------VA------>|<-----Next----->|
+	 *                  |                |
+	 *                  start            end
+	 */
+	if (next != head) {
+		sibling = list_entry(next, struct vmap_area, list);
+		if (sibling->va_start == va->va_end) {
+			sibling->va_start = va->va_start;
+
+			/* Free vmap_area object. */
+			kmem_cache_free(vmap_area_cachep, va);
+
+			/* Point to the new merged area. */
+			va = sibling;
+			merged = true;
+		}
+	}
+
+	/*
+	 * start            end
+	 * |                |
+	 * |<-----Prev----->|<------VA------>|
+	 *                  |                |
+	 *                  start            end
+	 */
+	if (next->prev != head) {
+		sibling = list_entry(next->prev, struct vmap_area, list);
+		if (sibling->va_end == va->va_start) {
+			/*
+			 * If both neighbors are coalesced, it is important
+			 * to unlink the "next" node first, followed by merging
+			 * with "previous" one. Otherwise the tree might not be
+			 * fully populated if a sibling's augmented value is
+			 * "normalized" because of rotation operations.
+			 */
+			if (merged)
+				unlink_va(va, root);
+
+			sibling->va_end = va->va_end;
+
+			/* Free vmap_area object. */
+			kmem_cache_free(vmap_area_cachep, va);
+
+			/* Point to the new merged area. */
+			va = sibling;
+			merged = true;
+		}
+	}
+
+insert:
+	if (!merged)
+		link_va(va, root, parent, link, head);
+
+	/*
+	 * Last step is to check and update the tree.
+	 */
+	augment_tree_propagate_from(va);
+	return va;
+}
+
+static __always_inline bool
+is_within_this_va(struct vmap_area *va, unsigned long size,
+	unsigned long align, unsigned long vstart)
+{
+	unsigned long nva_start_addr;
+
+	if (va->va_start > vstart)
+		nva_start_addr = ALIGN(va->va_start, align);
+	else
+		nva_start_addr = ALIGN(vstart, align);
+
+	/* Can be overflowed due to big size or alignment. */
+	if (nva_start_addr + size < nva_start_addr ||
+			nva_start_addr < vstart)
+		return false;
+
+	return (nva_start_addr + size <= va->va_end);
+}
+
+/*
+ * Find the first free block(lowest start address) in the tree,
+ * that will accomplish the request corresponding to passing
+ * parameters.
+ */
+static __always_inline struct vmap_area *
+find_vmap_lowest_match(unsigned long size,
+	unsigned long align, unsigned long vstart)
+{
+	struct vmap_area *va;
+	struct rb_node *node;
+	unsigned long length;
+
+	/* Start from the root. */
+	node = free_vmap_area_root.rb_node;
+
+	/* Adjust the search size for alignment overhead. */
+	length = size + align - 1;
+
+	while (node) {
+		va = rb_entry(node, struct vmap_area, rb_node);
+
+		if (get_subtree_max_size(node->rb_left) >= length &&
+				vstart < va->va_start) {
+			node = node->rb_left;
+		} else {
+			if (is_within_this_va(va, size, align, vstart))
+				return va;
+
+			/*
+			 * Does not make sense to go deeper towards the right
+			 * sub-tree if it does not have a free block that is
+			 * equal or bigger to the requested search length.
+			 */
+			if (get_subtree_max_size(node->rb_right) >= length) {
+				node = node->rb_right;
+				continue;
+			}
+
+			/*
+			 * OK. We roll back and find the first right sub-tree,
+			 * that will satisfy the search criteria. It can happen
+			 * only once due to "vstart" restriction.
+			 */
+			while ((node = rb_parent(node))) {
+				va = rb_entry(node, struct vmap_area, rb_node);
+				if (is_within_this_va(va, size, align, vstart))
+					return va;
+
+				if (get_subtree_max_size(node->rb_right) >= length &&
+						vstart <= va->va_start) {
+					node = node->rb_right;
+					break;
+				}
+			}
+		}
+	}
+
+	return NULL;
+}
+
+#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
+#include <linux/random.h>
+
+static struct vmap_area *
+find_vmap_lowest_linear_match(unsigned long size,
+	unsigned long align, unsigned long vstart)
+{
+	struct vmap_area *va;
+
+	list_for_each_entry(va, &free_vmap_area_list, list) {
+		if (!is_within_this_va(va, size, align, vstart))
+			continue;
+
+		return va;
+	}
+
+	return NULL;
+}
+
+static void
+find_vmap_lowest_match_check(unsigned long size)
+{
+	struct vmap_area *va_1, *va_2;
+	unsigned long vstart;
+	unsigned int rnd;
+
+	get_random_bytes(&rnd, sizeof(rnd));
+	vstart = VMALLOC_START + rnd;
+
+	va_1 = find_vmap_lowest_match(size, 1, vstart);
+	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
+
+	if (va_1 != va_2)
+		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
+			va_1, va_2, vstart);
+}
+#endif
+
+enum fit_type {
+	NOTHING_FIT = 0,
+	FL_FIT_TYPE = 1,	/* full fit */
+	LE_FIT_TYPE = 2,	/* left edge fit */
+	RE_FIT_TYPE = 3,	/* right edge fit */
+	NE_FIT_TYPE = 4		/* no edge fit */
+};
+
+static __always_inline enum fit_type
+classify_va_fit_type(struct vmap_area *va,
+	unsigned long nva_start_addr, unsigned long size)
+{
+	enum fit_type type;
+
+	/* Check if it is within VA. */
+	if (nva_start_addr < va->va_start ||
+			nva_start_addr + size > va->va_end)
+		return NOTHING_FIT;
+
+	/* Now classify. */
+	if (va->va_start == nva_start_addr) {
+		if (va->va_end == nva_start_addr + size)
+			type = FL_FIT_TYPE;
+		else
+			type = LE_FIT_TYPE;
+	} else if (va->va_end == nva_start_addr + size) {
+		type = RE_FIT_TYPE;
+	} else {
+		type = NE_FIT_TYPE;
+	}
+
+	return type;
+}
+
+static __always_inline int
+adjust_va_to_fit_type(struct vmap_area *va,
+	unsigned long nva_start_addr, unsigned long size,
+	enum fit_type type)
+{
+	struct vmap_area *lva = NULL;
+
+	if (type == FL_FIT_TYPE) {
+		/*
+		 * No need to split VA, it fully fits.
+		 *
+		 * |               |
+		 * V      NVA      V
+		 * |---------------|
+		 */
+		unlink_va(va, &free_vmap_area_root);
+		kmem_cache_free(vmap_area_cachep, va);
+	} else if (type == LE_FIT_TYPE) {
+		/*
+		 * Split left edge of fit VA.
+		 *
+		 * |       |
+		 * V  NVA  V   R
+		 * |-------|-------|
+		 */
+		va->va_start += size;
+	} else if (type == RE_FIT_TYPE) {
+		/*
+		 * Split right edge of fit VA.
+		 *
+		 *         |       |
+		 *     L   V  NVA  V
+		 * |-------|-------|
+		 */
+		va->va_end = nva_start_addr;
+	} else if (type == NE_FIT_TYPE) {
+		/*
+		 * Split no edge of fit VA.
+		 *
+		 *     |       |
+		 *   L V  NVA  V R
+		 * |---|-------|---|
+		 */
+		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
+		if (unlikely(!lva)) {
+			/*
+			 * For percpu allocator we do not do any pre-allocation
+			 * and leave it as it is. The reason is it most likely
+			 * never ends up with NE_FIT_TYPE splitting. In case of
+			 * percpu allocations offsets and sizes are aligned to
+			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
+			 * are its main fitting cases.
+			 *
+			 * There are a few exceptions though, as an example it is
+			 * a first allocation (early boot up) when we have "one"
+			 * big free space that has to be split.
+			 *
+			 * Also we can hit this path in case of regular "vmap"
+			 * allocations, if "this" current CPU was not preloaded.
+			 * See the comment in alloc_vmap_area() why. If so, then
+			 * GFP_NOWAIT is used instead to get an extra object for
+			 * split purpose. That is rare and most time does not
+			 * occur.
+			 *
+			 * What happens if an allocation gets failed. Basically,
+			 * an "overflow" path is triggered to purge lazily freed
+			 * areas to free some memory, then, the "retry" path is
+			 * triggered to repeat one more time. See more details
+			 * in alloc_vmap_area() function.
+			 */
+			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
+			if (!lva)
+				return -1;
+		}
+
+		/*
+		 * Build the remainder.
+		 */
+		lva->va_start = va->va_start;
+		lva->va_end = nva_start_addr;
+
+		/*
+		 * Shrink this VA to remaining size.
+		 */
+		va->va_start = nva_start_addr + size;
+	} else {
+		return -1;
+	}
+
+	if (type != FL_FIT_TYPE) {
+		augment_tree_propagate_from(va);
+
+		if (lva)	/* type == NE_FIT_TYPE */
+			insert_vmap_area_augment(lva, &va->rb_node,
+				&free_vmap_area_root, &free_vmap_area_list);
+	}
+
+	return 0;
+}
+
+/*
+ * Returns a start address of the newly allocated area, if success.
+ * Otherwise a vend is returned that indicates failure.
+ */
+static __always_inline unsigned long
+__alloc_vmap_area(unsigned long size, unsigned long align,
+	unsigned long vstart, unsigned long vend)
+{
+	unsigned long nva_start_addr;
+	struct vmap_area *va;
+	enum fit_type type;
+	int ret;
+
+	va = find_vmap_lowest_match(size, align, vstart);
+	if (unlikely(!va))
+		return vend;
+
+	if (va->va_start > vstart)
+		nva_start_addr = ALIGN(va->va_start, align);
+	else
+		nva_start_addr = ALIGN(vstart, align);
+
+	/* Check the "vend" restriction. */
+	if (nva_start_addr + size > vend)
+		return vend;
+
+	/* Classify what we have found. */
+	type = classify_va_fit_type(va, nva_start_addr, size);
+	if (WARN_ON_ONCE(type == NOTHING_FIT))
+		return vend;
+
+	/* Update the free vmap_area. */
+	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
+	if (ret)
+		return vend;
+
+#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
+	find_vmap_lowest_match_check(size);
+#endif
+
+	return nva_start_addr;
+}
+
+/*
+ * Free a region of KVA allocated by alloc_vmap_area
+ */
+static void free_vmap_area(struct vmap_area *va)
+{
+	/*
+	 * Remove from the busy tree/list.
+	 */
+	spin_lock(&vmap_area_lock);
+	unlink_va(va, &vmap_area_root);
+	spin_unlock(&vmap_area_lock);
+
+	/*
+	 * Insert/Merge it back to the free tree/list.
+	 */
+	spin_lock(&free_vmap_area_lock);
+	merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
+	spin_unlock(&free_vmap_area_lock);
+}
 
 /*
  * Allocate a region of KVA of the specified size and alignment, within the
@@ -412,20 +1154,22 @@
 				unsigned long vstart, unsigned long vend,
 				int node, gfp_t gfp_mask)
 {
-	struct vmap_area *va;
-	struct rb_node *n;
+	struct vmap_area *va, *pva;
 	unsigned long addr;
 	int purged = 0;
-	struct vmap_area *first;
+	int ret;
 
 	BUG_ON(!size);
 	BUG_ON(offset_in_page(size));
 	BUG_ON(!is_power_of_2(align));
 
-	might_sleep();
+	if (unlikely(!vmap_initialized))
+		return ERR_PTR(-EBUSY);
 
-	va = kmalloc_node(sizeof(struct vmap_area),
-			gfp_mask & GFP_RECLAIM_MASK, node);
+	might_sleep();
+	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
+
+	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
 	if (unlikely(!va))
 		return ERR_PTR(-ENOMEM);
 
@@ -433,101 +1177,71 @@
 	 * Only scan the relevant parts containing pointers to other objects
 	 * to avoid false negatives.
 	 */
-	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
+	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
 
 retry:
-	spin_lock(&vmap_area_lock);
 	/*
-	 * Invalidate cache if we have more permissive parameters.
-	 * cached_hole_size notes the largest hole noticed _below_
-	 * the vmap_area cached in free_vmap_cache: if size fits
-	 * into that hole, we want to scan from vstart to reuse
-	 * the hole instead of allocating above free_vmap_cache.
-	 * Note that __free_vmap_area may update free_vmap_cache
-	 * without updating cached_hole_size or cached_align.
+	 * Preload this CPU with one extra vmap_area object. It is used
+	 * when fit type of free area is NE_FIT_TYPE. Please note, it
+	 * does not guarantee that an allocation occurs on a CPU that
+	 * is preloaded, instead we minimize the case when it is not.
+	 * It can happen because of cpu migration, because there is a
+	 * race until the below spinlock is taken.
+	 *
+	 * The preload is done in non-atomic context, thus it allows us
+	 * to use more permissive allocation masks to be more stable under
+	 * low memory condition and high memory pressure. In rare case,
+	 * if not preloaded, GFP_NOWAIT is used.
+	 *
+	 * Set "pva" to NULL here, because of "retry" path.
 	 */
-	if (!free_vmap_cache ||
-			size < cached_hole_size ||
-			vstart < cached_vstart ||
-			align < cached_align) {
-nocache:
-		cached_hole_size = 0;
-		free_vmap_cache = NULL;
-	}
-	/* record if we encounter less permissive parameters */
-	cached_vstart = vstart;
-	cached_align = align;
+	pva = NULL;
 
-	/* find starting point for our search */
-	if (free_vmap_cache) {
-		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
-		addr = ALIGN(first->va_end, align);
-		if (addr < vstart)
-			goto nocache;
-		if (addr + size < addr)
-			goto overflow;
+	if (!this_cpu_read(ne_fit_preload_node))
+		/*
+		 * Even if it fails we do not really care about that.
+		 * Just proceed as it is. If needed "overflow" path
+		 * will refill the cache we allocate from.
+		 */
+		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
 
-	} else {
-		addr = ALIGN(vstart, align);
-		if (addr + size < addr)
-			goto overflow;
+	spin_lock(&free_vmap_area_lock);
 
-		n = vmap_area_root.rb_node;
-		first = NULL;
+	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
+		kmem_cache_free(vmap_area_cachep, pva);
 
-		while (n) {
-			struct vmap_area *tmp;
-			tmp = rb_entry(n, struct vmap_area, rb_node);
-			if (tmp->va_end >= addr) {
-				first = tmp;
-				if (tmp->va_start <= addr)
-					break;
-				n = n->rb_left;
-			} else
-				n = n->rb_right;
-		}
-
-		if (!first)
-			goto found;
-	}
-
-	/* from the starting point, walk areas until a suitable hole is found */
-	while (addr + size > first->va_start && addr + size <= vend) {
-		if (addr + cached_hole_size < first->va_start)
-			cached_hole_size = first->va_start - addr;
-		addr = ALIGN(first->va_end, align);
-		if (addr + size < addr)
-			goto overflow;
-
-		if (list_is_last(&first->list, &vmap_area_list))
-			goto found;
-
-		first = list_next_entry(first, list);
-	}
-
-found:
 	/*
-	 * Check also calculated address against the vstart,
-	 * because it can be 0 because of big align request.
+	 * If an allocation fails, the "vend" address is
+	 * returned. Therefore trigger the overflow path.
 	 */
-	if (addr + size > vend || addr < vstart)
+	addr = __alloc_vmap_area(size, align, vstart, vend);
+	spin_unlock(&free_vmap_area_lock);
+
+	if (unlikely(addr == vend))
 		goto overflow;
 
 	va->va_start = addr;
 	va->va_end = addr + size;
-	va->flags = 0;
-	__insert_vmap_area(va);
-	free_vmap_cache = &va->rb_node;
+	va->vm = NULL;
+
+
+	spin_lock(&vmap_area_lock);
+	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
 	spin_unlock(&vmap_area_lock);
 
 	BUG_ON(!IS_ALIGNED(va->va_start, align));
 	BUG_ON(va->va_start < vstart);
 	BUG_ON(va->va_end > vend);
 
+	ret = kasan_populate_vmalloc(addr, size);
+	if (ret) {
+		free_vmap_area(va);
+		return ERR_PTR(ret);
+	}
+
 	return va;
 
 overflow:
-	spin_unlock(&vmap_area_lock);
 	if (!purged) {
 		purge_vmap_area_lazy();
 		purged = 1;
@@ -546,7 +1260,8 @@
 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
 			size);
-	kfree(va);
+
+	kmem_cache_free(vmap_area_cachep, va);
 	return ERR_PTR(-EBUSY);
 }
 
@@ -562,59 +1277,7 @@
 }
 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
 
-static void __free_vmap_area(struct vmap_area *va)
-{
-	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
-
-	if (free_vmap_cache) {
-		if (va->va_end < cached_vstart) {
-			free_vmap_cache = NULL;
-		} else {
-			struct vmap_area *cache;
-			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
-			if (va->va_start <= cache->va_start) {
-				free_vmap_cache = rb_prev(&va->rb_node);
-				/*
-				 * We don't try to update cached_hole_size or
-				 * cached_align, but it won't go very wrong.
-				 */
-			}
-		}
-	}
-	rb_erase(&va->rb_node, &vmap_area_root);
-	RB_CLEAR_NODE(&va->rb_node);
-	list_del_rcu(&va->list);
-
-	/*
-	 * Track the highest possible candidate for pcpu area
-	 * allocation.  Areas outside of vmalloc area can be returned
-	 * here too, consider only end addresses which fall inside
-	 * vmalloc area proper.
-	 */
-	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
-		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
-
-	kfree_rcu(va, rcu_head);
-}
-
-/*
- * Free a region of KVA allocated by alloc_vmap_area
- */
-static void free_vmap_area(struct vmap_area *va)
-{
-	spin_lock(&vmap_area_lock);
-	__free_vmap_area(va);
-	spin_unlock(&vmap_area_lock);
-}
-
-/*
- * Clear the pagetable entries of a given vmap_area
- */
-static void unmap_vmap_area(struct vmap_area *va)
-{
-	vunmap_page_range(va->va_start, va->va_end);
-}
-
+bool lazy_vunmap_enable  __read_mostly = true;
 /*
  * lazy_max_pages is the maximum amount of virtual address space we gather up
  * before attempting to purge with a TLB flush.
@@ -635,12 +1298,15 @@
 {
 	unsigned int log;
 
+	if (!lazy_vunmap_enable)
+		return 0;
+
 	log = fls(num_online_cpus());
 
 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 }
 
-static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
+static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
 
 /*
  * Serialize vmap purging.  There is no actual criticial section protected
@@ -658,7 +1324,7 @@
  */
 void set_iounmap_nonlazy(void)
 {
-	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
+	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
 }
 
 /*
@@ -666,36 +1332,58 @@
  */
 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
 {
+	unsigned long resched_threshold;
 	struct llist_node *valist;
 	struct vmap_area *va;
 	struct vmap_area *n_va;
-	bool do_free = false;
 
 	lockdep_assert_held(&vmap_purge_lock);
 
 	valist = llist_del_all(&vmap_purge_list);
+	if (unlikely(valist == NULL))
+		return false;
+
+	/*
+	 * TODO: to calculate a flush range without looping.
+	 * The list can be up to lazy_max_pages() elements.
+	 */
 	llist_for_each_entry(va, valist, purge_list) {
 		if (va->va_start < start)
 			start = va->va_start;
 		if (va->va_end > end)
 			end = va->va_end;
-		do_free = true;
 	}
-
-	if (!do_free)
-		return false;
 
 	flush_tlb_kernel_range(start, end);
+	resched_threshold = lazy_max_pages() << 1;
 
-	spin_lock(&vmap_area_lock);
+	spin_lock(&free_vmap_area_lock);
 	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
-		int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
+		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
+		unsigned long orig_start = va->va_start;
+		unsigned long orig_end = va->va_end;
 
-		__free_vmap_area(va);
-		atomic_sub(nr, &vmap_lazy_nr);
-		cond_resched_lock(&vmap_area_lock);
+		/*
+		 * Finally insert or merge lazily-freed area. It is
+		 * detached and there is no need to "unlink" it from
+		 * anything.
+		 */
+		va = merge_or_add_vmap_area(va, &free_vmap_area_root,
+					    &free_vmap_area_list);
+
+		if (!va)
+			continue;
+
+		if (is_vmalloc_or_module_addr((void *)orig_start))
+			kasan_release_vmalloc(orig_start, orig_end,
+					      va->va_start, va->va_end);
+
+		atomic_long_sub(nr, &vmap_lazy_nr);
+
+		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
+			cond_resched_lock(&free_vmap_area_lock);
 	}
-	spin_unlock(&vmap_area_lock);
+	spin_unlock(&free_vmap_area_lock);
 	return true;
 }
 
@@ -729,10 +1417,14 @@
  */
 static void free_vmap_area_noflush(struct vmap_area *va)
 {
-	int nr_lazy;
+	unsigned long nr_lazy;
 
-	nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
-				    &vmap_lazy_nr);
+	spin_lock(&vmap_area_lock);
+	unlink_va(va, &vmap_area_root);
+	spin_unlock(&vmap_area_lock);
+
+	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
+				PAGE_SHIFT, &vmap_lazy_nr);
 
 	/* After this point, we may free va at any time */
 	llist_add(&va->purge_list, &vmap_purge_list);
@@ -747,8 +1439,8 @@
 static void free_unmap_vmap_area(struct vmap_area *va)
 {
 	flush_cache_vunmap(va->va_start, va->va_end);
-	unmap_vmap_area(va);
-	if (debug_pagealloc_enabled())
+	unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
+	if (debug_pagealloc_enabled_static())
 		flush_tlb_kernel_range(va->va_start, va->va_end);
 
 	free_vmap_area_noflush(va);
@@ -795,8 +1487,6 @@
 
 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
 
-static bool vmap_initialized __read_mostly = false;
-
 struct vmap_block_queue {
 	spinlock_t lock;
 	struct list_head free;
@@ -816,12 +1506,11 @@
 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 
 /*
- * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
+ * XArray of vmap blocks, indexed by address, to quickly find a vmap block
  * in the free path. Could get rid of this if we change the API to return a
  * "cookie" from alloc, to be passed to free. But no big deal yet.
  */
-static DEFINE_SPINLOCK(vmap_block_tree_lock);
-static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
+static DEFINE_XARRAY(vmap_blocks);
 
 /*
  * We should probably have a fallback mechanism to allocate virtual memory
@@ -852,7 +1541,7 @@
  * @order:    how many 2^order pages should be occupied in newly allocated block
  * @gfp_mask: flags for the page level allocator
  *
- * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
+ * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
  */
 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
 {
@@ -860,7 +1549,7 @@
 	struct vmap_block *vb;
 	struct vmap_area *va;
 	unsigned long vb_idx;
-	int node, err, cpu;
+	int node, err;
 	void *vaddr;
 
 	node = numa_node_id();
@@ -878,13 +1567,6 @@
 		return ERR_CAST(va);
 	}
 
-	err = radix_tree_preload(gfp_mask);
-	if (unlikely(err)) {
-		kfree(vb);
-		free_vmap_area(va);
-		return ERR_PTR(err);
-	}
-
 	vaddr = vmap_block_vaddr(va->va_start, 0);
 	spin_lock_init(&vb->lock);
 	vb->va = va;
@@ -897,18 +1579,18 @@
 	INIT_LIST_HEAD(&vb->free_list);
 
 	vb_idx = addr_to_vb_idx(va->va_start);
-	spin_lock(&vmap_block_tree_lock);
-	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
-	spin_unlock(&vmap_block_tree_lock);
-	BUG_ON(err);
-	radix_tree_preload_end();
+	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
+	if (err) {
+		kfree(vb);
+		free_vmap_area(va);
+		return ERR_PTR(err);
+	}
 
-	cpu = get_cpu_light();
-	vbq = this_cpu_ptr(&vmap_block_queue);
+	vbq = &get_cpu_var(vmap_block_queue);
 	spin_lock(&vbq->lock);
 	list_add_tail_rcu(&vb->free_list, &vbq->free);
 	spin_unlock(&vbq->lock);
-	put_cpu_light();
+	put_cpu_var(vmap_block_queue);
 
 	return vaddr;
 }
@@ -916,12 +1598,8 @@
 static void free_vmap_block(struct vmap_block *vb)
 {
 	struct vmap_block *tmp;
-	unsigned long vb_idx;
 
-	vb_idx = addr_to_vb_idx(vb->va->va_start);
-	spin_lock(&vmap_block_tree_lock);
-	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
-	spin_unlock(&vmap_block_tree_lock);
+	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
 	BUG_ON(tmp != vb);
 
 	free_vmap_area_noflush(vb->va);
@@ -977,7 +1655,6 @@
 	struct vmap_block *vb;
 	void *vaddr = NULL;
 	unsigned int order;
-	int cpu;
 
 	BUG_ON(offset_in_page(size));
 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
@@ -992,8 +1669,7 @@
 	order = get_order(size);
 
 	rcu_read_lock();
-	cpu = get_cpu_light();
-	vbq = this_cpu_ptr(&vmap_block_queue);
+	vbq = &get_cpu_var(vmap_block_queue);
 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 		unsigned long pages_off;
 
@@ -1016,7 +1692,7 @@
 		break;
 	}
 
-	put_cpu_light();
+	put_cpu_var(vmap_block_queue);
 	rcu_read_unlock();
 
 	/* Allocate new block if nothing was found */
@@ -1026,34 +1702,25 @@
 	return vaddr;
 }
 
-static void vb_free(const void *addr, unsigned long size)
+static void vb_free(unsigned long addr, unsigned long size)
 {
 	unsigned long offset;
-	unsigned long vb_idx;
 	unsigned int order;
 	struct vmap_block *vb;
 
 	BUG_ON(offset_in_page(size));
 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 
-	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
+	flush_cache_vunmap(addr, addr + size);
 
 	order = get_order(size);
+	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
+	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
 
-	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
-	offset >>= PAGE_SHIFT;
+	unmap_kernel_range_noflush(addr, size);
 
-	vb_idx = addr_to_vb_idx((unsigned long)addr);
-	rcu_read_lock();
-	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
-	rcu_read_unlock();
-	BUG_ON(!vb);
-
-	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
-
-	if (debug_pagealloc_enabled())
-		flush_tlb_kernel_range((unsigned long)addr,
-					(unsigned long)addr + size);
+	if (debug_pagealloc_enabled_static())
+		flush_tlb_kernel_range(addr, addr + size);
 
 	spin_lock(&vb->lock);
 
@@ -1070,24 +1737,9 @@
 		spin_unlock(&vb->lock);
 }
 
-/**
- * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
- *
- * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
- * to amortize TLB flushing overheads. What this means is that any page you
- * have now, may, in a former life, have been mapped into kernel virtual
- * address by the vmap layer and so there might be some CPUs with TLB entries
- * still referencing that page (additional to the regular 1:1 kernel mapping).
- *
- * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
- * be sure that none of the pages we have control over will have any aliases
- * from the vmap layer.
- */
-void vm_unmap_aliases(void)
+static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
 {
-	unsigned long start = ULONG_MAX, end = 0;
 	int cpu;
-	int flush = 0;
 
 	if (unlikely(!vmap_initialized))
 		return;
@@ -1101,7 +1753,7 @@
 		rcu_read_lock();
 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 			spin_lock(&vb->lock);
-			if (vb->dirty) {
+			if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
 				unsigned long va_start = vb->va->va_start;
 				unsigned long s, e;
 
@@ -1124,6 +1776,27 @@
 		flush_tlb_kernel_range(start, end);
 	mutex_unlock(&vmap_purge_lock);
 }
+
+/**
+ * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
+ *
+ * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
+ * to amortize TLB flushing overheads. What this means is that any page you
+ * have now, may, in a former life, have been mapped into kernel virtual
+ * address by the vmap layer and so there might be some CPUs with TLB entries
+ * still referencing that page (additional to the regular 1:1 kernel mapping).
+ *
+ * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
+ * be sure that none of the pages we have control over will have any aliases
+ * from the vmap layer.
+ */
+void vm_unmap_aliases(void)
+{
+	unsigned long start = ULONG_MAX, end = 0;
+	int flush = 0;
+
+	_vm_unmap_aliases(start, end, flush);
+}
 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
 
 /**
@@ -1143,9 +1816,11 @@
 	BUG_ON(addr > VMALLOC_END);
 	BUG_ON(!PAGE_ALIGNED(addr));
 
+	kasan_poison_vmalloc(mem, size);
+
 	if (likely(count <= VMAP_MAX_ALLOC)) {
 		debug_check_no_locks_freed(mem, size);
-		vb_free(mem, size);
+		vb_free(addr, size);
 		return;
 	}
 
@@ -1162,7 +1837,6 @@
  * @pages: an array of pointers to the pages to be mapped
  * @count: number of pages
  * @node: prefer to allocate data structures on this node
- * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  *
  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
  * faster than vmap so it's good.  But if you mix long-life and short-life
@@ -1172,7 +1846,7 @@
  *
  * Returns: a pointer to the address that has been mapped, or %NULL on failure
  */
-void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
+void *vm_map_ram(struct page **pages, unsigned int count, int node)
 {
 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
 	unsigned long addr;
@@ -1193,7 +1867,10 @@
 		addr = va->va_start;
 		mem = (void *)addr;
 	}
-	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
+
+	kasan_unpoison_vmalloc(mem, size);
+
+	if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
 		vm_unmap_ram(mem, count);
 		return NULL;
 	}
@@ -1202,6 +1879,7 @@
 EXPORT_SYMBOL(vm_map_ram);
 
 static struct vm_struct *vmlist __initdata;
+
 /**
  * vm_area_add_early - add vmap area early during boot
  * @vm: vm_struct to add
@@ -1253,11 +1931,57 @@
 	vm_area_add_early(vm);
 }
 
+static void vmap_init_free_space(void)
+{
+	unsigned long vmap_start = 1;
+	const unsigned long vmap_end = ULONG_MAX;
+	struct vmap_area *busy, *free;
+
+	/*
+	 *     B     F     B     B     B     F
+	 * -|-----|.....|-----|-----|-----|.....|-
+	 *  |           The KVA space           |
+	 *  |<--------------------------------->|
+	 */
+	list_for_each_entry(busy, &vmap_area_list, list) {
+		if (busy->va_start - vmap_start > 0) {
+			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
+			if (!WARN_ON_ONCE(!free)) {
+				free->va_start = vmap_start;
+				free->va_end = busy->va_start;
+
+				insert_vmap_area_augment(free, NULL,
+					&free_vmap_area_root,
+						&free_vmap_area_list);
+			}
+		}
+
+		vmap_start = busy->va_end;
+	}
+
+	if (vmap_end - vmap_start > 0) {
+		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
+		if (!WARN_ON_ONCE(!free)) {
+			free->va_start = vmap_start;
+			free->va_end = vmap_end;
+
+			insert_vmap_area_augment(free, NULL,
+				&free_vmap_area_root,
+					&free_vmap_area_list);
+		}
+	}
+}
+
 void __init vmalloc_init(void)
 {
 	struct vmap_area *va;
 	struct vm_struct *tmp;
 	int i;
+
+	/*
+	 * Create the cache for vmap_area objects.
+	 */
+	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
 
 	for_each_possible_cpu(i) {
 		struct vmap_block_queue *vbq;
@@ -1273,63 +1997,22 @@
 
 	/* Import existing vmlist entries. */
 	for (tmp = vmlist; tmp; tmp = tmp->next) {
-		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
-		va->flags = VM_VM_AREA;
+		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
+		if (WARN_ON_ONCE(!va))
+			continue;
+
 		va->va_start = (unsigned long)tmp->addr;
 		va->va_end = va->va_start + tmp->size;
 		va->vm = tmp;
-		__insert_vmap_area(va);
+		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
 	}
 
-	vmap_area_pcpu_hole = VMALLOC_END;
-
+	/*
+	 * Now we can initialize a free vmap space.
+	 */
+	vmap_init_free_space();
 	vmap_initialized = true;
 }
-
-/**
- * map_kernel_range_noflush - map kernel VM area with the specified pages
- * @addr: start of the VM area to map
- * @size: size of the VM area to map
- * @prot: page protection flags to use
- * @pages: pages to map
- *
- * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
- * specify should have been allocated using get_vm_area() and its
- * friends.
- *
- * NOTE:
- * This function does NOT do any cache flushing.  The caller is
- * responsible for calling flush_cache_vmap() on to-be-mapped areas
- * before calling this function.
- *
- * RETURNS:
- * The number of pages mapped on success, -errno on failure.
- */
-int map_kernel_range_noflush(unsigned long addr, unsigned long size,
-			     pgprot_t prot, struct page **pages)
-{
-	return vmap_page_range_noflush(addr, addr + size, prot, pages);
-}
-
-/**
- * unmap_kernel_range_noflush - unmap kernel VM area
- * @addr: start of the VM area to unmap
- * @size: size of the VM area to unmap
- *
- * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
- * specify should have been allocated using get_vm_area() and its
- * friends.
- *
- * NOTE:
- * This function does NOT do any cache flushing.  The caller is
- * responsible for calling flush_cache_vunmap() on to-be-mapped areas
- * before calling this function and flush_tlb_kernel_range() after.
- */
-void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
-{
-	vunmap_page_range(addr, addr + size);
-}
-EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
 
 /**
  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
@@ -1344,33 +2027,26 @@
 	unsigned long end = addr + size;
 
 	flush_cache_vunmap(addr, end);
-	vunmap_page_range(addr, end);
+	unmap_kernel_range_noflush(addr, size);
 	flush_tlb_kernel_range(addr, end);
 }
-EXPORT_SYMBOL_GPL(unmap_kernel_range);
 
-int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
+static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
+	struct vmap_area *va, unsigned long flags, const void *caller)
 {
-	unsigned long addr = (unsigned long)area->addr;
-	unsigned long end = addr + get_vm_area_size(area);
-	int err;
-
-	err = vmap_page_range(addr, end, prot, pages);
-
-	return err > 0 ? 0 : err;
-}
-EXPORT_SYMBOL_GPL(map_vm_area);
-
-static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
-			      unsigned long flags, const void *caller)
-{
-	spin_lock(&vmap_area_lock);
 	vm->flags = flags;
 	vm->addr = (void *)va->va_start;
 	vm->size = va->va_end - va->va_start;
 	vm->caller = caller;
 	va->vm = vm;
-	va->flags |= VM_VM_AREA;
+	trace_android_vh_save_vmalloc_stack(flags, vm);
+}
+
+static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
+			      unsigned long flags, const void *caller)
+{
+	spin_lock(&vmap_area_lock);
+	setup_vmalloc_vm_locked(vm, va, flags, caller);
 	spin_unlock(&vmap_area_lock);
 }
 
@@ -1391,6 +2067,7 @@
 {
 	struct vmap_area *va;
 	struct vm_struct *area;
+	unsigned long requested_size = size;
 
 	BUG_ON(in_interrupt());
 	size = PAGE_ALIGN(size);
@@ -1414,18 +2091,12 @@
 		return NULL;
 	}
 
+	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
+
 	setup_vmalloc_vm(area, va, flags, caller);
 
 	return area;
 }
-
-struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
-				unsigned long start, unsigned long end)
-{
-	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
-				  GFP_KERNEL, __builtin_return_address(0));
-}
-EXPORT_SYMBOL_GPL(__get_vm_area);
 
 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
 				       unsigned long start, unsigned long end,
@@ -1434,15 +2105,18 @@
 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
 				  GFP_KERNEL, caller);
 }
+EXPORT_SYMBOL_GPL(__get_vm_area_caller);
 
 /**
- *	get_vm_area  -  reserve a contiguous kernel virtual area
- *	@size:		size of the area
- *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
+ * get_vm_area - reserve a contiguous kernel virtual area
+ * @size:	 size of the area
+ * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
  *
- *	Search an area of @size in the kernel virtual mapping area,
- *	and reserved it for out purposes.  Returns the area descriptor
- *	on success or %NULL on failure.
+ * Search an area of @size in the kernel virtual mapping area,
+ * and reserved it for out purposes.  Returns the area descriptor
+ * on success or %NULL on failure.
+ *
+ * Return: the area descriptor on success or %NULL on failure.
  */
 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
 {
@@ -1450,7 +2124,6 @@
 				  NUMA_NO_NODE, GFP_KERNEL,
 				  __builtin_return_address(0));
 }
-EXPORT_SYMBOL_GPL(get_vm_area);
 
 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
 				const void *caller)
@@ -1460,31 +2133,35 @@
 }
 
 /**
- *	find_vm_area  -  find a continuous kernel virtual area
- *	@addr:		base address
+ * find_vm_area - find a continuous kernel virtual area
+ * @addr:	  base address
  *
- *	Search for the kernel VM area starting at @addr, and return it.
- *	It is up to the caller to do all required locking to keep the returned
- *	pointer valid.
+ * Search for the kernel VM area starting at @addr, and return it.
+ * It is up to the caller to do all required locking to keep the returned
+ * pointer valid.
+ *
+ * Return: the area descriptor on success or %NULL on failure.
  */
 struct vm_struct *find_vm_area(const void *addr)
 {
 	struct vmap_area *va;
 
 	va = find_vmap_area((unsigned long)addr);
-	if (va && va->flags & VM_VM_AREA)
-		return va->vm;
+	if (!va)
+		return NULL;
 
-	return NULL;
+	return va->vm;
 }
 
 /**
- *	remove_vm_area  -  find and remove a continuous kernel virtual area
- *	@addr:		base address
+ * remove_vm_area - find and remove a continuous kernel virtual area
+ * @addr:	    base address
  *
- *	Search for the kernel VM area starting at @addr, and remove it.
- *	This function returns the found VM area, but using it is NOT safe
- *	on SMP machines, except for its size or flags.
+ * Search for the kernel VM area starting at @addr, and remove it.
+ * This function returns the found VM area, but using it is NOT safe
+ * on SMP machines, except for its size or flags.
+ *
+ * Return: the area descriptor on success or %NULL on failure.
  */
 struct vm_struct *remove_vm_area(const void *addr)
 {
@@ -1492,14 +2169,13 @@
 
 	might_sleep();
 
-	va = find_vmap_area((unsigned long)addr);
-	if (va && va->flags & VM_VM_AREA) {
+	spin_lock(&vmap_area_lock);
+	va = __find_vmap_area((unsigned long)addr);
+	if (va && va->vm) {
 		struct vm_struct *vm = va->vm;
 
-		spin_lock(&vmap_area_lock);
+		trace_android_vh_remove_vmalloc_stack(vm);
 		va->vm = NULL;
-		va->flags &= ~VM_VM_AREA;
-		va->flags |= VM_LAZY_FREE;
 		spin_unlock(&vmap_area_lock);
 
 		kasan_free_shadow(vm);
@@ -1507,7 +2183,66 @@
 
 		return vm;
 	}
+
+	spin_unlock(&vmap_area_lock);
 	return NULL;
+}
+
+static inline void set_area_direct_map(const struct vm_struct *area,
+				       int (*set_direct_map)(struct page *page))
+{
+	int i;
+
+	for (i = 0; i < area->nr_pages; i++)
+		if (page_address(area->pages[i]))
+			set_direct_map(area->pages[i]);
+}
+
+/* Handle removing and resetting vm mappings related to the vm_struct. */
+static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
+{
+	unsigned long start = ULONG_MAX, end = 0;
+	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
+	int flush_dmap = 0;
+	int i;
+
+	remove_vm_area(area->addr);
+
+	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
+	if (!flush_reset)
+		return;
+
+	/*
+	 * If not deallocating pages, just do the flush of the VM area and
+	 * return.
+	 */
+	if (!deallocate_pages) {
+		vm_unmap_aliases();
+		return;
+	}
+
+	/*
+	 * If execution gets here, flush the vm mapping and reset the direct
+	 * map. Find the start and end range of the direct mappings to make sure
+	 * the vm_unmap_aliases() flush includes the direct map.
+	 */
+	for (i = 0; i < area->nr_pages; i++) {
+		unsigned long addr = (unsigned long)page_address(area->pages[i]);
+		if (addr) {
+			start = min(addr, start);
+			end = max(addr + PAGE_SIZE, end);
+			flush_dmap = 1;
+		}
+	}
+
+	/*
+	 * Set direct map to something invalid so that it won't be cached if
+	 * there are any accesses after the TLB flush, then flush the TLB and
+	 * reset the direct map permissions to the default.
+	 */
+	set_area_direct_map(area, set_direct_map_invalid_noflush);
+	_vm_unmap_aliases(start, end, flush_dmap);
+	set_area_direct_map(area, set_direct_map_default_noflush);
 }
 
 static void __vunmap(const void *addr, int deallocate_pages)
@@ -1531,7 +2266,10 @@
 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
 
-	remove_vm_area(addr);
+	kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
+
+	vm_remove_mappings(area, deallocate_pages);
+
 	if (deallocate_pages) {
 		int i;
 
@@ -1556,7 +2294,7 @@
 	 * Use raw_cpu_ptr() because this can be called from preemptible
 	 * context. Preemption is absolutely fine here, because the llist_add()
 	 * implementation is lockless, so it works even if we are adding to
-	 * nother cpu's list.  schedule_work() should be fine with this too.
+	 * another cpu's list. schedule_work() should be fine with this too.
 	 */
 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
 
@@ -1565,11 +2303,11 @@
 }
 
 /**
- *	vfree_atomic  -  release memory allocated by vmalloc()
- *	@addr:		memory base address
+ * vfree_atomic - release memory allocated by vmalloc()
+ * @addr:	  memory base address
  *
- *	This one is just like vfree() but can be called in any atomic context
- *	except NMIs.
+ * This one is just like vfree() but can be called in any atomic context
+ * except NMIs.
  */
 void vfree_atomic(const void *addr)
 {
@@ -1582,19 +2320,30 @@
 	__vfree_deferred(addr);
 }
 
+static void __vfree(const void *addr)
+{
+	if (unlikely(in_interrupt()))
+		__vfree_deferred(addr);
+	else
+		__vunmap(addr, 1);
+}
+
 /**
- *	vfree  -  release memory allocated by vmalloc()
- *	@addr:		memory base address
+ * vfree - Release memory allocated by vmalloc()
+ * @addr:  Memory base address
  *
- *	Free the virtually continuous memory area starting at @addr, as
- *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
- *	NULL, no operation is performed.
+ * Free the virtually continuous memory area starting at @addr, as obtained
+ * from one of the vmalloc() family of APIs.  This will usually also free the
+ * physical memory underlying the virtual allocation, but that memory is
+ * reference counted, so it will not be freed until the last user goes away.
  *
- *	Must not be called in NMI context (strictly speaking, only if we don't
- *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
- *	conventions for vfree() arch-depenedent would be a really bad idea)
+ * If @addr is NULL, no operation is performed.
  *
- *	NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
+ * Context:
+ * May sleep if called *not* from interrupt context.
+ * Must not be called in NMI context (strictly speaking, it could be
+ * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
+ * conventions for vfree() arch-depenedent would be a really bad idea).
  */
 void vfree(const void *addr)
 {
@@ -1602,23 +2351,23 @@
 
 	kmemleak_free(addr);
 
+	might_sleep_if(!in_interrupt());
+
 	if (!addr)
 		return;
-	if (unlikely(in_interrupt()))
-		__vfree_deferred(addr);
-	else
-		__vunmap(addr, 1);
+
+	__vfree(addr);
 }
 EXPORT_SYMBOL(vfree);
 
 /**
- *	vunmap  -  release virtual mapping obtained by vmap()
- *	@addr:		memory base address
+ * vunmap - release virtual mapping obtained by vmap()
+ * @addr:   memory base address
  *
- *	Free the virtually contiguous memory area starting at @addr,
- *	which was created from the page array passed to vmap().
+ * Free the virtually contiguous memory area starting at @addr,
+ * which was created from the page array passed to vmap().
  *
- *	Must not be called in interrupt context.
+ * Must not be called in interrupt context.
  */
 void vunmap(const void *addr)
 {
@@ -1630,24 +2379,29 @@
 EXPORT_SYMBOL(vunmap);
 
 /**
- *	vmap  -  map an array of pages into virtually contiguous space
- *	@pages:		array of page pointers
- *	@count:		number of pages to map
- *	@flags:		vm_area->flags
- *	@prot:		page protection for the mapping
+ * vmap - map an array of pages into virtually contiguous space
+ * @pages: array of page pointers
+ * @count: number of pages to map
+ * @flags: vm_area->flags
+ * @prot: page protection for the mapping
  *
- *	Maps @count pages from @pages into contiguous kernel virtual
- *	space.
+ * Maps @count pages from @pages into contiguous kernel virtual space.
+ * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
+ * (which must be kmalloc or vmalloc memory) and one reference per pages in it
+ * are transferred from the caller to vmap(), and will be freed / dropped when
+ * vfree() is called on the return value.
+ *
+ * Return: the address of the area or %NULL on failure
  */
 void *vmap(struct page **pages, unsigned int count,
-		unsigned long flags, pgprot_t prot)
+	   unsigned long flags, pgprot_t prot)
 {
 	struct vm_struct *area;
 	unsigned long size;		/* In bytes */
 
 	might_sleep();
 
-	if (count > totalram_pages)
+	if (count > totalram_pages())
 		return NULL;
 
 	size = (unsigned long)count << PAGE_SHIFT;
@@ -1655,36 +2409,85 @@
 	if (!area)
 		return NULL;
 
-	if (map_vm_area(area, prot, pages)) {
+	if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
+			pages) < 0) {
 		vunmap(area->addr);
 		return NULL;
 	}
 
+	if (flags & VM_MAP_PUT_PAGES) {
+		area->pages = pages;
+		area->nr_pages = count;
+	}
 	return area->addr;
 }
 EXPORT_SYMBOL(vmap);
 
-static void *__vmalloc_node(unsigned long size, unsigned long align,
-			    gfp_t gfp_mask, pgprot_t prot,
-			    int node, const void *caller);
+#ifdef CONFIG_VMAP_PFN
+struct vmap_pfn_data {
+	unsigned long	*pfns;
+	pgprot_t	prot;
+	unsigned int	idx;
+};
+
+static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
+{
+	struct vmap_pfn_data *data = private;
+
+	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
+		return -EINVAL;
+	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
+	return 0;
+}
+
+/**
+ * vmap_pfn - map an array of PFNs into virtually contiguous space
+ * @pfns: array of PFNs
+ * @count: number of pages to map
+ * @prot: page protection for the mapping
+ *
+ * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
+ * the start address of the mapping.
+ */
+void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
+{
+	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
+	struct vm_struct *area;
+
+	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
+			__builtin_return_address(0));
+	if (!area)
+		return NULL;
+	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
+			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
+		free_vm_area(area);
+		return NULL;
+	}
+
+	flush_cache_vmap((unsigned long)area->addr,
+			 (unsigned long)area->addr + count * PAGE_SIZE);
+
+	return area->addr;
+}
+EXPORT_SYMBOL_GPL(vmap_pfn);
+#endif /* CONFIG_VMAP_PFN */
+
 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
 				 pgprot_t prot, int node)
 {
-	struct page **pages;
-	unsigned int nr_pages, array_size, i;
 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
-	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
-	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
-					0 :
-					__GFP_HIGHMEM;
+	unsigned int nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
+	unsigned int array_size = nr_pages * sizeof(struct page *), i;
+	struct page **pages;
 
-	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
-	array_size = (nr_pages * sizeof(struct page *));
+	gfp_mask |= __GFP_NOWARN;
+	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
+		gfp_mask |= __GFP_HIGHMEM;
 
 	/* Please note that the recursion is strictly bounded. */
 	if (array_size > PAGE_SIZE) {
-		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
-				PAGE_KERNEL, node, area->caller);
+		pages = __vmalloc_node(array_size, 1, nested_gfp, node,
+					area->caller);
 	} else {
 		pages = kmalloc_node(array_size, nested_gfp, node);
 	}
@@ -1702,49 +2505,53 @@
 		struct page *page;
 
 		if (node == NUMA_NO_NODE)
-			page = alloc_page(alloc_mask|highmem_mask);
+			page = alloc_page(gfp_mask);
 		else
-			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
+			page = alloc_pages_node(node, gfp_mask, 0);
 
 		if (unlikely(!page)) {
-			/* Successfully allocated i pages, free them in __vunmap() */
+			/* Successfully allocated i pages, free them in __vfree() */
 			area->nr_pages = i;
 			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
 			goto fail;
 		}
 		area->pages[i] = page;
-		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
+		if (gfpflags_allow_blocking(gfp_mask))
 			cond_resched();
 	}
 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
 
-	if (map_vm_area(area, prot, pages))
+	if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
+			prot, pages) < 0)
 		goto fail;
+
 	return area->addr;
 
 fail:
 	warn_alloc(gfp_mask, NULL,
 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
 			  (area->nr_pages*PAGE_SIZE), area->size);
-	vfree(area->addr);
+	__vfree(area->addr);
 	return NULL;
 }
 
 /**
- *	__vmalloc_node_range  -  allocate virtually contiguous memory
- *	@size:		allocation size
- *	@align:		desired alignment
- *	@start:		vm area range start
- *	@end:		vm area range end
- *	@gfp_mask:	flags for the page level allocator
- *	@prot:		protection mask for the allocated pages
- *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
- *	@node:		node to use for allocation or NUMA_NO_NODE
- *	@caller:	caller's return address
+ * __vmalloc_node_range - allocate virtually contiguous memory
+ * @size:		  allocation size
+ * @align:		  desired alignment
+ * @start:		  vm area range start
+ * @end:		  vm area range end
+ * @gfp_mask:		  flags for the page level allocator
+ * @prot:		  protection mask for the allocated pages
+ * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
+ * @node:		  node to use for allocation or NUMA_NO_NODE
+ * @caller:		  caller's return address
  *
- *	Allocate enough pages to cover @size from the page level
- *	allocator with @gfp_mask flags.  Map them into contiguous
- *	kernel virtual space, using a pagetable protection of @prot.
+ * Allocate enough pages to cover @size from the page level
+ * allocator with @gfp_mask flags.  Map them into contiguous
+ * kernel virtual space, using a pagetable protection of @prot.
+ *
+ * Return: the address of the area or %NULL on failure
  */
 void *__vmalloc_node_range(unsigned long size, unsigned long align,
 			unsigned long start, unsigned long end, gfp_t gfp_mask,
@@ -1756,10 +2563,10 @@
 	unsigned long real_size = size;
 
 	size = PAGE_ALIGN(size);
-	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
+	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
 		goto fail;
 
-	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
+	area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
 				vm_flags, start, end, node, gfp_mask, caller);
 	if (!area)
 		goto fail;
@@ -1767,12 +2574,6 @@
 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
 	if (!addr)
 		return NULL;
-
-	/*
-	 * First make sure the mappings are removed from all page-tables
-	 * before they are freed.
-	 */
-	vmalloc_sync_unmappings();
 
 	/*
 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
@@ -1792,84 +2593,82 @@
 }
 
 /**
- *	__vmalloc_node  -  allocate virtually contiguous memory
- *	@size:		allocation size
- *	@align:		desired alignment
- *	@gfp_mask:	flags for the page level allocator
- *	@prot:		protection mask for the allocated pages
- *	@node:		node to use for allocation or NUMA_NO_NODE
- *	@caller:	caller's return address
+ * __vmalloc_node - allocate virtually contiguous memory
+ * @size:	    allocation size
+ * @align:	    desired alignment
+ * @gfp_mask:	    flags for the page level allocator
+ * @node:	    node to use for allocation or NUMA_NO_NODE
+ * @caller:	    caller's return address
  *
- *	Allocate enough pages to cover @size from the page level
- *	allocator with @gfp_mask flags.  Map them into contiguous
- *	kernel virtual space, using a pagetable protection of @prot.
+ * Allocate enough pages to cover @size from the page level allocator with
+ * @gfp_mask flags.  Map them into contiguous kernel virtual space.
  *
- *	Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
- *	and __GFP_NOFAIL are not supported
+ * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
+ * and __GFP_NOFAIL are not supported
  *
- *	Any use of gfp flags outside of GFP_KERNEL should be consulted
- *	with mm people.
+ * Any use of gfp flags outside of GFP_KERNEL should be consulted
+ * with mm people.
  *
+ * Return: pointer to the allocated memory or %NULL on error
  */
-static void *__vmalloc_node(unsigned long size, unsigned long align,
-			    gfp_t gfp_mask, pgprot_t prot,
-			    int node, const void *caller)
+void *__vmalloc_node(unsigned long size, unsigned long align,
+			    gfp_t gfp_mask, int node, const void *caller)
 {
 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
-				gfp_mask, prot, 0, node, caller);
+				gfp_mask, PAGE_KERNEL, 0, node, caller);
 }
+/*
+ * This is only for performance analysis of vmalloc and stress purpose.
+ * It is required by vmalloc test module, therefore do not use it other
+ * than that.
+ */
+#ifdef CONFIG_TEST_VMALLOC_MODULE
+EXPORT_SYMBOL_GPL(__vmalloc_node);
+#endif
 
-void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
+void *__vmalloc(unsigned long size, gfp_t gfp_mask)
 {
-	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
+	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
 				__builtin_return_address(0));
 }
 EXPORT_SYMBOL(__vmalloc);
 
-static inline void *__vmalloc_node_flags(unsigned long size,
-					int node, gfp_t flags)
-{
-	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
-					node, __builtin_return_address(0));
-}
-
-
-void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
-				  void *caller)
-{
-	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
-}
-
 /**
- *	vmalloc  -  allocate virtually contiguous memory
- *	@size:		allocation size
- *	Allocate enough pages to cover @size from the page level
- *	allocator and map them into contiguous kernel virtual space.
+ * vmalloc - allocate virtually contiguous memory
+ * @size:    allocation size
  *
- *	For tight control over page level allocator and protection flags
- *	use __vmalloc() instead.
+ * Allocate enough pages to cover @size from the page level
+ * allocator and map them into contiguous kernel virtual space.
+ *
+ * For tight control over page level allocator and protection flags
+ * use __vmalloc() instead.
+ *
+ * Return: pointer to the allocated memory or %NULL on error
  */
 void *vmalloc(unsigned long size)
 {
-	return __vmalloc_node_flags(size, NUMA_NO_NODE,
-				    GFP_KERNEL);
+	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
+				__builtin_return_address(0));
 }
 EXPORT_SYMBOL(vmalloc);
 
 /**
- *	vzalloc - allocate virtually contiguous memory with zero fill
- *	@size:	allocation size
- *	Allocate enough pages to cover @size from the page level
- *	allocator and map them into contiguous kernel virtual space.
- *	The memory allocated is set to zero.
+ * vzalloc - allocate virtually contiguous memory with zero fill
+ * @size:    allocation size
  *
- *	For tight control over page level allocator and protection flags
- *	use __vmalloc() instead.
+ * Allocate enough pages to cover @size from the page level
+ * allocator and map them into contiguous kernel virtual space.
+ * The memory allocated is set to zero.
+ *
+ * For tight control over page level allocator and protection flags
+ * use __vmalloc() instead.
+ *
+ * Return: pointer to the allocated memory or %NULL on error
  */
 void *vzalloc(unsigned long size)
 {
-	return __vmalloc_node_flags(size, NUMA_NO_NODE,
-				GFP_KERNEL | __GFP_ZERO);
+	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
+				__builtin_return_address(0));
 }
 EXPORT_SYMBOL(vzalloc);
 
@@ -1879,39 +2678,35 @@
  *
  * The resulting memory area is zeroed so it can be mapped to userspace
  * without leaking data.
+ *
+ * Return: pointer to the allocated memory or %NULL on error
  */
 void *vmalloc_user(unsigned long size)
 {
-	struct vm_struct *area;
-	void *ret;
-
-	ret = __vmalloc_node(size, SHMLBA,
-			     GFP_KERNEL | __GFP_ZERO,
-			     PAGE_KERNEL, NUMA_NO_NODE,
-			     __builtin_return_address(0));
-	if (ret) {
-		area = find_vm_area(ret);
-		area->flags |= VM_USERMAP;
-	}
-	return ret;
+	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
+				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
+				    VM_USERMAP, NUMA_NO_NODE,
+				    __builtin_return_address(0));
 }
 EXPORT_SYMBOL(vmalloc_user);
 
 /**
- *	vmalloc_node  -  allocate memory on a specific node
- *	@size:		allocation size
- *	@node:		numa node
+ * vmalloc_node - allocate memory on a specific node
+ * @size:	  allocation size
+ * @node:	  numa node
  *
- *	Allocate enough pages to cover @size from the page level
- *	allocator and map them into contiguous kernel virtual space.
+ * Allocate enough pages to cover @size from the page level
+ * allocator and map them into contiguous kernel virtual space.
  *
- *	For tight control over page level allocator and protection flags
- *	use __vmalloc() instead.
+ * For tight control over page level allocator and protection flags
+ * use __vmalloc() instead.
+ *
+ * Return: pointer to the allocated memory or %NULL on error
  */
 void *vmalloc_node(unsigned long size, int node)
 {
-	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
-					node, __builtin_return_address(0));
+	return __vmalloc_node(size, 1, GFP_KERNEL, node,
+			__builtin_return_address(0));
 }
 EXPORT_SYMBOL(vmalloc_node);
 
@@ -1924,33 +2719,14 @@
  * allocator and map them into contiguous kernel virtual space.
  * The memory allocated is set to zero.
  *
- * For tight control over page level allocator and protection flags
- * use __vmalloc_node() instead.
+ * Return: pointer to the allocated memory or %NULL on error
  */
 void *vzalloc_node(unsigned long size, int node)
 {
-	return __vmalloc_node_flags(size, node,
-			 GFP_KERNEL | __GFP_ZERO);
+	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
+				__builtin_return_address(0));
 }
 EXPORT_SYMBOL(vzalloc_node);
-
-/**
- *	vmalloc_exec  -  allocate virtually contiguous, executable memory
- *	@size:		allocation size
- *
- *	Kernel-internal function to allocate enough pages to cover @size
- *	the page level allocator and map them into contiguous and
- *	executable kernel virtual space.
- *
- *	For tight control over page level allocator and protection flags
- *	use __vmalloc() instead.
- */
-
-void *vmalloc_exec(unsigned long size)
-{
-	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
-			      NUMA_NO_NODE, __builtin_return_address(0));
-}
 
 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
@@ -1965,38 +2741,36 @@
 #endif
 
 /**
- *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
- *	@size:		allocation size
+ * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
+ * @size:	allocation size
  *
- *	Allocate enough 32bit PA addressable pages to cover @size from the
- *	page level allocator and map them into contiguous kernel virtual space.
+ * Allocate enough 32bit PA addressable pages to cover @size from the
+ * page level allocator and map them into contiguous kernel virtual space.
+ *
+ * Return: pointer to the allocated memory or %NULL on error
  */
 void *vmalloc_32(unsigned long size)
 {
-	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
-			      NUMA_NO_NODE, __builtin_return_address(0));
+	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
+			__builtin_return_address(0));
 }
 EXPORT_SYMBOL(vmalloc_32);
 
 /**
  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
- *	@size:		allocation size
+ * @size:	     allocation size
  *
  * The resulting memory area is 32bit addressable and zeroed so it can be
  * mapped to userspace without leaking data.
+ *
+ * Return: pointer to the allocated memory or %NULL on error
  */
 void *vmalloc_32_user(unsigned long size)
 {
-	struct vm_struct *area;
-	void *ret;
-
-	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
-			     NUMA_NO_NODE, __builtin_return_address(0));
-	if (ret) {
-		area = find_vm_area(ret);
-		area->flags |= VM_USERMAP;
-	}
-	return ret;
+	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
+				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
+				    VM_USERMAP, NUMA_NO_NODE,
+				    __builtin_return_address(0));
 }
 EXPORT_SYMBOL(vmalloc_32_user);
 
@@ -2082,31 +2856,29 @@
 }
 
 /**
- *	vread() -  read vmalloc area in a safe way.
- *	@buf:		buffer for reading data
- *	@addr:		vm address.
- *	@count:		number of bytes to be read.
+ * vread() - read vmalloc area in a safe way.
+ * @buf:     buffer for reading data
+ * @addr:    vm address.
+ * @count:   number of bytes to be read.
  *
- *	Returns # of bytes which addr and buf should be increased.
- *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
- *	includes any intersect with alive vmalloc area.
+ * This function checks that addr is a valid vmalloc'ed area, and
+ * copy data from that area to a given buffer. If the given memory range
+ * of [addr...addr+count) includes some valid address, data is copied to
+ * proper area of @buf. If there are memory holes, they'll be zero-filled.
+ * IOREMAP area is treated as memory hole and no copy is done.
  *
- *	This function checks that addr is a valid vmalloc'ed area, and
- *	copy data from that area to a given buffer. If the given memory range
- *	of [addr...addr+count) includes some valid address, data is copied to
- *	proper area of @buf. If there are memory holes, they'll be zero-filled.
- *	IOREMAP area is treated as memory hole and no copy is done.
+ * If [addr...addr+count) doesn't includes any intersects with alive
+ * vm_struct area, returns 0. @buf should be kernel's buffer.
  *
- *	If [addr...addr+count) doesn't includes any intersects with alive
- *	vm_struct area, returns 0. @buf should be kernel's buffer.
+ * Note: In usual ops, vread() is never necessary because the caller
+ * should know vmalloc() area is valid and can use memcpy().
+ * This is for routines which have to access vmalloc area without
+ * any information, as /dev/kmem.
  *
- *	Note: In usual ops, vread() is never necessary because the caller
- *	should know vmalloc() area is valid and can use memcpy().
- *	This is for routines which have to access vmalloc area without
- *	any informaion, as /dev/kmem.
- *
+ * Return: number of bytes for which addr and buf should be increased
+ * (same number as @count) or %0 if [addr...addr+count) doesn't
+ * include any intersection with valid vmalloc area
  */
-
 long vread(char *buf, char *addr, unsigned long count)
 {
 	struct vmap_area *va;
@@ -2124,7 +2896,7 @@
 		if (!count)
 			break;
 
-		if (!(va->flags & VM_VM_AREA))
+		if (!va->vm)
 			continue;
 
 		vm = va->vm;
@@ -2163,31 +2935,29 @@
 }
 
 /**
- *	vwrite() -  write vmalloc area in a safe way.
- *	@buf:		buffer for source data
- *	@addr:		vm address.
- *	@count:		number of bytes to be read.
+ * vwrite() - write vmalloc area in a safe way.
+ * @buf:      buffer for source data
+ * @addr:     vm address.
+ * @count:    number of bytes to be read.
  *
- *	Returns # of bytes which addr and buf should be incresed.
- *	(same number to @count).
- *	If [addr...addr+count) doesn't includes any intersect with valid
- *	vmalloc area, returns 0.
+ * This function checks that addr is a valid vmalloc'ed area, and
+ * copy data from a buffer to the given addr. If specified range of
+ * [addr...addr+count) includes some valid address, data is copied from
+ * proper area of @buf. If there are memory holes, no copy to hole.
+ * IOREMAP area is treated as memory hole and no copy is done.
  *
- *	This function checks that addr is a valid vmalloc'ed area, and
- *	copy data from a buffer to the given addr. If specified range of
- *	[addr...addr+count) includes some valid address, data is copied from
- *	proper area of @buf. If there are memory holes, no copy to hole.
- *	IOREMAP area is treated as memory hole and no copy is done.
+ * If [addr...addr+count) doesn't includes any intersects with alive
+ * vm_struct area, returns 0. @buf should be kernel's buffer.
  *
- *	If [addr...addr+count) doesn't includes any intersects with alive
- *	vm_struct area, returns 0. @buf should be kernel's buffer.
+ * Note: In usual ops, vwrite() is never necessary because the caller
+ * should know vmalloc() area is valid and can use memcpy().
+ * This is for routines which have to access vmalloc area without
+ * any information, as /dev/kmem.
  *
- *	Note: In usual ops, vwrite() is never necessary because the caller
- *	should know vmalloc() area is valid and can use memcpy().
- *	This is for routines which have to access vmalloc area without
- *	any informaion, as /dev/kmem.
+ * Return: number of bytes for which addr and buf should be
+ * increased (same number as @count) or %0 if [addr...addr+count)
+ * doesn't include any intersection with valid vmalloc area
  */
-
 long vwrite(char *buf, char *addr, unsigned long count)
 {
 	struct vmap_area *va;
@@ -2206,7 +2976,7 @@
 		if (!count)
 			break;
 
-		if (!(va->flags & VM_VM_AREA))
+		if (!va->vm)
 			continue;
 
 		vm = va->vm;
@@ -2239,21 +3009,21 @@
 }
 
 /**
- *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
- *	@vma:		vma to cover
- *	@uaddr:		target user address to start at
- *	@kaddr:		virtual address of vmalloc kernel memory
- *	@pgoff:		offset from @kaddr to start at
- *	@size:		size of map area
+ * remap_vmalloc_range_partial - map vmalloc pages to userspace
+ * @vma:		vma to cover
+ * @uaddr:		target user address to start at
+ * @kaddr:		virtual address of vmalloc kernel memory
+ * @pgoff:		offset from @kaddr to start at
+ * @size:		size of map area
  *
- *	Returns:	0 for success, -Exxx on failure
+ * Returns:	0 for success, -Exxx on failure
  *
- *	This function checks that @kaddr is a valid vmalloc'ed area,
- *	and that it is big enough to cover the range starting at
- *	@uaddr in @vma. Will return failure if that criteria isn't
- *	met.
+ * This function checks that @kaddr is a valid vmalloc'ed area,
+ * and that it is big enough to cover the range starting at
+ * @uaddr in @vma. Will return failure if that criteria isn't
+ * met.
  *
- *	Similar to remap_pfn_range() (see mm/memory.c)
+ * Similar to remap_pfn_range() (see mm/memory.c)
  */
 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
 				void *kaddr, unsigned long pgoff,
@@ -2275,7 +3045,7 @@
 	if (!area)
 		return -EINVAL;
 
-	if (!(area->flags & VM_USERMAP))
+	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
 		return -EINVAL;
 
 	if (check_add_overflow(size, off, &end_index) ||
@@ -2303,18 +3073,18 @@
 EXPORT_SYMBOL(remap_vmalloc_range_partial);
 
 /**
- *	remap_vmalloc_range  -  map vmalloc pages to userspace
- *	@vma:		vma to cover (map full range of vma)
- *	@addr:		vmalloc memory
- *	@pgoff:		number of pages into addr before first page to map
+ * remap_vmalloc_range - map vmalloc pages to userspace
+ * @vma:		vma to cover (map full range of vma)
+ * @addr:		vmalloc memory
+ * @pgoff:		number of pages into addr before first page to map
  *
- *	Returns:	0 for success, -Exxx on failure
+ * Returns:	0 for success, -Exxx on failure
  *
- *	This function checks that addr is a valid vmalloc'ed area, and
- *	that it is big enough to cover the vma. Will return failure if
- *	that criteria isn't met.
+ * This function checks that addr is a valid vmalloc'ed area, and
+ * that it is big enough to cover the vma. Will return failure if
+ * that criteria isn't met.
  *
- *	Similar to remap_pfn_range() (see mm/memory.c)
+ * Similar to remap_pfn_range() (see mm/memory.c)
  */
 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
 						unsigned long pgoff)
@@ -2324,69 +3094,6 @@
 					   vma->vm_end - vma->vm_start);
 }
 EXPORT_SYMBOL(remap_vmalloc_range);
-
-/*
- * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose
- * not to have one.
- *
- * The purpose of this function is to make sure the vmalloc area
- * mappings are identical in all page-tables in the system.
- */
-void __weak vmalloc_sync_mappings(void)
-{
-}
-
-void __weak vmalloc_sync_unmappings(void)
-{
-}
-
-static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
-{
-	pte_t ***p = data;
-
-	if (p) {
-		*(*p) = pte;
-		(*p)++;
-	}
-	return 0;
-}
-
-/**
- *	alloc_vm_area - allocate a range of kernel address space
- *	@size:		size of the area
- *	@ptes:		returns the PTEs for the address space
- *
- *	Returns:	NULL on failure, vm_struct on success
- *
- *	This function reserves a range of kernel address space, and
- *	allocates pagetables to map that range.  No actual mappings
- *	are created.
- *
- *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
- *	allocated for the VM area are returned.
- */
-struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
-{
-	struct vm_struct *area;
-
-	area = get_vm_area_caller(size, VM_IOREMAP,
-				__builtin_return_address(0));
-	if (area == NULL)
-		return NULL;
-
-	/*
-	 * This ensures that page tables are constructed for this region
-	 * of kernel virtual address space and mapped into init_mm.
-	 */
-	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
-				size, f, ptes ? &ptes : NULL)) {
-		free_vm_area(area);
-		return NULL;
-	}
-
-	return area;
-}
-EXPORT_SYMBOL_GPL(alloc_vm_area);
 
 void free_vm_area(struct vm_struct *area)
 {
@@ -2404,81 +3111,64 @@
 }
 
 /**
- * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
- * @end: target address
- * @pnext: out arg for the next vmap_area
- * @pprev: out arg for the previous vmap_area
+ * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
+ * @addr: target address
  *
- * Returns: %true if either or both of next and prev are found,
- *	    %false if no vmap_area exists
- *
- * Find vmap_areas end addresses of which enclose @end.  ie. if not
- * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
+ * Returns: vmap_area if it is found. If there is no such area
+ *   the first highest(reverse order) vmap_area is returned
+ *   i.e. va->va_start < addr && va->va_end < addr or NULL
+ *   if there are no any areas before @addr.
  */
-static bool pvm_find_next_prev(unsigned long end,
-			       struct vmap_area **pnext,
-			       struct vmap_area **pprev)
+static struct vmap_area *
+pvm_find_va_enclose_addr(unsigned long addr)
 {
-	struct rb_node *n = vmap_area_root.rb_node;
-	struct vmap_area *va = NULL;
+	struct vmap_area *va, *tmp;
+	struct rb_node *n;
+
+	n = free_vmap_area_root.rb_node;
+	va = NULL;
 
 	while (n) {
-		va = rb_entry(n, struct vmap_area, rb_node);
-		if (end < va->va_end)
-			n = n->rb_left;
-		else if (end > va->va_end)
+		tmp = rb_entry(n, struct vmap_area, rb_node);
+		if (tmp->va_start <= addr) {
+			va = tmp;
+			if (tmp->va_end >= addr)
+				break;
+
 			n = n->rb_right;
-		else
-			break;
+		} else {
+			n = n->rb_left;
+		}
 	}
 
-	if (!va)
-		return false;
-
-	if (va->va_end > end) {
-		*pnext = va;
-		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
-	} else {
-		*pprev = va;
-		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
-	}
-	return true;
+	return va;
 }
 
 /**
- * pvm_determine_end - find the highest aligned address between two vmap_areas
- * @pnext: in/out arg for the next vmap_area
- * @pprev: in/out arg for the previous vmap_area
- * @align: alignment
+ * pvm_determine_end_from_reverse - find the highest aligned address
+ * of free block below VMALLOC_END
+ * @va:
+ *   in - the VA we start the search(reverse order);
+ *   out - the VA with the highest aligned end address.
  *
- * Returns: determined end address
- *
- * Find the highest aligned address between *@pnext and *@pprev below
- * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
- * down address is between the end addresses of the two vmap_areas.
- *
- * Please note that the address returned by this function may fall
- * inside *@pnext vmap_area.  The caller is responsible for checking
- * that.
+ * Returns: determined end address within vmap_area
  */
-static unsigned long pvm_determine_end(struct vmap_area **pnext,
-				       struct vmap_area **pprev,
-				       unsigned long align)
+static unsigned long
+pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
 {
-	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
+	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
 	unsigned long addr;
 
-	if (*pnext)
-		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
-	else
-		addr = vmalloc_end;
-
-	while (*pprev && (*pprev)->va_end > addr) {
-		*pnext = *pprev;
-		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
+	if (likely(*va)) {
+		list_for_each_entry_from_reverse((*va),
+				&free_vmap_area_list, list) {
+			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
+			if ((*va)->va_start < addr)
+				return addr;
+		}
 	}
 
-	return addr;
+	return 0;
 }
 
 /**
@@ -2498,12 +3188,12 @@
  * to gigabytes.  To avoid interacting with regular vmallocs, these
  * areas are allocated from top.
  *
- * Despite its complicated look, this allocator is rather simple.  It
- * does everything top-down and scans areas from the end looking for
- * matching slot.  While scanning, if any of the areas overlaps with
- * existing vmap_area, the base address is pulled down to fit the
- * area.  Scanning is repeated till all the areas fit and then all
- * necessary data structures are inserted and the result is returned.
+ * Despite its complicated look, this allocator is rather simple. It
+ * does everything top-down and scans free blocks from the end looking
+ * for matching base. While scanning, if any of the areas do not fit the
+ * base address is pulled down to fit the area. Scanning is repeated till
+ * all the areas fit and then all necessary data structures are inserted
+ * and the result is returned.
  */
 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
 				     const size_t *sizes, int nr_vms,
@@ -2511,11 +3201,12 @@
 {
 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
-	struct vmap_area **vas, *prev, *next;
+	struct vmap_area **vas, *va;
 	struct vm_struct **vms;
 	int area, area2, last_area, term_area;
-	unsigned long base, start, end, last_end;
+	unsigned long base, start, size, end, last_end, orig_start, orig_end;
 	bool purged = false;
+	enum fit_type type;
 
 	/* verify parameters and allocate data structures */
 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
@@ -2551,62 +3242,52 @@
 		goto err_free2;
 
 	for (area = 0; area < nr_vms; area++) {
-		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
+		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
 		if (!vas[area] || !vms[area])
 			goto err_free;
 	}
 retry:
-	spin_lock(&vmap_area_lock);
+	spin_lock(&free_vmap_area_lock);
 
 	/* start scanning - we scan from the top, begin with the last area */
 	area = term_area = last_area;
 	start = offsets[area];
 	end = start + sizes[area];
 
-	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
-		base = vmalloc_end - last_end;
-		goto found;
-	}
-	base = pvm_determine_end(&next, &prev, align) - end;
+	va = pvm_find_va_enclose_addr(vmalloc_end);
+	base = pvm_determine_end_from_reverse(&va, align) - end;
 
 	while (true) {
-		BUG_ON(next && next->va_end <= base + end);
-		BUG_ON(prev && prev->va_end > base + end);
-
 		/*
 		 * base might have underflowed, add last_end before
 		 * comparing.
 		 */
-		if (base + last_end < vmalloc_start + last_end) {
-			spin_unlock(&vmap_area_lock);
-			if (!purged) {
-				purge_vmap_area_lazy();
-				purged = true;
-				goto retry;
-			}
-			goto err_free;
-		}
+		if (base + last_end < vmalloc_start + last_end)
+			goto overflow;
 
 		/*
-		 * If next overlaps, move base downwards so that it's
-		 * right below next and then recheck.
+		 * Fitting base has not been found.
 		 */
-		if (next && next->va_start < base + end) {
-			base = pvm_determine_end(&next, &prev, align) - end;
+		if (va == NULL)
+			goto overflow;
+
+		/*
+		 * If required width exceeds current VA block, move
+		 * base downwards and then recheck.
+		 */
+		if (base + end > va->va_end) {
+			base = pvm_determine_end_from_reverse(&va, align) - end;
 			term_area = area;
 			continue;
 		}
 
 		/*
-		 * If prev overlaps, shift down next and prev and move
-		 * base so that it's right below new next and then
-		 * recheck.
+		 * If this VA does not fit, move base downwards and recheck.
 		 */
-		if (prev && prev->va_end > base + start)  {
-			next = prev;
-			prev = node_to_va(rb_prev(&next->rb_node));
-			base = pvm_determine_end(&next, &prev, align) - end;
+		if (base + start < va->va_start) {
+			va = node_to_va(rb_prev(&va->rb_node));
+			base = pvm_determine_end_from_reverse(&va, align) - end;
 			term_area = area;
 			continue;
 		}
@@ -2618,38 +3299,132 @@
 		area = (area + nr_vms - 1) % nr_vms;
 		if (area == term_area)
 			break;
+
 		start = offsets[area];
 		end = start + sizes[area];
-		pvm_find_next_prev(base + end, &next, &prev);
+		va = pvm_find_va_enclose_addr(base + end);
 	}
-found:
+
 	/* we've found a fitting base, insert all va's */
 	for (area = 0; area < nr_vms; area++) {
-		struct vmap_area *va = vas[area];
+		int ret;
 
-		va->va_start = base + offsets[area];
-		va->va_end = va->va_start + sizes[area];
-		__insert_vmap_area(va);
+		start = base + offsets[area];
+		size = sizes[area];
+
+		va = pvm_find_va_enclose_addr(start);
+		if (WARN_ON_ONCE(va == NULL))
+			/* It is a BUG(), but trigger recovery instead. */
+			goto recovery;
+
+		type = classify_va_fit_type(va, start, size);
+		if (WARN_ON_ONCE(type == NOTHING_FIT))
+			/* It is a BUG(), but trigger recovery instead. */
+			goto recovery;
+
+		ret = adjust_va_to_fit_type(va, start, size, type);
+		if (unlikely(ret))
+			goto recovery;
+
+		/* Allocated area. */
+		va = vas[area];
+		va->va_start = start;
+		va->va_end = start + size;
 	}
 
-	vmap_area_pcpu_hole = base + offsets[last_area];
+	spin_unlock(&free_vmap_area_lock);
 
-	spin_unlock(&vmap_area_lock);
+	/* populate the kasan shadow space */
+	for (area = 0; area < nr_vms; area++) {
+		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
+			goto err_free_shadow;
+
+		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
+				       sizes[area]);
+	}
 
 	/* insert all vm's */
-	for (area = 0; area < nr_vms; area++)
-		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
+	spin_lock(&vmap_area_lock);
+	for (area = 0; area < nr_vms; area++) {
+		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
+
+		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
 				 pcpu_get_vm_areas);
+	}
+	spin_unlock(&vmap_area_lock);
 
 	kfree(vas);
 	return vms;
 
+recovery:
+	/*
+	 * Remove previously allocated areas. There is no
+	 * need in removing these areas from the busy tree,
+	 * because they are inserted only on the final step
+	 * and when pcpu_get_vm_areas() is success.
+	 */
+	while (area--) {
+		orig_start = vas[area]->va_start;
+		orig_end = vas[area]->va_end;
+		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
+					    &free_vmap_area_list);
+		if (va)
+			kasan_release_vmalloc(orig_start, orig_end,
+				va->va_start, va->va_end);
+		vas[area] = NULL;
+	}
+
+overflow:
+	spin_unlock(&free_vmap_area_lock);
+	if (!purged) {
+		purge_vmap_area_lazy();
+		purged = true;
+
+		/* Before "retry", check if we recover. */
+		for (area = 0; area < nr_vms; area++) {
+			if (vas[area])
+				continue;
+
+			vas[area] = kmem_cache_zalloc(
+				vmap_area_cachep, GFP_KERNEL);
+			if (!vas[area])
+				goto err_free;
+		}
+
+		goto retry;
+	}
+
 err_free:
 	for (area = 0; area < nr_vms; area++) {
-		kfree(vas[area]);
+		if (vas[area])
+			kmem_cache_free(vmap_area_cachep, vas[area]);
+
 		kfree(vms[area]);
 	}
 err_free2:
+	kfree(vas);
+	kfree(vms);
+	return NULL;
+
+err_free_shadow:
+	spin_lock(&free_vmap_area_lock);
+	/*
+	 * We release all the vmalloc shadows, even the ones for regions that
+	 * hadn't been successfully added. This relies on kasan_release_vmalloc
+	 * being able to tolerate this case.
+	 */
+	for (area = 0; area < nr_vms; area++) {
+		orig_start = vas[area]->va_start;
+		orig_end = vas[area]->va_end;
+		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
+					    &free_vmap_area_list);
+		if (va)
+			kasan_release_vmalloc(orig_start, orig_end,
+				va->va_start, va->va_end);
+		vas[area] = NULL;
+		kfree(vms[area]);
+	}
+	spin_unlock(&free_vmap_area_lock);
 	kfree(vas);
 	kfree(vms);
 	return NULL;
@@ -2674,9 +3449,12 @@
 
 #ifdef CONFIG_PROC_FS
 static void *s_start(struct seq_file *m, loff_t *pos)
+	__acquires(&vmap_purge_lock)
 	__acquires(&vmap_area_lock)
 {
+	mutex_lock(&vmap_purge_lock);
 	spin_lock(&vmap_area_lock);
+
 	return seq_list_start(&vmap_area_list, *pos);
 }
 
@@ -2687,8 +3465,10 @@
 
 static void s_stop(struct seq_file *m, void *p)
 	__releases(&vmap_area_lock)
+	__releases(&vmap_purge_lock)
 {
 	spin_unlock(&vmap_area_lock);
+	mutex_unlock(&vmap_purge_lock);
 }
 
 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
@@ -2715,6 +3495,22 @@
 	}
 }
 
+static void show_purge_info(struct seq_file *m)
+{
+	struct llist_node *head;
+	struct vmap_area *va;
+
+	head = READ_ONCE(vmap_purge_list.first);
+	if (head == NULL)
+		return;
+
+	llist_for_each_entry(va, head, purge_list) {
+		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
+			(void *)va->va_start, (void *)va->va_end,
+			va->va_end - va->va_start);
+	}
+}
+
 static int s_show(struct seq_file *m, void *p)
 {
 	struct vmap_area *va;
@@ -2723,14 +3519,13 @@
 	va = list_entry(p, struct vmap_area, list);
 
 	/*
-	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
-	 * behalf of vmap area is being tear down or vm_map_ram allocation.
+	 * s_show can encounter race with remove_vm_area, !vm on behalf
+	 * of vmap area is being tear down or vm_map_ram allocation.
 	 */
-	if (!(va->flags & VM_VM_AREA)) {
-		seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
+	if (!va->vm) {
+		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
 			(void *)va->va_start, (void *)va->va_end,
-			va->va_end - va->va_start,
-			va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
+			va->va_end - va->va_start);
 
 		return 0;
 	}
@@ -2761,11 +3556,25 @@
 	if (v->flags & VM_USERMAP)
 		seq_puts(m, " user");
 
+	if (v->flags & VM_DMA_COHERENT)
+		seq_puts(m, " dma-coherent");
+
 	if (is_vmalloc_addr(v->pages))
 		seq_puts(m, " vpages");
 
 	show_numa_info(m, v);
+	trace_android_vh_show_stack_hash(m, v);
 	seq_putc(m, '\n');
+
+	/*
+	 * As a final step, dump "unpurged" areas. Note,
+	 * that entire "/proc/vmallocinfo" output will not
+	 * be address sorted, because the purge list is not
+	 * sorted.
+	 */
+	if (list_is_last(&va->list, &vmap_area_list))
+		show_purge_info(m);
+
 	return 0;
 }
 
@@ -2789,4 +3598,3 @@
 module_init(proc_vmalloc_init);
 
 #endif
-

--
Gitblit v1.6.2