From 102a0743326a03cd1a1202ceda21e175b7d3575c Mon Sep 17 00:00:00 2001
From: hc <hc@nodka.com>
Date: Tue, 20 Feb 2024 01:20:52 +0000
Subject: [PATCH] add new system file

---
 kernel/mm/memory.c | 3098 ++++++++++++++++++++++++++++++++++++++--------------------
 1 files changed, 2,010 insertions(+), 1,088 deletions(-)

diff --git a/kernel/mm/memory.c b/kernel/mm/memory.c
index 49d1390..857cfc9 100644
--- a/kernel/mm/memory.c
+++ b/kernel/mm/memory.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  *  linux/mm/memory.c
  *
@@ -64,11 +65,15 @@
 #include <linux/gfp.h>
 #include <linux/migrate.h>
 #include <linux/string.h>
-#include <linux/dma-debug.h>
 #include <linux/debugfs.h>
 #include <linux/userfaultfd_k.h>
 #include <linux/dax.h>
 #include <linux/oom.h>
+#include <linux/numa.h>
+#include <linux/perf_event.h>
+#include <linux/ptrace.h>
+#include <linux/vmalloc.h>
+#include <trace/hooks/mm.h>
 
 #include <trace/events/kmem.h>
 
@@ -78,9 +83,13 @@
 #include <linux/uaccess.h>
 #include <asm/tlb.h>
 #include <asm/tlbflush.h>
-#include <asm/pgtable.h>
 
+#include "pgalloc-track.h"
 #include "internal.h"
+#include <trace/hooks/mm.h>
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/pagefault.h>
 
 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
@@ -127,6 +136,18 @@
 	 * will be hit on old pte.
 	 */
 	return true;
+}
+#endif
+
+#ifndef arch_wants_old_prefaulted_pte
+static inline bool arch_wants_old_prefaulted_pte(void)
+{
+	/*
+	 * Transitioning a PTE from 'old' to 'young' can be expensive on
+	 * some architectures, even if it's performed in hardware. By
+	 * default, "false" means prefaulted entries will be 'young'.
+	 */
+	return false;
 }
 #endif
 
@@ -217,263 +238,6 @@
 
 #endif /* SPLIT_RSS_COUNTING */
 
-#ifdef HAVE_GENERIC_MMU_GATHER
-
-static bool tlb_next_batch(struct mmu_gather *tlb)
-{
-	struct mmu_gather_batch *batch;
-
-	batch = tlb->active;
-	if (batch->next) {
-		tlb->active = batch->next;
-		return true;
-	}
-
-	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
-		return false;
-
-	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
-	if (!batch)
-		return false;
-
-	tlb->batch_count++;
-	batch->next = NULL;
-	batch->nr   = 0;
-	batch->max  = MAX_GATHER_BATCH;
-
-	tlb->active->next = batch;
-	tlb->active = batch;
-
-	return true;
-}
-
-void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
-				unsigned long start, unsigned long end)
-{
-	tlb->mm = mm;
-
-	/* Is it from 0 to ~0? */
-	tlb->fullmm     = !(start | (end+1));
-	tlb->need_flush_all = 0;
-	tlb->local.next = NULL;
-	tlb->local.nr   = 0;
-	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
-	tlb->active     = &tlb->local;
-	tlb->batch_count = 0;
-
-#ifdef CONFIG_HAVE_RCU_TABLE_FREE
-	tlb->batch = NULL;
-#endif
-	tlb->page_size = 0;
-
-	__tlb_reset_range(tlb);
-}
-
-static void tlb_flush_mmu_free(struct mmu_gather *tlb)
-{
-	struct mmu_gather_batch *batch;
-
-#ifdef CONFIG_HAVE_RCU_TABLE_FREE
-	tlb_table_flush(tlb);
-#endif
-	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
-		free_pages_and_swap_cache(batch->pages, batch->nr);
-		batch->nr = 0;
-	}
-	tlb->active = &tlb->local;
-}
-
-void tlb_flush_mmu(struct mmu_gather *tlb)
-{
-	tlb_flush_mmu_tlbonly(tlb);
-	tlb_flush_mmu_free(tlb);
-}
-
-/* tlb_finish_mmu
- *	Called at the end of the shootdown operation to free up any resources
- *	that were required.
- */
-void arch_tlb_finish_mmu(struct mmu_gather *tlb,
-		unsigned long start, unsigned long end, bool force)
-{
-	struct mmu_gather_batch *batch, *next;
-
-	if (force)
-		__tlb_adjust_range(tlb, start, end - start);
-
-	tlb_flush_mmu(tlb);
-
-	/* keep the page table cache within bounds */
-	check_pgt_cache();
-
-	for (batch = tlb->local.next; batch; batch = next) {
-		next = batch->next;
-		free_pages((unsigned long)batch, 0);
-	}
-	tlb->local.next = NULL;
-}
-
-/* __tlb_remove_page
- *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
- *	handling the additional races in SMP caused by other CPUs caching valid
- *	mappings in their TLBs. Returns the number of free page slots left.
- *	When out of page slots we must call tlb_flush_mmu().
- *returns true if the caller should flush.
- */
-bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
-{
-	struct mmu_gather_batch *batch;
-
-	VM_BUG_ON(!tlb->end);
-	VM_WARN_ON(tlb->page_size != page_size);
-
-	batch = tlb->active;
-	/*
-	 * Add the page and check if we are full. If so
-	 * force a flush.
-	 */
-	batch->pages[batch->nr++] = page;
-	if (batch->nr == batch->max) {
-		if (!tlb_next_batch(tlb))
-			return true;
-		batch = tlb->active;
-	}
-	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
-
-	return false;
-}
-
-void tlb_flush_pmd_range(struct mmu_gather *tlb, unsigned long address,
-			 unsigned long size)
-{
-	if (tlb->page_size != 0 && tlb->page_size != PMD_SIZE)
-		tlb_flush_mmu(tlb);
-
-	tlb->page_size = PMD_SIZE;
-	tlb->start = min(tlb->start, address);
-	tlb->end = max(tlb->end, address + size);
-}
-#endif /* HAVE_GENERIC_MMU_GATHER */
-
-#ifdef CONFIG_HAVE_RCU_TABLE_FREE
-
-/*
- * See the comment near struct mmu_table_batch.
- */
-
-/*
- * If we want tlb_remove_table() to imply TLB invalidates.
- */
-static inline void tlb_table_invalidate(struct mmu_gather *tlb)
-{
-#ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
-	/*
-	 * Invalidate page-table caches used by hardware walkers. Then we still
-	 * need to RCU-sched wait while freeing the pages because software
-	 * walkers can still be in-flight.
-	 */
-	tlb_flush_mmu_tlbonly(tlb);
-#endif
-}
-
-static void tlb_remove_table_smp_sync(void *arg)
-{
-	/* Simply deliver the interrupt */
-}
-
-static void tlb_remove_table_one(void *table)
-{
-	/*
-	 * This isn't an RCU grace period and hence the page-tables cannot be
-	 * assumed to be actually RCU-freed.
-	 *
-	 * It is however sufficient for software page-table walkers that rely on
-	 * IRQ disabling. See the comment near struct mmu_table_batch.
-	 */
-	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
-	__tlb_remove_table(table);
-}
-
-static void tlb_remove_table_rcu(struct rcu_head *head)
-{
-	struct mmu_table_batch *batch;
-	int i;
-
-	batch = container_of(head, struct mmu_table_batch, rcu);
-
-	for (i = 0; i < batch->nr; i++)
-		__tlb_remove_table(batch->tables[i]);
-
-	free_page((unsigned long)batch);
-}
-
-void tlb_table_flush(struct mmu_gather *tlb)
-{
-	struct mmu_table_batch **batch = &tlb->batch;
-
-	if (*batch) {
-		tlb_table_invalidate(tlb);
-		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
-		*batch = NULL;
-	}
-}
-
-void tlb_remove_table(struct mmu_gather *tlb, void *table)
-{
-	struct mmu_table_batch **batch = &tlb->batch;
-
-	if (*batch == NULL) {
-		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
-		if (*batch == NULL) {
-			tlb_table_invalidate(tlb);
-			tlb_remove_table_one(table);
-			return;
-		}
-		(*batch)->nr = 0;
-	}
-
-	(*batch)->tables[(*batch)->nr++] = table;
-	if ((*batch)->nr == MAX_TABLE_BATCH)
-		tlb_table_flush(tlb);
-}
-
-#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
-
-/**
- * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
- * @tlb: the mmu_gather structure to initialize
- * @mm: the mm_struct of the target address space
- * @start: start of the region that will be removed from the page-table
- * @end: end of the region that will be removed from the page-table
- *
- * Called to initialize an (on-stack) mmu_gather structure for page-table
- * tear-down from @mm. The @start and @end are set to 0 and -1
- * respectively when @mm is without users and we're going to destroy
- * the full address space (exit/execve).
- */
-void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
-			unsigned long start, unsigned long end)
-{
-	arch_tlb_gather_mmu(tlb, mm, start, end);
-	inc_tlb_flush_pending(tlb->mm);
-}
-
-void tlb_finish_mmu(struct mmu_gather *tlb,
-		unsigned long start, unsigned long end)
-{
-	/*
-	 * If there are parallel threads are doing PTE changes on same range
-	 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
-	 * flush by batching, a thread has stable TLB entry can fail to flush
-	 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
-	 * forcefully if we detect parallel PTE batching threads.
-	 */
-	bool force = mm_tlb_flush_nested(tlb->mm);
-
-	arch_tlb_finish_mmu(tlb, start, end, force);
-	dec_tlb_flush_pending(tlb->mm);
-}
-
 /*
  * Note: this doesn't free the actual pages themselves. That
  * has been handled earlier when unmapping all the memory regions.
@@ -482,6 +246,16 @@
 			   unsigned long addr)
 {
 	pgtable_t token = pmd_pgtable(*pmd);
+#ifdef CONFIG_SPECULATIVE_PAGE_FAULT
+	/*
+	 * Ensure page table destruction is blocked if __pte_map_lock managed
+	 * to take this lock. Without this barrier tlb_remove_table_rcu can
+	 * destroy ptl after __pte_map_lock locked it and during unlock would
+	 * cause a use-after-free.
+	 */
+	spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
+	spin_unlock(ptl);
+#endif
 	pmd_clear(pmd);
 	pte_free_tlb(tlb, token, addr);
 	mm_dec_nr_ptes(tlb->mm);
@@ -643,7 +417,7 @@
 	 * We add page table cache pages with PAGE_SIZE,
 	 * (see pte_free_tlb()), flush the tlb if we need
 	 */
-	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
+	tlb_change_page_size(tlb, PAGE_SIZE);
 	pgd = pgd_offset(tlb->mm, addr);
 	do {
 		next = pgd_addr_end(addr, end);
@@ -664,7 +438,9 @@
 		 * Hide vma from rmap and truncate_pagecache before freeing
 		 * pgtables
 		 */
+		vm_write_begin(vma);
 		unlink_anon_vmas(vma);
+		vm_write_end(vma);
 		unlink_file_vma(vma);
 
 		if (is_vm_hugetlb_page(vma)) {
@@ -678,7 +454,9 @@
 			       && !is_vm_hugetlb_page(next)) {
 				vma = next;
 				next = vma->vm_next;
+				vm_write_begin(vma);
 				unlink_anon_vmas(vma);
+				vm_write_end(vma);
 				unlink_file_vma(vma);
 			}
 			free_pgd_range(tlb, addr, vma->vm_end,
@@ -688,10 +466,10 @@
 	}
 }
 
-int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
+int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
 {
 	spinlock_t *ptl;
-	pgtable_t new = pte_alloc_one(mm, address);
+	pgtable_t new = pte_alloc_one(mm);
 	if (!new)
 		return -ENOMEM;
 
@@ -706,7 +484,7 @@
 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
 	 * being the notable exception) will already guarantee loads are
 	 * seen in-order. See the alpha page table accessors for the
-	 * smp_read_barrier_depends() barriers in page table walking code.
+	 * smp_rmb() barriers in page table walking code.
 	 */
 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 
@@ -722,9 +500,9 @@
 	return 0;
 }
 
-int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
+int __pte_alloc_kernel(pmd_t *pmd)
 {
-	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
+	pte_t *new = pte_alloc_one_kernel(&init_mm);
 	if (!new)
 		return -ENOMEM;
 
@@ -804,9 +582,9 @@
 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 	if (page)
 		dump_page(page, "bad pte");
-	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
-		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
-	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
+	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
+		 (void *)addr, READ_ONCE(vma->vm_flags), vma->anon_vma, mapping, index);
+	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
 		 vma->vm_file,
 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
@@ -816,7 +594,8 @@
 }
 
 /*
- * vm_normal_page -- This function gets the "struct page" associated with a pte.
+ * __vm_normal_page -- This function gets the "struct page" associated with
+ * a pte.
  *
  * "Special" mappings do not wish to be associated with a "struct page" (either
  * it doesn't exist, or it exists but they don't want to touch it). In this
@@ -858,7 +637,7 @@
  *
  */
 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
-			     pte_t pte, bool with_public_device)
+			      pte_t pte, unsigned long vma_flags)
 {
 	unsigned long pfn = pte_pfn(pte);
 
@@ -867,33 +646,10 @@
 			goto check_pfn;
 		if (vma->vm_ops && vma->vm_ops->find_special_page)
 			return vma->vm_ops->find_special_page(vma, addr);
-		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
+		if (vma_flags & (VM_PFNMAP | VM_MIXEDMAP))
 			return NULL;
 		if (is_zero_pfn(pfn))
 			return NULL;
-
-		/*
-		 * Device public pages are special pages (they are ZONE_DEVICE
-		 * pages but different from persistent memory). They behave
-		 * allmost like normal pages. The difference is that they are
-		 * not on the lru and thus should never be involve with any-
-		 * thing that involve lru manipulation (mlock, numa balancing,
-		 * ...).
-		 *
-		 * This is why we still want to return NULL for such page from
-		 * vm_normal_page() so that we do not have to special case all
-		 * call site of vm_normal_page().
-		 */
-		if (likely(pfn <= highest_memmap_pfn)) {
-			struct page *page = pfn_to_page(pfn);
-
-			if (is_device_public_page(page)) {
-				if (with_public_device)
-					return page;
-				return NULL;
-			}
-		}
-
 		if (pte_devmap(pte))
 			return NULL;
 
@@ -902,9 +658,13 @@
 	}
 
 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
+	/*
+	 * This part should never get called when CONFIG_SPECULATIVE_PAGE_FAULT
+	 * is set. This is mainly because we can't rely on vm_start.
+	 */
 
-	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
-		if (vma->vm_flags & VM_MIXEDMAP) {
+	if (unlikely(vma_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
+		if (vma_flags & VM_MIXEDMAP) {
 			if (!pfn_valid(pfn))
 				return NULL;
 			goto out;
@@ -913,7 +673,7 @@
 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 			if (pfn == vma->vm_pgoff + off)
 				return NULL;
-			if (!is_cow_mapping(vma->vm_flags))
+			if (!is_cow_mapping(vma_flags))
 				return NULL;
 		}
 	}
@@ -963,7 +723,7 @@
 
 	if (pmd_devmap(pmd))
 		return NULL;
-	if (is_zero_pfn(pfn))
+	if (is_huge_zero_pmd(pmd))
 		return NULL;
 	if (unlikely(pfn > highest_memmap_pfn))
 		return NULL;
@@ -983,80 +743,197 @@
  * covered by this vma.
  */
 
-static inline unsigned long
-copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
-		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
-		unsigned long addr, int *rss)
+static unsigned long
+copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
+		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
+		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
 {
-	unsigned long vm_flags = vma->vm_flags;
+	unsigned long vm_flags = dst_vma->vm_flags;
+	pte_t pte = *src_pte;
+	struct page *page;
+	swp_entry_t entry = pte_to_swp_entry(pte);
+
+	if (likely(!non_swap_entry(entry))) {
+		if (swap_duplicate(entry) < 0)
+			return entry.val;
+
+		/* make sure dst_mm is on swapoff's mmlist. */
+		if (unlikely(list_empty(&dst_mm->mmlist))) {
+			spin_lock(&mmlist_lock);
+			if (list_empty(&dst_mm->mmlist))
+				list_add(&dst_mm->mmlist,
+						&src_mm->mmlist);
+			spin_unlock(&mmlist_lock);
+		}
+		rss[MM_SWAPENTS]++;
+	} else if (is_migration_entry(entry)) {
+		page = migration_entry_to_page(entry);
+
+		rss[mm_counter(page)]++;
+
+		if (is_write_migration_entry(entry) &&
+				is_cow_mapping(vm_flags)) {
+			/*
+			 * COW mappings require pages in both
+			 * parent and child to be set to read.
+			 */
+			make_migration_entry_read(&entry);
+			pte = swp_entry_to_pte(entry);
+			if (pte_swp_soft_dirty(*src_pte))
+				pte = pte_swp_mksoft_dirty(pte);
+			if (pte_swp_uffd_wp(*src_pte))
+				pte = pte_swp_mkuffd_wp(pte);
+			set_pte_at(src_mm, addr, src_pte, pte);
+		}
+	} else if (is_device_private_entry(entry)) {
+		page = device_private_entry_to_page(entry);
+
+		/*
+		 * Update rss count even for unaddressable pages, as
+		 * they should treated just like normal pages in this
+		 * respect.
+		 *
+		 * We will likely want to have some new rss counters
+		 * for unaddressable pages, at some point. But for now
+		 * keep things as they are.
+		 */
+		get_page(page);
+		rss[mm_counter(page)]++;
+		page_dup_rmap(page, false);
+
+		/*
+		 * We do not preserve soft-dirty information, because so
+		 * far, checkpoint/restore is the only feature that
+		 * requires that. And checkpoint/restore does not work
+		 * when a device driver is involved (you cannot easily
+		 * save and restore device driver state).
+		 */
+		if (is_write_device_private_entry(entry) &&
+		    is_cow_mapping(vm_flags)) {
+			make_device_private_entry_read(&entry);
+			pte = swp_entry_to_pte(entry);
+			if (pte_swp_uffd_wp(*src_pte))
+				pte = pte_swp_mkuffd_wp(pte);
+			set_pte_at(src_mm, addr, src_pte, pte);
+		}
+	}
+	if (!userfaultfd_wp(dst_vma))
+		pte = pte_swp_clear_uffd_wp(pte);
+	set_pte_at(dst_mm, addr, dst_pte, pte);
+	return 0;
+}
+
+/*
+ * Copy a present and normal page if necessary.
+ *
+ * NOTE! The usual case is that this doesn't need to do
+ * anything, and can just return a positive value. That
+ * will let the caller know that it can just increase
+ * the page refcount and re-use the pte the traditional
+ * way.
+ *
+ * But _if_ we need to copy it because it needs to be
+ * pinned in the parent (and the child should get its own
+ * copy rather than just a reference to the same page),
+ * we'll do that here and return zero to let the caller
+ * know we're done.
+ *
+ * And if we need a pre-allocated page but don't yet have
+ * one, return a negative error to let the preallocation
+ * code know so that it can do so outside the page table
+ * lock.
+ */
+static inline int
+copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
+		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
+		  struct page **prealloc, pte_t pte, struct page *page)
+{
+	struct mm_struct *src_mm = src_vma->vm_mm;
+	struct page *new_page;
+
+	if (!is_cow_mapping(src_vma->vm_flags))
+		return 1;
+
+	/*
+	 * What we want to do is to check whether this page may
+	 * have been pinned by the parent process.  If so,
+	 * instead of wrprotect the pte on both sides, we copy
+	 * the page immediately so that we'll always guarantee
+	 * the pinned page won't be randomly replaced in the
+	 * future.
+	 *
+	 * The page pinning checks are just "has this mm ever
+	 * seen pinning", along with the (inexact) check of
+	 * the page count. That might give false positives for
+	 * for pinning, but it will work correctly.
+	 */
+	if (likely(!atomic_read(&src_mm->has_pinned)))
+		return 1;
+	if (likely(!page_maybe_dma_pinned(page)))
+		return 1;
+
+	/*
+	 * The vma->anon_vma of the child process may be NULL
+	 * because the entire vma does not contain anonymous pages.
+	 * A BUG will occur when the copy_present_page() passes
+	 * a copy of a non-anonymous page of that vma to the
+	 * page_add_new_anon_rmap() to set up new anonymous rmap.
+	 * Return 1 if the page is not an anonymous page.
+	 */
+	if (!PageAnon(page))
+		return 1;
+
+	new_page = *prealloc;
+	if (!new_page)
+		return -EAGAIN;
+
+	/*
+	 * We have a prealloc page, all good!  Take it
+	 * over and copy the page & arm it.
+	 */
+	*prealloc = NULL;
+	copy_user_highpage(new_page, page, addr, src_vma);
+	__SetPageUptodate(new_page);
+	page_add_new_anon_rmap(new_page, dst_vma, addr, false);
+	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
+	rss[mm_counter(new_page)]++;
+
+	/* All done, just insert the new page copy in the child */
+	pte = mk_pte(new_page, dst_vma->vm_page_prot);
+	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma->vm_flags);
+	if (userfaultfd_pte_wp(dst_vma, *src_pte))
+		/* Uffd-wp needs to be delivered to dest pte as well */
+		pte = pte_wrprotect(pte_mkuffd_wp(pte));
+	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
+	return 0;
+}
+
+/*
+ * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
+ * is required to copy this pte.
+ */
+static inline int
+copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
+		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
+		 struct page **prealloc)
+{
+	struct mm_struct *src_mm = src_vma->vm_mm;
+	unsigned long vm_flags = src_vma->vm_flags;
 	pte_t pte = *src_pte;
 	struct page *page;
 
-	/* pte contains position in swap or file, so copy. */
-	if (unlikely(!pte_present(pte))) {
-		swp_entry_t entry = pte_to_swp_entry(pte);
+	page = vm_normal_page(src_vma, addr, pte);
+	if (page) {
+		int retval;
 
-		if (likely(!non_swap_entry(entry))) {
-			if (swap_duplicate(entry) < 0)
-				return entry.val;
+		retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
+					   addr, rss, prealloc, pte, page);
+		if (retval <= 0)
+			return retval;
 
-			/* make sure dst_mm is on swapoff's mmlist. */
-			if (unlikely(list_empty(&dst_mm->mmlist))) {
-				spin_lock(&mmlist_lock);
-				if (list_empty(&dst_mm->mmlist))
-					list_add(&dst_mm->mmlist,
-							&src_mm->mmlist);
-				spin_unlock(&mmlist_lock);
-			}
-			rss[MM_SWAPENTS]++;
-		} else if (is_migration_entry(entry)) {
-			page = migration_entry_to_page(entry);
-
-			rss[mm_counter(page)]++;
-
-			if (is_write_migration_entry(entry) &&
-					is_cow_mapping(vm_flags)) {
-				/*
-				 * COW mappings require pages in both
-				 * parent and child to be set to read.
-				 */
-				make_migration_entry_read(&entry);
-				pte = swp_entry_to_pte(entry);
-				if (pte_swp_soft_dirty(*src_pte))
-					pte = pte_swp_mksoft_dirty(pte);
-				set_pte_at(src_mm, addr, src_pte, pte);
-			}
-		} else if (is_device_private_entry(entry)) {
-			page = device_private_entry_to_page(entry);
-
-			/*
-			 * Update rss count even for unaddressable pages, as
-			 * they should treated just like normal pages in this
-			 * respect.
-			 *
-			 * We will likely want to have some new rss counters
-			 * for unaddressable pages, at some point. But for now
-			 * keep things as they are.
-			 */
-			get_page(page);
-			rss[mm_counter(page)]++;
-			page_dup_rmap(page, false);
-
-			/*
-			 * We do not preserve soft-dirty information, because so
-			 * far, checkpoint/restore is the only feature that
-			 * requires that. And checkpoint/restore does not work
-			 * when a device driver is involved (you cannot easily
-			 * save and restore device driver state).
-			 */
-			if (is_write_device_private_entry(entry) &&
-			    is_cow_mapping(vm_flags)) {
-				make_device_private_entry_read(&entry);
-				pte = swp_entry_to_pte(entry);
-				set_pte_at(src_mm, addr, src_pte, pte);
-			}
-		}
-		goto out_set_pte;
+		get_page(page);
+		page_dup_rmap(page, false);
+		rss[mm_counter(page)]++;
 	}
 
 	/*
@@ -1076,48 +953,56 @@
 		pte = pte_mkclean(pte);
 	pte = pte_mkold(pte);
 
-	page = vm_normal_page(vma, addr, pte);
-	if (page) {
-		get_page(page);
-		page_dup_rmap(page, false);
-		rss[mm_counter(page)]++;
-	} else if (pte_devmap(pte)) {
-		page = pte_page(pte);
+	if (!userfaultfd_wp(dst_vma))
+		pte = pte_clear_uffd_wp(pte);
 
-		/*
-		 * Cache coherent device memory behave like regular page and
-		 * not like persistent memory page. For more informations see
-		 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
-		 */
-		if (is_device_public_page(page)) {
-			get_page(page);
-			page_dup_rmap(page, false);
-			rss[mm_counter(page)]++;
-		}
-	}
-
-out_set_pte:
-	set_pte_at(dst_mm, addr, dst_pte, pte);
+	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
 	return 0;
 }
 
-static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
-		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
-		   unsigned long addr, unsigned long end)
+static inline struct page *
+page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
+		   unsigned long addr)
 {
+	struct page *new_page;
+
+	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
+	if (!new_page)
+		return NULL;
+
+	if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
+		put_page(new_page);
+		return NULL;
+	}
+	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
+
+	return new_page;
+}
+
+static int
+copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
+	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
+	       unsigned long end)
+{
+	struct mm_struct *dst_mm = dst_vma->vm_mm;
+	struct mm_struct *src_mm = src_vma->vm_mm;
 	pte_t *orig_src_pte, *orig_dst_pte;
 	pte_t *src_pte, *dst_pte;
 	spinlock_t *src_ptl, *dst_ptl;
-	int progress = 0;
+	int progress, ret = 0;
 	int rss[NR_MM_COUNTERS];
 	swp_entry_t entry = (swp_entry_t){0};
+	struct page *prealloc = NULL;
 
 again:
+	progress = 0;
 	init_rss_vec(rss);
 
 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
-	if (!dst_pte)
-		return -ENOMEM;
+	if (!dst_pte) {
+		ret = -ENOMEM;
+		goto out;
+	}
 	src_pte = pte_offset_map(src_pmd, addr);
 	src_ptl = pte_lockptr(src_mm, src_pmd);
 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
@@ -1140,10 +1025,35 @@
 			progress++;
 			continue;
 		}
-		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
-							vma, addr, rss);
-		if (entry.val)
+		if (unlikely(!pte_present(*src_pte))) {
+			entry.val = copy_nonpresent_pte(dst_mm, src_mm,
+							dst_pte, src_pte,
+							dst_vma, src_vma,
+							addr, rss);
+			if (entry.val)
+				break;
+			progress += 8;
+			continue;
+		}
+		/* copy_present_pte() will clear `*prealloc' if consumed */
+		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
+				       addr, rss, &prealloc);
+		/*
+		 * If we need a pre-allocated page for this pte, drop the
+		 * locks, allocate, and try again.
+		 */
+		if (unlikely(ret == -EAGAIN))
 			break;
+		if (unlikely(prealloc)) {
+			/*
+			 * pre-alloc page cannot be reused by next time so as
+			 * to strictly follow mempolicy (e.g., alloc_page_vma()
+			 * will allocate page according to address).  This
+			 * could only happen if one pinned pte changed.
+			 */
+			put_page(prealloc);
+			prealloc = NULL;
+		}
 		progress += 8;
 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 
@@ -1155,19 +1065,34 @@
 	cond_resched();
 
 	if (entry.val) {
-		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
+		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
+			ret = -ENOMEM;
+			goto out;
+		}
+		entry.val = 0;
+	} else if (ret) {
+		WARN_ON_ONCE(ret != -EAGAIN);
+		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
+		if (!prealloc)
 			return -ENOMEM;
-		progress = 0;
+		/* We've captured and resolved the error. Reset, try again. */
+		ret = 0;
 	}
 	if (addr != end)
 		goto again;
-	return 0;
+out:
+	if (unlikely(prealloc))
+		put_page(prealloc);
+	return ret;
 }
 
-static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
-		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
-		unsigned long addr, unsigned long end)
+static inline int
+copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
+	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
+	       unsigned long end)
 {
+	struct mm_struct *dst_mm = dst_vma->vm_mm;
+	struct mm_struct *src_mm = src_vma->vm_mm;
 	pmd_t *src_pmd, *dst_pmd;
 	unsigned long next;
 
@@ -1180,9 +1105,9 @@
 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
 			|| pmd_devmap(*src_pmd)) {
 			int err;
-			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
-			err = copy_huge_pmd(dst_mm, src_mm,
-					    dst_pmd, src_pmd, addr, vma);
+			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
+			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
+					    addr, dst_vma, src_vma);
 			if (err == -ENOMEM)
 				return -ENOMEM;
 			if (!err)
@@ -1191,17 +1116,20 @@
 		}
 		if (pmd_none_or_clear_bad(src_pmd))
 			continue;
-		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
-						vma, addr, next))
+		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
+				   addr, next))
 			return -ENOMEM;
 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
 	return 0;
 }
 
-static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
-		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
-		unsigned long addr, unsigned long end)
+static inline int
+copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
+	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
+	       unsigned long end)
 {
+	struct mm_struct *dst_mm = dst_vma->vm_mm;
+	struct mm_struct *src_mm = src_vma->vm_mm;
 	pud_t *src_pud, *dst_pud;
 	unsigned long next;
 
@@ -1214,9 +1142,9 @@
 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
 			int err;
 
-			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
+			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
 			err = copy_huge_pud(dst_mm, src_mm,
-					    dst_pud, src_pud, addr, vma);
+					    dst_pud, src_pud, addr, src_vma);
 			if (err == -ENOMEM)
 				return -ENOMEM;
 			if (!err)
@@ -1225,17 +1153,19 @@
 		}
 		if (pud_none_or_clear_bad(src_pud))
 			continue;
-		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
-						vma, addr, next))
+		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
+				   addr, next))
 			return -ENOMEM;
 	} while (dst_pud++, src_pud++, addr = next, addr != end);
 	return 0;
 }
 
-static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
-		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
-		unsigned long addr, unsigned long end)
+static inline int
+copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
+	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
+	       unsigned long end)
 {
+	struct mm_struct *dst_mm = dst_vma->vm_mm;
 	p4d_t *src_p4d, *dst_p4d;
 	unsigned long next;
 
@@ -1247,22 +1177,23 @@
 		next = p4d_addr_end(addr, end);
 		if (p4d_none_or_clear_bad(src_p4d))
 			continue;
-		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
-						vma, addr, next))
+		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
+				   addr, next))
 			return -ENOMEM;
 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
 	return 0;
 }
 
-int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
-		struct vm_area_struct *vma)
+int
+copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
 {
 	pgd_t *src_pgd, *dst_pgd;
 	unsigned long next;
-	unsigned long addr = vma->vm_start;
-	unsigned long end = vma->vm_end;
-	unsigned long mmun_start;	/* For mmu_notifiers */
-	unsigned long mmun_end;		/* For mmu_notifiers */
+	unsigned long addr = src_vma->vm_start;
+	unsigned long end = src_vma->vm_end;
+	struct mm_struct *dst_mm = dst_vma->vm_mm;
+	struct mm_struct *src_mm = src_vma->vm_mm;
+	struct mmu_notifier_range range;
 	bool is_cow;
 	int ret;
 
@@ -1272,19 +1203,19 @@
 	 * readonly mappings. The tradeoff is that copy_page_range is more
 	 * efficient than faulting.
 	 */
-	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
-			!vma->anon_vma)
+	if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
+	    !src_vma->anon_vma)
 		return 0;
 
-	if (is_vm_hugetlb_page(vma))
-		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
+	if (is_vm_hugetlb_page(src_vma))
+		return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
 
-	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
+	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
 		/*
 		 * We do not free on error cases below as remove_vma
 		 * gets called on error from higher level routine
 		 */
-		ret = track_pfn_copy(vma);
+		ret = track_pfn_copy(src_vma);
 		if (ret)
 			return ret;
 	}
@@ -1295,12 +1226,22 @@
 	 * parent mm. And a permission downgrade will only happen if
 	 * is_cow_mapping() returns true.
 	 */
-	is_cow = is_cow_mapping(vma->vm_flags);
-	mmun_start = addr;
-	mmun_end   = end;
-	if (is_cow)
-		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
-						    mmun_end);
+	is_cow = is_cow_mapping(src_vma->vm_flags);
+
+	if (is_cow) {
+		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
+					0, src_vma, src_mm, addr, end);
+		mmu_notifier_invalidate_range_start(&range);
+		/*
+		 * Disabling preemption is not needed for the write side, as
+		 * the read side doesn't spin, but goes to the mmap_lock.
+		 *
+		 * Use the raw variant of the seqcount_t write API to avoid
+		 * lockdep complaining about preemptibility.
+		 */
+		mmap_assert_write_locked(src_mm);
+		raw_write_seqcount_begin(&src_mm->write_protect_seq);
+	}
 
 	ret = 0;
 	dst_pgd = pgd_offset(dst_mm, addr);
@@ -1309,16 +1250,29 @@
 		next = pgd_addr_end(addr, end);
 		if (pgd_none_or_clear_bad(src_pgd))
 			continue;
-		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
-					    vma, addr, next))) {
+		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
+					    addr, next))) {
 			ret = -ENOMEM;
 			break;
 		}
 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
 
-	if (is_cow)
-		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
+	if (is_cow) {
+		raw_write_seqcount_end(&src_mm->write_protect_seq);
+		mmu_notifier_invalidate_range_end(&range);
+	}
 	return ret;
+}
+
+/* Whether we should zap all COWed (private) pages too */
+static inline bool should_zap_cows(struct zap_details *details)
+{
+	/* By default, zap all pages */
+	if (!details)
+		return true;
+
+	/* Or, we zap COWed pages only if the caller wants to */
+	return !details->check_mapping;
 }
 
 static unsigned long zap_pte_range(struct mmu_gather *tlb,
@@ -1334,7 +1288,7 @@
 	pte_t *pte;
 	swp_entry_t entry;
 
-	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
+	tlb_change_page_size(tlb, PAGE_SIZE);
 again:
 	init_rss_vec(rss);
 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
@@ -1346,10 +1300,13 @@
 		if (pte_none(ptent))
 			continue;
 
+		if (need_resched())
+			break;
+
 		if (pte_present(ptent)) {
 			struct page *page;
 
-			page = _vm_normal_page(vma, addr, ptent, true);
+			page = vm_normal_page(vma, addr, ptent);
 			if (unlikely(details) && page) {
 				/*
 				 * unmap_shared_mapping_pages() wants to
@@ -1379,7 +1336,8 @@
 			page_remove_rmap(page, false);
 			if (unlikely(page_mapcount(page) < 0))
 				print_bad_pte(vma, addr, ptent, page);
-			if (unlikely(__tlb_remove_page(tlb, page))) {
+			if (unlikely(__tlb_remove_page(tlb, page)) ||
+				     lru_cache_disabled()) {
 				force_flush = 1;
 				addr += PAGE_SIZE;
 				break;
@@ -1388,7 +1346,7 @@
 		}
 
 		entry = pte_to_swp_entry(ptent);
-		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
+		if (is_device_private_entry(entry)) {
 			struct page *page = device_private_entry_to_page(entry);
 
 			if (unlikely(details && details->check_mapping)) {
@@ -1409,17 +1367,18 @@
 			continue;
 		}
 
-		/* If details->check_mapping, we leave swap entries. */
-		if (unlikely(details))
-			continue;
-
-		entry = pte_to_swp_entry(ptent);
-		if (!non_swap_entry(entry))
+		if (!non_swap_entry(entry)) {
+			/* Genuine swap entry, hence a private anon page */
+			if (!should_zap_cows(details))
+				continue;
 			rss[MM_SWAPENTS]--;
-		else if (is_migration_entry(entry)) {
+		} else if (is_migration_entry(entry)) {
 			struct page *page;
 
 			page = migration_entry_to_page(entry);
+			if (details && details->check_mapping &&
+			    details->check_mapping != page_rmapping(page))
+				continue;
 			rss[mm_counter(page)]--;
 		}
 		if (unlikely(!free_swap_and_cache(entry)))
@@ -1443,9 +1402,12 @@
 	 */
 	if (force_flush) {
 		force_flush = 0;
-		tlb_flush_mmu_free(tlb);
-		if (addr != end)
-			goto again;
+		tlb_flush_mmu(tlb);
+	}
+
+	if (addr != end) {
+		cond_resched();
+		goto again;
 	}
 
 	return addr;
@@ -1484,7 +1446,7 @@
 		 * Here there can be other concurrent MADV_DONTNEED or
 		 * trans huge page faults running, and if the pmd is
 		 * none or trans huge it can change under us. This is
-		 * because MADV_DONTNEED holds the mmap_sem in read
+		 * because MADV_DONTNEED holds the mmap_lock in read
 		 * mode.
 		 */
 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
@@ -1510,7 +1472,7 @@
 		next = pud_addr_end(addr, end);
 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
 			if (next - addr != HPAGE_PUD_SIZE) {
-				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
+				mmap_assert_locked(tlb->mm);
 				split_huge_pud(vma, pud, addr);
 			} else if (zap_huge_pud(tlb, vma, pud, addr))
 				goto next;
@@ -1631,12 +1593,14 @@
 		struct vm_area_struct *vma, unsigned long start_addr,
 		unsigned long end_addr)
 {
-	struct mm_struct *mm = vma->vm_mm;
+	struct mmu_notifier_range range;
 
-	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
+	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
+				start_addr, end_addr);
+	mmu_notifier_invalidate_range_start(&range);
 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
-	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
+	mmu_notifier_invalidate_range_end(&range);
 }
 
 /**
@@ -1650,18 +1614,19 @@
 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
 		unsigned long size)
 {
-	struct mm_struct *mm = vma->vm_mm;
+	struct mmu_notifier_range range;
 	struct mmu_gather tlb;
-	unsigned long end = start + size;
 
 	lru_add_drain();
-	tlb_gather_mmu(&tlb, mm, start, end);
-	update_hiwater_rss(mm);
-	mmu_notifier_invalidate_range_start(mm, start, end);
-	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
-		unmap_single_vma(&tlb, vma, start, end, NULL);
-	mmu_notifier_invalidate_range_end(mm, start, end);
-	tlb_finish_mmu(&tlb, start, end);
+	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
+				start, start + size);
+	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
+	update_hiwater_rss(vma->vm_mm);
+	mmu_notifier_invalidate_range_start(&range);
+	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
+		unmap_single_vma(&tlb, vma, start, range.end, NULL);
+	mmu_notifier_invalidate_range_end(&range);
+	tlb_finish_mmu(&tlb, start, range.end);
 }
 
 /**
@@ -1676,17 +1641,18 @@
 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
 		unsigned long size, struct zap_details *details)
 {
-	struct mm_struct *mm = vma->vm_mm;
+	struct mmu_notifier_range range;
 	struct mmu_gather tlb;
-	unsigned long end = address + size;
 
 	lru_add_drain();
-	tlb_gather_mmu(&tlb, mm, address, end);
-	update_hiwater_rss(mm);
-	mmu_notifier_invalidate_range_start(mm, address, end);
-	unmap_single_vma(&tlb, vma, address, end, details);
-	mmu_notifier_invalidate_range_end(mm, address, end);
-	tlb_finish_mmu(&tlb, address, end);
+	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
+				address, address + size);
+	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
+	update_hiwater_rss(vma->vm_mm);
+	mmu_notifier_invalidate_range_start(&range);
+	unmap_single_vma(&tlb, vma, address, range.end, details);
+	mmu_notifier_invalidate_range_end(&range);
+	tlb_finish_mmu(&tlb, address, range.end);
 }
 
 /**
@@ -1711,8 +1677,7 @@
 }
 EXPORT_SYMBOL_GPL(zap_vma_ptes);
 
-pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
-			spinlock_t **ptl)
+static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
 {
 	pgd_t *pgd;
 	p4d_t *p4d;
@@ -1731,7 +1696,38 @@
 		return NULL;
 
 	VM_BUG_ON(pmd_trans_huge(*pmd));
+	return pmd;
+}
+
+pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
+			spinlock_t **ptl)
+{
+	pmd_t *pmd = walk_to_pmd(mm, addr);
+
+	if (!pmd)
+		return NULL;
 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
+}
+
+static int validate_page_before_insert(struct page *page)
+{
+	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
+		return -EINVAL;
+	flush_dcache_page(page);
+	return 0;
+}
+
+static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
+			unsigned long addr, struct page *page, pgprot_t prot)
+{
+	if (!pte_none(*pte))
+		return -EBUSY;
+	/* Ok, finally just insert the thing.. */
+	get_page(page);
+	inc_mm_counter_fast(mm, mm_counter_file(page));
+	page_add_file_rmap(page, false);
+	set_pte_at(mm, addr, pte, mk_pte(page, prot));
+	return 0;
 }
 
 /*
@@ -1749,32 +1745,135 @@
 	pte_t *pte;
 	spinlock_t *ptl;
 
-	retval = -EINVAL;
-	if (PageAnon(page))
+	retval = validate_page_before_insert(page);
+	if (retval)
 		goto out;
 	retval = -ENOMEM;
-	flush_dcache_page(page);
 	pte = get_locked_pte(mm, addr, &ptl);
 	if (!pte)
 		goto out;
-	retval = -EBUSY;
-	if (!pte_none(*pte))
-		goto out_unlock;
-
-	/* Ok, finally just insert the thing.. */
-	get_page(page);
-	inc_mm_counter_fast(mm, mm_counter_file(page));
-	page_add_file_rmap(page, false);
-	set_pte_at(mm, addr, pte, mk_pte(page, prot));
-
-	retval = 0;
-	pte_unmap_unlock(pte, ptl);
-	return retval;
-out_unlock:
+	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
 	pte_unmap_unlock(pte, ptl);
 out:
 	return retval;
 }
+
+#ifdef pte_index
+static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
+			unsigned long addr, struct page *page, pgprot_t prot)
+{
+	int err;
+
+	if (!page_count(page))
+		return -EINVAL;
+	err = validate_page_before_insert(page);
+	if (err)
+		return err;
+	return insert_page_into_pte_locked(mm, pte, addr, page, prot);
+}
+
+/* insert_pages() amortizes the cost of spinlock operations
+ * when inserting pages in a loop. Arch *must* define pte_index.
+ */
+static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
+			struct page **pages, unsigned long *num, pgprot_t prot)
+{
+	pmd_t *pmd = NULL;
+	pte_t *start_pte, *pte;
+	spinlock_t *pte_lock;
+	struct mm_struct *const mm = vma->vm_mm;
+	unsigned long curr_page_idx = 0;
+	unsigned long remaining_pages_total = *num;
+	unsigned long pages_to_write_in_pmd;
+	int ret;
+more:
+	ret = -EFAULT;
+	pmd = walk_to_pmd(mm, addr);
+	if (!pmd)
+		goto out;
+
+	pages_to_write_in_pmd = min_t(unsigned long,
+		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
+
+	/* Allocate the PTE if necessary; takes PMD lock once only. */
+	ret = -ENOMEM;
+	if (pte_alloc(mm, pmd))
+		goto out;
+
+	while (pages_to_write_in_pmd) {
+		int pte_idx = 0;
+		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
+
+		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
+		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
+			int err = insert_page_in_batch_locked(mm, pte,
+				addr, pages[curr_page_idx], prot);
+			if (unlikely(err)) {
+				pte_unmap_unlock(start_pte, pte_lock);
+				ret = err;
+				remaining_pages_total -= pte_idx;
+				goto out;
+			}
+			addr += PAGE_SIZE;
+			++curr_page_idx;
+		}
+		pte_unmap_unlock(start_pte, pte_lock);
+		pages_to_write_in_pmd -= batch_size;
+		remaining_pages_total -= batch_size;
+	}
+	if (remaining_pages_total)
+		goto more;
+	ret = 0;
+out:
+	*num = remaining_pages_total;
+	return ret;
+}
+#endif  /* ifdef pte_index */
+
+/**
+ * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
+ * @vma: user vma to map to
+ * @addr: target start user address of these pages
+ * @pages: source kernel pages
+ * @num: in: number of pages to map. out: number of pages that were *not*
+ * mapped. (0 means all pages were successfully mapped).
+ *
+ * Preferred over vm_insert_page() when inserting multiple pages.
+ *
+ * In case of error, we may have mapped a subset of the provided
+ * pages. It is the caller's responsibility to account for this case.
+ *
+ * The same restrictions apply as in vm_insert_page().
+ */
+int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
+			struct page **pages, unsigned long *num)
+{
+#ifdef pte_index
+	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
+
+	if (addr < vma->vm_start || end_addr >= vma->vm_end)
+		return -EFAULT;
+	if (!(vma->vm_flags & VM_MIXEDMAP)) {
+		BUG_ON(mmap_read_trylock(vma->vm_mm));
+		BUG_ON(vma->vm_flags & VM_PFNMAP);
+		vma->vm_flags |= VM_MIXEDMAP;
+	}
+	/* Defer page refcount checking till we're about to map that page. */
+	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
+#else
+	unsigned long idx = 0, pgcount = *num;
+	int err = -EINVAL;
+
+	for (; idx < pgcount; ++idx) {
+		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
+		if (err)
+			break;
+	}
+	*num = pgcount - idx;
+	return err;
+#endif  /* ifdef pte_index */
+}
+EXPORT_SYMBOL(vm_insert_pages);
 
 /**
  * vm_insert_page - insert single page into user vma
@@ -1799,9 +1898,11 @@
  * The page does not need to be reserved.
  *
  * Usually this function is called from f_op->mmap() handler
- * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
+ * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
  * Caller must set VM_MIXEDMAP on vma if it wants to call this
  * function from other places, for example from page-fault handler.
+ *
+ * Return: %0 on success, negative error code otherwise.
  */
 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
 			struct page *page)
@@ -1811,7 +1912,7 @@
 	if (!page_count(page))
 		return -EINVAL;
 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
-		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
+		BUG_ON(mmap_read_trylock(vma->vm_mm));
 		BUG_ON(vma->vm_flags & VM_PFNMAP);
 		vma->vm_flags |= VM_MIXEDMAP;
 	}
@@ -1819,19 +1920,97 @@
 }
 EXPORT_SYMBOL(vm_insert_page);
 
-static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
+/*
+ * __vm_map_pages - maps range of kernel pages into user vma
+ * @vma: user vma to map to
+ * @pages: pointer to array of source kernel pages
+ * @num: number of pages in page array
+ * @offset: user's requested vm_pgoff
+ *
+ * This allows drivers to map range of kernel pages into a user vma.
+ *
+ * Return: 0 on success and error code otherwise.
+ */
+static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
+				unsigned long num, unsigned long offset)
+{
+	unsigned long count = vma_pages(vma);
+	unsigned long uaddr = vma->vm_start;
+	int ret, i;
+
+	/* Fail if the user requested offset is beyond the end of the object */
+	if (offset >= num)
+		return -ENXIO;
+
+	/* Fail if the user requested size exceeds available object size */
+	if (count > num - offset)
+		return -ENXIO;
+
+	for (i = 0; i < count; i++) {
+		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
+		if (ret < 0)
+			return ret;
+		uaddr += PAGE_SIZE;
+	}
+
+	return 0;
+}
+
+/**
+ * vm_map_pages - maps range of kernel pages starts with non zero offset
+ * @vma: user vma to map to
+ * @pages: pointer to array of source kernel pages
+ * @num: number of pages in page array
+ *
+ * Maps an object consisting of @num pages, catering for the user's
+ * requested vm_pgoff
+ *
+ * If we fail to insert any page into the vma, the function will return
+ * immediately leaving any previously inserted pages present.  Callers
+ * from the mmap handler may immediately return the error as their caller
+ * will destroy the vma, removing any successfully inserted pages. Other
+ * callers should make their own arrangements for calling unmap_region().
+ *
+ * Context: Process context. Called by mmap handlers.
+ * Return: 0 on success and error code otherwise.
+ */
+int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
+				unsigned long num)
+{
+	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
+}
+EXPORT_SYMBOL(vm_map_pages);
+
+/**
+ * vm_map_pages_zero - map range of kernel pages starts with zero offset
+ * @vma: user vma to map to
+ * @pages: pointer to array of source kernel pages
+ * @num: number of pages in page array
+ *
+ * Similar to vm_map_pages(), except that it explicitly sets the offset
+ * to 0. This function is intended for the drivers that did not consider
+ * vm_pgoff.
+ *
+ * Context: Process context. Called by mmap handlers.
+ * Return: 0 on success and error code otherwise.
+ */
+int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
+				unsigned long num)
+{
+	return __vm_map_pages(vma, pages, num, 0);
+}
+EXPORT_SYMBOL(vm_map_pages_zero);
+
+static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
 			pfn_t pfn, pgprot_t prot, bool mkwrite)
 {
 	struct mm_struct *mm = vma->vm_mm;
-	int retval;
 	pte_t *pte, entry;
 	spinlock_t *ptl;
 
-	retval = -ENOMEM;
 	pte = get_locked_pte(mm, addr, &ptl);
 	if (!pte)
-		goto out;
-	retval = -EBUSY;
+		return VM_FAULT_OOM;
 	if (!pte_none(*pte)) {
 		if (mkwrite) {
 			/*
@@ -1849,7 +2028,8 @@
 				goto out_unlock;
 			}
 			entry = pte_mkyoung(*pte);
-			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+			entry = maybe_mkwrite(pte_mkdirty(entry),
+							vma->vm_flags);
 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
 				update_mmu_cache(vma, addr, pte);
 		}
@@ -1864,62 +2044,41 @@
 
 	if (mkwrite) {
 		entry = pte_mkyoung(entry);
-		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+		entry = maybe_mkwrite(pte_mkdirty(entry), vma->vm_flags);
 	}
 
 	set_pte_at(mm, addr, pte, entry);
 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
 
-	retval = 0;
 out_unlock:
 	pte_unmap_unlock(pte, ptl);
-out:
-	return retval;
+	return VM_FAULT_NOPAGE;
 }
 
 /**
- * vm_insert_pfn - insert single pfn into user vma
- * @vma: user vma to map to
- * @addr: target user address of this page
- * @pfn: source kernel pfn
- *
- * Similar to vm_insert_page, this allows drivers to insert individual pages
- * they've allocated into a user vma. Same comments apply.
- *
- * This function should only be called from a vm_ops->fault handler, and
- * in that case the handler should return NULL.
- *
- * vma cannot be a COW mapping.
- *
- * As this is called only for pages that do not currently exist, we
- * do not need to flush old virtual caches or the TLB.
- */
-int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
-			unsigned long pfn)
-{
-	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
-}
-EXPORT_SYMBOL(vm_insert_pfn);
-
-/**
- * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
+ * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
  * @vma: user vma to map to
  * @addr: target user address of this page
  * @pfn: source kernel pfn
  * @pgprot: pgprot flags for the inserted page
  *
- * This is exactly like vm_insert_pfn, except that it allows drivers to
+ * This is exactly like vmf_insert_pfn(), except that it allows drivers
  * to override pgprot on a per-page basis.
  *
  * This only makes sense for IO mappings, and it makes no sense for
- * cow mappings.  In general, using multiple vmas is preferable;
- * vm_insert_pfn_prot should only be used if using multiple VMAs is
+ * COW mappings.  In general, using multiple vmas is preferable;
+ * vmf_insert_pfn_prot should only be used if using multiple VMAs is
  * impractical.
+ *
+ * See vmf_insert_mixed_prot() for a discussion of the implication of using
+ * a value of @pgprot different from that of @vma->vm_page_prot.
+ *
+ * Context: Process context.  May allocate using %GFP_KERNEL.
+ * Return: vm_fault_t value.
  */
-int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
+vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
 			unsigned long pfn, pgprot_t pgprot)
 {
-	int ret;
 	/*
 	 * Technically, architectures with pte_special can avoid all these
 	 * restrictions (same for remap_pfn_range).  However we would like
@@ -1933,19 +2092,44 @@
 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
 
 	if (addr < vma->vm_start || addr >= vma->vm_end)
-		return -EFAULT;
+		return VM_FAULT_SIGBUS;
 
 	if (!pfn_modify_allowed(pfn, pgprot))
-		return -EACCES;
+		return VM_FAULT_SIGBUS;
 
 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
 
-	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
+	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
 			false);
-
-	return ret;
 }
-EXPORT_SYMBOL(vm_insert_pfn_prot);
+EXPORT_SYMBOL(vmf_insert_pfn_prot);
+
+/**
+ * vmf_insert_pfn - insert single pfn into user vma
+ * @vma: user vma to map to
+ * @addr: target user address of this page
+ * @pfn: source kernel pfn
+ *
+ * Similar to vm_insert_page, this allows drivers to insert individual pages
+ * they've allocated into a user vma. Same comments apply.
+ *
+ * This function should only be called from a vm_ops->fault handler, and
+ * in that case the handler should return the result of this function.
+ *
+ * vma cannot be a COW mapping.
+ *
+ * As this is called only for pages that do not currently exist, we
+ * do not need to flush old virtual caches or the TLB.
+ *
+ * Context: Process context.  May allocate using %GFP_KERNEL.
+ * Return: vm_fault_t value.
+ */
+vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
+			unsigned long pfn)
+{
+	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
+}
+EXPORT_SYMBOL(vmf_insert_pfn);
 
 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
 {
@@ -1961,20 +2145,21 @@
 	return false;
 }
 
-static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
-			pfn_t pfn, bool mkwrite)
+static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
+		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
+		bool mkwrite)
 {
-	pgprot_t pgprot = vma->vm_page_prot;
+	int err;
 
 	BUG_ON(!vm_mixed_ok(vma, pfn));
 
 	if (addr < vma->vm_start || addr >= vma->vm_end)
-		return -EFAULT;
+		return VM_FAULT_SIGBUS;
 
 	track_pfn_insert(vma, &pgprot, pfn);
 
 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
-		return -EACCES;
+		return VM_FAULT_SIGBUS;
 
 	/*
 	 * If we don't have pte special, then we have to use the pfn_valid()
@@ -1993,36 +2178,68 @@
 		 * result in pfn_t_has_page() == false.
 		 */
 		page = pfn_to_page(pfn_t_to_pfn(pfn));
-		return insert_page(vma, addr, page, pgprot);
+		err = insert_page(vma, addr, page, pgprot);
+	} else {
+		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
 	}
-	return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
+
+	if (err == -ENOMEM)
+		return VM_FAULT_OOM;
+	if (err < 0 && err != -EBUSY)
+		return VM_FAULT_SIGBUS;
+
+	return VM_FAULT_NOPAGE;
 }
 
-int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
-			pfn_t pfn)
+/**
+ * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
+ * @vma: user vma to map to
+ * @addr: target user address of this page
+ * @pfn: source kernel pfn
+ * @pgprot: pgprot flags for the inserted page
+ *
+ * This is exactly like vmf_insert_mixed(), except that it allows drivers
+ * to override pgprot on a per-page basis.
+ *
+ * Typically this function should be used by drivers to set caching- and
+ * encryption bits different than those of @vma->vm_page_prot, because
+ * the caching- or encryption mode may not be known at mmap() time.
+ * This is ok as long as @vma->vm_page_prot is not used by the core vm
+ * to set caching and encryption bits for those vmas (except for COW pages).
+ * This is ensured by core vm only modifying these page table entries using
+ * functions that don't touch caching- or encryption bits, using pte_modify()
+ * if needed. (See for example mprotect()).
+ * Also when new page-table entries are created, this is only done using the
+ * fault() callback, and never using the value of vma->vm_page_prot,
+ * except for page-table entries that point to anonymous pages as the result
+ * of COW.
+ *
+ * Context: Process context.  May allocate using %GFP_KERNEL.
+ * Return: vm_fault_t value.
+ */
+vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
+				 pfn_t pfn, pgprot_t pgprot)
 {
-	return __vm_insert_mixed(vma, addr, pfn, false);
-
+	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
 }
-EXPORT_SYMBOL(vm_insert_mixed);
+EXPORT_SYMBOL(vmf_insert_mixed_prot);
+
+vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
+		pfn_t pfn)
+{
+	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
+}
+EXPORT_SYMBOL(vmf_insert_mixed);
 
 /*
  *  If the insertion of PTE failed because someone else already added a
  *  different entry in the mean time, we treat that as success as we assume
  *  the same entry was actually inserted.
  */
-
 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
 		unsigned long addr, pfn_t pfn)
 {
-	int err;
-
-	err =  __vm_insert_mixed(vma, addr, pfn, true);
-	if (err == -ENOMEM)
-		return VM_FAULT_OOM;
-	if (err < 0 && err != -EBUSY)
-		return VM_FAULT_SIGBUS;
-	return VM_FAULT_NOPAGE;
+	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
 }
 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
 
@@ -2127,12 +2344,14 @@
 /**
  * remap_pfn_range - remap kernel memory to userspace
  * @vma: user vma to map to
- * @addr: target user address to start at
- * @pfn: physical address of kernel memory
- * @size: size of map area
+ * @addr: target page aligned user address to start at
+ * @pfn: page frame number of kernel physical memory address
+ * @size: size of mapping area
  * @prot: page protection flags for this mapping
  *
- *  Note: this is only safe if the mm semaphore is held when called.
+ * Note: this is only safe if the mm semaphore is held when called.
+ *
+ * Return: %0 on success, negative error code otherwise.
  */
 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
 		    unsigned long pfn, unsigned long size, pgprot_t prot)
@@ -2143,6 +2362,9 @@
 	struct mm_struct *mm = vma->vm_mm;
 	unsigned long remap_pfn = pfn;
 	int err;
+
+	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
+		return -EINVAL;
 
 	/*
 	 * Physically remapped pages are special. Tell the
@@ -2196,7 +2418,7 @@
 /**
  * vm_iomap_memory - remap memory to userspace
  * @vma: user vma to map to
- * @start: start of area
+ * @start: start of the physical memory to be mapped
  * @len: size of area
  *
  * This is a simplified io_remap_pfn_range() for common driver use. The
@@ -2205,6 +2427,8 @@
  *
  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
  * whatever write-combining details or similar.
+ *
+ * Return: %0 on success, negative error code otherwise.
  */
 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
 {
@@ -2242,30 +2466,39 @@
 
 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
 				     unsigned long addr, unsigned long end,
-				     pte_fn_t fn, void *data)
+				     pte_fn_t fn, void *data, bool create,
+				     pgtbl_mod_mask *mask)
 {
 	pte_t *pte;
-	int err;
-	pgtable_t token;
-	spinlock_t *uninitialized_var(ptl);
+	int err = 0;
+	spinlock_t *ptl;
 
-	pte = (mm == &init_mm) ?
-		pte_alloc_kernel(pmd, addr) :
-		pte_alloc_map_lock(mm, pmd, addr, &ptl);
-	if (!pte)
-		return -ENOMEM;
+	if (create) {
+		pte = (mm == &init_mm) ?
+			pte_alloc_kernel_track(pmd, addr, mask) :
+			pte_alloc_map_lock(mm, pmd, addr, &ptl);
+		if (!pte)
+			return -ENOMEM;
+	} else {
+		pte = (mm == &init_mm) ?
+			pte_offset_kernel(pmd, addr) :
+			pte_offset_map_lock(mm, pmd, addr, &ptl);
+	}
 
 	BUG_ON(pmd_huge(*pmd));
 
 	arch_enter_lazy_mmu_mode();
 
-	token = pmd_pgtable(*pmd);
-
-	do {
-		err = fn(pte++, token, addr, data);
-		if (err)
-			break;
-	} while (addr += PAGE_SIZE, addr != end);
+	if (fn) {
+		do {
+			if (create || !pte_none(*pte)) {
+				err = fn(pte++, addr, data);
+				if (err)
+					break;
+			}
+		} while (addr += PAGE_SIZE, addr != end);
+	}
+	*mask |= PGTBL_PTE_MODIFIED;
 
 	arch_leave_lazy_mmu_mode();
 
@@ -2276,63 +2509,116 @@
 
 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
 				     unsigned long addr, unsigned long end,
-				     pte_fn_t fn, void *data)
+				     pte_fn_t fn, void *data, bool create,
+				     pgtbl_mod_mask *mask)
 {
 	pmd_t *pmd;
 	unsigned long next;
-	int err;
+	int err = 0;
 
 	BUG_ON(pud_huge(*pud));
 
-	pmd = pmd_alloc(mm, pud, addr);
-	if (!pmd)
-		return -ENOMEM;
+	if (create) {
+		pmd = pmd_alloc_track(mm, pud, addr, mask);
+		if (!pmd)
+			return -ENOMEM;
+	} else {
+		pmd = pmd_offset(pud, addr);
+	}
 	do {
 		next = pmd_addr_end(addr, end);
-		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
-		if (err)
-			break;
+		if (create || !pmd_none_or_clear_bad(pmd)) {
+			err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
+						 create, mask);
+			if (err)
+				break;
+		}
 	} while (pmd++, addr = next, addr != end);
 	return err;
 }
 
 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
 				     unsigned long addr, unsigned long end,
-				     pte_fn_t fn, void *data)
+				     pte_fn_t fn, void *data, bool create,
+				     pgtbl_mod_mask *mask)
 {
 	pud_t *pud;
 	unsigned long next;
-	int err;
+	int err = 0;
 
-	pud = pud_alloc(mm, p4d, addr);
-	if (!pud)
-		return -ENOMEM;
+	if (create) {
+		pud = pud_alloc_track(mm, p4d, addr, mask);
+		if (!pud)
+			return -ENOMEM;
+	} else {
+		pud = pud_offset(p4d, addr);
+	}
 	do {
 		next = pud_addr_end(addr, end);
-		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
-		if (err)
-			break;
+		if (create || !pud_none_or_clear_bad(pud)) {
+			err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
+						 create, mask);
+			if (err)
+				break;
+		}
 	} while (pud++, addr = next, addr != end);
 	return err;
 }
 
 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
 				     unsigned long addr, unsigned long end,
-				     pte_fn_t fn, void *data)
+				     pte_fn_t fn, void *data, bool create,
+				     pgtbl_mod_mask *mask)
 {
 	p4d_t *p4d;
 	unsigned long next;
-	int err;
+	int err = 0;
 
-	p4d = p4d_alloc(mm, pgd, addr);
-	if (!p4d)
-		return -ENOMEM;
+	if (create) {
+		p4d = p4d_alloc_track(mm, pgd, addr, mask);
+		if (!p4d)
+			return -ENOMEM;
+	} else {
+		p4d = p4d_offset(pgd, addr);
+	}
 	do {
 		next = p4d_addr_end(addr, end);
-		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
+		if (create || !p4d_none_or_clear_bad(p4d)) {
+			err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
+						 create, mask);
+			if (err)
+				break;
+		}
+	} while (p4d++, addr = next, addr != end);
+	return err;
+}
+
+static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
+				 unsigned long size, pte_fn_t fn,
+				 void *data, bool create)
+{
+	pgd_t *pgd;
+	unsigned long start = addr, next;
+	unsigned long end = addr + size;
+	pgtbl_mod_mask mask = 0;
+	int err = 0;
+
+	if (WARN_ON(addr >= end))
+		return -EINVAL;
+
+	pgd = pgd_offset(mm, addr);
+	do {
+		next = pgd_addr_end(addr, end);
+		if (!create && pgd_none_or_clear_bad(pgd))
+			continue;
+		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
 		if (err)
 			break;
-	} while (p4d++, addr = next, addr != end);
+	} while (pgd++, addr = next, addr != end);
+
+	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
+		arch_sync_kernel_mappings(start, start + size);
+
 	return err;
 }
 
@@ -2343,25 +2629,242 @@
 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
 			unsigned long size, pte_fn_t fn, void *data)
 {
-	pgd_t *pgd;
-	unsigned long next;
-	unsigned long end = addr + size;
-	int err;
-
-	if (WARN_ON(addr >= end))
-		return -EINVAL;
-
-	pgd = pgd_offset(mm, addr);
-	do {
-		next = pgd_addr_end(addr, end);
-		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
-		if (err)
-			break;
-	} while (pgd++, addr = next, addr != end);
-
-	return err;
+	return __apply_to_page_range(mm, addr, size, fn, data, true);
 }
 EXPORT_SYMBOL_GPL(apply_to_page_range);
+
+#ifdef CONFIG_SPECULATIVE_PAGE_FAULT
+static bool pte_spinlock(struct vm_fault *vmf)
+{
+	bool ret = false;
+	pmd_t pmdval;
+
+	/* Check if vma is still valid */
+	if (!(vmf->flags & FAULT_FLAG_SPECULATIVE)) {
+		vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
+		spin_lock(vmf->ptl);
+		return true;
+	}
+
+	local_irq_disable();
+	if (vma_has_changed(vmf)) {
+		trace_spf_vma_changed(_RET_IP_, vmf->vma, vmf->address);
+		goto out;
+	}
+
+	/*
+	 * We check if the pmd value is still the same to ensure that there
+	 * is not a huge collapse operation in progress in our back.
+	 * It also ensures that pmd was not cleared by pmd_clear in
+	 * free_pte_range and ptl is still valid.
+	 */
+	pmdval = READ_ONCE(*vmf->pmd);
+	if (!pmd_same(pmdval, vmf->orig_pmd)) {
+		trace_spf_pmd_changed(_RET_IP_, vmf->vma, vmf->address);
+		goto out;
+	}
+
+	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, &pmdval);
+	if (unlikely(!spin_trylock(vmf->ptl))) {
+		trace_spf_pte_lock(_RET_IP_, vmf->vma, vmf->address);
+		goto out;
+	}
+
+	/*
+	 * The check below will fail if pte_spinlock passed its ptl barrier
+	 * before we took the ptl lock.
+	 */
+	if (vma_has_changed(vmf)) {
+		spin_unlock(vmf->ptl);
+		trace_spf_vma_changed(_RET_IP_, vmf->vma, vmf->address);
+		goto out;
+	}
+
+	ret = true;
+out:
+	local_irq_enable();
+	return ret;
+}
+
+static bool __pte_map_lock_speculative(struct vm_fault *vmf, unsigned long addr)
+{
+	bool ret = false;
+	pte_t *pte;
+	spinlock_t *ptl;
+	pmd_t pmdval;
+
+	/*
+	 * The first vma_has_changed() guarantees the page-tables are still
+	 * valid, having IRQs disabled ensures they stay around, hence the
+	 * second vma_has_changed() to make sure they are still valid once
+	 * we've got the lock. After that a concurrent zap_pte_range() will
+	 * block on the PTL and thus we're safe.
+	 */
+	local_irq_disable();
+	if (vma_has_changed(vmf)) {
+		trace_spf_vma_changed(_RET_IP_, vmf->vma, addr);
+		goto out;
+	}
+
+	/*
+	 * We check if the pmd value is still the same to ensure that there
+	 * is not a huge collapse operation in progress in our back.
+	 */
+	pmdval = READ_ONCE(*vmf->pmd);
+	if (!pmd_same(pmdval, vmf->orig_pmd)) {
+		trace_spf_pmd_changed(_RET_IP_, vmf->vma, addr);
+		goto out;
+	}
+
+	/*
+	 * Same as pte_offset_map_lock() except that we call
+	 * spin_trylock() in place of spin_lock() to avoid race with
+	 * unmap path which may have the lock and wait for this CPU
+	 * to invalidate TLB but this CPU has irq disabled.
+	 * Since we are in a speculative patch, accept it could fail
+	 */
+	ptl = pte_lockptr(vmf->vma->vm_mm, &pmdval);
+	pte = pte_offset_map(&pmdval, addr);
+	if (unlikely(!spin_trylock(ptl))) {
+		pte_unmap(pte);
+		trace_spf_pte_lock(_RET_IP_, vmf->vma, addr);
+		goto out;
+	}
+
+	/*
+	 * The check below will fail if __pte_map_lock_speculative passed its ptl
+	 * barrier before we took the ptl lock.
+	 */
+	if (vma_has_changed(vmf)) {
+		pte_unmap_unlock(pte, ptl);
+		trace_spf_vma_changed(_RET_IP_, vmf->vma, addr);
+		goto out;
+	}
+
+	vmf->pte = pte;
+	vmf->ptl = ptl;
+	ret = true;
+out:
+	local_irq_enable();
+	return ret;
+}
+
+static bool pte_map_lock(struct vm_fault *vmf)
+{
+	if (!(vmf->flags & FAULT_FLAG_SPECULATIVE)) {
+		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
+					       vmf->address, &vmf->ptl);
+		return true;
+	}
+
+	return __pte_map_lock_speculative(vmf, vmf->address);
+}
+
+bool pte_map_lock_addr(struct vm_fault *vmf, unsigned long addr)
+{
+	if (!(vmf->flags & FAULT_FLAG_SPECULATIVE)) {
+		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
+					       addr, &vmf->ptl);
+		return true;
+	}
+
+	return __pte_map_lock_speculative(vmf, addr);
+}
+
+static bool __read_mostly allow_file_spec_access;
+static int __init allow_file_spec_access_setup(char *str)
+{
+	allow_file_spec_access = true;
+	return 1;
+}
+__setup("allow_file_spec_access", allow_file_spec_access_setup);
+
+static bool vmf_allows_speculation(struct vm_fault *vmf)
+{
+	if (vma_is_anonymous(vmf->vma)) {
+		/*
+		 * __anon_vma_prepare() requires the mmap_sem to be held
+		 * because vm_next and vm_prev must be safe. This can't be
+		 * guaranteed in the speculative path.
+		 */
+		if (!vmf->vma->anon_vma) {
+			trace_spf_vma_notsup(_RET_IP_, vmf->vma, vmf->address);
+			return false;
+		}
+		return true;
+	}
+
+	if (!allow_file_spec_access) {
+		/*
+		 * Can't call vm_ops service has we don't know what they would
+		 * do with the VMA.
+		 * This include huge page from hugetlbfs.
+		 */
+		trace_spf_vma_notsup(_RET_IP_, vmf->vma, vmf->address);
+		return false;
+	}
+
+	if (!(vmf->vma->vm_flags & VM_SHARED) &&
+		(vmf->flags & FAULT_FLAG_WRITE) &&
+		!vmf->vma->anon_vma) {
+		/*
+		 * non-anonymous private COW without anon_vma.
+		 * See above.
+		 */
+		trace_spf_vma_notsup(_RET_IP_, vmf->vma, vmf->address);
+		return false;
+	}
+
+	if (vmf->vma->vm_ops->allow_speculation &&
+		vmf->vma->vm_ops->allow_speculation()) {
+		return true;
+	}
+
+	trace_spf_vma_notsup(_RET_IP_, vmf->vma, vmf->address);
+	return false;
+}
+
+#else
+static inline bool pte_spinlock(struct vm_fault *vmf)
+{
+	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
+	spin_lock(vmf->ptl);
+	return true;
+}
+
+static inline bool pte_map_lock(struct vm_fault *vmf)
+{
+	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
+				       vmf->address, &vmf->ptl);
+	return true;
+}
+
+inline bool pte_map_lock_addr(struct vm_fault *vmf, unsigned long addr)
+{
+	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
+					addr, &vmf->ptl);
+	return true;
+}
+
+static inline bool vmf_allows_speculation(struct vm_fault *vmf)
+{
+	return false;
+}
+#endif /* CONFIG_SPECULATIVE_PAGE_FAULT */
+
+/*
+ * Scan a region of virtual memory, calling a provided function on
+ * each leaf page table where it exists.
+ *
+ * Unlike apply_to_page_range, this does _not_ fill in page tables
+ * where they are absent.
+ */
+int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
+				 unsigned long size, pte_fn_t fn, void *data)
+{
+	return __apply_to_page_range(mm, addr, size, fn, data, false);
+}
+EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
 
 /*
  * handle_pte_fault chooses page fault handler according to an entry which was
@@ -2370,21 +2873,29 @@
  * parts, do_swap_page must check under lock before unmapping the pte and
  * proceeding (but do_wp_page is only called after already making such a check;
  * and do_anonymous_page can safely check later on).
+ *
+ * pte_unmap_same() returns:
+ *	0			if the PTE are the same
+ *	VM_FAULT_PTNOTSAME	if the PTE are different
+ *	VM_FAULT_RETRY		if the VMA has changed in our back during
+ *				a speculative page fault handling.
  */
-static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
-				pte_t *page_table, pte_t orig_pte)
+static inline int pte_unmap_same(struct vm_fault *vmf)
 {
-	int same = 1;
+	int ret = 0;
+
 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
 	if (sizeof(pte_t) > sizeof(unsigned long)) {
-		spinlock_t *ptl = pte_lockptr(mm, pmd);
-		spin_lock(ptl);
-		same = pte_same(*page_table, orig_pte);
-		spin_unlock(ptl);
+		if (pte_spinlock(vmf)) {
+			if (!pte_same(*vmf->pte, vmf->orig_pte))
+				ret = VM_FAULT_PTNOTSAME;
+			spin_unlock(vmf->ptl);
+		} else
+			ret = VM_FAULT_RETRY;
 	}
 #endif
-	pte_unmap(page_table);
-	return same;
+	pte_unmap(vmf->pte);
+	return ret;
 }
 
 static inline bool cow_user_page(struct page *dst, struct page *src,
@@ -2397,8 +2908,6 @@
 	struct vm_area_struct *vma = vmf->vma;
 	struct mm_struct *mm = vma->vm_mm;
 	unsigned long addr = vmf->address;
-
-	debug_dma_assert_idle(src);
 
 	if (likely(src)) {
 		copy_user_highpage(dst, src, addr, vma);
@@ -2426,10 +2935,9 @@
 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
 			/*
 			 * Other thread has already handled the fault
-			 * and we don't need to do anything. If it's
-			 * not the case, the fault will be triggered
-			 * again on the same address.
+			 * and update local tlb only
 			 */
+			update_mmu_tlb(vma, addr, vmf->pte);
 			ret = false;
 			goto pte_unlock;
 		}
@@ -2453,13 +2961,14 @@
 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
 		locked = true;
 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
-			/* The PTE changed under us. Retry page fault. */
+			/* The PTE changed under us, update local tlb */
+			update_mmu_tlb(vma, addr, vmf->pte);
 			ret = false;
 			goto pte_unlock;
 		}
 
 		/*
-		 * The same page can be mapped back since last copy attampt.
+		 * The same page can be mapped back since last copy attempt.
 		 * Try to copy again under PTL.
 		 */
 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
@@ -2538,10 +3047,11 @@
  *
  * The function expects the page to be locked and unlocks it.
  */
-static void fault_dirty_shared_page(struct vm_area_struct *vma,
-				    struct page *page)
+static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
 {
+	struct vm_area_struct *vma = vmf->vma;
 	struct address_space *mapping;
+	struct page *page = vmf->page;
 	bool dirtied;
 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
 
@@ -2556,16 +3066,30 @@
 	mapping = page_rmapping(page);
 	unlock_page(page);
 
-	if ((dirtied || page_mkwrite) && mapping) {
-		/*
-		 * Some device drivers do not set page.mapping
-		 * but still dirty their pages
-		 */
-		balance_dirty_pages_ratelimited(mapping);
-	}
-
 	if (!page_mkwrite)
 		file_update_time(vma->vm_file);
+
+	/*
+	 * Throttle page dirtying rate down to writeback speed.
+	 *
+	 * mapping may be NULL here because some device drivers do not
+	 * set page.mapping but still dirty their pages
+	 *
+	 * Drop the mmap_lock before waiting on IO, if we can. The file
+	 * is pinning the mapping, as per above.
+	 */
+	if ((dirtied || page_mkwrite) && mapping) {
+		struct file *fpin;
+
+		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
+		balance_dirty_pages_ratelimited(mapping);
+		if (fpin) {
+			fput(fpin);
+			return VM_FAULT_RETRY;
+		}
+	}
+
+	return 0;
 }
 
 /*
@@ -2592,16 +3116,17 @@
 
 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
 	entry = pte_mkyoung(vmf->orig_pte);
-	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+	entry = maybe_mkwrite(pte_mkdirty(entry), vmf->vma_flags);
 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
 		update_mmu_cache(vma, vmf->address, vmf->pte);
 	pte_unmap_unlock(vmf->pte, vmf->ptl);
+	count_vm_event(PGREUSE);
 }
 
 /*
  * Handle the case of a page which we actually need to copy to a new page.
  *
- * Called with mmap_sem locked and the old page referenced, but
+ * Called with mmap_lock locked and the old page referenced, but
  * without the ptl held.
  *
  * High level logic flow:
@@ -2622,23 +3147,22 @@
 	struct page *new_page = NULL;
 	pte_t entry;
 	int page_copied = 0;
-	const unsigned long mmun_start = vmf->address & PAGE_MASK;
-	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
-	struct mem_cgroup *memcg;
+	struct mmu_notifier_range range;
+	vm_fault_t ret = VM_FAULT_OOM;
 
 	if (unlikely(anon_vma_prepare(vma)))
-		goto oom;
+		goto out;
 
 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
 		new_page = alloc_zeroed_user_highpage_movable(vma,
 							      vmf->address);
 		if (!new_page)
-			goto oom;
+			goto out;
 	} else {
 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
 				vmf->address);
 		if (!new_page)
-			goto oom;
+			goto out;
 
 		if (!cow_user_page(new_page, old_page, vmf)) {
 			/*
@@ -2652,19 +3176,27 @@
 				put_page(old_page);
 			return 0;
 		}
+		trace_android_vh_cow_user_page(vmf, new_page);
 	}
 
-	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
-		goto oom_free_new;
+	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
+		goto out_free_new;
+	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
 
 	__SetPageUptodate(new_page);
 
-	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
+	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
+				vmf->address & PAGE_MASK,
+				(vmf->address & PAGE_MASK) + PAGE_SIZE);
+	mmu_notifier_invalidate_range_start(&range);
 
 	/*
 	 * Re-check the pte - we dropped the lock
 	 */
-	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
+	if (!pte_map_lock(vmf)) {
+		ret = VM_FAULT_RETRY;
+		goto out_invalidate_end;
+	}
 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
 		if (old_page) {
 			if (!PageAnon(old_page)) {
@@ -2676,8 +3208,9 @@
 			inc_mm_counter_fast(mm, MM_ANONPAGES);
 		}
 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
-		entry = mk_pte(new_page, vma->vm_page_prot);
-		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+		entry = mk_pte(new_page, vmf->vma_page_prot);
+		entry = pte_sw_mkyoung(entry);
+		entry = maybe_mkwrite(pte_mkdirty(entry), vmf->vma_flags);
 		/*
 		 * Clear the pte entry and flush it first, before updating the
 		 * pte with the new entry. This will avoid a race condition
@@ -2685,9 +3218,8 @@
 		 * thread doing COW.
 		 */
 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
-		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
-		mem_cgroup_commit_charge(new_page, memcg, false, false);
-		lru_cache_add_active_or_unevictable(new_page, vma);
+		__page_add_new_anon_rmap(new_page, vma, vmf->address, false);
+		__lru_cache_add_inactive_or_unevictable(new_page, vmf->vma_flags);
 		/*
 		 * We call the notify macro here because, when using secondary
 		 * mmu page tables (such as kvm shadow page tables), we want the
@@ -2725,7 +3257,7 @@
 		new_page = old_page;
 		page_copied = 1;
 	} else {
-		mem_cgroup_cancel_charge(new_page, memcg, false);
+		update_mmu_tlb(vma, vmf->address, vmf->pte);
 	}
 
 	if (new_page)
@@ -2736,13 +3268,13 @@
 	 * No need to double call mmu_notifier->invalidate_range() callback as
 	 * the above ptep_clear_flush_notify() did already call it.
 	 */
-	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
+	mmu_notifier_invalidate_range_only_end(&range);
 	if (old_page) {
 		/*
 		 * Don't let another task, with possibly unlocked vma,
 		 * keep the mlocked page.
 		 */
-		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
+		if (page_copied && (vmf->vma_flags & VM_LOCKED)) {
 			lock_page(old_page);	/* LRU manipulation */
 			if (PageMlocked(old_page))
 				munlock_vma_page(old_page);
@@ -2751,12 +3283,14 @@
 		put_page(old_page);
 	}
 	return page_copied ? VM_FAULT_WRITE : 0;
-oom_free_new:
+out_invalidate_end:
+	mmu_notifier_invalidate_range_only_end(&range);
+out_free_new:
 	put_page(new_page);
-oom:
+out:
 	if (old_page)
 		put_page(old_page);
-	return VM_FAULT_OOM;
+	return ret;
 }
 
 /**
@@ -2767,23 +3301,25 @@
  *
  * This function handles all that is needed to finish a write page fault in a
  * shared mapping due to PTE being read-only once the mapped page is prepared.
- * It handles locking of PTE and modifying it. The function returns
- * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
- * lock.
+ * It handles locking of PTE and modifying it.
  *
  * The function expects the page to be locked or other protection against
  * concurrent faults / writeback (such as DAX radix tree locks).
+ *
+ * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
+ * we acquired PTE lock.
  */
 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
 {
-	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
-	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
-				       &vmf->ptl);
+	WARN_ON_ONCE(!(vmf->vma_flags & VM_SHARED));
+	if (!pte_map_lock(vmf))
+		return VM_FAULT_RETRY;
 	/*
 	 * We might have raced with another page fault while we released the
 	 * pte_offset_map_lock.
 	 */
 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
+		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
 		pte_unmap_unlock(vmf->pte, vmf->ptl);
 		return VM_FAULT_NOPAGE;
 	}
@@ -2817,6 +3353,7 @@
 	__releases(vmf->ptl)
 {
 	struct vm_area_struct *vma = vmf->vma;
+	vm_fault_t ret = VM_FAULT_WRITE;
 
 	get_page(vmf->page);
 
@@ -2840,10 +3377,10 @@
 		wp_page_reuse(vmf);
 		lock_page(vmf->page);
 	}
-	fault_dirty_shared_page(vma, vmf->page);
+	ret |= fault_dirty_shared_page(vmf);
 	put_page(vmf->page);
 
-	return VM_FAULT_WRITE;
+	return ret;
 }
 
 /*
@@ -2860,16 +3397,32 @@
  * change only once the write actually happens. This avoids a few races,
  * and potentially makes it more efficient.
  *
- * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * We enter with non-exclusive mmap_lock (to exclude vma changes,
  * but allow concurrent faults), with pte both mapped and locked.
- * We return with mmap_sem still held, but pte unmapped and unlocked.
+ * We return with mmap_lock still held, but pte unmapped and unlocked.
  */
 static vm_fault_t do_wp_page(struct vm_fault *vmf)
 	__releases(vmf->ptl)
 {
 	struct vm_area_struct *vma = vmf->vma;
 
-	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
+	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
+		pte_unmap_unlock(vmf->pte, vmf->ptl);
+		if (vmf->flags & FAULT_FLAG_SPECULATIVE)
+			return VM_FAULT_RETRY;
+		return handle_userfault(vmf, VM_UFFD_WP);
+	}
+
+	/*
+	 * Userfaultfd write-protect can defer flushes. Ensure the TLB
+	 * is flushed in this case before copying.
+	 */
+	if (unlikely(userfaultfd_wp(vmf->vma) &&
+		     mm_tlb_flush_pending(vmf->vma->vm_mm)))
+		flush_tlb_page(vmf->vma, vmf->address);
+
+	vmf->page = _vm_normal_page(vma, vmf->address, vmf->orig_pte,
+					vmf->vma_flags);
 	if (!vmf->page) {
 		/*
 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
@@ -2878,7 +3431,7 @@
 		 * We should not cow pages in a shared writeable mapping.
 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
 		 */
-		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
+		if ((vmf->vma_flags & (VM_WRITE|VM_SHARED)) ==
 				     (VM_WRITE|VM_SHARED))
 			return wp_pfn_shared(vmf);
 
@@ -2890,43 +3443,31 @@
 	 * Take out anonymous pages first, anonymous shared vmas are
 	 * not dirty accountable.
 	 */
-	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
-		int total_map_swapcount;
-		if (!trylock_page(vmf->page)) {
-			get_page(vmf->page);
-			pte_unmap_unlock(vmf->pte, vmf->ptl);
-			lock_page(vmf->page);
-			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
-					vmf->address, &vmf->ptl);
-			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
-				unlock_page(vmf->page);
-				pte_unmap_unlock(vmf->pte, vmf->ptl);
-				put_page(vmf->page);
-				return 0;
-			}
-			put_page(vmf->page);
+	if (PageAnon(vmf->page)) {
+		struct page *page = vmf->page;
+
+		/* PageKsm() doesn't necessarily raise the page refcount */
+		if (PageKsm(page) || page_count(page) != 1)
+			goto copy;
+		if (!trylock_page(page))
+			goto copy;
+		if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
+			unlock_page(page);
+			goto copy;
 		}
-		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
-			if (total_map_swapcount == 1) {
-				/*
-				 * The page is all ours. Move it to
-				 * our anon_vma so the rmap code will
-				 * not search our parent or siblings.
-				 * Protected against the rmap code by
-				 * the page lock.
-				 */
-				page_move_anon_rmap(vmf->page, vma);
-			}
-			unlock_page(vmf->page);
-			wp_page_reuse(vmf);
-			return VM_FAULT_WRITE;
-		}
-		unlock_page(vmf->page);
-	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
+		/*
+		 * Ok, we've got the only map reference, and the only
+		 * page count reference, and the page is locked,
+		 * it's dark out, and we're wearing sunglasses. Hit it.
+		 */
+		unlock_page(page);
+		wp_page_reuse(vmf);
+		return VM_FAULT_WRITE;
+	} else if (unlikely((vmf->vma_flags & (VM_WRITE|VM_SHARED)) ==
 					(VM_WRITE|VM_SHARED))) {
 		return wp_page_shared(vmf);
 	}
-
+copy:
 	/*
 	 * Ok, we need to copy. Oh, well..
 	 */
@@ -2989,7 +3530,7 @@
 
 	details.check_mapping = mapping;
 	details.first_index = page->index;
-	details.last_index = page->index + hpage_nr_pages(page) - 1;
+	details.last_index = page->index + thp_nr_pages(page) - 1;
 	details.single_page = page;
 
 	i_mmap_lock_write(mapping);
@@ -3063,26 +3604,40 @@
 EXPORT_SYMBOL(unmap_mapping_range);
 
 /*
- * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * We enter with non-exclusive mmap_lock (to exclude vma changes,
  * but allow concurrent faults), and pte mapped but not yet locked.
  * We return with pte unmapped and unlocked.
  *
- * We return with the mmap_sem locked or unlocked in the same cases
+ * We return with the mmap_lock locked or unlocked in the same cases
  * as does filemap_fault().
  */
 vm_fault_t do_swap_page(struct vm_fault *vmf)
 {
 	struct vm_area_struct *vma = vmf->vma;
 	struct page *page = NULL, *swapcache;
-	struct mem_cgroup *memcg;
 	swp_entry_t entry;
 	pte_t pte;
 	int locked;
 	int exclusive = 0;
-	vm_fault_t ret = 0;
+	vm_fault_t ret;
+	void *shadow = NULL;
 
-	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
+	if (vmf->flags & FAULT_FLAG_SPECULATIVE) {
+		pte_unmap(vmf->pte);
+		return VM_FAULT_RETRY;
+	}
+
+	ret = pte_unmap_same(vmf);
+	if (ret) {
+		/*
+		 * If pte != orig_pte, this means another thread did the
+		 * swap operation in our back.
+		 * So nothing else to do.
+		 */
+		if (ret == VM_FAULT_PTNOTSAME)
+			ret = 0;
 		goto out;
+	}
 
 	entry = pte_to_swp_entry(vmf->orig_pte);
 	if (unlikely(non_swap_entry(entry))) {
@@ -3090,13 +3645,8 @@
 			migration_entry_wait(vma->vm_mm, vmf->pmd,
 					     vmf->address);
 		} else if (is_device_private_entry(entry)) {
-			/*
-			 * For un-addressable device memory we call the pgmap
-			 * fault handler callback. The callback must migrate
-			 * the page back to some CPU accessible page.
-			 */
-			ret = device_private_entry_fault(vma, vmf->address, entry,
-						 vmf->flags, vmf->pmd);
+			vmf->page = device_private_entry_to_page(entry);
+			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
 		} else if (is_hwpoison_entry(entry)) {
 			ret = VM_FAULT_HWPOISON;
 		} else {
@@ -3113,19 +3663,51 @@
 
 	if (!page) {
 		struct swap_info_struct *si = swp_swap_info(entry);
+		bool skip_swapcache = false;
 
-		if (si->flags & SWP_SYNCHRONOUS_IO &&
-				__swap_count(si, entry) == 1) {
+		trace_android_vh_skip_swapcache(entry, &skip_swapcache);
+		if ((data_race(si->flags & SWP_SYNCHRONOUS_IO) || skip_swapcache) &&
+		    __swap_count(entry) == 1) {
 			/* skip swapcache */
-			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
-							vmf->address);
+			gfp_t flags = GFP_HIGHUSER_MOVABLE;
+
+			trace_android_rvh_set_skip_swapcache_flags(&flags);
+			page = alloc_page_vma(flags, vma, vmf->address);
 			if (page) {
+				int err;
+
 				__SetPageLocked(page);
 				__SetPageSwapBacked(page);
 				set_page_private(page, entry.val);
-				lru_cache_add_anon(page);
+
+				/* Tell memcg to use swap ownership records */
+				SetPageSwapCache(page);
+				err = mem_cgroup_charge(page, vma->vm_mm,
+							GFP_KERNEL);
+				ClearPageSwapCache(page);
+				if (err) {
+					ret = VM_FAULT_OOM;
+					goto out_page;
+				}
+
+				shadow = get_shadow_from_swap_cache(entry);
+				if (shadow)
+					workingset_refault(page, shadow);
+
+				lru_cache_add(page);
 				swap_readpage(page, true);
 			}
+		} else if (vmf->flags & FAULT_FLAG_SPECULATIVE) {
+			/*
+			 * Don't try readahead during a speculative page fault
+			 * as the VMA's boundaries may change in our back.
+			 * If the page is not in the swap cache and synchronous
+			 * read is disabled, fall back to the regular page fault
+			 * mechanism.
+			 */
+			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
+			ret = VM_FAULT_RETRY;
+			goto out;
 		} else {
 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
 						vmf);
@@ -3134,11 +3716,16 @@
 
 		if (!page) {
 			/*
-			 * Back out if somebody else faulted in this pte
-			 * while we released the pte lock.
+			 * Back out if the VMA has changed in our back during
+			 * a speculative page fault or if somebody else
+			 * faulted in this pte while we released the pte lock.
 			 */
-			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
-					vmf->address, &vmf->ptl);
+			if (!pte_map_lock(vmf)) {
+				delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
+				ret = VM_FAULT_RETRY;
+				goto out;
+			}
+
 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
 				ret = VM_FAULT_OOM;
 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
@@ -3184,17 +3771,16 @@
 		goto out_page;
 	}
 
-	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
-					&memcg, false)) {
-		ret = VM_FAULT_OOM;
-		goto out_page;
-	}
+	cgroup_throttle_swaprate(page, GFP_KERNEL);
 
 	/*
-	 * Back out if somebody else already faulted in this pte.
+	 * Back out if the VMA has changed in our back during a speculative
+	 * page fault or if somebody else already faulted in this pte.
 	 */
-	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
-			&vmf->ptl);
+	if (!pte_map_lock(vmf)) {
+		ret = VM_FAULT_RETRY;
+		goto out_page;
+	}
 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
 		goto out_nomap;
 
@@ -3215,9 +3801,9 @@
 
 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
-	pte = mk_pte(page, vma->vm_page_prot);
+	pte = mk_pte(page, vmf->vma_page_prot);
 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
-		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
+		pte = maybe_mkwrite(pte_mkdirty(pte), vmf->vma_flags);
 		vmf->flags &= ~FAULT_FLAG_WRITE;
 		ret |= VM_FAULT_WRITE;
 		exclusive = RMAP_EXCLUSIVE;
@@ -3225,24 +3811,26 @@
 	flush_icache_page(vma, page);
 	if (pte_swp_soft_dirty(vmf->orig_pte))
 		pte = pte_mksoft_dirty(pte);
+	if (pte_swp_uffd_wp(vmf->orig_pte)) {
+		pte = pte_mkuffd_wp(pte);
+		pte = pte_wrprotect(pte);
+	}
 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
 	vmf->orig_pte = pte;
 
 	/* ksm created a completely new copy */
 	if (unlikely(page != swapcache && swapcache)) {
-		page_add_new_anon_rmap(page, vma, vmf->address, false);
-		mem_cgroup_commit_charge(page, memcg, false, false);
-		lru_cache_add_active_or_unevictable(page, vma);
+		__page_add_new_anon_rmap(page, vma, vmf->address, false);
+		__lru_cache_add_inactive_or_unevictable(page, vmf->vma_flags);
 	} else {
 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
-		mem_cgroup_commit_charge(page, memcg, true, false);
-		activate_page(page);
 	}
 
+	trace_android_vh_swapin_add_anon_rmap(vmf, page);
 	swap_free(entry);
 	if (mem_cgroup_swap_full(page) ||
-	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
+	    (vmf->vma_flags & VM_LOCKED) || PageMlocked(page))
 		try_to_free_swap(page);
 	unlock_page(page);
 	if (page != swapcache && swapcache) {
@@ -3272,7 +3860,6 @@
 out:
 	return ret;
 out_nomap:
-	mem_cgroup_cancel_charge(page, memcg, false);
 	pte_unmap_unlock(vmf->pte, vmf->ptl);
 out_page:
 	unlock_page(page);
@@ -3286,51 +3873,65 @@
 }
 
 /*
- * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * We enter with non-exclusive mmap_lock (to exclude vma changes,
  * but allow concurrent faults), and pte mapped but not yet locked.
- * We return with mmap_sem still held, but pte unmapped and unlocked.
+ * We return with mmap_lock still held, but pte unmapped and unlocked.
  */
 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
 {
 	struct vm_area_struct *vma = vmf->vma;
-	struct mem_cgroup *memcg;
 	struct page *page;
 	vm_fault_t ret = 0;
 	pte_t entry;
 
 	/* File mapping without ->vm_ops ? */
-	if (vma->vm_flags & VM_SHARED)
+	if (vmf->vma_flags & VM_SHARED)
 		return VM_FAULT_SIGBUS;
+
+	/* Do not check unstable pmd, if it's changed will retry later */
+	if (vmf->flags & FAULT_FLAG_SPECULATIVE)
+		goto skip_pmd_checks;
 
 	/*
 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
 	 * pte_offset_map() on pmds where a huge pmd might be created
 	 * from a different thread.
 	 *
-	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
+	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
 	 * parallel threads are excluded by other means.
 	 *
-	 * Here we only have down_read(mmap_sem).
+	 * Here we only have mmap_read_lock(mm).
 	 */
-	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
+	if (pte_alloc(vma->vm_mm, vmf->pmd))
 		return VM_FAULT_OOM;
 
-	/* See the comment in pte_alloc_one_map() */
+	/* See comment in handle_pte_fault() */
 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
 		return 0;
 
+skip_pmd_checks:
 	/* Use the zero-page for reads */
 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 			!mm_forbids_zeropage(vma->vm_mm)) {
 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
-						vma->vm_page_prot));
-		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
-				vmf->address, &vmf->ptl);
-		if (!pte_none(*vmf->pte))
+						vmf->vma_page_prot));
+		if (!pte_map_lock(vmf))
+			return VM_FAULT_RETRY;
+		if (!pte_none(*vmf->pte)) {
+			update_mmu_tlb(vma, vmf->address, vmf->pte);
 			goto unlock;
+		}
 		ret = check_stable_address_space(vma->vm_mm);
 		if (ret)
 			goto unlock;
+		/*
+		 * Don't call the userfaultfd during the speculative path.
+		 * We already checked for the VMA to not be managed through
+		 * userfaultfd, but it may be set in our back once we have lock
+		 * the pte. In such a case we can ignore it this time.
+		 */
+		if (vmf->flags & FAULT_FLAG_SPECULATIVE)
+			goto setpte;
 		/* Deliver the page fault to userland, check inside PT lock */
 		if (userfaultfd_missing(vma)) {
 			pte_unmap_unlock(vmf->pte, vmf->ptl);
@@ -3346,42 +3947,47 @@
 	if (!page)
 		goto oom;
 
-	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
-					false))
+	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
 		goto oom_free_page;
+	cgroup_throttle_swaprate(page, GFP_KERNEL);
 
 	/*
 	 * The memory barrier inside __SetPageUptodate makes sure that
-	 * preceeding stores to the page contents become visible before
+	 * preceding stores to the page contents become visible before
 	 * the set_pte_at() write.
 	 */
 	__SetPageUptodate(page);
 
-	entry = mk_pte(page, vma->vm_page_prot);
-	if (vma->vm_flags & VM_WRITE)
+	entry = mk_pte(page, vmf->vma_page_prot);
+	entry = pte_sw_mkyoung(entry);
+	if (vmf->vma_flags & VM_WRITE)
 		entry = pte_mkwrite(pte_mkdirty(entry));
 
-	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
-			&vmf->ptl);
-	if (!pte_none(*vmf->pte))
+	if (!pte_map_lock(vmf)) {
+		ret = VM_FAULT_RETRY;
 		goto release;
+	}
+
+	if (!pte_none(*vmf->pte)) {
+		update_mmu_cache(vma, vmf->address, vmf->pte);
+		goto unlock_and_release;
+	}
 
 	ret = check_stable_address_space(vma->vm_mm);
 	if (ret)
-		goto release;
+		goto unlock_and_release;
 
 	/* Deliver the page fault to userland, check inside PT lock */
-	if (userfaultfd_missing(vma)) {
+	if (!(vmf->flags & FAULT_FLAG_SPECULATIVE) &&
+				userfaultfd_missing(vma)) {
 		pte_unmap_unlock(vmf->pte, vmf->ptl);
-		mem_cgroup_cancel_charge(page, memcg, false);
 		put_page(page);
 		return handle_userfault(vmf, VM_UFFD_MISSING);
 	}
 
 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
-	page_add_new_anon_rmap(page, vma, vmf->address, false);
-	mem_cgroup_commit_charge(page, memcg, false, false);
-	lru_cache_add_active_or_unevictable(page, vma);
+	__page_add_new_anon_rmap(page, vma, vmf->address, false);
+	__lru_cache_add_inactive_or_unevictable(page, vmf->vma_flags);
 setpte:
 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
 
@@ -3390,10 +3996,11 @@
 unlock:
 	pte_unmap_unlock(vmf->pte, vmf->ptl);
 	return ret;
+unlock_and_release:
+	pte_unmap_unlock(vmf->pte, vmf->ptl);
 release:
-	mem_cgroup_cancel_charge(page, memcg, false);
 	put_page(page);
-	goto unlock;
+	return ret;
 oom_free_page:
 	put_page(page);
 oom:
@@ -3401,7 +4008,7 @@
 }
 
 /*
- * The mmap_sem must have been held on entry, and may have been
+ * The mmap_lock must have been held on entry, and may have been
  * released depending on flags and vma->vm_ops->fault() return value.
  * See filemap_fault() and __lock_page_retry().
  */
@@ -3409,6 +4016,10 @@
 {
 	struct vm_area_struct *vma = vmf->vma;
 	vm_fault_t ret;
+
+	/* Do not check unstable pmd, if it's changed will retry later */
+	if (vmf->flags & FAULT_FLAG_SPECULATIVE)
+		goto skip_pmd_checks;
 
 	/*
 	 * Preallocate pte before we take page_lock because this might lead to
@@ -3418,7 +4029,7 @@
 	 *				unlock_page(A)
 	 * lock_page(B)
 	 *				lock_page(B)
-	 * pte_alloc_pne
+	 * pte_alloc_one
 	 *   shrink_page_list
 	 *     wait_on_page_writeback(A)
 	 *				SetPageWriteback(B)
@@ -3426,24 +4037,33 @@
 	 *				# flush A, B to clear the writeback
 	 */
 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
-		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
-						  vmf->address);
+		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
 		if (!vmf->prealloc_pte)
 			return VM_FAULT_OOM;
 		smp_wmb(); /* See comment in __pte_alloc() */
 	}
 
+skip_pmd_checks:
 	ret = vma->vm_ops->fault(vmf);
 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
 			    VM_FAULT_DONE_COW)))
 		return ret;
 
 	if (unlikely(PageHWPoison(vmf->page))) {
-		if (ret & VM_FAULT_LOCKED)
-			unlock_page(vmf->page);
-		put_page(vmf->page);
+		struct page *page = vmf->page;
+		vm_fault_t poisonret = VM_FAULT_HWPOISON;
+		if (ret & VM_FAULT_LOCKED) {
+			if (page_mapped(page))
+				unmap_mapping_pages(page_mapping(page),
+						    page->index, 1, false);
+			/* Retry if a clean page was removed from the cache. */
+			if (invalidate_inode_page(page))
+				poisonret = VM_FAULT_NOPAGE;
+			unlock_page(page);
+		}
+		put_page(page);
 		vmf->page = NULL;
-		return VM_FAULT_HWPOISON;
+		return poisonret;
 	}
 
 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
@@ -3454,80 +4074,7 @@
 	return ret;
 }
 
-/*
- * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
- * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
- * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
- * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
- */
-static int pmd_devmap_trans_unstable(pmd_t *pmd)
-{
-	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
-}
-
-static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
-{
-	struct vm_area_struct *vma = vmf->vma;
-
-	if (!pmd_none(*vmf->pmd))
-		goto map_pte;
-	if (vmf->prealloc_pte) {
-		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
-		if (unlikely(!pmd_none(*vmf->pmd))) {
-			spin_unlock(vmf->ptl);
-			goto map_pte;
-		}
-
-		mm_inc_nr_ptes(vma->vm_mm);
-		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
-		spin_unlock(vmf->ptl);
-		vmf->prealloc_pte = NULL;
-	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
-		return VM_FAULT_OOM;
-	}
-map_pte:
-	/*
-	 * If a huge pmd materialized under us just retry later.  Use
-	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
-	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
-	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
-	 * running immediately after a huge pmd fault in a different thread of
-	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
-	 * All we have to ensure is that it is a regular pmd that we can walk
-	 * with pte_offset_map() and we can do that through an atomic read in
-	 * C, which is what pmd_trans_unstable() provides.
-	 */
-	if (pmd_devmap_trans_unstable(vmf->pmd))
-		return VM_FAULT_NOPAGE;
-
-	/*
-	 * At this point we know that our vmf->pmd points to a page of ptes
-	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
-	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
-	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
-	 * be valid and we will re-check to make sure the vmf->pte isn't
-	 * pte_none() under vmf->ptl protection when we return to
-	 * alloc_set_pte().
-	 */
-	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
-			&vmf->ptl);
-	return 0;
-}
-
-#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
-
-#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
-static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
-		unsigned long haddr)
-{
-	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
-			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
-		return false;
-	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
-		return false;
-	return true;
-}
-
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 static void deposit_prealloc_pte(struct vm_fault *vmf)
 {
 	struct vm_area_struct *vma = vmf->vma;
@@ -3541,27 +4088,28 @@
 	vmf->prealloc_pte = NULL;
 }
 
-static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
+vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
 {
 	struct vm_area_struct *vma = vmf->vma;
 	bool write = vmf->flags & FAULT_FLAG_WRITE;
 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 	pmd_t entry;
 	int i;
-	vm_fault_t ret;
+	vm_fault_t ret = VM_FAULT_FALLBACK;
 
 	if (!transhuge_vma_suitable(vma, haddr))
-		return VM_FAULT_FALLBACK;
+		return ret;
 
-	ret = VM_FAULT_FALLBACK;
 	page = compound_head(page);
+	if (compound_order(page) != HPAGE_PMD_ORDER)
+		return ret;
 
 	/*
 	 * Archs like ppc64 need additonal space to store information
 	 * related to pte entry. Use the preallocated table for that.
 	 */
 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
-		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
+		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
 		if (!vmf->prealloc_pte)
 			return VM_FAULT_OOM;
 		smp_wmb(); /* See comment in __pte_alloc() */
@@ -3574,7 +4122,7 @@
 	for (i = 0; i < HPAGE_PMD_NR; i++)
 		flush_icache_page(vma, page + i);
 
-	entry = mk_huge_pmd(page, vma->vm_page_prot);
+	entry = mk_huge_pmd(page, vmf->vma_page_prot);
 	if (write)
 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 
@@ -3598,77 +4146,40 @@
 	return ret;
 }
 #else
-static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
+vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
 {
-	BUILD_BUG();
-	return 0;
+	return VM_FAULT_FALLBACK;
 }
 #endif
 
-/**
- * alloc_set_pte - setup new PTE entry for given page and add reverse page
- * mapping. If needed, the fucntion allocates page table or use pre-allocated.
- *
- * @vmf: fault environment
- * @memcg: memcg to charge page (only for private mappings)
- * @page: page to map
- *
- * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
- * return.
- *
- * Target users are page handler itself and implementations of
- * vm_ops->map_pages.
- */
-vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
-		struct page *page)
+void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
 {
 	struct vm_area_struct *vma = vmf->vma;
 	bool write = vmf->flags & FAULT_FLAG_WRITE;
+	bool prefault = vmf->address != addr;
 	pte_t entry;
-	vm_fault_t ret;
-
-	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
-			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
-		/* THP on COW? */
-		VM_BUG_ON_PAGE(memcg, page);
-
-		ret = do_set_pmd(vmf, page);
-		if (ret != VM_FAULT_FALLBACK)
-			return ret;
-	}
-
-	if (!vmf->pte) {
-		ret = pte_alloc_one_map(vmf);
-		if (ret)
-			return ret;
-	}
-
-	/* Re-check under ptl */
-	if (unlikely(!pte_none(*vmf->pte)))
-		return VM_FAULT_NOPAGE;
 
 	flush_icache_page(vma, page);
-	entry = mk_pte(page, vma->vm_page_prot);
+	entry = mk_pte(page, vmf->vma_page_prot);
+
+	if (prefault && arch_wants_old_prefaulted_pte())
+		entry = pte_mkold(entry);
+	else
+		entry = pte_sw_mkyoung(entry);
+
 	if (write)
-		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+		entry = maybe_mkwrite(pte_mkdirty(entry), vmf->vma_flags);
 	/* copy-on-write page */
-	if (write && !(vma->vm_flags & VM_SHARED)) {
+	if (write && !(vmf->vma_flags & VM_SHARED)) {
 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
-		page_add_new_anon_rmap(page, vma, vmf->address, false);
-		mem_cgroup_commit_charge(page, memcg, false, false);
-		lru_cache_add_active_or_unevictable(page, vma);
+		__page_add_new_anon_rmap(page, vma, addr, false);
+		__lru_cache_add_inactive_or_unevictable(page, vmf->vma_flags);
 	} else {
 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
 		page_add_file_rmap(page, false);
 	}
-	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
-
-	/* no need to invalidate: a not-present page won't be cached */
-	update_mmu_cache(vma, vmf->address, vmf->pte);
-
-	return 0;
+	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
 }
-
 
 /**
  * finish_fault - finish page fault once we have prepared the page to fault
@@ -3678,20 +4189,22 @@
  * This function handles all that is needed to finish a page fault once the
  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
  * given page, adds reverse page mapping, handles memcg charges and LRU
- * addition. The function returns 0 on success, VM_FAULT_ code in case of
- * error.
+ * addition.
  *
  * The function expects the page to be locked and on success it consumes a
  * reference of a page being mapped (for the PTE which maps it).
+ *
+ * Return: %0 on success, %VM_FAULT_ code in case of error.
  */
 vm_fault_t finish_fault(struct vm_fault *vmf)
 {
+	struct vm_area_struct *vma = vmf->vma;
 	struct page *page;
-	vm_fault_t ret = 0;
+	vm_fault_t ret;
 
 	/* Did we COW the page? */
 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
-	    !(vmf->vma->vm_flags & VM_SHARED))
+	    !(vmf->vma_flags & VM_SHARED))
 		page = vmf->cow_page;
 	else
 		page = vmf->page;
@@ -3700,12 +4213,56 @@
 	 * check even for read faults because we might have lost our CoWed
 	 * page
 	 */
-	if (!(vmf->vma->vm_flags & VM_SHARED))
-		ret = check_stable_address_space(vmf->vma->vm_mm);
-	if (!ret)
-		ret = alloc_set_pte(vmf, vmf->memcg, page);
-	if (vmf->pte)
-		pte_unmap_unlock(vmf->pte, vmf->ptl);
+	if (!(vma->vm_flags & VM_SHARED)) {
+		ret = check_stable_address_space(vma->vm_mm);
+		if (ret)
+			return ret;
+	}
+
+	/* Do not check unstable pmd, if it's changed will retry later */
+	if (vmf->flags & FAULT_FLAG_SPECULATIVE)
+		goto skip_pmd_checks;
+
+	if (pmd_none(*vmf->pmd)) {
+		if (PageTransCompound(page)) {
+			ret = do_set_pmd(vmf, page);
+			if (ret != VM_FAULT_FALLBACK)
+				return ret;
+		}
+
+		if (vmf->prealloc_pte) {
+			vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
+			if (likely(pmd_none(*vmf->pmd))) {
+				mm_inc_nr_ptes(vma->vm_mm);
+				pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
+				vmf->prealloc_pte = NULL;
+			}
+			spin_unlock(vmf->ptl);
+		} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
+			return VM_FAULT_OOM;
+		}
+	}
+
+	/*
+	 * See comment in handle_pte_fault() for how this scenario happens, we
+	 * need to return NOPAGE so that we drop this page.
+	 */
+	if (pmd_devmap_trans_unstable(vmf->pmd))
+		return VM_FAULT_NOPAGE;
+
+skip_pmd_checks:
+	if (!pte_map_lock(vmf))
+		return VM_FAULT_RETRY;
+
+	ret = 0;
+	/* Re-check under ptl */
+	if (likely(pte_none(*vmf->pte)))
+		do_set_pte(vmf, page, vmf->address);
+	else
+		ret = VM_FAULT_NOPAGE;
+
+	update_mmu_tlb(vma, vmf->address, vmf->pte);
+	pte_unmap_unlock(vmf->pte, vmf->ptl);
 	return ret;
 }
 
@@ -3738,12 +4295,8 @@
 
 static int __init fault_around_debugfs(void)
 {
-	void *ret;
-
-	ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
-			&fault_around_bytes_fops);
-	if (!ret)
-		pr_warn("Failed to create fault_around_bytes in debugfs");
+	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
+				   &fault_around_bytes_fops);
 	return 0;
 }
 late_initcall(fault_around_debugfs);
@@ -3779,13 +4332,12 @@
 	pgoff_t start_pgoff = vmf->pgoff;
 	pgoff_t end_pgoff;
 	int off;
-	vm_fault_t ret = 0;
 
 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
 
-	vmf->address = max(address & mask, vmf->vma->vm_start);
-	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
+	address = max(address & mask, vmf->vma->vm_start);
+	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
 	start_pgoff -= off;
 
 	/*
@@ -3793,40 +4345,20 @@
 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
 	 */
 	end_pgoff = start_pgoff -
-		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
+		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
 		PTRS_PER_PTE - 1;
 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
 			start_pgoff + nr_pages - 1);
 
-	if (pmd_none(*vmf->pmd)) {
-		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
-						  vmf->address);
+	if (!(vmf->flags & FAULT_FLAG_SPECULATIVE) &&
+	    pmd_none(*vmf->pmd)) {
+		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
 		if (!vmf->prealloc_pte)
-			goto out;
+			return VM_FAULT_OOM;
 		smp_wmb(); /* See comment in __pte_alloc() */
 	}
 
-	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
-
-	/* Huge page is mapped? Page fault is solved */
-	if (pmd_trans_huge(*vmf->pmd)) {
-		ret = VM_FAULT_NOPAGE;
-		goto out;
-	}
-
-	/* ->map_pages() haven't done anything useful. Cold page cache? */
-	if (!vmf->pte)
-		goto out;
-
-	/* check if the page fault is solved */
-	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
-	if (!pte_none(*vmf->pte))
-		ret = VM_FAULT_NOPAGE;
-	pte_unmap_unlock(vmf->pte, vmf->ptl);
-out:
-	vmf->address = address;
-	vmf->pte = NULL;
-	return ret;
+	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
 }
 
 static vm_fault_t do_read_fault(struct vm_fault *vmf)
@@ -3840,9 +4372,11 @@
 	 * something).
 	 */
 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
-		ret = do_fault_around(vmf);
-		if (ret)
-			return ret;
+		if (likely(!userfaultfd_minor(vmf->vma))) {
+			ret = do_fault_around(vmf);
+			if (ret)
+				return ret;
+		}
 	}
 
 	ret = __do_fault(vmf);
@@ -3868,11 +4402,11 @@
 	if (!vmf->cow_page)
 		return VM_FAULT_OOM;
 
-	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
-				&vmf->memcg, false)) {
+	if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
 		put_page(vmf->cow_page);
 		return VM_FAULT_OOM;
 	}
+	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
 
 	ret = __do_fault(vmf);
 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
@@ -3890,7 +4424,6 @@
 		goto uncharge_out;
 	return ret;
 uncharge_out:
-	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
 	put_page(vmf->cow_page);
 	return ret;
 }
@@ -3926,16 +4459,16 @@
 		return ret;
 	}
 
-	fault_dirty_shared_page(vma, vmf->page);
+	ret |= fault_dirty_shared_page(vmf);
 	return ret;
 }
 
 /*
- * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * We enter with non-exclusive mmap_lock (to exclude vma changes,
  * but allow concurrent faults).
- * The mmap_sem may have been released depending on flags and our
+ * The mmap_lock may have been released depending on flags and our
  * return value.  See filemap_fault() and __lock_page_or_retry().
- * If mmap_sem is released, vma may become invalid (for example
+ * If mmap_lock is released, vma may become invalid (for example
  * by other thread calling munmap()).
  */
 static vm_fault_t do_fault(struct vm_fault *vmf)
@@ -3975,7 +4508,7 @@
 		}
 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
 		ret = do_read_fault(vmf);
-	else if (!(vma->vm_flags & VM_SHARED))
+	else if (!(vmf->vma_flags & VM_SHARED))
 		ret = do_cow_fault(vmf);
 	else
 		ret = do_shared_fault(vmf);
@@ -4007,11 +4540,11 @@
 {
 	struct vm_area_struct *vma = vmf->vma;
 	struct page *page = NULL;
-	int page_nid = -1;
+	int page_nid = NUMA_NO_NODE;
 	int last_cpupid;
 	int target_nid;
 	bool migrated = false;
-	pte_t pte;
+	pte_t pte, old_pte;
 	bool was_writable = pte_savedwrite(vmf->orig_pte);
 	int flags = 0;
 
@@ -4020,8 +4553,8 @@
 	 * validation through pte_unmap_same(). It's of NUMA type but
 	 * the pfn may be screwed if the read is non atomic.
 	 */
-	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
-	spin_lock(vmf->ptl);
+	if (!pte_spinlock(vmf))
+		return VM_FAULT_RETRY;
 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
 		pte_unmap_unlock(vmf->pte, vmf->ptl);
 		goto out;
@@ -4031,15 +4564,15 @@
 	 * Make it present again, Depending on how arch implementes non
 	 * accessible ptes, some can allow access by kernel mode.
 	 */
-	pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
-	pte = pte_modify(pte, vma->vm_page_prot);
+	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
+	pte = pte_modify(old_pte, vmf->vma_page_prot);
 	pte = pte_mkyoung(pte);
 	if (was_writable)
 		pte = pte_mkwrite(pte);
-	ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
+	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
 	update_mmu_cache(vma, vmf->address, vmf->pte);
 
-	page = vm_normal_page(vma, vmf->address, pte);
+	page = _vm_normal_page(vma, vmf->address, pte, vmf->vma_flags);
 	if (!page) {
 		pte_unmap_unlock(vmf->pte, vmf->ptl);
 		return 0;
@@ -4066,7 +4599,7 @@
 	 * Flag if the page is shared between multiple address spaces. This
 	 * is later used when determining whether to group tasks together
 	 */
-	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
+	if (page_mapcount(page) > 1 && (vmf->vma_flags & VM_SHARED))
 		flags |= TNF_SHARED;
 
 	last_cpupid = page_cpupid_last(page);
@@ -4074,13 +4607,13 @@
 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
 			&flags);
 	pte_unmap_unlock(vmf->pte, vmf->ptl);
-	if (target_nid == -1) {
+	if (target_nid == NUMA_NO_NODE) {
 		put_page(page);
 		goto out;
 	}
 
 	/* Migrate to the requested node */
-	migrated = migrate_misplaced_page(page, vma, target_nid);
+	migrated = migrate_misplaced_page(page, vmf, target_nid);
 	if (migrated) {
 		page_nid = target_nid;
 		flags |= TNF_MIGRATED;
@@ -4088,7 +4621,7 @@
 		flags |= TNF_MIGRATE_FAIL;
 
 out:
-	if (page_nid != -1)
+	if (page_nid != NUMA_NO_NODE)
 		task_numa_fault(last_cpupid, page_nid, 1, flags);
 	return 0;
 }
@@ -4105,26 +4638,28 @@
 /* `inline' is required to avoid gcc 4.1.2 build error */
 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
 {
-	if (vma_is_anonymous(vmf->vma))
+	if (vma_is_anonymous(vmf->vma)) {
+		if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
+			return handle_userfault(vmf, VM_UFFD_WP);
 		return do_huge_pmd_wp_page(vmf, orig_pmd);
-	if (vmf->vma->vm_ops->huge_fault)
-		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
+	}
+	if (vmf->vma->vm_ops->huge_fault) {
+		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
 
-	/* COW handled on pte level: split pmd */
-	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
+		if (!(ret & VM_FAULT_FALLBACK))
+			return ret;
+	}
+
+	/* COW or write-notify handled on pte level: split pmd. */
 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
 
 	return VM_FAULT_FALLBACK;
 }
 
-static inline bool vma_is_accessible(struct vm_area_struct *vma)
-{
-	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
-}
-
 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
 {
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+#if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
+	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
 	/* No support for anonymous transparent PUD pages yet */
 	if (vma_is_anonymous(vmf->vma))
 		return VM_FAULT_FALLBACK;
@@ -4136,13 +4671,21 @@
 
 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
 {
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+#if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
+	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
 	/* No support for anonymous transparent PUD pages yet */
 	if (vma_is_anonymous(vmf->vma))
-		return VM_FAULT_FALLBACK;
-	if (vmf->vma->vm_ops->huge_fault)
-		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
-#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
+		goto split;
+	if (vmf->vma->vm_ops->huge_fault) {
+		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
+
+		if (!(ret & VM_FAULT_FALLBACK))
+			return ret;
+	}
+split:
+	/* COW or write-notify not handled on PUD level: split pud.*/
+	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
+#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 	return VM_FAULT_FALLBACK;
 }
 
@@ -4155,15 +4698,20 @@
  * with external mmu caches can use to update those (ie the Sparc or
  * PowerPC hashed page tables that act as extended TLBs).
  *
- * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
+ * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
  * concurrent faults).
  *
- * The mmap_sem may have been released depending on flags and our return value.
+ * The mmap_lock may have been released depending on flags and our return value.
  * See filemap_fault() and __lock_page_or_retry().
  */
 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
 {
 	pte_t entry;
+	vm_fault_t ret = 0;
+
+	/* Do not check unstable pmd, if it's changed will retry later */
+	if (vmf->flags & FAULT_FLAG_SPECULATIVE)
+		goto skip_pmd_checks;
 
 	if (unlikely(pmd_none(*vmf->pmd))) {
 		/*
@@ -4174,14 +4722,28 @@
 		 */
 		vmf->pte = NULL;
 	} else {
-		/* See comment in pte_alloc_one_map() */
+		/*
+		 * If a huge pmd materialized under us just retry later.  Use
+		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
+		 * of pmd_trans_huge() to ensure the pmd didn't become
+		 * pmd_trans_huge under us and then back to pmd_none, as a
+		 * result of MADV_DONTNEED running immediately after a huge pmd
+		 * fault in a different thread of this mm, in turn leading to a
+		 * misleading pmd_trans_huge() retval. All we have to ensure is
+		 * that it is a regular pmd that we can walk with
+		 * pte_offset_map() and we can do that through an atomic read
+		 * in C, which is what pmd_trans_unstable() provides.
+		 */
 		if (pmd_devmap_trans_unstable(vmf->pmd))
 			return 0;
 		/*
 		 * A regular pmd is established and it can't morph into a huge
 		 * pmd from under us anymore at this point because we hold the
-		 * mmap_sem read mode and khugepaged takes it in write mode.
+		 * mmap_lock read mode and khugepaged takes it in write mode.
 		 * So now it's safe to run pte_offset_map().
+		 * This is not applicable to the speculative page fault handler
+		 * but in that case, the pte is fetched earlier in
+		 * handle_speculative_fault().
 		 */
 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
 		vmf->orig_pte = *vmf->pte;
@@ -4201,9 +4763,13 @@
 		}
 	}
 
+skip_pmd_checks:
 	if (!vmf->pte) {
 		if (vma_is_anonymous(vmf->vma))
 			return do_anonymous_page(vmf);
+		else if ((vmf->flags & FAULT_FLAG_SPECULATIVE) &&
+				!vmf_allows_speculation(vmf))
+			return VM_FAULT_RETRY;
 		else
 			return do_fault(vmf);
 	}
@@ -4214,14 +4780,27 @@
 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
 		return do_numa_page(vmf);
 
-	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
-	spin_lock(vmf->ptl);
+	if (!pte_spinlock(vmf))
+		return VM_FAULT_RETRY;
 	entry = vmf->orig_pte;
-	if (unlikely(!pte_same(*vmf->pte, entry)))
+	if (unlikely(!pte_same(*vmf->pte, entry))) {
+		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
 		goto unlock;
+	}
 	if (vmf->flags & FAULT_FLAG_WRITE) {
-		if (!pte_write(entry))
-			return do_wp_page(vmf);
+		if (!pte_write(entry)) {
+			if (!(vmf->flags & FAULT_FLAG_SPECULATIVE))
+				return do_wp_page(vmf);
+
+			if (!mmu_notifier_trylock(vmf->vma->vm_mm)) {
+				ret = VM_FAULT_RETRY;
+				goto unlock;
+			}
+
+			ret = do_wp_page(vmf);
+			mmu_notifier_unlock(vmf->vma->vm_mm);
+			return ret;
+		}
 		entry = pte_mkdirty(entry);
 	}
 	entry = pte_mkyoung(entry);
@@ -4229,6 +4808,11 @@
 				vmf->flags & FAULT_FLAG_WRITE)) {
 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
 	} else {
+		/* Skip spurious TLB flush for retried page fault */
+		if (vmf->flags & FAULT_FLAG_TRIED)
+			goto unlock;
+		if (vmf->flags & FAULT_FLAG_SPECULATIVE)
+			ret = VM_FAULT_RETRY;
 		/*
 		 * This is needed only for protection faults but the arch code
 		 * is not yet telling us if this is a protection fault or not.
@@ -4238,15 +4822,17 @@
 		if (vmf->flags & FAULT_FLAG_WRITE)
 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
 	}
+	trace_android_rvh_handle_pte_fault_end(vmf, highest_memmap_pfn);
+	trace_android_vh_handle_pte_fault_end(vmf, highest_memmap_pfn);
 unlock:
 	pte_unmap_unlock(vmf->pte, vmf->ptl);
-	return 0;
+	return ret;
 }
 
 /*
  * By the time we get here, we already hold the mm semaphore
  *
- * The mmap_sem may have been released depending on flags and our
+ * The mmap_lock may have been released depending on flags and our
  * return value.  See filemap_fault() and __lock_page_or_retry().
  */
 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
@@ -4258,6 +4844,8 @@
 		.flags = flags,
 		.pgoff = linear_page_index(vma, address),
 		.gfp_mask = __get_fault_gfp_mask(vma),
+		.vma_flags = vma->vm_flags,
+		.vma_page_prot = vma->vm_page_prot,
 	};
 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
 	struct mm_struct *mm = vma->vm_mm;
@@ -4273,6 +4861,7 @@
 	vmf.pud = pud_alloc(mm, p4d, address);
 	if (!vmf.pud)
 		return VM_FAULT_OOM;
+retry_pud:
 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
 		ret = create_huge_pud(&vmf);
 		if (!(ret & VM_FAULT_FALLBACK))
@@ -4299,6 +4888,14 @@
 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
 	if (!vmf.pmd)
 		return VM_FAULT_OOM;
+
+	/* Huge pud page fault raced with pmd_alloc? */
+	if (pud_trans_unstable(vmf.pud))
+		goto retry_pud;
+
+#ifdef CONFIG_SPECULATIVE_PAGE_FAULT
+	vmf.sequence = raw_read_seqcount(&vma->vm_sequence);
+#endif
 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
 		ret = create_huge_pmd(&vmf);
 		if (!(ret & VM_FAULT_FALLBACK))
@@ -4332,14 +4929,342 @@
 	return handle_pte_fault(&vmf);
 }
 
+/**
+ * mm_account_fault - Do page fault accountings
+ *
+ * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
+ *        of perf event counters, but we'll still do the per-task accounting to
+ *        the task who triggered this page fault.
+ * @address: the faulted address.
+ * @flags: the fault flags.
+ * @ret: the fault retcode.
+ *
+ * This will take care of most of the page fault accountings.  Meanwhile, it
+ * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
+ * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
+ * still be in per-arch page fault handlers at the entry of page fault.
+ */
+static inline void mm_account_fault(struct pt_regs *regs,
+				    unsigned long address, unsigned int flags,
+				    vm_fault_t ret)
+{
+	bool major;
+
+	/*
+	 * We don't do accounting for some specific faults:
+	 *
+	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
+	 *   includes arch_vma_access_permitted() failing before reaching here.
+	 *   So this is not a "this many hardware page faults" counter.  We
+	 *   should use the hw profiling for that.
+	 *
+	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
+	 *   once they're completed.
+	 */
+	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
+		return;
+
+	/*
+	 * We define the fault as a major fault when the final successful fault
+	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
+	 * handle it immediately previously).
+	 */
+	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
+
+	if (major)
+		current->maj_flt++;
+	else
+		current->min_flt++;
+
+	/*
+	 * If the fault is done for GUP, regs will be NULL.  We only do the
+	 * accounting for the per thread fault counters who triggered the
+	 * fault, and we skip the perf event updates.
+	 */
+	if (!regs)
+		return;
+
+	if (major)
+		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
+	else
+		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
+}
+#ifdef CONFIG_SPECULATIVE_PAGE_FAULT
+
+#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
+/* This is required by vm_normal_page() */
+#error "Speculative page fault handler requires CONFIG_ARCH_HAS_PTE_SPECIAL"
+#endif
+/*
+ * vm_normal_page() adds some processing which should be done while
+ * hodling the mmap_sem.
+ */
+
+/*
+ * Tries to handle the page fault in a speculative way, without grabbing the
+ * mmap_sem.
+ * When VM_FAULT_RETRY is returned, the vma pointer is valid and this vma must
+ * be checked later when the mmap_sem has been grabbed by calling
+ * can_reuse_spf_vma().
+ * This is needed as the returned vma is kept in memory until the call to
+ * can_reuse_spf_vma() is made.
+ */
+static vm_fault_t ___handle_speculative_fault(struct mm_struct *mm,
+				unsigned long address, unsigned int flags,
+				struct vm_area_struct *vma)
+{
+	struct vm_fault vmf = {
+		.address = address,
+		.pgoff = linear_page_index(vma, address),
+		.vma = vma,
+		.gfp_mask = __get_fault_gfp_mask(vma),
+		.flags = flags,
+	};
+#ifdef CONFIG_NUMA
+	struct mempolicy *pol;
+#endif
+	pgd_t *pgd, pgdval;
+	p4d_t *p4d, p4dval;
+	pud_t pudval;
+	int seq;
+	vm_fault_t ret;
+
+	/* Clear flags that may lead to release the mmap_sem to retry */
+	flags &= ~(FAULT_FLAG_ALLOW_RETRY|FAULT_FLAG_KILLABLE);
+	flags |= FAULT_FLAG_SPECULATIVE;
+
+	/* rmb <-> seqlock,vma_rb_erase() */
+	seq = raw_read_seqcount(&vmf.vma->vm_sequence);
+	if (seq & 1) {
+		trace_spf_vma_changed(_RET_IP_, vmf.vma, address);
+		return VM_FAULT_RETRY;
+	}
+
+	if (!vmf_allows_speculation(&vmf))
+		return VM_FAULT_RETRY;
+
+	vmf.vma_flags = READ_ONCE(vmf.vma->vm_flags);
+	vmf.vma_page_prot = READ_ONCE(vmf.vma->vm_page_prot);
+
+#ifdef CONFIG_USERFAULTFD
+	/* Can't call userland page fault handler in the speculative path */
+	if (unlikely(vmf.vma_flags & __VM_UFFD_FLAGS)) {
+		trace_spf_vma_notsup(_RET_IP_, vmf.vma, address);
+		return VM_FAULT_RETRY;
+	}
+#endif
+
+	if (vmf.vma_flags & VM_GROWSDOWN || vmf.vma_flags & VM_GROWSUP) {
+		/*
+		 * This could be detected by the check address against VMA's
+		 * boundaries but we want to trace it as not supported instead
+		 * of changed.
+		 */
+		trace_spf_vma_notsup(_RET_IP_, vmf.vma, address);
+		return VM_FAULT_RETRY;
+	}
+
+	if (address < READ_ONCE(vmf.vma->vm_start)
+	    || READ_ONCE(vmf.vma->vm_end) <= address) {
+		trace_spf_vma_changed(_RET_IP_, vmf.vma, address);
+		return VM_FAULT_RETRY;
+	}
+
+	if (!arch_vma_access_permitted(vmf.vma, flags & FAULT_FLAG_WRITE,
+				       flags & FAULT_FLAG_INSTRUCTION,
+				       flags & FAULT_FLAG_REMOTE))
+		goto out_segv;
+
+	/* This is one is required to check that the VMA has write access set */
+	if (flags & FAULT_FLAG_WRITE) {
+		if (unlikely(!(vmf.vma_flags & VM_WRITE)))
+			goto out_segv;
+	} else if (unlikely(!(vmf.vma_flags & (VM_READ|VM_EXEC|VM_WRITE))))
+		goto out_segv;
+
+#ifdef CONFIG_NUMA
+	/*
+	 * MPOL_INTERLEAVE implies additional checks in
+	 * mpol_misplaced() which are not compatible with the
+	 *speculative page fault processing.
+	 */
+	pol = __get_vma_policy(vmf.vma, address);
+	if (!pol)
+		pol = get_task_policy(current);
+	if (pol && pol->mode == MPOL_INTERLEAVE) {
+		trace_spf_vma_notsup(_RET_IP_, vmf.vma, address);
+		return VM_FAULT_RETRY;
+	}
+#endif
+
+	/*
+	 * Do a speculative lookup of the PTE entry.
+	 */
+	local_irq_disable();
+	pgd = pgd_offset(mm, address);
+	pgdval = READ_ONCE(*pgd);
+	if (pgd_none(pgdval) || unlikely(pgd_bad(pgdval)))
+		goto out_walk;
+
+	p4d = p4d_offset(pgd, address);
+	if (pgd_val(READ_ONCE(*pgd)) != pgd_val(pgdval))
+		goto out_walk;
+	p4dval = READ_ONCE(*p4d);
+	if (p4d_none(p4dval) || unlikely(p4d_bad(p4dval)))
+		goto out_walk;
+
+	vmf.pud = pud_offset(p4d, address);
+	if (p4d_val(READ_ONCE(*p4d)) != p4d_val(p4dval))
+		goto out_walk;
+	pudval = READ_ONCE(*vmf.pud);
+	if (pud_none(pudval) || unlikely(pud_bad(pudval)))
+		goto out_walk;
+
+	/* Huge pages at PUD level are not supported. */
+	if (unlikely(pud_trans_huge(pudval)))
+		goto out_walk;
+
+	vmf.pmd = pmd_offset(vmf.pud, address);
+	if (pud_val(READ_ONCE(*vmf.pud)) != pud_val(pudval))
+		goto out_walk;
+	vmf.orig_pmd = READ_ONCE(*vmf.pmd);
+	/*
+	 * pmd_none could mean that a hugepage collapse is in progress
+	 * in our back as collapse_huge_page() mark it before
+	 * invalidating the pte (which is done once the IPI is catched
+	 * by all CPU and we have interrupt disabled).
+	 * For this reason we cannot handle THP in a speculative way since we
+	 * can't safely indentify an in progress collapse operation done in our
+	 * back on that PMD.
+	 * Regarding the order of the following checks, see comment in
+	 * pmd_devmap_trans_unstable()
+	 */
+	if (unlikely(pmd_devmap(vmf.orig_pmd) ||
+		     pmd_none(vmf.orig_pmd) || pmd_trans_huge(vmf.orig_pmd) ||
+		     is_swap_pmd(vmf.orig_pmd)))
+		goto out_walk;
+
+	/*
+	 * The above does not allocate/instantiate page-tables because doing so
+	 * would lead to the possibility of instantiating page-tables after
+	 * free_pgtables() -- and consequently leaking them.
+	 *
+	 * The result is that we take at least one !speculative fault per PMD
+	 * in order to instantiate it.
+	 */
+
+	vmf.pte = pte_offset_map(vmf.pmd, address);
+	if (pmd_val(READ_ONCE(*vmf.pmd)) != pmd_val(vmf.orig_pmd)) {
+		pte_unmap(vmf.pte);
+		vmf.pte = NULL;
+		goto out_walk;
+	}
+	vmf.orig_pte = READ_ONCE(*vmf.pte);
+	barrier(); /* See comment in handle_pte_fault() */
+	if (pte_none(vmf.orig_pte)) {
+		pte_unmap(vmf.pte);
+		vmf.pte = NULL;
+	}
+
+	vmf.sequence = seq;
+	vmf.flags = flags;
+
+	local_irq_enable();
+
+	/*
+	 * We need to re-validate the VMA after checking the bounds, otherwise
+	 * we might have a false positive on the bounds.
+	 */
+	if (read_seqcount_retry(&vmf.vma->vm_sequence, seq)) {
+		trace_spf_vma_changed(_RET_IP_, vmf.vma, address);
+		return VM_FAULT_RETRY;
+	}
+
+	mem_cgroup_enter_user_fault();
+	ret = handle_pte_fault(&vmf);
+	mem_cgroup_exit_user_fault();
+
+	if (ret != VM_FAULT_RETRY) {
+		if (vma_is_anonymous(vmf.vma))
+			count_vm_event(SPECULATIVE_PGFAULT_ANON);
+		else
+			count_vm_event(SPECULATIVE_PGFAULT_FILE);
+	}
+
+	/*
+	 * The task may have entered a memcg OOM situation but
+	 * if the allocation error was handled gracefully (no
+	 * VM_FAULT_OOM), there is no need to kill anything.
+	 * Just clean up the OOM state peacefully.
+	 */
+	if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
+		mem_cgroup_oom_synchronize(false);
+	return ret;
+
+out_walk:
+	trace_spf_vma_notsup(_RET_IP_, vmf.vma, address);
+	local_irq_enable();
+	return VM_FAULT_RETRY;
+
+out_segv:
+	trace_spf_vma_access(_RET_IP_, vmf.vma, address);
+	return VM_FAULT_SIGSEGV;
+}
+
+vm_fault_t __handle_speculative_fault(struct mm_struct *mm,
+				unsigned long address, unsigned int flags,
+				struct vm_area_struct **vma,
+				struct pt_regs *regs)
+{
+	vm_fault_t ret;
+
+	check_sync_rss_stat(current);
+
+	*vma = get_vma(mm, address);
+	if (!*vma)
+		return VM_FAULT_RETRY;
+
+	ret = ___handle_speculative_fault(mm, address, flags, *vma);
+
+	/*
+	 * If there is no need to retry, don't return the vma to the caller.
+	 */
+	if (ret != VM_FAULT_RETRY) {
+		put_vma(*vma);
+		*vma = NULL;
+		mm_account_fault(regs, address, flags, ret);
+	}
+
+	return ret;
+}
+
+/*
+ * This is used to know if the vma fetch in the speculative page fault handler
+ * is still valid when trying the regular fault path while holding the
+ * mmap_sem.
+ * The call to put_vma(vma) must be made after checking the vma's fields, as
+ * the vma may be freed by put_vma(). In such a case it is expected that false
+ * is returned.
+ */
+bool can_reuse_spf_vma(struct vm_area_struct *vma, unsigned long address)
+{
+	bool ret;
+
+	ret = !RB_EMPTY_NODE(&vma->vm_rb) &&
+		vma->vm_start <= address && address < vma->vm_end;
+	put_vma(vma);
+	return ret;
+}
+#endif /* CONFIG_SPECULATIVE_PAGE_FAULT */
+
 /*
  * By the time we get here, we already hold the mm semaphore
  *
- * The mmap_sem may have been released depending on flags and our
+ * The mmap_lock may have been released depending on flags and our
  * return value.  See filemap_fault() and __lock_page_or_retry().
  */
 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
-		unsigned int flags)
+			   unsigned int flags, struct pt_regs *regs)
 {
 	vm_fault_t ret;
 
@@ -4379,6 +5304,8 @@
 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
 			mem_cgroup_oom_synchronize(false);
 	}
+
+	mm_account_fault(regs, address, flags, ret);
 
 	return ret;
 }
@@ -4421,19 +5348,11 @@
 	smp_wmb(); /* See comment in __pte_alloc */
 
 	spin_lock(&mm->page_table_lock);
-#ifndef __ARCH_HAS_5LEVEL_HACK
 	if (!p4d_present(*p4d)) {
 		mm_inc_nr_puds(mm);
 		p4d_populate(mm, p4d, new);
 	} else	/* Another has populated it */
 		pud_free(mm, new);
-#else
-	if (!pgd_present(*p4d)) {
-		mm_inc_nr_puds(mm);
-		pgd_populate(mm, p4d, new);
-	} else	/* Another has populated it */
-		pud_free(mm, new);
-#endif /* __ARCH_HAS_5LEVEL_HACK */
 	spin_unlock(&mm->page_table_lock);
 	return 0;
 }
@@ -4454,27 +5373,19 @@
 	smp_wmb(); /* See comment in __pte_alloc */
 
 	ptl = pud_lock(mm, pud);
-#ifndef __ARCH_HAS_4LEVEL_HACK
 	if (!pud_present(*pud)) {
 		mm_inc_nr_pmds(mm);
 		pud_populate(mm, pud, new);
 	} else	/* Another has populated it */
 		pmd_free(mm, new);
-#else
-	if (!pgd_present(*pud)) {
-		mm_inc_nr_pmds(mm);
-		pgd_populate(mm, pud, new);
-	} else /* Another has populated it */
-		pmd_free(mm, new);
-#endif /* __ARCH_HAS_4LEVEL_HACK */
 	spin_unlock(ptl);
 	return 0;
 }
 #endif /* __PAGETABLE_PMD_FOLDED */
 
-static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
-			    unsigned long *start, unsigned long *end,
-			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
+int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
+			  struct mmu_notifier_range *range, pte_t **ptepp,
+			  pmd_t **pmdpp, spinlock_t **ptlp)
 {
 	pgd_t *pgd;
 	p4d_t *p4d;
@@ -4501,10 +5412,11 @@
 		if (!pmdpp)
 			goto out;
 
-		if (start && end) {
-			*start = address & PMD_MASK;
-			*end = *start + PMD_SIZE;
-			mmu_notifier_invalidate_range_start(mm, *start, *end);
+		if (range) {
+			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
+						NULL, mm, address & PMD_MASK,
+						(address & PMD_MASK) + PMD_SIZE);
+			mmu_notifier_invalidate_range_start(range);
 		}
 		*ptlp = pmd_lock(mm, pmd);
 		if (pmd_huge(*pmd)) {
@@ -4512,17 +5424,18 @@
 			return 0;
 		}
 		spin_unlock(*ptlp);
-		if (start && end)
-			mmu_notifier_invalidate_range_end(mm, *start, *end);
+		if (range)
+			mmu_notifier_invalidate_range_end(range);
 	}
 
 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
 		goto out;
 
-	if (start && end) {
-		*start = address & PAGE_MASK;
-		*end = *start + PAGE_SIZE;
-		mmu_notifier_invalidate_range_start(mm, *start, *end);
+	if (range) {
+		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
+					address & PAGE_MASK,
+					(address & PAGE_MASK) + PAGE_SIZE);
+		mmu_notifier_invalidate_range_start(range);
 	}
 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
 	if (!pte_present(*ptep))
@@ -4531,37 +5444,39 @@
 	return 0;
 unlock:
 	pte_unmap_unlock(ptep, *ptlp);
-	if (start && end)
-		mmu_notifier_invalidate_range_end(mm, *start, *end);
+	if (range)
+		mmu_notifier_invalidate_range_end(range);
 out:
 	return -EINVAL;
 }
 
-static inline int follow_pte(struct mm_struct *mm, unsigned long address,
-			     pte_t **ptepp, spinlock_t **ptlp)
+/**
+ * follow_pte - look up PTE at a user virtual address
+ * @mm: the mm_struct of the target address space
+ * @address: user virtual address
+ * @ptepp: location to store found PTE
+ * @ptlp: location to store the lock for the PTE
+ *
+ * On a successful return, the pointer to the PTE is stored in @ptepp;
+ * the corresponding lock is taken and its location is stored in @ptlp.
+ * The contents of the PTE are only stable until @ptlp is released;
+ * any further use, if any, must be protected against invalidation
+ * with MMU notifiers.
+ *
+ * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
+ * should be taken for read.
+ *
+ * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
+ * it is not a good general-purpose API.
+ *
+ * Return: zero on success, -ve otherwise.
+ */
+int follow_pte(struct mm_struct *mm, unsigned long address,
+	       pte_t **ptepp, spinlock_t **ptlp)
 {
-	int res;
-
-	/* (void) is needed to make gcc happy */
-	(void) __cond_lock(*ptlp,
-			   !(res = __follow_pte_pmd(mm, address, NULL, NULL,
-						    ptepp, NULL, ptlp)));
-	return res;
+	return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
 }
-
-int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
-			     unsigned long *start, unsigned long *end,
-			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
-{
-	int res;
-
-	/* (void) is needed to make gcc happy */
-	(void) __cond_lock(*ptlp,
-			   !(res = __follow_pte_pmd(mm, address, start, end,
-						    ptepp, pmdpp, ptlp)));
-	return res;
-}
-EXPORT_SYMBOL(follow_pte_pmd);
+EXPORT_SYMBOL_GPL(follow_pte);
 
 /**
  * follow_pfn - look up PFN at a user virtual address
@@ -4571,7 +5486,10 @@
  *
  * Only IO mappings and raw PFN mappings are allowed.
  *
- * Returns zero and the pfn at @pfn on success, -ve otherwise.
+ * This function does not allow the caller to read the permissions
+ * of the PTE.  Do not use it.
+ *
+ * Return: zero and the pfn at @pfn on success, -ve otherwise.
  */
 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
 	unsigned long *pfn)
@@ -4658,7 +5576,7 @@
 	void *old_buf = buf;
 	int write = gup_flags & FOLL_WRITE;
 
-	if (down_read_killable(&mm->mmap_sem))
+	if (mmap_read_lock_killable(mm))
 		return 0;
 
 	/* ignore errors, just check how much was successfully transferred */
@@ -4667,7 +5585,7 @@
 		void *maddr;
 		struct page *page = NULL;
 
-		ret = get_user_pages_remote(tsk, mm, addr, 1,
+		ret = get_user_pages_remote(mm, addr, 1,
 				gup_flags, &page, &vma, NULL);
 		if (ret <= 0) {
 #ifndef CONFIG_HAVE_IOREMAP_PROT
@@ -4703,13 +5621,13 @@
 						    buf, maddr + offset, bytes);
 			}
 			kunmap(page);
-			put_page(page);
+			put_user_page(page);
 		}
 		len -= bytes;
 		buf += bytes;
 		addr += bytes;
 	}
-	up_read(&mm->mmap_sem);
+	mmap_read_unlock(mm);
 
 	return buf - old_buf;
 }
@@ -4723,6 +5641,8 @@
  * @gup_flags:	flags modifying lookup behaviour
  *
  * The caller must hold a reference on @mm.
+ *
+ * Return: number of bytes copied from source to destination.
  */
 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
 		void *buf, int len, unsigned int gup_flags)
@@ -4764,7 +5684,7 @@
 	/*
 	 * we might be running from an atomic context so we cannot sleep
 	 */
-	if (!down_read_trylock(&mm->mmap_sem))
+	if (!mmap_read_trylock(mm))
 		return;
 
 	vma = find_vma(mm, ip);
@@ -4783,7 +5703,7 @@
 			free_page((unsigned long)buf);
 		}
 	}
-	up_read(&mm->mmap_sem);
+	mmap_read_unlock(mm);
 }
 
 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
@@ -4791,7 +5711,7 @@
 {
 	/*
 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
-	 * holding the mmap_sem, this is safe because kernel memory doesn't
+	 * holding the mmap_lock, this is safe because kernel memory doesn't
 	 * get paged out, therefore we'll never actually fault, and the
 	 * below annotations will generate false positives.
 	 */
@@ -4802,7 +5722,7 @@
 	__might_sleep(file, line, 0);
 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
 	if (current->mm)
-		might_lock_read(&current->mm->mmap_sem);
+		might_lock_read(&current->mm->mmap_lock);
 #endif
 }
 EXPORT_SYMBOL(__might_fault);
@@ -4979,6 +5899,8 @@
 		if (rc)
 			break;
 
+		flush_dcache_page(subpage);
+
 		cond_resched();
 	}
 	return ret_val;

--
Gitblit v1.6.2