From 1c055e55a242a33e574e48be530e06770a210dcd Mon Sep 17 00:00:00 2001 From: hc <hc@nodka.com> Date: Mon, 19 Feb 2024 03:26:26 +0000 Subject: [PATCH] add r8169 read mac form eeprom --- kernel/drivers/dma-buf/dma-fence.c | 407 ++++++++++++++++++++++++++++++++++++++++++++++++++-------- 1 files changed, 351 insertions(+), 56 deletions(-) diff --git a/kernel/drivers/dma-buf/dma-fence.c b/kernel/drivers/dma-buf/dma-fence.c index 8586cc0..d64fc03 100644 --- a/kernel/drivers/dma-buf/dma-fence.c +++ b/kernel/drivers/dma-buf/dma-fence.c @@ -1,3 +1,4 @@ +// SPDX-License-Identifier: GPL-2.0-only /* * Fence mechanism for dma-buf and to allow for asynchronous dma access * @@ -7,15 +8,6 @@ * Authors: * Rob Clark <robdclark@gmail.com> * Maarten Lankhorst <maarten.lankhorst@canonical.com> - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. */ #include <linux/slab.h> @@ -29,6 +21,10 @@ EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit); EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal); +EXPORT_TRACEPOINT_SYMBOL(dma_fence_signaled); + +static DEFINE_SPINLOCK(dma_fence_stub_lock); +static struct dma_fence dma_fence_stub; /* * fence context counter: each execution context should have its own @@ -36,7 +32,7 @@ * context or not. One device can have multiple separate contexts, * and they're used if some engine can run independently of another. */ -static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(0); +static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(1); /** * DOC: DMA fences overview @@ -64,9 +60,86 @@ * * - Then there's also implicit fencing, where the synchronization points are * implicitly passed around as part of shared &dma_buf instances. Such - * implicit fences are stored in &struct reservation_object through the + * implicit fences are stored in &struct dma_resv through the * &dma_buf.resv pointer. */ + +/** + * DOC: fence cross-driver contract + * + * Since &dma_fence provide a cross driver contract, all drivers must follow the + * same rules: + * + * * Fences must complete in a reasonable time. Fences which represent kernels + * and shaders submitted by userspace, which could run forever, must be backed + * up by timeout and gpu hang recovery code. Minimally that code must prevent + * further command submission and force complete all in-flight fences, e.g. + * when the driver or hardware do not support gpu reset, or if the gpu reset + * failed for some reason. Ideally the driver supports gpu recovery which only + * affects the offending userspace context, and no other userspace + * submissions. + * + * * Drivers may have different ideas of what completion within a reasonable + * time means. Some hang recovery code uses a fixed timeout, others a mix + * between observing forward progress and increasingly strict timeouts. + * Drivers should not try to second guess timeout handling of fences from + * other drivers. + * + * * To ensure there's no deadlocks of dma_fence_wait() against other locks + * drivers should annotate all code required to reach dma_fence_signal(), + * which completes the fences, with dma_fence_begin_signalling() and + * dma_fence_end_signalling(). + * + * * Drivers are allowed to call dma_fence_wait() while holding dma_resv_lock(). + * This means any code required for fence completion cannot acquire a + * &dma_resv lock. Note that this also pulls in the entire established + * locking hierarchy around dma_resv_lock() and dma_resv_unlock(). + * + * * Drivers are allowed to call dma_fence_wait() from their &shrinker + * callbacks. This means any code required for fence completion cannot + * allocate memory with GFP_KERNEL. + * + * * Drivers are allowed to call dma_fence_wait() from their &mmu_notifier + * respectively &mmu_interval_notifier callbacks. This means any code required + * for fence completeion cannot allocate memory with GFP_NOFS or GFP_NOIO. + * Only GFP_ATOMIC is permissible, which might fail. + * + * Note that only GPU drivers have a reasonable excuse for both requiring + * &mmu_interval_notifier and &shrinker callbacks at the same time as having to + * track asynchronous compute work using &dma_fence. No driver outside of + * drivers/gpu should ever call dma_fence_wait() in such contexts. + */ + +static const char *dma_fence_stub_get_name(struct dma_fence *fence) +{ + return "stub"; +} + +static const struct dma_fence_ops dma_fence_stub_ops = { + .get_driver_name = dma_fence_stub_get_name, + .get_timeline_name = dma_fence_stub_get_name, +}; + +/** + * dma_fence_get_stub - return a signaled fence + * + * Return a stub fence which is already signaled. + */ +struct dma_fence *dma_fence_get_stub(void) +{ + spin_lock(&dma_fence_stub_lock); + if (!dma_fence_stub.ops) { + dma_fence_init(&dma_fence_stub, + &dma_fence_stub_ops, + &dma_fence_stub_lock, + 0, 0); + dma_fence_signal_locked(&dma_fence_stub); + } + spin_unlock(&dma_fence_stub_lock); + + return dma_fence_get(&dma_fence_stub); +} +EXPORT_SYMBOL(dma_fence_get_stub); /** * dma_fence_context_alloc - allocate an array of fence contexts @@ -79,9 +152,241 @@ u64 dma_fence_context_alloc(unsigned num) { WARN_ON(!num); - return atomic64_add_return(num, &dma_fence_context_counter) - num; + return atomic64_fetch_add(num, &dma_fence_context_counter); } EXPORT_SYMBOL(dma_fence_context_alloc); + +/** + * DOC: fence signalling annotation + * + * Proving correctness of all the kernel code around &dma_fence through code + * review and testing is tricky for a few reasons: + * + * * It is a cross-driver contract, and therefore all drivers must follow the + * same rules for lock nesting order, calling contexts for various functions + * and anything else significant for in-kernel interfaces. But it is also + * impossible to test all drivers in a single machine, hence brute-force N vs. + * N testing of all combinations is impossible. Even just limiting to the + * possible combinations is infeasible. + * + * * There is an enormous amount of driver code involved. For render drivers + * there's the tail of command submission, after fences are published, + * scheduler code, interrupt and workers to process job completion, + * and timeout, gpu reset and gpu hang recovery code. Plus for integration + * with core mm with have &mmu_notifier, respectively &mmu_interval_notifier, + * and &shrinker. For modesetting drivers there's the commit tail functions + * between when fences for an atomic modeset are published, and when the + * corresponding vblank completes, including any interrupt processing and + * related workers. Auditing all that code, across all drivers, is not + * feasible. + * + * * Due to how many other subsystems are involved and the locking hierarchies + * this pulls in there is extremely thin wiggle-room for driver-specific + * differences. &dma_fence interacts with almost all of the core memory + * handling through page fault handlers via &dma_resv, dma_resv_lock() and + * dma_resv_unlock(). On the other side it also interacts through all + * allocation sites through &mmu_notifier and &shrinker. + * + * Furthermore lockdep does not handle cross-release dependencies, which means + * any deadlocks between dma_fence_wait() and dma_fence_signal() can't be caught + * at runtime with some quick testing. The simplest example is one thread + * waiting on a &dma_fence while holding a lock:: + * + * lock(A); + * dma_fence_wait(B); + * unlock(A); + * + * while the other thread is stuck trying to acquire the same lock, which + * prevents it from signalling the fence the previous thread is stuck waiting + * on:: + * + * lock(A); + * unlock(A); + * dma_fence_signal(B); + * + * By manually annotating all code relevant to signalling a &dma_fence we can + * teach lockdep about these dependencies, which also helps with the validation + * headache since now lockdep can check all the rules for us:: + * + * cookie = dma_fence_begin_signalling(); + * lock(A); + * unlock(A); + * dma_fence_signal(B); + * dma_fence_end_signalling(cookie); + * + * For using dma_fence_begin_signalling() and dma_fence_end_signalling() to + * annotate critical sections the following rules need to be observed: + * + * * All code necessary to complete a &dma_fence must be annotated, from the + * point where a fence is accessible to other threads, to the point where + * dma_fence_signal() is called. Un-annotated code can contain deadlock issues, + * and due to the very strict rules and many corner cases it is infeasible to + * catch these just with review or normal stress testing. + * + * * &struct dma_resv deserves a special note, since the readers are only + * protected by rcu. This means the signalling critical section starts as soon + * as the new fences are installed, even before dma_resv_unlock() is called. + * + * * The only exception are fast paths and opportunistic signalling code, which + * calls dma_fence_signal() purely as an optimization, but is not required to + * guarantee completion of a &dma_fence. The usual example is a wait IOCTL + * which calls dma_fence_signal(), while the mandatory completion path goes + * through a hardware interrupt and possible job completion worker. + * + * * To aid composability of code, the annotations can be freely nested, as long + * as the overall locking hierarchy is consistent. The annotations also work + * both in interrupt and process context. Due to implementation details this + * requires that callers pass an opaque cookie from + * dma_fence_begin_signalling() to dma_fence_end_signalling(). + * + * * Validation against the cross driver contract is implemented by priming + * lockdep with the relevant hierarchy at boot-up. This means even just + * testing with a single device is enough to validate a driver, at least as + * far as deadlocks with dma_fence_wait() against dma_fence_signal() are + * concerned. + */ +#ifdef CONFIG_LOCKDEP +static struct lockdep_map dma_fence_lockdep_map = { + .name = "dma_fence_map" +}; + +/** + * dma_fence_begin_signalling - begin a critical DMA fence signalling section + * + * Drivers should use this to annotate the beginning of any code section + * required to eventually complete &dma_fence by calling dma_fence_signal(). + * + * The end of these critical sections are annotated with + * dma_fence_end_signalling(). + * + * Returns: + * + * Opaque cookie needed by the implementation, which needs to be passed to + * dma_fence_end_signalling(). + */ +bool dma_fence_begin_signalling(void) +{ + /* explicitly nesting ... */ + if (lock_is_held_type(&dma_fence_lockdep_map, 1)) + return true; + + /* rely on might_sleep check for soft/hardirq locks */ + if (in_atomic()) + return true; + + /* ... and non-recursive readlock */ + lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _RET_IP_); + + return false; +} +EXPORT_SYMBOL(dma_fence_begin_signalling); + +/** + * dma_fence_end_signalling - end a critical DMA fence signalling section + * @cookie: opaque cookie from dma_fence_begin_signalling() + * + * Closes a critical section annotation opened by dma_fence_begin_signalling(). + */ +void dma_fence_end_signalling(bool cookie) +{ + if (cookie) + return; + + lock_release(&dma_fence_lockdep_map, _RET_IP_); +} +EXPORT_SYMBOL(dma_fence_end_signalling); + +void __dma_fence_might_wait(void) +{ + bool tmp; + + tmp = lock_is_held_type(&dma_fence_lockdep_map, 1); + if (tmp) + lock_release(&dma_fence_lockdep_map, _THIS_IP_); + lock_map_acquire(&dma_fence_lockdep_map); + lock_map_release(&dma_fence_lockdep_map); + if (tmp) + lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _THIS_IP_); +} +#endif + + +/** + * dma_fence_signal_timestamp_locked - signal completion of a fence + * @fence: the fence to signal + * @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain + * + * Signal completion for software callbacks on a fence, this will unblock + * dma_fence_wait() calls and run all the callbacks added with + * dma_fence_add_callback(). Can be called multiple times, but since a fence + * can only go from the unsignaled to the signaled state and not back, it will + * only be effective the first time. Set the timestamp provided as the fence + * signal timestamp. + * + * Unlike dma_fence_signal_timestamp(), this function must be called with + * &dma_fence.lock held. + * + * Returns 0 on success and a negative error value when @fence has been + * signalled already. + */ +int dma_fence_signal_timestamp_locked(struct dma_fence *fence, + ktime_t timestamp) +{ + struct dma_fence_cb *cur, *tmp; + struct list_head cb_list; + + lockdep_assert_held(fence->lock); + + if (unlikely(test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, + &fence->flags))) + return -EINVAL; + + /* Stash the cb_list before replacing it with the timestamp */ + list_replace(&fence->cb_list, &cb_list); + + fence->timestamp = timestamp; + set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags); + trace_dma_fence_signaled(fence); + + list_for_each_entry_safe(cur, tmp, &cb_list, node) { + INIT_LIST_HEAD(&cur->node); + cur->func(fence, cur); + } + + return 0; +} +EXPORT_SYMBOL(dma_fence_signal_timestamp_locked); + +/** + * dma_fence_signal_timestamp - signal completion of a fence + * @fence: the fence to signal + * @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain + * + * Signal completion for software callbacks on a fence, this will unblock + * dma_fence_wait() calls and run all the callbacks added with + * dma_fence_add_callback(). Can be called multiple times, but since a fence + * can only go from the unsignaled to the signaled state and not back, it will + * only be effective the first time. Set the timestamp provided as the fence + * signal timestamp. + * + * Returns 0 on success and a negative error value when @fence has been + * signalled already. + */ +int dma_fence_signal_timestamp(struct dma_fence *fence, ktime_t timestamp) +{ + unsigned long flags; + int ret; + + if (!fence) + return -EINVAL; + + spin_lock_irqsave(fence->lock, flags); + ret = dma_fence_signal_timestamp_locked(fence, timestamp); + spin_unlock_irqrestore(fence->lock, flags); + + return ret; +} +EXPORT_SYMBOL(dma_fence_signal_timestamp); /** * dma_fence_signal_locked - signal completion of a fence @@ -101,32 +406,7 @@ */ int dma_fence_signal_locked(struct dma_fence *fence) { - struct dma_fence_cb *cur, *tmp; - int ret = 0; - - lockdep_assert_held(fence->lock); - - if (WARN_ON(!fence)) - return -EINVAL; - - if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { - ret = -EINVAL; - - /* - * we might have raced with the unlocked dma_fence_signal, - * still run through all callbacks - */ - } else { - fence->timestamp = ktime_get(); - set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags); - trace_dma_fence_signaled(fence); - } - - list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) { - list_del_init(&cur->node); - cur->func(fence, cur); - } - return ret; + return dma_fence_signal_timestamp_locked(fence, ktime_get()); } EXPORT_SYMBOL(dma_fence_signal_locked); @@ -146,28 +426,21 @@ int dma_fence_signal(struct dma_fence *fence) { unsigned long flags; + int ret; + bool tmp; if (!fence) return -EINVAL; - if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) - return -EINVAL; + tmp = dma_fence_begin_signalling(); - fence->timestamp = ktime_get(); - set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags); - trace_dma_fence_signaled(fence); + spin_lock_irqsave(fence->lock, flags); + ret = dma_fence_signal_timestamp_locked(fence, ktime_get()); + spin_unlock_irqrestore(fence->lock, flags); - if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags)) { - struct dma_fence_cb *cur, *tmp; + dma_fence_end_signalling(tmp); - spin_lock_irqsave(fence->lock, flags); - list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) { - list_del_init(&cur->node); - cur->func(fence, cur); - } - spin_unlock_irqrestore(fence->lock, flags); - } - return 0; + return ret; } EXPORT_SYMBOL(dma_fence_signal); @@ -197,6 +470,10 @@ if (WARN_ON(timeout < 0)) return -EINVAL; + might_sleep(); + + __dma_fence_might_wait(); + trace_dma_fence_wait_start(fence); if (fence->ops->wait) ret = fence->ops->wait(fence, intr, timeout); @@ -221,8 +498,26 @@ trace_dma_fence_destroy(fence); - /* Failed to signal before release, could be a refcounting issue */ - WARN_ON(!list_empty(&fence->cb_list)); + if (WARN(!list_empty(&fence->cb_list) && + !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags), + "Fence %s:%s:%llx:%llx released with pending signals!\n", + fence->ops->get_driver_name(fence), + fence->ops->get_timeline_name(fence), + fence->context, fence->seqno)) { + unsigned long flags; + + /* + * Failed to signal before release, likely a refcounting issue. + * + * This should never happen, but if it does make sure that we + * don't leave chains dangling. We set the error flag first + * so that the callbacks know this signal is due to an error. + */ + spin_lock_irqsave(fence->lock, flags); + fence->error = -EDEADLK; + dma_fence_signal_locked(fence); + spin_unlock_irqrestore(fence->lock, flags); + } if (fence->ops->release) fence->ops->release(fence); @@ -607,7 +902,7 @@ */ void dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops, - spinlock_t *lock, u64 context, unsigned seqno) + spinlock_t *lock, u64 context, u64 seqno) { BUG_ON(!lock); BUG_ON(!ops || !ops->get_driver_name || !ops->get_timeline_name); -- Gitblit v1.6.2