From 10ebd8556b7990499c896a550e3d416b444211e6 Mon Sep 17 00:00:00 2001
From: hc <hc@nodka.com>
Date: Fri, 10 May 2024 02:23:07 +0000
Subject: [PATCH] add led

---
 kernel/arch/arm64/kernel/cpufeature.c | 1966 ++++++++++++++++++++++++++++++++++++++++++++++++-----------
 1 files changed, 1,591 insertions(+), 375 deletions(-)

diff --git a/kernel/arch/arm64/kernel/cpufeature.c b/kernel/arch/arm64/kernel/cpufeature.c
index 641d064..0c17b26 100644
--- a/kernel/arch/arm64/kernel/cpufeature.c
+++ b/kernel/arch/arm64/kernel/cpufeature.c
@@ -1,42 +1,95 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  * Contains CPU feature definitions
  *
  * Copyright (C) 2015 ARM Ltd.
  *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
+ * A note for the weary kernel hacker: the code here is confusing and hard to
+ * follow! That's partly because it's solving a nasty problem, but also because
+ * there's a little bit of over-abstraction that tends to obscure what's going
+ * on behind a maze of helper functions and macros.
  *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
+ * The basic problem is that hardware folks have started gluing together CPUs
+ * with distinct architectural features; in some cases even creating SoCs where
+ * user-visible instructions are available only on a subset of the available
+ * cores. We try to address this by snapshotting the feature registers of the
+ * boot CPU and comparing these with the feature registers of each secondary
+ * CPU when bringing them up. If there is a mismatch, then we update the
+ * snapshot state to indicate the lowest-common denominator of the feature,
+ * known as the "safe" value. This snapshot state can be queried to view the
+ * "sanitised" value of a feature register.
  *
- * You should have received a copy of the GNU General Public License
- * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ * The sanitised register values are used to decide which capabilities we
+ * have in the system. These may be in the form of traditional "hwcaps"
+ * advertised to userspace or internal "cpucaps" which are used to configure
+ * things like alternative patching and static keys. While a feature mismatch
+ * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
+ * may prevent a CPU from being onlined at all.
+ *
+ * Some implementation details worth remembering:
+ *
+ * - Mismatched features are *always* sanitised to a "safe" value, which
+ *   usually indicates that the feature is not supported.
+ *
+ * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
+ *   warning when onlining an offending CPU and the kernel will be tainted
+ *   with TAINT_CPU_OUT_OF_SPEC.
+ *
+ * - Features marked as FTR_VISIBLE have their sanitised value visible to
+ *   userspace. FTR_VISIBLE features in registers that are only visible
+ *   to EL0 by trapping *must* have a corresponding HWCAP so that late
+ *   onlining of CPUs cannot lead to features disappearing at runtime.
+ *
+ * - A "feature" is typically a 4-bit register field. A "capability" is the
+ *   high-level description derived from the sanitised field value.
+ *
+ * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
+ *   scheme for fields in ID registers") to understand when feature fields
+ *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
+ *
+ * - KVM exposes its own view of the feature registers to guest operating
+ *   systems regardless of FTR_VISIBLE. This is typically driven from the
+ *   sanitised register values to allow virtual CPUs to be migrated between
+ *   arbitrary physical CPUs, but some features not present on the host are
+ *   also advertised and emulated. Look at sys_reg_descs[] for the gory
+ *   details.
+ *
+ * - If the arm64_ftr_bits[] for a register has a missing field, then this
+ *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
+ *   This is stronger than FTR_HIDDEN and can be used to hide features from
+ *   KVM guests.
  */
 
 #define pr_fmt(fmt) "CPU features: " fmt
 
 #include <linux/bsearch.h>
 #include <linux/cpumask.h>
+#include <linux/crash_dump.h>
+#include <linux/percpu.h>
 #include <linux/sort.h>
 #include <linux/stop_machine.h>
+#include <linux/sysfs.h>
 #include <linux/types.h>
 #include <linux/mm.h>
 #include <linux/cpu.h>
+#include <linux/kasan.h>
+
 #include <asm/cpu.h>
 #include <asm/cpufeature.h>
 #include <asm/cpu_ops.h>
 #include <asm/fpsimd.h>
+#include <asm/kvm_host.h>
+#include <asm/hwcap.h>
 #include <asm/mmu_context.h>
+#include <asm/mte.h>
 #include <asm/processor.h>
 #include <asm/sysreg.h>
 #include <asm/traps.h>
+#include <asm/vectors.h>
 #include <asm/virt.h>
 
-unsigned long elf_hwcap __read_mostly;
-EXPORT_SYMBOL_GPL(elf_hwcap);
+/* Kernel representation of AT_HWCAP and AT_HWCAP2 */
+static unsigned long elf_hwcap __read_mostly;
 
 #ifdef CONFIG_COMPAT
 #define COMPAT_ELF_HWCAP_DEFAULT	\
@@ -50,6 +103,33 @@
 
 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
 EXPORT_SYMBOL(cpu_hwcaps);
+static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
+
+/* Need also bit for ARM64_CB_PATCH */
+DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
+
+bool arm64_use_ng_mappings = false;
+EXPORT_SYMBOL(arm64_use_ng_mappings);
+
+DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
+
+/*
+ * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
+ * support it?
+ */
+static bool __read_mostly allow_mismatched_32bit_el0;
+
+/*
+ * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
+ * seen at least one CPU capable of 32-bit EL0.
+ */
+DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
+
+/*
+ * Mask of CPUs supporting 32-bit EL0.
+ * Only valid if arm64_mismatched_32bit_el0 is enabled.
+ */
+static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
 
 /*
  * Flag to indicate if we have computed the system wide
@@ -57,33 +137,21 @@
  * will be used to determine if a new booting CPU should
  * go through the verification process to make sure that it
  * supports the system capabilities, without using a hotplug
- * notifier.
+ * notifier. This is also used to decide if we could use
+ * the fast path for checking constant CPU caps.
  */
-static bool sys_caps_initialised;
-
-static inline void set_sys_caps_initialised(void)
+DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
+EXPORT_SYMBOL(arm64_const_caps_ready);
+static inline void finalize_system_capabilities(void)
 {
-	sys_caps_initialised = true;
+	static_branch_enable(&arm64_const_caps_ready);
 }
 
-static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
+void dump_cpu_features(void)
 {
 	/* file-wide pr_fmt adds "CPU features: " prefix */
 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
-	return 0;
 }
-
-static struct notifier_block cpu_hwcaps_notifier = {
-	.notifier_call = dump_cpu_hwcaps
-};
-
-static int __init register_cpu_hwcaps_dumper(void)
-{
-	atomic_notifier_chain_register(&panic_notifier_list,
-				       &cpu_hwcaps_notifier);
-	return 0;
-}
-__initcall(register_cpu_hwcaps_dumper);
 
 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
 EXPORT_SYMBOL(cpu_hwcap_keys);
@@ -116,12 +184,17 @@
 static bool __maybe_unused
 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
 
+static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
+
+static bool __system_matches_cap(unsigned int n);
 
 /*
  * NOTE: Any changes to the visibility of features should be kept in
  * sync with the documentation of the CPU feature register ABI.
  */
 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
+	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TLB_SHIFT, 4, 0),
 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
@@ -138,10 +211,30 @@
 };
 
 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
+	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
+		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
+		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
+		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_API_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
+		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_APA_SHIFT, 4, 0),
 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
+	ARM64_FTR_END,
+};
+
+static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64ISAR2_CLEARBHB_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_RPRES_SHIFT, 4, 0),
 	ARM64_FTR_END,
 };
 
@@ -149,6 +242,9 @@
 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_MPAM_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SEL2_SHIFT, 4, 0),
 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
@@ -163,11 +259,60 @@
 };
 
 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
-	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
+		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MTE_SHIFT, 4, ID_AA64PFR1_MTE_NI),
+	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
+	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
+				    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_BT_SHIFT, 4, 0),
+	ARM64_FTR_END,
+};
+
+static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
+	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
+		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
+		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
+		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
+		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
+		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
+		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
+		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
+		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
+		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
 	ARM64_FTR_END,
 };
 
 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
+	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ECV_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_FGT_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EXS_SHIFT, 4, 0),
+	/*
+	 * Page size not being supported at Stage-2 is not fatal. You
+	 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
+	 * your favourite nesting hypervisor.
+	 *
+	 * There is a small corner case where the hypervisor explicitly
+	 * advertises a given granule size at Stage-2 (value 2) on some
+	 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
+	 * vCPUs. Although this is not forbidden by the architecture, it
+	 * indicates that the hypervisor is being silly (or buggy).
+	 *
+	 * We make no effort to cope with this and pretend that if these
+	 * fields are inconsistent across vCPUs, then it isn't worth
+	 * trying to bring KVM up.
+	 */
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_2_SHIFT, 4, 1),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_2_SHIFT, 4, 1),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_2_SHIFT, 4, 1),
 	/*
 	 * We already refuse to boot CPUs that don't support our configured
 	 * page size, so we can only detect mismatches for a page size other
@@ -193,6 +338,11 @@
 };
 
 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
+	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_AFP_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_ETS_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_TWED_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_XNX_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_SPECSEI_SHIFT, 4, 0),
 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
@@ -203,10 +353,18 @@
 };
 
 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EVT_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_BBM_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_TTL_SHIFT, 4, 0),
 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IDS_SHIFT, 4, 0),
 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_ST_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_NV_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CCIDX_SHIFT, 4, 0),
 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
-	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
@@ -225,30 +383,33 @@
 	 * make use of *minLine.
 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
 	 */
-	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
+	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_L1IP_SHIFT, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
 	ARM64_FTR_END,
 };
 
+static struct arm64_ftr_override __ro_after_init no_override = { };
+
 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
 	.name		= "SYS_CTR_EL0",
-	.ftr_bits	= ftr_ctr
+	.ftr_bits	= ftr_ctr,
+	.override	= &no_override,
 };
 
 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
-	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),	/* InnerShr */
-	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),	/* FCSE */
-	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
-	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),	/* TCM */
-	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),	/* ShareLvl */
-	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),	/* OuterShr */
-	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* PMSA */
-	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* VMSA */
+	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0),
+	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0),
 	ARM64_FTR_END,
 };
 
 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
-	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
+	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_DOUBLELOCK_SHIFT, 4, 0),
 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
@@ -263,17 +424,27 @@
 };
 
 static const struct arm64_ftr_bits ftr_mvfr2[] = {
-	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* FPMisc */
-	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* SIMDMisc */
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0),
 	ARM64_FTR_END,
 };
 
 static const struct arm64_ftr_bits ftr_dczid[] = {
-	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
-	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
+	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_DZP_SHIFT, 1, 1),
+	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_BS_SHIFT, 4, 0),
 	ARM64_FTR_END,
 };
 
+static const struct arm64_ftr_bits ftr_id_isar0[] = {
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0),
+	ARM64_FTR_END,
+};
 
 static const struct arm64_ftr_bits ftr_id_isar5[] = {
 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
@@ -286,27 +457,94 @@
 };
 
 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
-	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* ac2 */
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0),
+
+	/*
+	 * SpecSEI = 1 indicates that the PE might generate an SError on an
+	 * external abort on speculative read. It is safe to assume that an
+	 * SError might be generated than it will not be. Hence it has been
+	 * classified as FTR_HIGHER_SAFE.
+	 */
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0),
+	ARM64_FTR_END,
+};
+
+static const struct arm64_ftr_bits ftr_id_isar4[] = {
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0),
+	ARM64_FTR_END,
+};
+
+static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0),
+	ARM64_FTR_END,
+};
+
+static const struct arm64_ftr_bits ftr_id_isar6[] = {
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
 	ARM64_FTR_END,
 };
 
 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
-	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),		/* State3 */
-	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),		/* State2 */
-	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* State1 */
-	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* State0 */
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0),
+	ARM64_FTR_END,
+};
+
+static const struct arm64_ftr_bits ftr_id_pfr1[] = {
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0),
+	ARM64_FTR_END,
+};
+
+static const struct arm64_ftr_bits ftr_id_pfr2[] = {
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0),
 	ARM64_FTR_END,
 };
 
 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
 	/* [31:28] TraceFilt */
-	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
-	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
-	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
-	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
-	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
-	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
-	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
+	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_PERFMON_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0),
+	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0),
+	ARM64_FTR_END,
+};
+
+static const struct arm64_ftr_bits ftr_id_dfr1[] = {
+	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0),
 	ARM64_FTR_END,
 };
 
@@ -320,7 +558,7 @@
  * Common ftr bits for a 32bit register with all hidden, strict
  * attributes, with 4bit feature fields and a default safe value of
  * 0. Covers the following 32bit registers:
- * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
+ * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
  */
 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
@@ -344,12 +582,23 @@
 	ARM64_FTR_END,
 };
 
-#define ARM64_FTR_REG(id, table) {		\
-	.sys_id = id,				\
-	.reg = 	&(struct arm64_ftr_reg){	\
-		.name = #id,			\
-		.ftr_bits = &((table)[0]),	\
+#define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) {	\
+		.sys_id = id,					\
+		.reg = 	&(struct arm64_ftr_reg){		\
+			.name = id_str,				\
+			.override = (ovr),			\
+			.ftr_bits = &((table)[0]),		\
 	}}
+
+#define ARM64_FTR_REG_OVERRIDE(id, table, ovr)	\
+	__ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
+
+#define ARM64_FTR_REG(id, table)		\
+	__ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
+
+struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
+struct arm64_ftr_override __ro_after_init id_aa64pfr1_override;
+struct arm64_ftr_override __ro_after_init id_aa64isar1_override;
 
 static const struct __ftr_reg_entry {
 	u32			sys_id;
@@ -358,7 +607,7 @@
 
 	/* Op1 = 0, CRn = 0, CRm = 1 */
 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
-	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
+	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
@@ -366,23 +615,28 @@
 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
 
 	/* Op1 = 0, CRn = 0, CRm = 2 */
-	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
+	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
-	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
+	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
+	ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
 
 	/* Op1 = 0, CRn = 0, CRm = 3 */
 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
+	ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
+	ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
+	ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
 
 	/* Op1 = 0, CRn = 0, CRm = 4 */
 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
-	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
-	ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
+	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
+			       &id_aa64pfr1_override),
+	ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
 
 	/* Op1 = 0, CRn = 0, CRm = 5 */
 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
@@ -390,11 +644,14 @@
 
 	/* Op1 = 0, CRn = 0, CRm = 6 */
 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
-	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
+	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
+			       &id_aa64isar1_override),
+	ARM64_FTR_REG(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2),
 
 	/* Op1 = 0, CRn = 0, CRm = 7 */
 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
-	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
+	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
+			       &id_aa64mmfr1_override),
 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
 
 	/* Op1 = 0, CRn = 1, CRm = 2 */
@@ -414,16 +671,16 @@
 }
 
 /*
- * get_arm64_ftr_reg - Lookup a feature register entry using its
- * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
- * ascending order of sys_id , we use binary search to find a matching
+ * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
+ * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
+ * ascending order of sys_id, we use binary search to find a matching
  * entry.
  *
  * returns - Upon success,  matching ftr_reg entry for id.
  *         - NULL on failure. It is upto the caller to decide
  *	     the impact of a failure.
  */
-static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
+static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
 {
 	const struct __ftr_reg_entry *ret;
 
@@ -435,6 +692,27 @@
 	if (ret)
 		return ret->reg;
 	return NULL;
+}
+
+/*
+ * get_arm64_ftr_reg - Looks up a feature register entry using
+ * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
+ *
+ * returns - Upon success,  matching ftr_reg entry for id.
+ *         - NULL on failure but with an WARN_ON().
+ */
+static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
+{
+	struct arm64_ftr_reg *reg;
+
+	reg = get_arm64_ftr_reg_nowarn(sys_id);
+
+	/*
+	 * Requesting a non-existent register search is an error. Warn
+	 * and let the caller handle it.
+	 */
+	WARN_ON(!reg);
+	return reg;
 }
 
 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
@@ -462,7 +740,7 @@
 	case FTR_HIGHER_OR_ZERO_SAFE:
 		if (!cur || !new)
 			break;
-		/* Fallthrough */
+		fallthrough;
 	case FTR_HIGHER_SAFE:
 		ret = new > cur ? new : cur;
 		break;
@@ -475,11 +753,52 @@
 
 static void __init sort_ftr_regs(void)
 {
-	int i;
+	unsigned int i;
 
-	/* Check that the array is sorted so that we can do the binary search */
-	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
+	for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
+		const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
+		const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
+		unsigned int j = 0;
+
+		/*
+		 * Features here must be sorted in descending order with respect
+		 * to their shift values and should not overlap with each other.
+		 */
+		for (; ftr_bits->width != 0; ftr_bits++, j++) {
+			unsigned int width = ftr_reg->ftr_bits[j].width;
+			unsigned int shift = ftr_reg->ftr_bits[j].shift;
+			unsigned int prev_shift;
+
+			WARN((shift  + width) > 64,
+				"%s has invalid feature at shift %d\n",
+				ftr_reg->name, shift);
+
+			/*
+			 * Skip the first feature. There is nothing to
+			 * compare against for now.
+			 */
+			if (j == 0)
+				continue;
+
+			prev_shift = ftr_reg->ftr_bits[j - 1].shift;
+			WARN((shift + width) > prev_shift,
+				"%s has feature overlap at shift %d\n",
+				ftr_reg->name, shift);
+		}
+
+		/*
+		 * Skip the first register. There is nothing to
+		 * compare against for now.
+		 */
+		if (i == 0)
+			continue;
+		/*
+		 * Registers here must be sorted in ascending order with respect
+		 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
+		 * to work correctly.
+		 */
 		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
+	}
 }
 
 /*
@@ -488,7 +807,7 @@
  * Any bits that are not covered by an arm64_ftr_bits entry are considered
  * RES0 for the system-wide value, and must strictly match.
  */
-static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
+static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
 {
 	u64 val = 0;
 	u64 strict_mask = ~0x0ULL;
@@ -498,11 +817,39 @@
 	const struct arm64_ftr_bits *ftrp;
 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
 
-	BUG_ON(!reg);
+	if (!reg)
+		return;
 
-	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
+	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
 		u64 ftr_mask = arm64_ftr_mask(ftrp);
 		s64 ftr_new = arm64_ftr_value(ftrp, new);
+		s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
+
+		if ((ftr_mask & reg->override->mask) == ftr_mask) {
+			s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
+			char *str = NULL;
+
+			if (ftr_ovr != tmp) {
+				/* Unsafe, remove the override */
+				reg->override->mask &= ~ftr_mask;
+				reg->override->val &= ~ftr_mask;
+				tmp = ftr_ovr;
+				str = "ignoring override";
+			} else if (ftr_new != tmp) {
+				/* Override was valid */
+				ftr_new = tmp;
+				str = "forced";
+			} else if (ftr_ovr == tmp) {
+				/* Override was the safe value */
+				str = "already set";
+			}
+
+			if (str)
+				pr_warn("%s[%d:%d]: %s to %llx\n",
+					reg->name,
+					ftrp->shift + ftrp->width - 1,
+					ftrp->shift, str, tmp);
+		}
 
 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
 
@@ -525,7 +872,55 @@
 }
 
 extern const struct arm64_cpu_capabilities arm64_errata[];
+static const struct arm64_cpu_capabilities arm64_features[];
+
+static void __init
+init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
+{
+	for (; caps->matches; caps++) {
+		if (WARN(caps->capability >= ARM64_NCAPS,
+			"Invalid capability %d\n", caps->capability))
+			continue;
+		if (WARN(cpu_hwcaps_ptrs[caps->capability],
+			"Duplicate entry for capability %d\n",
+			caps->capability))
+			continue;
+		cpu_hwcaps_ptrs[caps->capability] = caps;
+	}
+}
+
+static void __init init_cpu_hwcaps_indirect_list(void)
+{
+	init_cpu_hwcaps_indirect_list_from_array(arm64_features);
+	init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
+}
+
 static void __init setup_boot_cpu_capabilities(void);
+
+static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
+{
+	init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
+	init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
+	init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
+	init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
+	init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
+	init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
+	init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
+	init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
+	init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
+	init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
+	init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
+	init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
+	init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
+	init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
+	init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
+	init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
+	init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
+	init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
+	init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
+	init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
+	init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
+}
 
 void __init init_cpu_features(struct cpuinfo_arm64 *info)
 {
@@ -539,6 +934,7 @@
 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
+	init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
@@ -546,29 +942,19 @@
 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
 
-	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
-		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
-		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
-		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
-		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
-		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
-		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
-		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
-		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
-		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
-		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
-		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
-		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
-		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
-		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
-		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
-		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
-	}
+	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
+		init_32bit_cpu_features(&info->aarch32);
 
 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
 		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
 		sve_init_vq_map();
 	}
+
+	/*
+	 * Initialize the indirect array of CPU hwcaps capabilities pointers
+	 * before we handle the boot CPU below.
+	 */
+	init_cpu_hwcaps_indirect_list();
 
 	/*
 	 * Detect and enable early CPU capabilities based on the boot CPU,
@@ -598,13 +984,121 @@
 {
 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
 
-	BUG_ON(!regp);
+	if (!regp)
+		return 0;
+
 	update_cpu_ftr_reg(regp, val);
 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
 		return 0;
 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
 			regp->name, boot, cpu, val);
 	return 1;
+}
+
+static void relax_cpu_ftr_reg(u32 sys_id, int field)
+{
+	const struct arm64_ftr_bits *ftrp;
+	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
+
+	if (!regp)
+		return;
+
+	for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
+		if (ftrp->shift == field) {
+			regp->strict_mask &= ~arm64_ftr_mask(ftrp);
+			break;
+		}
+	}
+
+	/* Bogus field? */
+	WARN_ON(!ftrp->width);
+}
+
+static void update_mismatched_32bit_el0_cpu_features(struct cpuinfo_arm64 *info,
+						     struct cpuinfo_arm64 *boot)
+{
+	static bool boot_cpu_32bit_regs_overridden = false;
+
+	if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
+		return;
+
+	if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
+		return;
+
+	boot->aarch32 = info->aarch32;
+	init_32bit_cpu_features(&boot->aarch32);
+	boot_cpu_32bit_regs_overridden = true;
+}
+
+static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
+				     struct cpuinfo_32bit *boot)
+{
+	int taint = 0;
+	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
+
+	/*
+	 * If we don't have AArch32 at EL1, then relax the strictness of
+	 * EL1-dependent register fields to avoid spurious sanity check fails.
+	 */
+	if (!id_aa64pfr0_32bit_el1(pfr0)) {
+		relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT);
+		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT);
+		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT);
+		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT);
+		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT);
+		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT);
+	}
+
+	taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
+				      info->reg_id_dfr0, boot->reg_id_dfr0);
+	taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
+				      info->reg_id_dfr1, boot->reg_id_dfr1);
+	taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
+				      info->reg_id_isar0, boot->reg_id_isar0);
+	taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
+				      info->reg_id_isar1, boot->reg_id_isar1);
+	taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
+				      info->reg_id_isar2, boot->reg_id_isar2);
+	taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
+				      info->reg_id_isar3, boot->reg_id_isar3);
+	taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
+				      info->reg_id_isar4, boot->reg_id_isar4);
+	taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
+				      info->reg_id_isar5, boot->reg_id_isar5);
+	taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
+				      info->reg_id_isar6, boot->reg_id_isar6);
+
+	/*
+	 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
+	 * ACTLR formats could differ across CPUs and therefore would have to
+	 * be trapped for virtualization anyway.
+	 */
+	taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
+				      info->reg_id_mmfr0, boot->reg_id_mmfr0);
+	taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
+				      info->reg_id_mmfr1, boot->reg_id_mmfr1);
+	taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
+				      info->reg_id_mmfr2, boot->reg_id_mmfr2);
+	taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
+				      info->reg_id_mmfr3, boot->reg_id_mmfr3);
+	taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
+				      info->reg_id_mmfr4, boot->reg_id_mmfr4);
+	taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
+				      info->reg_id_mmfr5, boot->reg_id_mmfr5);
+	taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
+				      info->reg_id_pfr0, boot->reg_id_pfr0);
+	taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
+				      info->reg_id_pfr1, boot->reg_id_pfr1);
+	taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
+				      info->reg_id_pfr2, boot->reg_id_pfr2);
+	taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
+				      info->reg_mvfr0, boot->reg_mvfr0);
+	taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
+				      info->reg_mvfr1, boot->reg_mvfr1);
+	taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
+				      info->reg_mvfr2, boot->reg_mvfr2);
+
+	return taint;
 }
 
 /*
@@ -656,6 +1150,8 @@
 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
+	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
+				      info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
 
 	/*
 	 * Differing PARange support is fine as long as all peripherals and
@@ -677,61 +1173,28 @@
 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
 
-	/*
-	 * If we have AArch32, we care about 32-bit features for compat.
-	 * If the system doesn't support AArch32, don't update them.
-	 */
-	if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
-		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
-
-		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
-					info->reg_id_dfr0, boot->reg_id_dfr0);
-		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
-					info->reg_id_isar0, boot->reg_id_isar0);
-		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
-					info->reg_id_isar1, boot->reg_id_isar1);
-		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
-					info->reg_id_isar2, boot->reg_id_isar2);
-		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
-					info->reg_id_isar3, boot->reg_id_isar3);
-		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
-					info->reg_id_isar4, boot->reg_id_isar4);
-		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
-					info->reg_id_isar5, boot->reg_id_isar5);
-
-		/*
-		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
-		 * ACTLR formats could differ across CPUs and therefore would have to
-		 * be trapped for virtualization anyway.
-		 */
-		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
-					info->reg_id_mmfr0, boot->reg_id_mmfr0);
-		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
-					info->reg_id_mmfr1, boot->reg_id_mmfr1);
-		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
-					info->reg_id_mmfr2, boot->reg_id_mmfr2);
-		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
-					info->reg_id_mmfr3, boot->reg_id_mmfr3);
-		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
-					info->reg_id_pfr0, boot->reg_id_pfr0);
-		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
-					info->reg_id_pfr1, boot->reg_id_pfr1);
-		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
-					info->reg_mvfr0, boot->reg_mvfr0);
-		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
-					info->reg_mvfr1, boot->reg_mvfr1);
-		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
-					info->reg_mvfr2, boot->reg_mvfr2);
-	}
-
 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
 		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
 					info->reg_zcr, boot->reg_zcr);
 
 		/* Probe vector lengths, unless we already gave up on SVE */
 		if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
-		    !sys_caps_initialised)
+		    !system_capabilities_finalized())
 			sve_update_vq_map();
+	}
+
+	/*
+	 * If we don't have AArch32 at all then skip the checks entirely
+	 * as the register values may be UNKNOWN and we're not going to be
+	 * using them for anything.
+	 *
+	 * This relies on a sanitised view of the AArch64 ID registers
+	 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
+	 */
+	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
+		update_mismatched_32bit_el0_cpu_features(info, boot);
+		taint |= update_32bit_cpu_features(cpu, &info->aarch32,
+						   &boot->aarch32);
 	}
 
 	/*
@@ -748,40 +1211,50 @@
 {
 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
 
-	/* We shouldn't get a request for an unsupported register */
-	BUG_ON(!regp);
+	if (!regp)
+		return 0;
 	return regp->sys_val;
 }
+EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
 
 #define read_sysreg_case(r)	\
-	case r:		return read_sysreg_s(r)
+	case r:		val = read_sysreg_s(r); break;
 
 /*
  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
  * Read the system register on the current CPU
  */
-static u64 __read_sysreg_by_encoding(u32 sys_id)
+u64 __read_sysreg_by_encoding(u32 sys_id)
 {
+	struct arm64_ftr_reg *regp;
+	u64 val;
+
 	switch (sys_id) {
 	read_sysreg_case(SYS_ID_PFR0_EL1);
 	read_sysreg_case(SYS_ID_PFR1_EL1);
+	read_sysreg_case(SYS_ID_PFR2_EL1);
 	read_sysreg_case(SYS_ID_DFR0_EL1);
+	read_sysreg_case(SYS_ID_DFR1_EL1);
 	read_sysreg_case(SYS_ID_MMFR0_EL1);
 	read_sysreg_case(SYS_ID_MMFR1_EL1);
 	read_sysreg_case(SYS_ID_MMFR2_EL1);
 	read_sysreg_case(SYS_ID_MMFR3_EL1);
+	read_sysreg_case(SYS_ID_MMFR4_EL1);
+	read_sysreg_case(SYS_ID_MMFR5_EL1);
 	read_sysreg_case(SYS_ID_ISAR0_EL1);
 	read_sysreg_case(SYS_ID_ISAR1_EL1);
 	read_sysreg_case(SYS_ID_ISAR2_EL1);
 	read_sysreg_case(SYS_ID_ISAR3_EL1);
 	read_sysreg_case(SYS_ID_ISAR4_EL1);
 	read_sysreg_case(SYS_ID_ISAR5_EL1);
+	read_sysreg_case(SYS_ID_ISAR6_EL1);
 	read_sysreg_case(SYS_MVFR0_EL1);
 	read_sysreg_case(SYS_MVFR1_EL1);
 	read_sysreg_case(SYS_MVFR2_EL1);
 
 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
+	read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
@@ -789,6 +1262,7 @@
 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
+	read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
 
 	read_sysreg_case(SYS_CNTFRQ_EL0);
 	read_sysreg_case(SYS_CTR_EL0);
@@ -798,6 +1272,14 @@
 		BUG();
 		return 0;
 	}
+
+	regp  = get_arm64_ftr_reg(sys_id);
+	if (regp) {
+		val &= ~regp->override->mask;
+		val |= (regp->override->val & regp->override->mask);
+	}
+
+	return val;
 }
 
 #include <linux/irqchip/arm-gic-v3.h>
@@ -822,6 +1304,54 @@
 		val = __read_sysreg_by_encoding(entry->sys_reg);
 
 	return feature_matches(val, entry);
+}
+
+const struct cpumask *system_32bit_el0_cpumask(void)
+{
+	if (!system_supports_32bit_el0())
+		return cpu_none_mask;
+
+	if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
+		return cpu_32bit_el0_mask;
+
+	return cpu_possible_mask;
+}
+EXPORT_SYMBOL_GPL(system_32bit_el0_cpumask);
+
+static int __init parse_32bit_el0_param(char *str)
+{
+	allow_mismatched_32bit_el0 = true;
+	return 0;
+}
+early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
+
+static ssize_t aarch32_el0_show(struct device *dev,
+				struct device_attribute *attr, char *buf)
+{
+	const struct cpumask *mask = system_32bit_el0_cpumask();
+
+	return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
+}
+static const DEVICE_ATTR_RO(aarch32_el0);
+
+static int __init aarch32_el0_sysfs_init(void)
+{
+	if (!allow_mismatched_32bit_el0)
+		return 0;
+
+	return device_create_file(cpu_subsys.dev_root, &dev_attr_aarch32_el0);
+}
+device_initcall(aarch32_el0_sysfs_init);
+
+static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
+{
+	if (!has_cpuid_feature(entry, scope))
+		return allow_mismatched_32bit_el0;
+
+	if (scope == SCOPE_SYSTEM)
+		pr_info("detected: 32-bit EL0 Support\n");
+
+	return true;
 }
 
 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
@@ -865,9 +1395,21 @@
 	if (scope == SCOPE_SYSTEM)
 		ctr = arm64_ftr_reg_ctrel0.sys_val;
 	else
-		ctr = read_cpuid_cachetype();
+		ctr = read_cpuid_effective_cachetype();
 
 	return ctr & BIT(CTR_IDC_SHIFT);
+}
+
+static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
+{
+	/*
+	 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
+	 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
+	 * to the CTR_EL0 on this CPU and emulate it with the real/safe
+	 * value.
+	 */
+	if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
+		sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
 }
 
 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
@@ -883,6 +1425,60 @@
 	return ctr & BIT(CTR_DIC_SHIFT);
 }
 
+static bool __maybe_unused
+has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
+{
+	/*
+	 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
+	 * may share TLB entries with a CPU stuck in the crashed
+	 * kernel.
+	 */
+	 if (is_kdump_kernel())
+		return false;
+
+	return has_cpuid_feature(entry, scope);
+}
+
+/*
+ * This check is triggered during the early boot before the cpufeature
+ * is initialised. Checking the status on the local CPU allows the boot
+ * CPU to detect the need for non-global mappings and thus avoiding a
+ * pagetable re-write after all the CPUs are booted. This check will be
+ * anyway run on individual CPUs, allowing us to get the consistent
+ * state once the SMP CPUs are up and thus make the switch to non-global
+ * mappings if required.
+ */
+bool kaslr_requires_kpti(void)
+{
+	if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
+		return false;
+
+	/*
+	 * E0PD does a similar job to KPTI so can be used instead
+	 * where available.
+	 */
+	if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
+		u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
+		if (cpuid_feature_extract_unsigned_field(mmfr2,
+						ID_AA64MMFR2_E0PD_SHIFT))
+			return false;
+	}
+
+	/*
+	 * Systems affected by Cavium erratum 24756 are incompatible
+	 * with KPTI.
+	 */
+	if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
+		extern const struct midr_range cavium_erratum_27456_cpus[];
+
+		if (is_midr_in_range_list(read_cpuid_id(),
+					  cavium_erratum_27456_cpus))
+			return false;
+	}
+
+	return kaslr_offset() > 0;
+}
+
 static bool __meltdown_safe = true;
 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
 
@@ -893,6 +1489,7 @@
 	static const struct midr_range kpti_safe_list[] = {
 		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
 		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
+		MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
@@ -900,6 +1497,11 @@
 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
 		MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
+		MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
+		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
+		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
+		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
+		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
 		{ /* sentinel */ }
 	};
 	char const *str = "kpti command line option";
@@ -925,7 +1527,7 @@
 	}
 
 	/* Useful for KASLR robustness */
-	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && kaslr_offset() > 0) {
+	if (kaslr_requires_kpti()) {
 		if (!__kpti_forced) {
 			str = "KASLR";
 			__kpti_forced = 1;
@@ -960,10 +1562,20 @@
 	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
 	kpti_remap_fn *remap_fn;
 
-	static bool kpti_applied = false;
 	int cpu = smp_processor_id();
 
-	if (kpti_applied)
+	if (__this_cpu_read(this_cpu_vector) == vectors) {
+		const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
+
+		__this_cpu_write(this_cpu_vector, v);
+	}
+
+	/*
+	 * We don't need to rewrite the page-tables if either we've done
+	 * it already or we have KASLR enabled and therefore have not
+	 * created any global mappings at all.
+	 */
+	if (arm64_use_ng_mappings)
 		return;
 
 	remap_fn = (void *)__pa_function(idmap_kpti_install_ng_mappings);
@@ -973,7 +1585,7 @@
 	cpu_uninstall_idmap();
 
 	if (!cpu)
-		kpti_applied = true;
+		arm64_use_ng_mappings = true;
 
 	return;
 }
@@ -1004,6 +1616,7 @@
 
 	write_sysreg(tcr, tcr_el1);
 	isb();
+	local_flush_tlb_all();
 }
 
 static bool cpu_has_broken_dbm(void)
@@ -1012,6 +1625,11 @@
 	static const struct midr_range cpus[] = {
 #ifdef CONFIG_ARM64_ERRATUM_1024718
 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
+		/* Kryo4xx Silver (rdpe => r1p0) */
+		MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
+#endif
+#ifdef CONFIG_ARM64_ERRATUM_2051678
+		MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
 #endif
 		{},
 	};
@@ -1062,6 +1680,60 @@
 
 #endif
 
+#ifdef CONFIG_ARM64_AMU_EXTN
+
+/*
+ * The "amu_cpus" cpumask only signals that the CPU implementation for the
+ * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
+ * information regarding all the events that it supports. When a CPU bit is
+ * set in the cpumask, the user of this feature can only rely on the presence
+ * of the 4 fixed counters for that CPU. But this does not guarantee that the
+ * counters are enabled or access to these counters is enabled by code
+ * executed at higher exception levels (firmware).
+ */
+static struct cpumask amu_cpus __read_mostly;
+
+bool cpu_has_amu_feat(int cpu)
+{
+	return cpumask_test_cpu(cpu, &amu_cpus);
+}
+
+/* Initialize the use of AMU counters for frequency invariance */
+extern void init_cpu_freq_invariance_counters(void);
+
+static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
+{
+	if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
+		pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
+			smp_processor_id());
+		cpumask_set_cpu(smp_processor_id(), &amu_cpus);
+
+		/* 0 reference values signal broken/disabled counters */
+		if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
+			init_cpu_freq_invariance_counters();
+	}
+}
+
+static bool has_amu(const struct arm64_cpu_capabilities *cap,
+		    int __unused)
+{
+	/*
+	 * The AMU extension is a non-conflicting feature: the kernel can
+	 * safely run a mix of CPUs with and without support for the
+	 * activity monitors extension. Therefore, unconditionally enable
+	 * the capability to allow any late CPU to use the feature.
+	 *
+	 * With this feature unconditionally enabled, the cpu_enable
+	 * function will be called for all CPUs that match the criteria,
+	 * including secondary and hotplugged, marking this feature as
+	 * present on that respective CPU. The enable function will also
+	 * print a detection message.
+	 */
+
+	return true;
+}
+#endif
+
 #ifdef CONFIG_ARM64_VHE
 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
 {
@@ -1078,7 +1750,7 @@
 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
 	 * do anything here.
 	 */
-	if (!alternatives_applied)
+	if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
 }
 #endif
@@ -1091,53 +1763,174 @@
 	WARN_ON(val & (7 << 27 | 7 << 21));
 }
 
-#ifdef CONFIG_ARM64_SSBD
-static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr)
+#ifdef CONFIG_ARM64_PAN
+static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
 {
-	if (user_mode(regs))
-		return 1;
+	/*
+	 * We modify PSTATE. This won't work from irq context as the PSTATE
+	 * is discarded once we return from the exception.
+	 */
+	WARN_ON_ONCE(in_interrupt());
 
-	if (instr & BIT(PSTATE_Imm_shift))
-		regs->pstate |= PSR_SSBS_BIT;
-	else
-		regs->pstate &= ~PSR_SSBS_BIT;
+	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
+	set_pstate_pan(1);
+}
+#endif /* CONFIG_ARM64_PAN */
 
-	arm64_skip_faulting_instruction(regs, 4);
-	return 0;
+#ifdef CONFIG_ARM64_RAS_EXTN
+static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
+{
+	/* Firmware may have left a deferred SError in this register. */
+	write_sysreg_s(0, SYS_DISR_EL1);
+}
+#endif /* CONFIG_ARM64_RAS_EXTN */
+
+#ifdef CONFIG_ARM64_PTR_AUTH
+static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
+{
+	int boot_val, sec_val;
+
+	/* We don't expect to be called with SCOPE_SYSTEM */
+	WARN_ON(scope == SCOPE_SYSTEM);
+	/*
+	 * The ptr-auth feature levels are not intercompatible with lower
+	 * levels. Hence we must match ptr-auth feature level of the secondary
+	 * CPUs with that of the boot CPU. The level of boot cpu is fetched
+	 * from the sanitised register whereas direct register read is done for
+	 * the secondary CPUs.
+	 * The sanitised feature state is guaranteed to match that of the
+	 * boot CPU as a mismatched secondary CPU is parked before it gets
+	 * a chance to update the state, with the capability.
+	 */
+	boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
+					       entry->field_pos, entry->sign);
+	if (scope & SCOPE_BOOT_CPU)
+		return boot_val >= entry->min_field_value;
+	/* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
+	sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
+					      entry->field_pos, entry->sign);
+	return sec_val == boot_val;
 }
 
-static struct undef_hook ssbs_emulation_hook = {
-	.instr_mask	= ~(1U << PSTATE_Imm_shift),
-	.instr_val	= 0xd500401f | PSTATE_SSBS,
-	.fn		= ssbs_emulation_handler,
-};
-
-static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused)
+static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
+				     int scope)
 {
-	static bool undef_hook_registered = false;
-	static DEFINE_RAW_SPINLOCK(hook_lock);
-
-	raw_spin_lock(&hook_lock);
-	if (!undef_hook_registered) {
-		register_undef_hook(&ssbs_emulation_hook);
-		undef_hook_registered = true;
-	}
-	raw_spin_unlock(&hook_lock);
-
-	if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
-		sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS);
-		arm64_set_ssbd_mitigation(false);
-	} else {
-		arm64_set_ssbd_mitigation(true);
-	}
+	return has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH], scope) ||
+	       has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
 }
-#endif /* CONFIG_ARM64_SSBD */
+
+static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
+			     int __unused)
+{
+	return __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
+	       __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
+}
+#endif /* CONFIG_ARM64_PTR_AUTH */
+
+#ifdef CONFIG_ARM64_E0PD
+static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
+{
+	if (this_cpu_has_cap(ARM64_HAS_E0PD))
+		sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
+}
+#endif /* CONFIG_ARM64_E0PD */
+
+#ifdef CONFIG_ARM64_PSEUDO_NMI
+static bool enable_pseudo_nmi;
+
+static int __init early_enable_pseudo_nmi(char *p)
+{
+	return strtobool(p, &enable_pseudo_nmi);
+}
+early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
+
+static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
+				   int scope)
+{
+	return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
+}
+#endif
+
+#ifdef CONFIG_ARM64_BTI
+static void bti_enable(const struct arm64_cpu_capabilities *__unused)
+{
+	/*
+	 * Use of X16/X17 for tail-calls and trampolines that jump to
+	 * function entry points using BR is a requirement for
+	 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
+	 * So, be strict and forbid other BRs using other registers to
+	 * jump onto a PACIxSP instruction:
+	 */
+	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
+	isb();
+}
+#endif /* CONFIG_ARM64_BTI */
+
+#ifdef CONFIG_ARM64_MTE
+static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
+{
+	sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
+
+	mte_cpu_setup();
+
+	/*
+	 * Clear the tags in the zero page. This needs to be done via the
+	 * linear map which has the Tagged attribute.
+	 */
+	if (!test_and_set_bit(PG_mte_tagged, &ZERO_PAGE(0)->flags))
+		mte_clear_page_tags(lm_alias(empty_zero_page));
+
+	kasan_init_hw_tags_cpu();
+}
+#endif /* CONFIG_ARM64_MTE */
+
+#ifdef CONFIG_KVM
+static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
+{
+	if (kvm_get_mode() != KVM_MODE_PROTECTED)
+		return false;
+
+	if (is_kernel_in_hyp_mode()) {
+		pr_warn("Protected KVM not available with VHE\n");
+		return false;
+	}
+
+	return true;
+}
+#endif /* CONFIG_KVM */
+
+static void elf_hwcap_fixup(void)
+{
+#ifdef CONFIG_ARM64_ERRATUM_1742098
+	if (cpus_have_const_cap(ARM64_WORKAROUND_1742098))
+		compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
+#endif /* ARM64_ERRATUM_1742098 */
+}
+
+/* Internal helper functions to match cpu capability type */
+static bool
+cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
+{
+	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
+}
+
+static bool
+cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
+{
+	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
+}
+
+static bool
+cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
+{
+	return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
+}
 
 static const struct arm64_cpu_capabilities arm64_features[] = {
 	{
 		.desc = "GIC system register CPU interface",
 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
-		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
+		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
 		.matches = has_useable_gicv3_cpuif,
 		.sys_reg = SYS_ID_AA64PFR0_EL1,
 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
@@ -1157,7 +1950,7 @@
 		.cpu_enable = cpu_enable_pan,
 	},
 #endif /* CONFIG_ARM64_PAN */
-#if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
+#ifdef CONFIG_ARM64_LSE_ATOMICS
 	{
 		.desc = "LSE atomic instructions",
 		.capability = ARM64_HAS_LSE_ATOMICS,
@@ -1168,7 +1961,7 @@
 		.sign = FTR_UNSIGNED,
 		.min_field_value = 2,
 	},
-#endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
+#endif /* CONFIG_ARM64_LSE_ATOMICS */
 	{
 		.desc = "Software prefetching using PRFM",
 		.capability = ARM64_HAS_NO_HW_PREFETCH,
@@ -1207,15 +2000,32 @@
 	},
 #endif	/* CONFIG_ARM64_VHE */
 	{
-		.desc = "32-bit EL0 Support",
-		.capability = ARM64_HAS_32BIT_EL0,
+		.capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
-		.matches = has_cpuid_feature,
+		.matches = has_32bit_el0,
 		.sys_reg = SYS_ID_AA64PFR0_EL1,
 		.sign = FTR_UNSIGNED,
 		.field_pos = ID_AA64PFR0_EL0_SHIFT,
 		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
 	},
+#ifdef CONFIG_KVM
+	{
+		.desc = "32-bit EL1 Support",
+		.capability = ARM64_HAS_32BIT_EL1,
+		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
+		.matches = has_cpuid_feature,
+		.sys_reg = SYS_ID_AA64PFR0_EL1,
+		.sign = FTR_UNSIGNED,
+		.field_pos = ID_AA64PFR0_EL1_SHIFT,
+		.min_field_value = ID_AA64PFR0_EL1_32BIT_64BIT,
+	},
+	{
+		.desc = "Protected KVM",
+		.capability = ARM64_KVM_PROTECTED_MODE,
+		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
+		.matches = is_kvm_protected_mode,
+	},
+#endif
 	{
 		.desc = "Kernel page table isolation (KPTI)",
 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
@@ -1248,6 +2058,16 @@
 		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
 		.min_field_value = 1,
 	},
+	{
+		.desc = "Data cache clean to Point of Deep Persistence",
+		.capability = ARM64_HAS_DCPODP,
+		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
+		.matches = has_cpuid_feature,
+		.sys_reg = SYS_ID_AA64ISAR1_EL1,
+		.sign = FTR_UNSIGNED,
+		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
+		.min_field_value = 2,
+	},
 #endif
 #ifdef CONFIG_ARM64_SVE
 	{
@@ -1275,11 +2095,30 @@
 		.cpu_enable = cpu_clear_disr,
 	},
 #endif /* CONFIG_ARM64_RAS_EXTN */
+#ifdef CONFIG_ARM64_AMU_EXTN
+	{
+		/*
+		 * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
+		 * Therefore, don't provide .desc as we don't want the detection
+		 * message to be shown until at least one CPU is detected to
+		 * support the feature.
+		 */
+		.capability = ARM64_HAS_AMU_EXTN,
+		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
+		.matches = has_amu,
+		.sys_reg = SYS_ID_AA64PFR0_EL1,
+		.sign = FTR_UNSIGNED,
+		.field_pos = ID_AA64PFR0_AMU_SHIFT,
+		.min_field_value = ID_AA64PFR0_AMU,
+		.cpu_enable = cpu_amu_enable,
+	},
+#endif /* CONFIG_ARM64_AMU_EXTN */
 	{
 		.desc = "Data cache clean to the PoU not required for I/D coherence",
 		.capability = ARM64_HAS_CACHE_IDC,
 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
 		.matches = has_cache_idc,
+		.cpu_enable = cpu_emulate_effective_ctr,
 	},
 	{
 		.desc = "Instruction cache invalidation not required for I/D coherence",
@@ -1297,6 +2136,26 @@
 		.min_field_value = 1,
 		.matches = has_cpuid_feature,
 		.cpu_enable = cpu_has_fwb,
+	},
+	{
+		.desc = "ARMv8.4 Translation Table Level",
+		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
+		.capability = ARM64_HAS_ARMv8_4_TTL,
+		.sys_reg = SYS_ID_AA64MMFR2_EL1,
+		.sign = FTR_UNSIGNED,
+		.field_pos = ID_AA64MMFR2_TTL_SHIFT,
+		.min_field_value = 1,
+		.matches = has_cpuid_feature,
+	},
+	{
+		.desc = "TLB range maintenance instructions",
+		.capability = ARM64_HAS_TLB_RANGE,
+		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
+		.matches = has_cpuid_feature,
+		.sys_reg = SYS_ID_AA64ISAR0_EL1,
+		.field_pos = ID_AA64ISAR0_TLB_SHIFT,
+		.sign = FTR_UNSIGNED,
+		.min_field_value = ID_AA64ISAR0_TLB_RANGE,
 	},
 #ifdef CONFIG_ARM64_HW_AFDBM
 	{
@@ -1318,78 +2177,302 @@
 		.cpu_enable = cpu_enable_hw_dbm,
 	},
 #endif
-#ifdef CONFIG_ARM64_SSBD
+	{
+		.desc = "CRC32 instructions",
+		.capability = ARM64_HAS_CRC32,
+		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
+		.matches = has_cpuid_feature,
+		.sys_reg = SYS_ID_AA64ISAR0_EL1,
+		.field_pos = ID_AA64ISAR0_CRC32_SHIFT,
+		.min_field_value = 1,
+	},
 	{
 		.desc = "Speculative Store Bypassing Safe (SSBS)",
 		.capability = ARM64_SSBS,
-		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
+		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
 		.matches = has_cpuid_feature,
 		.sys_reg = SYS_ID_AA64PFR1_EL1,
 		.field_pos = ID_AA64PFR1_SSBS_SHIFT,
 		.sign = FTR_UNSIGNED,
 		.min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
-		.cpu_enable = cpu_enable_ssbs,
+	},
+#ifdef CONFIG_ARM64_CNP
+	{
+		.desc = "Common not Private translations",
+		.capability = ARM64_HAS_CNP,
+		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
+		.matches = has_useable_cnp,
+		.sys_reg = SYS_ID_AA64MMFR2_EL1,
+		.sign = FTR_UNSIGNED,
+		.field_pos = ID_AA64MMFR2_CNP_SHIFT,
+		.min_field_value = 1,
+		.cpu_enable = cpu_enable_cnp,
 	},
 #endif
+	{
+		.desc = "Speculation barrier (SB)",
+		.capability = ARM64_HAS_SB,
+		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
+		.matches = has_cpuid_feature,
+		.sys_reg = SYS_ID_AA64ISAR1_EL1,
+		.field_pos = ID_AA64ISAR1_SB_SHIFT,
+		.sign = FTR_UNSIGNED,
+		.min_field_value = 1,
+	},
+#ifdef CONFIG_ARM64_PTR_AUTH
+	{
+		.desc = "Address authentication (architected algorithm)",
+		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
+		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
+		.sys_reg = SYS_ID_AA64ISAR1_EL1,
+		.sign = FTR_UNSIGNED,
+		.field_pos = ID_AA64ISAR1_APA_SHIFT,
+		.min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
+		.matches = has_address_auth_cpucap,
+	},
+	{
+		.desc = "Address authentication (IMP DEF algorithm)",
+		.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
+		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
+		.sys_reg = SYS_ID_AA64ISAR1_EL1,
+		.sign = FTR_UNSIGNED,
+		.field_pos = ID_AA64ISAR1_API_SHIFT,
+		.min_field_value = ID_AA64ISAR1_API_IMP_DEF,
+		.matches = has_address_auth_cpucap,
+	},
+	{
+		.capability = ARM64_HAS_ADDRESS_AUTH,
+		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
+		.matches = has_address_auth_metacap,
+	},
+	{
+		.desc = "Generic authentication (architected algorithm)",
+		.capability = ARM64_HAS_GENERIC_AUTH_ARCH,
+		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
+		.sys_reg = SYS_ID_AA64ISAR1_EL1,
+		.sign = FTR_UNSIGNED,
+		.field_pos = ID_AA64ISAR1_GPA_SHIFT,
+		.min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
+		.matches = has_cpuid_feature,
+	},
+	{
+		.desc = "Generic authentication (IMP DEF algorithm)",
+		.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
+		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
+		.sys_reg = SYS_ID_AA64ISAR1_EL1,
+		.sign = FTR_UNSIGNED,
+		.field_pos = ID_AA64ISAR1_GPI_SHIFT,
+		.min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
+		.matches = has_cpuid_feature,
+	},
+	{
+		.capability = ARM64_HAS_GENERIC_AUTH,
+		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
+		.matches = has_generic_auth,
+	},
+#endif /* CONFIG_ARM64_PTR_AUTH */
+#ifdef CONFIG_ARM64_PSEUDO_NMI
+	{
+		/*
+		 * Depends on having GICv3
+		 */
+		.desc = "IRQ priority masking",
+		.capability = ARM64_HAS_IRQ_PRIO_MASKING,
+		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
+		.matches = can_use_gic_priorities,
+		.sys_reg = SYS_ID_AA64PFR0_EL1,
+		.field_pos = ID_AA64PFR0_GIC_SHIFT,
+		.sign = FTR_UNSIGNED,
+		.min_field_value = 1,
+	},
+#endif
+#ifdef CONFIG_ARM64_E0PD
+	{
+		.desc = "E0PD",
+		.capability = ARM64_HAS_E0PD,
+		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
+		.sys_reg = SYS_ID_AA64MMFR2_EL1,
+		.sign = FTR_UNSIGNED,
+		.field_pos = ID_AA64MMFR2_E0PD_SHIFT,
+		.matches = has_cpuid_feature,
+		.min_field_value = 1,
+		.cpu_enable = cpu_enable_e0pd,
+	},
+#endif
+#ifdef CONFIG_ARCH_RANDOM
+	{
+		.desc = "Random Number Generator",
+		.capability = ARM64_HAS_RNG,
+		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
+		.matches = has_cpuid_feature,
+		.sys_reg = SYS_ID_AA64ISAR0_EL1,
+		.field_pos = ID_AA64ISAR0_RNDR_SHIFT,
+		.sign = FTR_UNSIGNED,
+		.min_field_value = 1,
+	},
+#endif
+#ifdef CONFIG_ARM64_BTI
+	{
+		.desc = "Branch Target Identification",
+		.capability = ARM64_BTI,
+#ifdef CONFIG_ARM64_BTI_KERNEL
+		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
+#else
+		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
+#endif
+		.matches = has_cpuid_feature,
+		.cpu_enable = bti_enable,
+		.sys_reg = SYS_ID_AA64PFR1_EL1,
+		.field_pos = ID_AA64PFR1_BT_SHIFT,
+		.min_field_value = ID_AA64PFR1_BT_BTI,
+		.sign = FTR_UNSIGNED,
+	},
+#endif
+#ifdef CONFIG_ARM64_MTE
+	{
+		.desc = "Memory Tagging Extension",
+		.capability = ARM64_MTE,
+		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
+		.matches = has_cpuid_feature,
+		.sys_reg = SYS_ID_AA64PFR1_EL1,
+		.field_pos = ID_AA64PFR1_MTE_SHIFT,
+		.min_field_value = ID_AA64PFR1_MTE,
+		.sign = FTR_UNSIGNED,
+		.cpu_enable = cpu_enable_mte,
+	},
+#endif /* CONFIG_ARM64_MTE */
+	{
+		.desc = "RCpc load-acquire (LDAPR)",
+		.capability = ARM64_HAS_LDAPR,
+		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
+		.sys_reg = SYS_ID_AA64ISAR1_EL1,
+		.sign = FTR_UNSIGNED,
+		.field_pos = ID_AA64ISAR1_LRCPC_SHIFT,
+		.matches = has_cpuid_feature,
+		.min_field_value = 1,
+	},
 	{},
 };
 
+#define HWCAP_CPUID_MATCH(reg, field, s, min_value)				\
+		.matches = has_cpuid_feature,					\
+		.sys_reg = reg,							\
+		.field_pos = field,						\
+		.sign = s,							\
+		.min_field_value = min_value,
 
-#define HWCAP_CPUID_MATCH(reg, field, s, min_value)		\
-		.matches = has_cpuid_feature,			\
-		.sys_reg = reg,					\
-		.field_pos = field,				\
-		.sign = s,					\
-		.min_field_value = min_value,			\
+#define __HWCAP_CAP(name, cap_type, cap)					\
+		.desc = name,							\
+		.type = ARM64_CPUCAP_SYSTEM_FEATURE,				\
+		.hwcap_type = cap_type,						\
+		.hwcap = cap,							\
 
-#define __HWCAP_CAP(name, cap_type, cap)			\
-		.desc = name,					\
-		.type = ARM64_CPUCAP_SYSTEM_FEATURE,		\
-		.hwcap_type = cap_type,				\
-		.hwcap = cap,					\
-
-#define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)	\
-	{							\
-		__HWCAP_CAP(#cap, cap_type, cap)		\
-		HWCAP_CPUID_MATCH(reg, field, s, min_value)	\
+#define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)			\
+	{									\
+		__HWCAP_CAP(#cap, cap_type, cap)				\
+		HWCAP_CPUID_MATCH(reg, field, s, min_value)			\
 	}
 
-#define HWCAP_CAP_MATCH(match, cap_type, cap)			\
-	{							\
-		__HWCAP_CAP(#cap, cap_type, cap)		\
-		.matches = match,				\
+#define HWCAP_MULTI_CAP(list, cap_type, cap)					\
+	{									\
+		__HWCAP_CAP(#cap, cap_type, cap)				\
+		.matches = cpucap_multi_entry_cap_matches,			\
+		.match_list = list,						\
 	}
+
+#define HWCAP_CAP_MATCH(match, cap_type, cap)					\
+	{									\
+		__HWCAP_CAP(#cap, cap_type, cap)				\
+		.matches = match,						\
+	}
+
+#ifdef CONFIG_ARM64_PTR_AUTH
+static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
+	{
+		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
+				  FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
+	},
+	{
+		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
+				  FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
+	},
+	{},
+};
+
+static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
+	{
+		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
+				  FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
+	},
+	{
+		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
+				  FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
+	},
+	{},
+};
+#endif
 
 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
-	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
-	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
-	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
-	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
-	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
-	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
-	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
-	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
-	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
-	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
-	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
-	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
-	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM),
-	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FLAGM),
-	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
-	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
-	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
-	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
-	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_DIT),
-	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
-	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
-	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
-	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
-	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ILRCPC),
-	HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_USCAT),
+	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
+	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
+	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
+	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
+	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
+	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
+	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
+	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
+	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
+	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
+	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
+	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
+	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
+	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
+	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
+	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
+	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
+	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
+	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
+	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
+	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
+	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
+	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
+	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
+	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
+	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
+	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
+	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
+	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
+	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
+	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
+	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
+	HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
 #ifdef CONFIG_ARM64_SVE
-	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
+	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
+	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
+	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
+	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
+	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
+	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
+	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
+	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
+	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
+	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
+	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
 #endif
-	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, HWCAP_SSBS),
+	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
+#ifdef CONFIG_ARM64_BTI
+	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_BT_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_BT_BTI, CAP_HWCAP, KERNEL_HWCAP_BTI),
+#endif
+#ifdef CONFIG_ARM64_PTR_AUTH
+	HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
+	HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
+#endif
+#ifdef CONFIG_ARM64_MTE
+	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_MTE, CAP_HWCAP, KERNEL_HWCAP_MTE),
+#endif /* CONFIG_ARM64_MTE */
+	HWCAP_CAP(SYS_ID_AA64MMFR0_EL1, ID_AA64MMFR0_ECV_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ECV),
+	HWCAP_CAP(SYS_ID_AA64MMFR1_EL1, ID_AA64MMFR1_AFP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AFP),
+	HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_RPRES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RPRES),
 	{},
 };
 
@@ -1431,11 +2514,11 @@
 	{},
 };
 
-static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
+static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
 {
 	switch (cap->hwcap_type) {
 	case CAP_HWCAP:
-		elf_hwcap |= cap->hwcap;
+		cpu_set_feature(cap->hwcap);
 		break;
 #ifdef CONFIG_COMPAT
 	case CAP_COMPAT_HWCAP:
@@ -1458,7 +2541,7 @@
 
 	switch (cap->hwcap_type) {
 	case CAP_HWCAP:
-		rc = (elf_hwcap & cap->hwcap) != 0;
+		rc = cpu_have_feature(cap->hwcap);
 		break;
 #ifdef CONFIG_COMPAT
 	case CAP_COMPAT_HWCAP:
@@ -1476,61 +2559,58 @@
 	return rc;
 }
 
-static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
+static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
 {
 	/* We support emulation of accesses to CPU ID feature registers */
-	elf_hwcap |= HWCAP_CPUID;
+	cpu_set_named_feature(CPUID);
 	for (; hwcaps->matches; hwcaps++)
 		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
 			cap_set_elf_hwcap(hwcaps);
 }
 
-/*
- * Check if the current CPU has a given feature capability.
- * Should be called from non-preemptible context.
- */
-static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
-			       unsigned int cap)
+static void update_cpu_capabilities(u16 scope_mask)
 {
+	int i;
 	const struct arm64_cpu_capabilities *caps;
 
-	if (WARN_ON(preemptible()))
-		return false;
-
-	for (caps = cap_array; caps->matches; caps++)
-		if (caps->capability == cap)
-			return caps->matches(caps, SCOPE_LOCAL_CPU);
-
-	return false;
-}
-
-static void __update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
-				      u16 scope_mask, const char *info)
-{
 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
-	for (; caps->matches; caps++) {
-		if (!(caps->type & scope_mask) ||
+	for (i = 0; i < ARM64_NCAPS; i++) {
+		caps = cpu_hwcaps_ptrs[i];
+		if (!caps || !(caps->type & scope_mask) ||
+		    cpus_have_cap(caps->capability) ||
 		    !caps->matches(caps, cpucap_default_scope(caps)))
 			continue;
 
-		if (!cpus_have_cap(caps->capability) && caps->desc)
-			pr_info("%s %s\n", info, caps->desc);
+		if (caps->desc)
+			pr_info("detected: %s\n", caps->desc);
 		cpus_set_cap(caps->capability);
+
+		if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
+			set_bit(caps->capability, boot_capabilities);
 	}
 }
 
-static void update_cpu_capabilities(u16 scope_mask)
+/*
+ * Enable all the available capabilities on this CPU. The capabilities
+ * with BOOT_CPU scope are handled separately and hence skipped here.
+ */
+static int cpu_enable_non_boot_scope_capabilities(void *__unused)
 {
-	__update_cpu_capabilities(arm64_errata, scope_mask,
-				  "enabling workaround for");
-	__update_cpu_capabilities(arm64_features, scope_mask, "detected:");
-}
+	int i;
+	u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
 
-static int __enable_cpu_capability(void *arg)
-{
-	const struct arm64_cpu_capabilities *cap = arg;
+	for_each_available_cap(i) {
+		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
 
-	cap->cpu_enable(cap);
+		if (WARN_ON(!cap))
+			continue;
+
+		if (!(cap->type & non_boot_scope))
+			continue;
+
+		if (cap->cpu_enable)
+			cap->cpu_enable(cap);
+	}
 	return 0;
 }
 
@@ -1538,21 +2618,29 @@
  * Run through the enabled capabilities and enable() it on all active
  * CPUs
  */
-static void __init
-__enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
-			  u16 scope_mask)
+static void __init enable_cpu_capabilities(u16 scope_mask)
 {
-	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
-	for (; caps->matches; caps++) {
-		unsigned int num = caps->capability;
+	int i;
+	const struct arm64_cpu_capabilities *caps;
+	bool boot_scope;
 
-		if (!(caps->type & scope_mask) || !cpus_have_cap(num))
+	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
+	boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
+
+	for (i = 0; i < ARM64_NCAPS; i++) {
+		unsigned int num;
+
+		caps = cpu_hwcaps_ptrs[i];
+		if (!caps || !(caps->type & scope_mask))
+			continue;
+		num = caps->capability;
+		if (!cpus_have_cap(num))
 			continue;
 
 		/* Ensure cpus_have_const_cap(num) works */
 		static_branch_enable(&cpu_hwcap_keys[num]);
 
-		if (caps->cpu_enable) {
+		if (boot_scope && caps->cpu_enable)
 			/*
 			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
 			 * before any secondary CPU boots. Thus, each secondary
@@ -1561,44 +2649,37 @@
 			 * the boot CPU, for which the capability must be
 			 * enabled here. This approach avoids costly
 			 * stop_machine() calls for this case.
-			 *
-			 * Otherwise, use stop_machine() as it schedules the
-			 * work allowing us to modify PSTATE, instead of
-			 * on_each_cpu() which uses an IPI, giving us a PSTATE
-			 * that disappears when we return.
 			 */
-			if (scope_mask & SCOPE_BOOT_CPU)
-				caps->cpu_enable(caps);
-			else
-				stop_machine(__enable_cpu_capability,
-					     (void *)caps, cpu_online_mask);
-		}
+			caps->cpu_enable(caps);
 	}
-}
 
-static void __init enable_cpu_capabilities(u16 scope_mask)
-{
-	__enable_cpu_capabilities(arm64_errata, scope_mask);
-	__enable_cpu_capabilities(arm64_features, scope_mask);
+	/*
+	 * For all non-boot scope capabilities, use stop_machine()
+	 * as it schedules the work allowing us to modify PSTATE,
+	 * instead of on_each_cpu() which uses an IPI, giving us a
+	 * PSTATE that disappears when we return.
+	 */
+	if (!boot_scope)
+		stop_machine(cpu_enable_non_boot_scope_capabilities,
+			     NULL, cpu_online_mask);
 }
 
 /*
  * Run through the list of capabilities to check for conflicts.
  * If the system has already detected a capability, take necessary
  * action on this CPU.
- *
- * Returns "false" on conflicts.
  */
-static bool
-__verify_local_cpu_caps(const struct arm64_cpu_capabilities *caps,
-			u16 scope_mask)
+static void verify_local_cpu_caps(u16 scope_mask)
 {
+	int i;
 	bool cpu_has_cap, system_has_cap;
+	const struct arm64_cpu_capabilities *caps;
 
 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
 
-	for (; caps->matches; caps++) {
-		if (!(caps->type & scope_mask))
+	for (i = 0; i < ARM64_NCAPS; i++) {
+		caps = cpu_hwcaps_ptrs[i];
+		if (!caps || !(caps->type & scope_mask))
 			continue;
 
 		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
@@ -1629,20 +2710,16 @@
 		}
 	}
 
-	if (caps->matches) {
+	if (i < ARM64_NCAPS) {
 		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
 			smp_processor_id(), caps->capability,
 			caps->desc, system_has_cap, cpu_has_cap);
-		return false;
+
+		if (cpucap_panic_on_conflict(caps))
+			cpu_panic_kernel();
+		else
+			cpu_die_early();
 	}
-
-	return true;
-}
-
-static bool verify_local_cpu_caps(u16 scope_mask)
-{
-	return __verify_local_cpu_caps(arm64_errata, scope_mask) &&
-	       __verify_local_cpu_caps(arm64_features, scope_mask);
 }
 
 /*
@@ -1652,16 +2729,12 @@
 static void check_early_cpu_features(void)
 {
 	verify_cpu_asid_bits();
-	/*
-	 * Early features are used by the kernel already. If there
-	 * is a conflict, we cannot proceed further.
-	 */
-	if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
-		cpu_panic_kernel();
+
+	verify_local_cpu_caps(SCOPE_BOOT_CPU);
 }
 
 static void
-verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
+__verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
 {
 
 	for (; caps->matches; caps++)
@@ -1670,6 +2743,14 @@
 					smp_processor_id(), caps->desc);
 			cpu_die_early();
 		}
+}
+
+static void verify_local_elf_hwcaps(void)
+{
+	__verify_local_elf_hwcaps(arm64_elf_hwcaps);
+
+	if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
+		__verify_local_elf_hwcaps(compat_elf_hwcaps);
 }
 
 static void verify_sve_features(void)
@@ -1681,7 +2762,7 @@
 	unsigned int len = zcr & ZCR_ELx_LEN_MASK;
 
 	if (len < safe_len || sve_verify_vq_map()) {
-		pr_crit("CPU%d: SVE: required vector length(s) missing\n",
+		pr_crit("CPU%d: SVE: vector length support mismatch\n",
 			smp_processor_id());
 		cpu_die_early();
 	}
@@ -1689,6 +2770,36 @@
 	/* Add checks on other ZCR bits here if necessary */
 }
 
+static void verify_hyp_capabilities(void)
+{
+	u64 safe_mmfr1, mmfr0, mmfr1;
+	int parange, ipa_max;
+	unsigned int safe_vmid_bits, vmid_bits;
+
+	if (!IS_ENABLED(CONFIG_KVM))
+		return;
+
+	safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
+	mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
+	mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
+
+	/* Verify VMID bits */
+	safe_vmid_bits = get_vmid_bits(safe_mmfr1);
+	vmid_bits = get_vmid_bits(mmfr1);
+	if (vmid_bits < safe_vmid_bits) {
+		pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
+		cpu_die_early();
+	}
+
+	/* Verify IPA range */
+	parange = cpuid_feature_extract_unsigned_field(mmfr0,
+				ID_AA64MMFR0_PARANGE_SHIFT);
+	ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
+	if (ipa_max < get_kvm_ipa_limit()) {
+		pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
+		cpu_die_early();
+	}
+}
 
 /*
  * Run through the enabled system capabilities and enable() it on this CPU.
@@ -1705,16 +2816,14 @@
 	 * check_early_cpu_features(), as they need to be verified
 	 * on all secondary CPUs.
 	 */
-	if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
-		cpu_die_early();
-
-	verify_local_elf_hwcaps(arm64_elf_hwcaps);
-
-	if (system_supports_32bit_el0())
-		verify_local_elf_hwcaps(compat_elf_hwcaps);
+	verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
+	verify_local_elf_hwcaps();
 
 	if (system_supports_sve())
 		verify_sve_features();
+
+	if (is_hyp_mode_available())
+		verify_hyp_capabilities();
 }
 
 void check_local_cpu_capabilities(void)
@@ -1731,7 +2840,7 @@
 	 * Otherwise, this CPU should verify that it has all the system
 	 * advertised capabilities.
 	 */
-	if (!sys_caps_initialised)
+	if (!system_capabilities_finalized())
 		update_cpu_capabilities(SCOPE_LOCAL_CPU);
 	else
 		verify_local_cpu_capabilities();
@@ -1745,20 +2854,62 @@
 	enable_cpu_capabilities(SCOPE_BOOT_CPU);
 }
 
-DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
-EXPORT_SYMBOL(arm64_const_caps_ready);
-
-static void __init mark_const_caps_ready(void)
+bool this_cpu_has_cap(unsigned int n)
 {
-	static_branch_enable(&arm64_const_caps_ready);
+	if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
+		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
+
+		if (cap)
+			return cap->matches(cap, SCOPE_LOCAL_CPU);
+	}
+
+	return false;
 }
 
-extern const struct arm64_cpu_capabilities arm64_errata[];
-
-bool this_cpu_has_cap(unsigned int cap)
+/*
+ * This helper function is used in a narrow window when,
+ * - The system wide safe registers are set with all the SMP CPUs and,
+ * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
+ * In all other cases cpus_have_{const_}cap() should be used.
+ */
+static bool __system_matches_cap(unsigned int n)
 {
-	return (__this_cpu_has_cap(arm64_features, cap) ||
-		__this_cpu_has_cap(arm64_errata, cap));
+	if (n < ARM64_NCAPS) {
+		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
+
+		if (cap)
+			return cap->matches(cap, SCOPE_SYSTEM);
+	}
+	return false;
+}
+
+void cpu_set_feature(unsigned int num)
+{
+	WARN_ON(num >= MAX_CPU_FEATURES);
+	elf_hwcap |= BIT(num);
+}
+EXPORT_SYMBOL_GPL(cpu_set_feature);
+
+bool cpu_have_feature(unsigned int num)
+{
+	WARN_ON(num >= MAX_CPU_FEATURES);
+	return elf_hwcap & BIT(num);
+}
+EXPORT_SYMBOL_GPL(cpu_have_feature);
+
+unsigned long cpu_get_elf_hwcap(void)
+{
+	/*
+	 * We currently only populate the first 32 bits of AT_HWCAP. Please
+	 * note that for userspace compatibility we guarantee that bits 62
+	 * and 63 will always be returned as 0.
+	 */
+	return lower_32_bits(elf_hwcap);
+}
+
+unsigned long cpu_get_elf_hwcap2(void)
+{
+	return upper_32_bits(elf_hwcap);
 }
 
 static void __init setup_system_capabilities(void)
@@ -1778,11 +2929,12 @@
 	u32 cwg;
 
 	setup_system_capabilities();
-	mark_const_caps_ready();
 	setup_elf_hwcaps(arm64_elf_hwcaps);
 
-	if (system_supports_32bit_el0())
+	if (system_supports_32bit_el0()) {
 		setup_elf_hwcaps(compat_elf_hwcaps);
+		elf_hwcap_fixup();
+	}
 
 	if (system_uses_ttbr0_pan())
 		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
@@ -1791,7 +2943,7 @@
 	minsigstksz_setup();
 
 	/* Advertise that we have computed the system capabilities */
-	set_sys_caps_initialised();
+	finalize_system_capabilities();
 
 	/*
 	 * Check for sane CTR_EL0.CWG value.
@@ -1802,10 +2954,61 @@
 			ARCH_DMA_MINALIGN);
 }
 
+static int enable_mismatched_32bit_el0(unsigned int cpu)
+{
+	static int lucky_winner = -1;
+
+	struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
+	bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
+
+	if (cpu_32bit) {
+		cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
+		static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
+	}
+
+	if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
+		return 0;
+
+	if (lucky_winner >= 0)
+		return 0;
+
+	/*
+	 * We've detected a mismatch. We need to keep one of our CPUs with
+	 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
+	 * every CPU in the system for a 32-bit task.
+	 */
+	lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
+							 cpu_active_mask);
+	get_cpu_device(lucky_winner)->offline_disabled = true;
+	setup_elf_hwcaps(compat_elf_hwcaps);
+	pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
+		cpu, lucky_winner);
+	return 0;
+}
+
+static int __init init_32bit_el0_mask(void)
+{
+	if (!allow_mismatched_32bit_el0)
+		return 0;
+
+	if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
+		return -ENOMEM;
+
+	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
+				 "arm64/mismatched_32bit_el0:online",
+				 enable_mismatched_32bit_el0, NULL);
+}
+subsys_initcall_sync(init_32bit_el0_mask);
+
 static bool __maybe_unused
 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
 {
-	return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
+	return (__system_matches_cap(ARM64_HAS_PAN) && !__system_matches_cap(ARM64_HAS_UAO));
+}
+
+static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
+{
+	cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
 }
 
 /*
@@ -1857,7 +3060,7 @@
 	if (sys_reg_CRm(id) == 0)
 		return emulate_id_reg(id, valp);
 
-	regp = get_arm64_ftr_reg(id);
+	regp = get_arm64_ftr_reg_nowarn(id);
 	if (regp)
 		*valp = arm64_ftr_reg_user_value(regp);
 	else
@@ -1869,25 +3072,30 @@
 	return 0;
 }
 
-static int emulate_mrs(struct pt_regs *regs, u32 insn)
+int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
 {
 	int rc;
-	u32 sys_reg, dst;
 	u64 val;
+
+	rc = emulate_sys_reg(sys_reg, &val);
+	if (!rc) {
+		pt_regs_write_reg(regs, rt, val);
+		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
+	}
+	return rc;
+}
+
+static int emulate_mrs(struct pt_regs *regs, u32 insn)
+{
+	u32 sys_reg, rt;
 
 	/*
 	 * sys_reg values are defined as used in mrs/msr instruction.
 	 * shift the imm value to get the encoding.
 	 */
 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
-	rc = emulate_sys_reg(sys_reg, &val);
-	if (!rc) {
-		dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
-		pt_regs_write_reg(regs, dst, val);
-		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
-	}
-
-	return rc;
+	rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
+	return do_emulate_mrs(regs, sys_reg, rt);
 }
 
 static struct undef_hook mrs_hook = {
@@ -1906,20 +3114,28 @@
 
 core_initcall(enable_mrs_emulation);
 
-void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
+enum mitigation_state arm64_get_meltdown_state(void)
 {
-	/* Firmware may have left a deferred SError in this register. */
-	write_sysreg_s(0, SYS_DISR_EL1);
+	if (__meltdown_safe)
+		return SPECTRE_UNAFFECTED;
+
+	if (arm64_kernel_unmapped_at_el0())
+		return SPECTRE_MITIGATED;
+
+	return SPECTRE_VULNERABLE;
 }
 
 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
 			  char *buf)
 {
-	if (__meltdown_safe)
+	switch (arm64_get_meltdown_state()) {
+	case SPECTRE_UNAFFECTED:
 		return sprintf(buf, "Not affected\n");
 
-	if (arm64_kernel_unmapped_at_el0())
+	case SPECTRE_MITIGATED:
 		return sprintf(buf, "Mitigation: PTI\n");
 
-	return sprintf(buf, "Vulnerable\n");
+	default:
+		return sprintf(buf, "Vulnerable\n");
+	}
 }

--
Gitblit v1.6.2