From 244b2c5ca8b14627e4a17755e5922221e121c771 Mon Sep 17 00:00:00 2001
From: hc <hc@nodka.com>
Date: Wed, 09 Oct 2024 06:15:07 +0000
Subject: [PATCH] change system file

---
 kernel/block/keyslot-manager.c |  758 +++++++++++++++++++++++++++------------------------------
 1 files changed, 362 insertions(+), 396 deletions(-)

diff --git a/kernel/block/keyslot-manager.c b/kernel/block/keyslot-manager.c
index 74b7485..9470477 100644
--- a/kernel/block/keyslot-manager.c
+++ b/kernel/block/keyslot-manager.c
@@ -10,7 +10,7 @@
  * into which encryption contexts may be programmed, and requests can be tagged
  * with a slot number to specify the key to use for en/decryption.
  *
- * As the number of slots are limited, and programming keys is expensive on
+ * As the number of slots is limited, and programming keys is expensive on
  * many inline encryption hardware, we don't want to program the same key into
  * multiple slots - if multiple requests are using the same key, we want to
  * program just one slot with that key and use that slot for all requests.
@@ -22,170 +22,78 @@
  * and tell it how to perform device specific operations like programming/
  * evicting keys from keyslots.
  *
- * Upper layers will call keyslot_manager_get_slot_for_key() to program a
+ * Upper layers will call blk_ksm_get_slot_for_key() to program a
  * key into some slot in the inline encryption hardware.
  */
-#include <crypto/algapi.h>
+
+#define pr_fmt(fmt) "blk-crypto: " fmt
+
 #include <linux/keyslot-manager.h>
+#include <linux/device.h>
 #include <linux/atomic.h>
 #include <linux/mutex.h>
 #include <linux/pm_runtime.h>
 #include <linux/wait.h>
 #include <linux/blkdev.h>
 
-struct keyslot {
+struct blk_ksm_keyslot {
 	atomic_t slot_refs;
 	struct list_head idle_slot_node;
 	struct hlist_node hash_node;
-	struct blk_crypto_key key;
+	const struct blk_crypto_key *key;
+	struct blk_keyslot_manager *ksm;
 };
 
-struct keyslot_manager {
-	unsigned int num_slots;
-	struct keyslot_mgmt_ll_ops ksm_ll_ops;
-	unsigned int features;
-	unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX];
-	unsigned int max_dun_bytes_supported;
-	void *ll_priv_data;
-
-#ifdef CONFIG_PM
-	/* Device for runtime power management (NULL if none) */
-	struct device *dev;
-#endif
-
-	/* Protects programming and evicting keys from the device */
-	struct rw_semaphore lock;
-
-	/* List of idle slots, with least recently used slot at front */
-	wait_queue_head_t idle_slots_wait_queue;
-	struct list_head idle_slots;
-	spinlock_t idle_slots_lock;
-
-	/*
-	 * Hash table which maps key hashes to keyslots, so that we can find a
-	 * key's keyslot in O(1) time rather than O(num_slots).  Protected by
-	 * 'lock'.  A cryptographic hash function is used so that timing attacks
-	 * can't leak information about the raw keys.
-	 */
-	struct hlist_head *slot_hashtable;
-	unsigned int slot_hashtable_size;
-
-	/* Per-keyslot data */
-	struct keyslot slots[];
-};
-
-static inline bool keyslot_manager_is_passthrough(struct keyslot_manager *ksm)
-{
-	return ksm->num_slots == 0;
-}
-
-#ifdef CONFIG_PM
-static inline void keyslot_manager_set_dev(struct keyslot_manager *ksm,
-					   struct device *dev)
-{
-	ksm->dev = dev;
-}
-
-/* If there's an underlying device and it's suspended, resume it. */
-static inline void keyslot_manager_pm_get(struct keyslot_manager *ksm)
-{
-	if (ksm->dev)
-		pm_runtime_get_sync(ksm->dev);
-}
-
-static inline void keyslot_manager_pm_put(struct keyslot_manager *ksm)
-{
-	if (ksm->dev)
-		pm_runtime_put_sync(ksm->dev);
-}
-#else /* CONFIG_PM */
-static inline void keyslot_manager_set_dev(struct keyslot_manager *ksm,
-					   struct device *dev)
-{
-}
-
-static inline void keyslot_manager_pm_get(struct keyslot_manager *ksm)
-{
-}
-
-static inline void keyslot_manager_pm_put(struct keyslot_manager *ksm)
-{
-}
-#endif /* !CONFIG_PM */
-
-static inline void keyslot_manager_hw_enter(struct keyslot_manager *ksm)
+static inline void blk_ksm_hw_enter(struct blk_keyslot_manager *ksm)
 {
 	/*
 	 * Calling into the driver requires ksm->lock held and the device
 	 * resumed.  But we must resume the device first, since that can acquire
-	 * and release ksm->lock via keyslot_manager_reprogram_all_keys().
+	 * and release ksm->lock via blk_ksm_reprogram_all_keys().
 	 */
-	keyslot_manager_pm_get(ksm);
+	if (ksm->dev)
+		pm_runtime_get_sync(ksm->dev);
 	down_write(&ksm->lock);
 }
 
-static inline void keyslot_manager_hw_exit(struct keyslot_manager *ksm)
+static inline void blk_ksm_hw_exit(struct blk_keyslot_manager *ksm)
 {
 	up_write(&ksm->lock);
-	keyslot_manager_pm_put(ksm);
+	if (ksm->dev)
+		pm_runtime_put_sync(ksm->dev);
+}
+
+static inline bool blk_ksm_is_passthrough(struct blk_keyslot_manager *ksm)
+{
+	return ksm->num_slots == 0;
 }
 
 /**
- * keyslot_manager_create() - Create a keyslot manager
- * @dev: Device for runtime power management (NULL if none)
+ * blk_ksm_init() - Initialize a keyslot manager
+ * @ksm: The keyslot_manager to initialize.
  * @num_slots: The number of key slots to manage.
- * @ksm_ll_ops: The struct keyslot_mgmt_ll_ops for the device that this keyslot
- *		manager will use to perform operations like programming and
- *		evicting keys.
- * @features: The supported features as a bitmask of BLK_CRYPTO_FEATURE_* flags.
- *	      Most drivers should set BLK_CRYPTO_FEATURE_STANDARD_KEYS here.
- * @crypto_mode_supported:	Array of size BLK_ENCRYPTION_MODE_MAX of
- *				bitmasks that represents whether a crypto mode
- *				and data unit size are supported. The i'th bit
- *				of crypto_mode_supported[crypto_mode] is set iff
- *				a data unit size of (1 << i) is supported. We
- *				only support data unit sizes that are powers of
- *				2.
- * @ll_priv_data: Private data passed as is to the functions in ksm_ll_ops.
  *
- * Allocate memory for and initialize a keyslot manager. Called by e.g.
- * storage drivers to set up a keyslot manager in their request_queue.
+ * Allocate memory for keyslots and initialize a keyslot manager. Called by
+ * e.g. storage drivers to set up a keyslot manager in their request_queue.
  *
- * Context: May sleep
- * Return: Pointer to constructed keyslot manager or NULL on error.
+ * Return: 0 on success, or else a negative error code.
  */
-struct keyslot_manager *keyslot_manager_create(
-	struct device *dev,
-	unsigned int num_slots,
-	const struct keyslot_mgmt_ll_ops *ksm_ll_ops,
-	unsigned int features,
-	const unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX],
-	void *ll_priv_data)
+int blk_ksm_init(struct blk_keyslot_manager *ksm, unsigned int num_slots)
 {
-	struct keyslot_manager *ksm;
 	unsigned int slot;
 	unsigned int i;
+	unsigned int slot_hashtable_size;
+
+	memset(ksm, 0, sizeof(*ksm));
 
 	if (num_slots == 0)
-		return NULL;
+		return -EINVAL;
 
-	/* Check that all ops are specified */
-	if (ksm_ll_ops->keyslot_program == NULL ||
-	    ksm_ll_ops->keyslot_evict == NULL)
-		return NULL;
-
-	ksm = kvzalloc(struct_size(ksm, slots, num_slots), GFP_KERNEL);
-	if (!ksm)
-		return NULL;
+	ksm->slots = kvcalloc(num_slots, sizeof(ksm->slots[0]), GFP_KERNEL);
+	if (!ksm->slots)
+		return -ENOMEM;
 
 	ksm->num_slots = num_slots;
-	ksm->ksm_ll_ops = *ksm_ll_ops;
-	ksm->features = features;
-	memcpy(ksm->crypto_mode_supported, crypto_mode_supported,
-	       sizeof(ksm->crypto_mode_supported));
-	ksm->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
-	ksm->ll_priv_data = ll_priv_data;
-	keyslot_manager_set_dev(ksm, dev);
 
 	init_rwsem(&ksm->lock);
 
@@ -193,120 +101,160 @@
 	INIT_LIST_HEAD(&ksm->idle_slots);
 
 	for (slot = 0; slot < num_slots; slot++) {
+		ksm->slots[slot].ksm = ksm;
 		list_add_tail(&ksm->slots[slot].idle_slot_node,
 			      &ksm->idle_slots);
 	}
 
 	spin_lock_init(&ksm->idle_slots_lock);
 
-	ksm->slot_hashtable_size = roundup_pow_of_two(num_slots);
-	ksm->slot_hashtable = kvmalloc_array(ksm->slot_hashtable_size,
+	slot_hashtable_size = roundup_pow_of_two(num_slots);
+	/*
+	 * hash_ptr() assumes bits != 0, so ensure the hash table has at least 2
+	 * buckets.  This only makes a difference when there is only 1 keyslot.
+	 */
+	if (slot_hashtable_size < 2)
+		slot_hashtable_size = 2;
+
+	ksm->log_slot_ht_size = ilog2(slot_hashtable_size);
+	ksm->slot_hashtable = kvmalloc_array(slot_hashtable_size,
 					     sizeof(ksm->slot_hashtable[0]),
 					     GFP_KERNEL);
 	if (!ksm->slot_hashtable)
-		goto err_free_ksm;
-	for (i = 0; i < ksm->slot_hashtable_size; i++)
+		goto err_destroy_ksm;
+	for (i = 0; i < slot_hashtable_size; i++)
 		INIT_HLIST_HEAD(&ksm->slot_hashtable[i]);
 
-	return ksm;
+	return 0;
 
-err_free_ksm:
-	keyslot_manager_destroy(ksm);
-	return NULL;
+err_destroy_ksm:
+	blk_ksm_destroy(ksm);
+	return -ENOMEM;
 }
-EXPORT_SYMBOL_GPL(keyslot_manager_create);
+EXPORT_SYMBOL_GPL(blk_ksm_init);
 
-void keyslot_manager_set_max_dun_bytes(struct keyslot_manager *ksm,
-				       unsigned int max_dun_bytes)
+static void blk_ksm_destroy_callback(void *ksm)
 {
-	ksm->max_dun_bytes_supported = max_dun_bytes;
+	blk_ksm_destroy(ksm);
 }
-EXPORT_SYMBOL_GPL(keyslot_manager_set_max_dun_bytes);
+
+/**
+ * devm_blk_ksm_init() - Resource-managed blk_ksm_init()
+ * @dev: The device which owns the blk_keyslot_manager.
+ * @ksm: The blk_keyslot_manager to initialize.
+ * @num_slots: The number of key slots to manage.
+ *
+ * Like blk_ksm_init(), but causes blk_ksm_destroy() to be called automatically
+ * on driver detach.
+ *
+ * Return: 0 on success, or else a negative error code.
+ */
+int devm_blk_ksm_init(struct device *dev, struct blk_keyslot_manager *ksm,
+		      unsigned int num_slots)
+{
+	int err = blk_ksm_init(ksm, num_slots);
+
+	if (err)
+		return err;
+
+	return devm_add_action_or_reset(dev, blk_ksm_destroy_callback, ksm);
+}
+EXPORT_SYMBOL_GPL(devm_blk_ksm_init);
 
 static inline struct hlist_head *
-hash_bucket_for_key(struct keyslot_manager *ksm,
-		    const struct blk_crypto_key *key)
+blk_ksm_hash_bucket_for_key(struct blk_keyslot_manager *ksm,
+			    const struct blk_crypto_key *key)
 {
-	return &ksm->slot_hashtable[blk_crypto_key_hash(key) &
-				    (ksm->slot_hashtable_size - 1)];
+	return &ksm->slot_hashtable[hash_ptr(key, ksm->log_slot_ht_size)];
 }
 
-static void remove_slot_from_lru_list(struct keyslot_manager *ksm, int slot)
+static void blk_ksm_remove_slot_from_lru_list(struct blk_ksm_keyslot *slot)
 {
+	struct blk_keyslot_manager *ksm = slot->ksm;
 	unsigned long flags;
 
 	spin_lock_irqsave(&ksm->idle_slots_lock, flags);
-	list_del(&ksm->slots[slot].idle_slot_node);
+	list_del(&slot->idle_slot_node);
 	spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
 }
 
-static int find_keyslot(struct keyslot_manager *ksm,
-			const struct blk_crypto_key *key)
+static struct blk_ksm_keyslot *blk_ksm_find_keyslot(
+					struct blk_keyslot_manager *ksm,
+					const struct blk_crypto_key *key)
 {
-	const struct hlist_head *head = hash_bucket_for_key(ksm, key);
-	const struct keyslot *slotp;
+	const struct hlist_head *head = blk_ksm_hash_bucket_for_key(ksm, key);
+	struct blk_ksm_keyslot *slotp;
 
 	hlist_for_each_entry(slotp, head, hash_node) {
-		if (slotp->key.hash == key->hash &&
-		    slotp->key.crypto_mode == key->crypto_mode &&
-		    slotp->key.size == key->size &&
-		    slotp->key.data_unit_size == key->data_unit_size &&
-		    !crypto_memneq(slotp->key.raw, key->raw, key->size))
-			return slotp - ksm->slots;
+		if (slotp->key == key)
+			return slotp;
 	}
-	return -ENOKEY;
+	return NULL;
 }
 
-static int find_and_grab_keyslot(struct keyslot_manager *ksm,
-				 const struct blk_crypto_key *key)
+static struct blk_ksm_keyslot *blk_ksm_find_and_grab_keyslot(
+					struct blk_keyslot_manager *ksm,
+					const struct blk_crypto_key *key)
 {
-	int slot;
+	struct blk_ksm_keyslot *slot;
 
-	slot = find_keyslot(ksm, key);
-	if (slot < 0)
-		return slot;
-	if (atomic_inc_return(&ksm->slots[slot].slot_refs) == 1) {
+	slot = blk_ksm_find_keyslot(ksm, key);
+	if (!slot)
+		return NULL;
+	if (atomic_inc_return(&slot->slot_refs) == 1) {
 		/* Took first reference to this slot; remove it from LRU list */
-		remove_slot_from_lru_list(ksm, slot);
+		blk_ksm_remove_slot_from_lru_list(slot);
 	}
 	return slot;
 }
 
+unsigned int blk_ksm_get_slot_idx(struct blk_ksm_keyslot *slot)
+{
+	return slot - slot->ksm->slots;
+}
+EXPORT_SYMBOL_GPL(blk_ksm_get_slot_idx);
+
 /**
- * keyslot_manager_get_slot_for_key() - Program a key into a keyslot.
+ * blk_ksm_get_slot_for_key() - Program a key into a keyslot.
  * @ksm: The keyslot manager to program the key into.
  * @key: Pointer to the key object to program, including the raw key, crypto
  *	 mode, and data unit size.
+ * @slot_ptr: A pointer to return the pointer of the allocated keyslot.
  *
  * Get a keyslot that's been programmed with the specified key.  If one already
  * exists, return it with incremented refcount.  Otherwise, wait for a keyslot
  * to become idle and program it.
  *
  * Context: Process context. Takes and releases ksm->lock.
- * Return: The keyslot on success, else a -errno value.
+ * Return: BLK_STS_OK on success (and keyslot is set to the pointer of the
+ *	   allocated keyslot), or some other blk_status_t otherwise (and
+ *	   keyslot is set to NULL).
  */
-int keyslot_manager_get_slot_for_key(struct keyslot_manager *ksm,
-				     const struct blk_crypto_key *key)
+blk_status_t blk_ksm_get_slot_for_key(struct blk_keyslot_manager *ksm,
+				      const struct blk_crypto_key *key,
+				      struct blk_ksm_keyslot **slot_ptr)
 {
-	int slot;
+	struct blk_ksm_keyslot *slot;
+	int slot_idx;
 	int err;
-	struct keyslot *idle_slot;
 
-	if (keyslot_manager_is_passthrough(ksm))
-		return 0;
+	*slot_ptr = NULL;
+
+	if (blk_ksm_is_passthrough(ksm))
+		return BLK_STS_OK;
 
 	down_read(&ksm->lock);
-	slot = find_and_grab_keyslot(ksm, key);
+	slot = blk_ksm_find_and_grab_keyslot(ksm, key);
 	up_read(&ksm->lock);
-	if (slot != -ENOKEY)
-		return slot;
+	if (slot)
+		goto success;
 
 	for (;;) {
-		keyslot_manager_hw_enter(ksm);
-		slot = find_and_grab_keyslot(ksm, key);
-		if (slot != -ENOKEY) {
-			keyslot_manager_hw_exit(ksm);
-			return slot;
+		blk_ksm_hw_enter(ksm);
+		slot = blk_ksm_find_and_grab_keyslot(ksm, key);
+		if (slot) {
+			blk_ksm_hw_exit(ksm);
+			goto success;
 		}
 
 		/*
@@ -316,182 +264,145 @@
 		if (!list_empty(&ksm->idle_slots))
 			break;
 
-		keyslot_manager_hw_exit(ksm);
+		blk_ksm_hw_exit(ksm);
 		wait_event(ksm->idle_slots_wait_queue,
 			   !list_empty(&ksm->idle_slots));
 	}
 
-	idle_slot = list_first_entry(&ksm->idle_slots, struct keyslot,
-					     idle_slot_node);
-	slot = idle_slot - ksm->slots;
+	slot = list_first_entry(&ksm->idle_slots, struct blk_ksm_keyslot,
+				idle_slot_node);
+	slot_idx = blk_ksm_get_slot_idx(slot);
 
-	err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot);
+	err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot_idx);
 	if (err) {
 		wake_up(&ksm->idle_slots_wait_queue);
-		keyslot_manager_hw_exit(ksm);
-		return err;
+		blk_ksm_hw_exit(ksm);
+		return errno_to_blk_status(err);
 	}
 
 	/* Move this slot to the hash list for the new key. */
-	if (idle_slot->key.crypto_mode != BLK_ENCRYPTION_MODE_INVALID)
-		hlist_del(&idle_slot->hash_node);
-	hlist_add_head(&idle_slot->hash_node, hash_bucket_for_key(ksm, key));
+	if (slot->key)
+		hlist_del(&slot->hash_node);
+	slot->key = key;
+	hlist_add_head(&slot->hash_node, blk_ksm_hash_bucket_for_key(ksm, key));
 
-	atomic_set(&idle_slot->slot_refs, 1);
-	idle_slot->key = *key;
+	atomic_set(&slot->slot_refs, 1);
 
-	remove_slot_from_lru_list(ksm, slot);
+	blk_ksm_remove_slot_from_lru_list(slot);
 
-	keyslot_manager_hw_exit(ksm);
-	return slot;
+	blk_ksm_hw_exit(ksm);
+success:
+	*slot_ptr = slot;
+	return BLK_STS_OK;
 }
 
 /**
- * keyslot_manager_get_slot() - Increment the refcount on the specified slot.
- * @ksm: The keyslot manager that we want to modify.
- * @slot: The slot to increment the refcount of.
- *
- * This function assumes that there is already an active reference to that slot
- * and simply increments the refcount. This is useful when cloning a bio that
- * already has a reference to a keyslot, and we want the cloned bio to also have
- * its own reference.
+ * blk_ksm_put_slot() - Release a reference to a slot
+ * @slot: The keyslot to release the reference of.
  *
  * Context: Any context.
  */
-void keyslot_manager_get_slot(struct keyslot_manager *ksm, unsigned int slot)
+void blk_ksm_put_slot(struct blk_ksm_keyslot *slot)
 {
-	if (keyslot_manager_is_passthrough(ksm))
-		return;
-
-	if (WARN_ON(slot >= ksm->num_slots))
-		return;
-
-	WARN_ON(atomic_inc_return(&ksm->slots[slot].slot_refs) < 2);
-}
-
-/**
- * keyslot_manager_put_slot() - Release a reference to a slot
- * @ksm: The keyslot manager to release the reference from.
- * @slot: The slot to release the reference from.
- *
- * Context: Any context.
- */
-void keyslot_manager_put_slot(struct keyslot_manager *ksm, unsigned int slot)
-{
+	struct blk_keyslot_manager *ksm;
 	unsigned long flags;
 
-	if (keyslot_manager_is_passthrough(ksm))
+	if (!slot)
 		return;
 
-	if (WARN_ON(slot >= ksm->num_slots))
-		return;
+	ksm = slot->ksm;
 
-	if (atomic_dec_and_lock_irqsave(&ksm->slots[slot].slot_refs,
+	if (atomic_dec_and_lock_irqsave(&slot->slot_refs,
 					&ksm->idle_slots_lock, flags)) {
-		list_add_tail(&ksm->slots[slot].idle_slot_node,
-			      &ksm->idle_slots);
+		list_add_tail(&slot->idle_slot_node, &ksm->idle_slots);
 		spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
 		wake_up(&ksm->idle_slots_wait_queue);
 	}
 }
 
 /**
- * keyslot_manager_crypto_mode_supported() - Find out if a crypto_mode /
- *					     data unit size / is_hw_wrapped_key
- *					     combination is supported by a ksm.
+ * blk_ksm_crypto_cfg_supported() - Find out if a crypto configuration is
+ *				    supported by a ksm.
  * @ksm: The keyslot manager to check
- * @crypto_mode: The crypto mode to check for.
- * @dun_bytes: The number of bytes that will be used to specify the DUN
- * @data_unit_size: The data_unit_size for the mode.
- * @is_hw_wrapped_key: Whether a hardware-wrapped key will be used.
+ * @cfg: The crypto configuration to check for.
  *
- * Calls and returns the result of the crypto_mode_supported function specified
- * by the ksm.
+ * Checks for crypto_mode/data unit size/dun bytes support.
  *
- * Context: Process context.
- * Return: Whether or not this ksm supports the specified crypto settings.
+ * Return: Whether or not this ksm supports the specified crypto config.
  */
-bool keyslot_manager_crypto_mode_supported(struct keyslot_manager *ksm,
-					   enum blk_crypto_mode_num crypto_mode,
-					   unsigned int dun_bytes,
-					   unsigned int data_unit_size,
-					   bool is_hw_wrapped_key)
+bool blk_ksm_crypto_cfg_supported(struct blk_keyslot_manager *ksm,
+				  const struct blk_crypto_config *cfg)
 {
 	if (!ksm)
 		return false;
-	if (WARN_ON(crypto_mode >= BLK_ENCRYPTION_MODE_MAX))
+	if (!(ksm->crypto_modes_supported[cfg->crypto_mode] &
+	      cfg->data_unit_size))
 		return false;
-	if (WARN_ON(!is_power_of_2(data_unit_size)))
+	if (ksm->max_dun_bytes_supported < cfg->dun_bytes)
 		return false;
-	if (is_hw_wrapped_key) {
+	if (cfg->is_hw_wrapped) {
 		if (!(ksm->features & BLK_CRYPTO_FEATURE_WRAPPED_KEYS))
 			return false;
 	} else {
 		if (!(ksm->features & BLK_CRYPTO_FEATURE_STANDARD_KEYS))
 			return false;
 	}
-	if (!(ksm->crypto_mode_supported[crypto_mode] & data_unit_size))
-		return false;
-
-	return ksm->max_dun_bytes_supported >= dun_bytes;
+	return true;
 }
 
-/**
- * keyslot_manager_evict_key() - Evict a key from the lower layer device.
- * @ksm: The keyslot manager to evict from
- * @key: The key to evict
- *
- * Find the keyslot that the specified key was programmed into, and evict that
- * slot from the lower layer device if that slot is not currently in use.
- *
- * Context: Process context. Takes and releases ksm->lock.
- * Return: 0 on success, -EBUSY if the key is still in use, or another
- *	   -errno value on other error.
+/*
+ * This is an internal function that evicts a key from an inline encryption
+ * device that can be either a real device or the blk-crypto-fallback "device".
+ * It is used only by blk_crypto_evict_key(); see that function for details.
  */
-int keyslot_manager_evict_key(struct keyslot_manager *ksm,
-			      const struct blk_crypto_key *key)
+int blk_ksm_evict_key(struct blk_keyslot_manager *ksm,
+		      const struct blk_crypto_key *key)
 {
-	int slot;
+	struct blk_ksm_keyslot *slot;
 	int err;
-	struct keyslot *slotp;
 
-	if (keyslot_manager_is_passthrough(ksm)) {
+	if (blk_ksm_is_passthrough(ksm)) {
 		if (ksm->ksm_ll_ops.keyslot_evict) {
-			keyslot_manager_hw_enter(ksm);
+			blk_ksm_hw_enter(ksm);
 			err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, -1);
-			keyslot_manager_hw_exit(ksm);
+			blk_ksm_hw_exit(ksm);
 			return err;
 		}
 		return 0;
 	}
 
-	keyslot_manager_hw_enter(ksm);
-
-	slot = find_keyslot(ksm, key);
-	if (slot < 0) {
-		err = slot;
-		goto out_unlock;
+	blk_ksm_hw_enter(ksm);
+	slot = blk_ksm_find_keyslot(ksm, key);
+	if (!slot) {
+		/*
+		 * Not an error, since a key not in use by I/O is not guaranteed
+		 * to be in a keyslot.  There can be more keys than keyslots.
+		 */
+		err = 0;
+		goto out;
 	}
-	slotp = &ksm->slots[slot];
 
-	if (atomic_read(&slotp->slot_refs) != 0) {
+	if (WARN_ON_ONCE(atomic_read(&slot->slot_refs) != 0)) {
+		/* BUG: key is still in use by I/O */
 		err = -EBUSY;
-		goto out_unlock;
+		goto out_remove;
 	}
-	err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, slot);
-	if (err)
-		goto out_unlock;
-
-	hlist_del(&slotp->hash_node);
-	memzero_explicit(&slotp->key, sizeof(slotp->key));
-	err = 0;
-out_unlock:
-	keyslot_manager_hw_exit(ksm);
+	err = ksm->ksm_ll_ops.keyslot_evict(ksm, key,
+					    blk_ksm_get_slot_idx(slot));
+out_remove:
+	/*
+	 * Callers free the key even on error, so unlink the key from the hash
+	 * table and clear slot->key even on error.
+	 */
+	hlist_del(&slot->hash_node);
+	slot->key = NULL;
+out:
+	blk_ksm_hw_exit(ksm);
 	return err;
 }
 
 /**
- * keyslot_manager_reprogram_all_keys() - Re-program all keyslots.
+ * blk_ksm_reprogram_all_keys() - Re-program all keyslots.
  * @ksm: The keyslot manager
  *
  * Re-program all keyslots that are supposed to have a key programmed.  This is
@@ -499,133 +410,57 @@
  *
  * Context: Process context. Takes and releases ksm->lock.
  */
-void keyslot_manager_reprogram_all_keys(struct keyslot_manager *ksm)
+void blk_ksm_reprogram_all_keys(struct blk_keyslot_manager *ksm)
 {
 	unsigned int slot;
 
-	if (WARN_ON(keyslot_manager_is_passthrough(ksm)))
+	if (blk_ksm_is_passthrough(ksm))
 		return;
 
 	/* This is for device initialization, so don't resume the device */
 	down_write(&ksm->lock);
 	for (slot = 0; slot < ksm->num_slots; slot++) {
-		const struct keyslot *slotp = &ksm->slots[slot];
+		const struct blk_crypto_key *key = ksm->slots[slot].key;
 		int err;
 
-		if (slotp->key.crypto_mode == BLK_ENCRYPTION_MODE_INVALID)
+		if (!key)
 			continue;
 
-		err = ksm->ksm_ll_ops.keyslot_program(ksm, &slotp->key, slot);
+		err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot);
 		WARN_ON(err);
 	}
 	up_write(&ksm->lock);
 }
-EXPORT_SYMBOL_GPL(keyslot_manager_reprogram_all_keys);
+EXPORT_SYMBOL_GPL(blk_ksm_reprogram_all_keys);
 
-/**
- * keyslot_manager_private() - return the private data stored with ksm
- * @ksm: The keyslot manager
- *
- * Returns the private data passed to the ksm when it was created.
- */
-void *keyslot_manager_private(struct keyslot_manager *ksm)
+void blk_ksm_destroy(struct blk_keyslot_manager *ksm)
 {
-	return ksm->ll_priv_data;
-}
-EXPORT_SYMBOL_GPL(keyslot_manager_private);
-
-void keyslot_manager_destroy(struct keyslot_manager *ksm)
-{
-	if (ksm) {
-		kvfree(ksm->slot_hashtable);
-		memzero_explicit(ksm, struct_size(ksm, slots, ksm->num_slots));
-		kvfree(ksm);
-	}
-}
-EXPORT_SYMBOL_GPL(keyslot_manager_destroy);
-
-/**
- * keyslot_manager_create_passthrough() - Create a passthrough keyslot manager
- * @dev: Device for runtime power management (NULL if none)
- * @ksm_ll_ops: The struct keyslot_mgmt_ll_ops
- * @features: Bitmask of BLK_CRYPTO_FEATURE_* flags
- * @crypto_mode_supported: Bitmasks for supported encryption modes
- * @ll_priv_data: Private data passed as is to the functions in ksm_ll_ops.
- *
- * Allocate memory for and initialize a passthrough keyslot manager.
- * Called by e.g. storage drivers to set up a keyslot manager in their
- * request_queue, when the storage driver wants to manage its keys by itself.
- * This is useful for inline encryption hardware that don't have a small fixed
- * number of keyslots, and for layered devices.
- *
- * See keyslot_manager_create() for more details about the parameters.
- *
- * Context: This function may sleep
- * Return: Pointer to constructed keyslot manager or NULL on error.
- */
-struct keyslot_manager *keyslot_manager_create_passthrough(
-	struct device *dev,
-	const struct keyslot_mgmt_ll_ops *ksm_ll_ops,
-	unsigned int features,
-	const unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX],
-	void *ll_priv_data)
-{
-	struct keyslot_manager *ksm;
-
-	ksm = kzalloc(sizeof(*ksm), GFP_KERNEL);
 	if (!ksm)
-		return NULL;
-
-	ksm->ksm_ll_ops = *ksm_ll_ops;
-	ksm->features = features;
-	memcpy(ksm->crypto_mode_supported, crypto_mode_supported,
-	       sizeof(ksm->crypto_mode_supported));
-	ksm->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
-	ksm->ll_priv_data = ll_priv_data;
-	keyslot_manager_set_dev(ksm, dev);
-
-	init_rwsem(&ksm->lock);
-
-	return ksm;
+		return;
+	kvfree(ksm->slot_hashtable);
+	kvfree_sensitive(ksm->slots, sizeof(ksm->slots[0]) * ksm->num_slots);
+	memzero_explicit(ksm, sizeof(*ksm));
 }
-EXPORT_SYMBOL_GPL(keyslot_manager_create_passthrough);
+EXPORT_SYMBOL_GPL(blk_ksm_destroy);
 
-/**
- * keyslot_manager_intersect_modes() - restrict supported modes by child device
- * @parent: The keyslot manager for parent device
- * @child: The keyslot manager for child device, or NULL
- *
- * Clear any crypto mode support bits in @parent that aren't set in @child.
- * If @child is NULL, then all parent bits are cleared.
- *
- * Only use this when setting up the keyslot manager for a layered device,
- * before it's been exposed yet.
- */
-void keyslot_manager_intersect_modes(struct keyslot_manager *parent,
-				     const struct keyslot_manager *child)
+bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q)
 {
-	if (child) {
-		unsigned int i;
-
-		parent->features &= child->features;
-		parent->max_dun_bytes_supported =
-			min(parent->max_dun_bytes_supported,
-			    child->max_dun_bytes_supported);
-		for (i = 0; i < ARRAY_SIZE(child->crypto_mode_supported); i++) {
-			parent->crypto_mode_supported[i] &=
-				child->crypto_mode_supported[i];
-		}
-	} else {
-		parent->features = 0;
-		parent->max_dun_bytes_supported = 0;
-		memset(parent->crypto_mode_supported, 0,
-		       sizeof(parent->crypto_mode_supported));
+	if (blk_integrity_queue_supports_integrity(q)) {
+		pr_warn("Integrity and hardware inline encryption are not supported together. Disabling hardware inline encryption.\n");
+		return false;
 	}
+	q->ksm = ksm;
+	return true;
 }
-EXPORT_SYMBOL_GPL(keyslot_manager_intersect_modes);
+EXPORT_SYMBOL_GPL(blk_ksm_register);
+
+void blk_ksm_unregister(struct request_queue *q)
+{
+	q->ksm = NULL;
+}
 
 /**
- * keyslot_manager_derive_raw_secret() - Derive software secret from wrapped key
+ * blk_ksm_derive_raw_secret() - Derive software secret from wrapped key
  * @ksm: The keyslot manager
  * @wrapped_key: The wrapped key
  * @wrapped_key_size: Size of the wrapped key in bytes
@@ -641,23 +476,154 @@
  * Return: 0 on success, -EOPNOTSUPP if hardware-wrapped keys are unsupported,
  *	   or another -errno code.
  */
-int keyslot_manager_derive_raw_secret(struct keyslot_manager *ksm,
-				      const u8 *wrapped_key,
-				      unsigned int wrapped_key_size,
-				      u8 *secret, unsigned int secret_size)
+int blk_ksm_derive_raw_secret(struct blk_keyslot_manager *ksm,
+			      const u8 *wrapped_key,
+			      unsigned int wrapped_key_size,
+			      u8 *secret, unsigned int secret_size)
 {
 	int err;
 
 	if (ksm->ksm_ll_ops.derive_raw_secret) {
-		keyslot_manager_hw_enter(ksm);
+		blk_ksm_hw_enter(ksm);
 		err = ksm->ksm_ll_ops.derive_raw_secret(ksm, wrapped_key,
 							wrapped_key_size,
 							secret, secret_size);
-		keyslot_manager_hw_exit(ksm);
+		blk_ksm_hw_exit(ksm);
 	} else {
 		err = -EOPNOTSUPP;
 	}
 
 	return err;
 }
-EXPORT_SYMBOL_GPL(keyslot_manager_derive_raw_secret);
+EXPORT_SYMBOL_GPL(blk_ksm_derive_raw_secret);
+
+/**
+ * blk_ksm_intersect_modes() - restrict supported modes by child device
+ * @parent: The keyslot manager for parent device
+ * @child: The keyslot manager for child device, or NULL
+ *
+ * Clear any crypto mode support bits in @parent that aren't set in @child.
+ * If @child is NULL, then all parent bits are cleared.
+ *
+ * Only use this when setting up the keyslot manager for a layered device,
+ * before it's been exposed yet.
+ */
+void blk_ksm_intersect_modes(struct blk_keyslot_manager *parent,
+			     const struct blk_keyslot_manager *child)
+{
+	if (child) {
+		unsigned int i;
+
+		parent->max_dun_bytes_supported =
+			min(parent->max_dun_bytes_supported,
+			    child->max_dun_bytes_supported);
+		for (i = 0; i < ARRAY_SIZE(child->crypto_modes_supported);
+		     i++) {
+			parent->crypto_modes_supported[i] &=
+				child->crypto_modes_supported[i];
+		}
+		parent->features &= child->features;
+	} else {
+		parent->max_dun_bytes_supported = 0;
+		memset(parent->crypto_modes_supported, 0,
+		       sizeof(parent->crypto_modes_supported));
+		parent->features = 0;
+	}
+}
+EXPORT_SYMBOL_GPL(blk_ksm_intersect_modes);
+
+/**
+ * blk_ksm_is_superset() - Check if a KSM supports a superset of crypto modes
+ *			   and DUN bytes that another KSM supports. Here,
+ *			   "superset" refers to the mathematical meaning of the
+ *			   word - i.e. if two KSMs have the *same* capabilities,
+ *			   they *are* considered supersets of each other.
+ * @ksm_superset: The KSM that we want to verify is a superset
+ * @ksm_subset: The KSM that we want to verify is a subset
+ *
+ * Return: True if @ksm_superset supports a superset of the crypto modes and DUN
+ *	   bytes that @ksm_subset supports.
+ */
+bool blk_ksm_is_superset(struct blk_keyslot_manager *ksm_superset,
+			 struct blk_keyslot_manager *ksm_subset)
+{
+	int i;
+
+	if (!ksm_subset)
+		return true;
+
+	if (!ksm_superset)
+		return false;
+
+	for (i = 0; i < ARRAY_SIZE(ksm_superset->crypto_modes_supported); i++) {
+		if (ksm_subset->crypto_modes_supported[i] &
+		    (~ksm_superset->crypto_modes_supported[i])) {
+			return false;
+		}
+	}
+
+	if (ksm_subset->max_dun_bytes_supported >
+	    ksm_superset->max_dun_bytes_supported) {
+		return false;
+	}
+
+	if (ksm_subset->features & ~ksm_superset->features)
+		return false;
+
+	return true;
+}
+EXPORT_SYMBOL_GPL(blk_ksm_is_superset);
+
+/**
+ * blk_ksm_update_capabilities() - Update the restrictions of a KSM to those of
+ *				   another KSM
+ * @target_ksm: The KSM whose restrictions to update.
+ * @reference_ksm: The KSM to whose restrictions this function will update
+ *		   @target_ksm's restrictions to.
+ *
+ * Blk-crypto requires that crypto capabilities that were
+ * advertised when a bio was created continue to be supported by the
+ * device until that bio is ended. This is turn means that a device cannot
+ * shrink its advertised crypto capabilities without any explicit
+ * synchronization with upper layers. So if there's no such explicit
+ * synchronization, @reference_ksm must support all the crypto capabilities that
+ * @target_ksm does
+ * (i.e. we need blk_ksm_is_superset(@reference_ksm, @target_ksm) == true).
+ *
+ * Note also that as long as the crypto capabilities are being expanded, the
+ * order of updates becoming visible is not important because it's alright
+ * for blk-crypto to see stale values - they only cause blk-crypto to
+ * believe that a crypto capability isn't supported when it actually is (which
+ * might result in blk-crypto-fallback being used if available, or the bio being
+ * failed).
+ */
+void blk_ksm_update_capabilities(struct blk_keyslot_manager *target_ksm,
+				 struct blk_keyslot_manager *reference_ksm)
+{
+	memcpy(target_ksm->crypto_modes_supported,
+	       reference_ksm->crypto_modes_supported,
+	       sizeof(target_ksm->crypto_modes_supported));
+
+	target_ksm->max_dun_bytes_supported =
+				reference_ksm->max_dun_bytes_supported;
+
+	target_ksm->features = reference_ksm->features;
+}
+EXPORT_SYMBOL_GPL(blk_ksm_update_capabilities);
+
+/**
+ * blk_ksm_init_passthrough() - Init a passthrough keyslot manager
+ * @ksm: The keyslot manager to init
+ *
+ * Initialize a passthrough keyslot manager.
+ * Called by e.g. storage drivers to set up a keyslot manager in their
+ * request_queue, when the storage driver wants to manage its keys by itself.
+ * This is useful for inline encryption hardware that doesn't have the concept
+ * of keyslots, and for layered devices.
+ */
+void blk_ksm_init_passthrough(struct blk_keyslot_manager *ksm)
+{
+	memset(ksm, 0, sizeof(*ksm));
+	init_rwsem(&ksm->lock);
+}
+EXPORT_SYMBOL_GPL(blk_ksm_init_passthrough);

--
Gitblit v1.6.2