hc
2024-12-19 9370bb92b2d16684ee45cf24e879c93c509162da
kernel/kernel/rcu/tree_plugin.h
....@@ -1,38 +1,17 @@
1
+/* SPDX-License-Identifier: GPL-2.0+ */
12 /*
23 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
34 * Internal non-public definitions that provide either classic
45 * or preemptible semantics.
56 *
6
- * This program is free software; you can redistribute it and/or modify
7
- * it under the terms of the GNU General Public License as published by
8
- * the Free Software Foundation; either version 2 of the License, or
9
- * (at your option) any later version.
10
- *
11
- * This program is distributed in the hope that it will be useful,
12
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14
- * GNU General Public License for more details.
15
- *
16
- * You should have received a copy of the GNU General Public License
17
- * along with this program; if not, you can access it online at
18
- * http://www.gnu.org/licenses/gpl-2.0.html.
19
- *
207 * Copyright Red Hat, 2009
218 * Copyright IBM Corporation, 2009
229 *
2310 * Author: Ingo Molnar <mingo@elte.hu>
24
- * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
11
+ * Paul E. McKenney <paulmck@linux.ibm.com>
2512 */
2613
2714 #include "../locking/rtmutex_common.h"
28
-
29
-/*
30
- * Control variables for per-CPU and per-rcu_node kthreads. These
31
- * handle all flavors of RCU.
32
- */
33
-DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
34
-DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
35
-DEFINE_PER_CPU(char, rcu_cpu_has_work);
3615
3716 #ifdef CONFIG_RCU_NOCB_CPU
3817 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
....@@ -57,6 +36,8 @@
5736 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
5837 if (IS_ENABLED(CONFIG_PROVE_RCU))
5938 pr_info("\tRCU lockdep checking is enabled.\n");
39
+ if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
40
+ pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n");
6041 if (RCU_NUM_LVLS >= 4)
6142 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
6243 if (RCU_FANOUT_LEAF != 16)
....@@ -77,10 +58,14 @@
7758 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
7859 if (qlowmark != DEFAULT_RCU_QLOMARK)
7960 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
61
+ if (qovld != DEFAULT_RCU_QOVLD)
62
+ pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
8063 if (jiffies_till_first_fqs != ULONG_MAX)
8164 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
8265 if (jiffies_till_next_fqs != ULONG_MAX)
8366 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
67
+ if (jiffies_till_sched_qs != ULONG_MAX)
68
+ pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
8469 if (rcu_kick_kthreads)
8570 pr_info("\tKick kthreads if too-long grace period.\n");
8671 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
....@@ -91,6 +76,8 @@
9176 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
9277 if (gp_cleanup_delay)
9378 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
79
+ if (!use_softirq)
80
+ pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
9481 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
9582 pr_info("\tRCU debug extended QS entry/exit.\n");
9683 rcupdate_announce_bootup_oddness();
....@@ -98,12 +85,7 @@
9885
9986 #ifdef CONFIG_PREEMPT_RCU
10087
101
-RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
102
-static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
103
-static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
104
-
105
-static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
106
- bool wake);
88
+static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
10789 static void rcu_read_unlock_special(struct task_struct *t);
10890
10991 /*
....@@ -246,7 +228,7 @@
246228 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
247229 }
248230 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
249
- rnp->exp_tasks = &t->rcu_node_entry;
231
+ WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
250232 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
251233 !(rnp->qsmask & rdp->grpmask));
252234 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
....@@ -259,13 +241,10 @@
259241 * no need to check for a subsequent expedited GP. (Though we are
260242 * still in a quiescent state in any case.)
261243 */
262
- if (blkd_state & RCU_EXP_BLKD &&
263
- t->rcu_read_unlock_special.b.exp_need_qs) {
264
- t->rcu_read_unlock_special.b.exp_need_qs = false;
265
- rcu_report_exp_rdp(rdp->rsp, rdp, true);
266
- } else {
267
- WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
268
- }
244
+ if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
245
+ rcu_report_exp_rdp(rdp);
246
+ else
247
+ WARN_ON_ONCE(rdp->exp_deferred_qs);
269248 }
270249
271250 /*
....@@ -281,16 +260,16 @@
281260 *
282261 * Callers to this function must disable preemption.
283262 */
284
-static void rcu_preempt_qs(void)
263
+static void rcu_qs(void)
285264 {
286
- RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n");
287
- if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
265
+ RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
266
+ if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
288267 trace_rcu_grace_period(TPS("rcu_preempt"),
289
- __this_cpu_read(rcu_data_p->gp_seq),
268
+ __this_cpu_read(rcu_data.gp_seq),
290269 TPS("cpuqs"));
291
- __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
292
- barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
293
- current->rcu_read_unlock_special.b.need_qs = false;
270
+ __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
271
+ barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
272
+ WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
294273 }
295274 }
296275
....@@ -307,23 +286,19 @@
307286 *
308287 * Caller must disable interrupts.
309288 */
310
-static void rcu_preempt_note_context_switch(bool preempt)
289
+void rcu_note_context_switch(bool preempt)
311290 {
312291 struct task_struct *t = current;
313
- struct rcu_data *rdp;
292
+ struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
314293 struct rcu_node *rnp;
315
- int sleeping_l = 0;
316294
295
+ trace_rcu_utilization(TPS("Start context switch"));
317296 lockdep_assert_irqs_disabled();
318
-#if defined(CONFIG_PREEMPT_RT_FULL)
319
- sleeping_l = t->sleeping_lock;
320
-#endif
321
- WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0 && !sleeping_l);
322
- if (t->rcu_read_lock_nesting > 0 &&
297
+ WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
298
+ if (rcu_preempt_depth() > 0 &&
323299 !t->rcu_read_unlock_special.b.blocked) {
324300
325301 /* Possibly blocking in an RCU read-side critical section. */
326
- rdp = this_cpu_ptr(rcu_state_p->rda);
327302 rnp = rdp->mynode;
328303 raw_spin_lock_rcu_node(rnp);
329304 t->rcu_read_unlock_special.b.blocked = true;
....@@ -336,20 +311,14 @@
336311 */
337312 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
338313 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
339
- trace_rcu_preempt_task(rdp->rsp->name,
314
+ trace_rcu_preempt_task(rcu_state.name,
340315 t->pid,
341316 (rnp->qsmask & rdp->grpmask)
342317 ? rnp->gp_seq
343318 : rcu_seq_snap(&rnp->gp_seq));
344319 rcu_preempt_ctxt_queue(rnp, rdp);
345
- } else if (t->rcu_read_lock_nesting < 0 &&
346
- t->rcu_read_unlock_special.s) {
347
-
348
- /*
349
- * Complete exit from RCU read-side critical section on
350
- * behalf of preempted instance of __rcu_read_unlock().
351
- */
352
- rcu_read_unlock_special(t);
320
+ } else {
321
+ rcu_preempt_deferred_qs(t);
353322 }
354323
355324 /*
....@@ -361,8 +330,13 @@
361330 * grace period, then the fact that the task has been enqueued
362331 * means that we continue to block the current grace period.
363332 */
364
- rcu_preempt_qs();
333
+ rcu_qs();
334
+ if (rdp->exp_deferred_qs)
335
+ rcu_report_exp_rdp(rdp);
336
+ rcu_tasks_qs(current, preempt);
337
+ trace_rcu_utilization(TPS("End context switch"));
365338 }
339
+EXPORT_SYMBOL_GPL(rcu_note_context_switch);
366340
367341 /*
368342 * Check for preempted RCU readers blocking the current grace period
....@@ -374,6 +348,24 @@
374348 return READ_ONCE(rnp->gp_tasks) != NULL;
375349 }
376350
351
+/* limit value for ->rcu_read_lock_nesting. */
352
+#define RCU_NEST_PMAX (INT_MAX / 2)
353
+
354
+static void rcu_preempt_read_enter(void)
355
+{
356
+ current->rcu_read_lock_nesting++;
357
+}
358
+
359
+static int rcu_preempt_read_exit(void)
360
+{
361
+ return --current->rcu_read_lock_nesting;
362
+}
363
+
364
+static void rcu_preempt_depth_set(int val)
365
+{
366
+ current->rcu_read_lock_nesting = val;
367
+}
368
+
377369 /*
378370 * Preemptible RCU implementation for rcu_read_lock().
379371 * Just increment ->rcu_read_lock_nesting, shared state will be updated
....@@ -381,7 +373,11 @@
381373 */
382374 void __rcu_read_lock(void)
383375 {
384
- current->rcu_read_lock_nesting++;
376
+ rcu_preempt_read_enter();
377
+ if (IS_ENABLED(CONFIG_PROVE_LOCKING))
378
+ WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
379
+ if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
380
+ WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
385381 barrier(); /* critical section after entry code. */
386382 }
387383 EXPORT_SYMBOL_GPL(__rcu_read_lock);
....@@ -397,24 +393,16 @@
397393 {
398394 struct task_struct *t = current;
399395
400
- if (t->rcu_read_lock_nesting != 1) {
401
- --t->rcu_read_lock_nesting;
402
- } else {
396
+ if (rcu_preempt_read_exit() == 0) {
403397 barrier(); /* critical section before exit code. */
404
- t->rcu_read_lock_nesting = INT_MIN;
405
- barrier(); /* assign before ->rcu_read_unlock_special load */
406398 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
407399 rcu_read_unlock_special(t);
408
- barrier(); /* ->rcu_read_unlock_special load before assign */
409
- t->rcu_read_lock_nesting = 0;
410400 }
411
-#ifdef CONFIG_PROVE_LOCKING
412
- {
413
- int rrln = READ_ONCE(t->rcu_read_lock_nesting);
401
+ if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
402
+ int rrln = rcu_preempt_depth();
414403
415
- WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
404
+ WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
416405 }
417
-#endif /* #ifdef CONFIG_PROVE_LOCKING */
418406 }
419407 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
420408
....@@ -443,27 +431,21 @@
443431 }
444432
445433 /*
446
- * Handle special cases during rcu_read_unlock(), such as needing to
447
- * notify RCU core processing or task having blocked during the RCU
448
- * read-side critical section.
434
+ * Report deferred quiescent states. The deferral time can
435
+ * be quite short, for example, in the case of the call from
436
+ * rcu_read_unlock_special().
449437 */
450
-static void rcu_read_unlock_special(struct task_struct *t)
438
+static void
439
+rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
451440 {
452441 bool empty_exp;
453442 bool empty_norm;
454443 bool empty_exp_now;
455
- unsigned long flags;
456444 struct list_head *np;
457445 bool drop_boost_mutex = false;
458446 struct rcu_data *rdp;
459447 struct rcu_node *rnp;
460448 union rcu_special special;
461
-
462
- /* NMI handlers cannot block and cannot safely manipulate state. */
463
- if (in_nmi())
464
- return;
465
-
466
- local_irq_save(flags);
467449
468450 /*
469451 * If RCU core is waiting for this CPU to exit its critical section,
....@@ -471,49 +453,32 @@
471453 * t->rcu_read_unlock_special cannot change.
472454 */
473455 special = t->rcu_read_unlock_special;
456
+ rdp = this_cpu_ptr(&rcu_data);
457
+ if (!special.s && !rdp->exp_deferred_qs) {
458
+ local_irq_restore(flags);
459
+ return;
460
+ }
461
+ t->rcu_read_unlock_special.s = 0;
474462 if (special.b.need_qs) {
475
- rcu_preempt_qs();
476
- t->rcu_read_unlock_special.b.need_qs = false;
477
- if (!t->rcu_read_unlock_special.s) {
478
- local_irq_restore(flags);
479
- return;
463
+ if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
464
+ rcu_report_qs_rdp(rdp);
465
+ udelay(rcu_unlock_delay);
466
+ } else {
467
+ rcu_qs();
480468 }
481469 }
482470
483471 /*
484
- * Respond to a request for an expedited grace period, but only if
485
- * we were not preempted, meaning that we were running on the same
486
- * CPU throughout. If we were preempted, the exp_need_qs flag
487
- * would have been cleared at the time of the first preemption,
488
- * and the quiescent state would be reported when we were dequeued.
472
+ * Respond to a request by an expedited grace period for a
473
+ * quiescent state from this CPU. Note that requests from
474
+ * tasks are handled when removing the task from the
475
+ * blocked-tasks list below.
489476 */
490
- if (special.b.exp_need_qs) {
491
- WARN_ON_ONCE(special.b.blocked);
492
- t->rcu_read_unlock_special.b.exp_need_qs = false;
493
- rdp = this_cpu_ptr(rcu_state_p->rda);
494
- rcu_report_exp_rdp(rcu_state_p, rdp, true);
495
- if (!t->rcu_read_unlock_special.s) {
496
- local_irq_restore(flags);
497
- return;
498
- }
499
- }
500
-
501
- /* Hardware IRQ handlers cannot block, complain if they get here. */
502
- if (preempt_count() & (HARDIRQ_MASK | SOFTIRQ_OFFSET)) {
503
- lockdep_rcu_suspicious(__FILE__, __LINE__,
504
- "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
505
- pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
506
- t->rcu_read_unlock_special.s,
507
- t->rcu_read_unlock_special.b.blocked,
508
- t->rcu_read_unlock_special.b.exp_need_qs,
509
- t->rcu_read_unlock_special.b.need_qs);
510
- local_irq_restore(flags);
511
- return;
512
- }
477
+ if (rdp->exp_deferred_qs)
478
+ rcu_report_exp_rdp(rdp);
513479
514480 /* Clean up if blocked during RCU read-side critical section. */
515481 if (special.b.blocked) {
516
- t->rcu_read_unlock_special.b.blocked = false;
517482
518483 /*
519484 * Remove this task from the list it blocked on. The task
....@@ -528,7 +493,7 @@
528493 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
529494 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
530495 (!empty_norm || rnp->qsmask));
531
- empty_exp = sync_rcu_preempt_exp_done(rnp);
496
+ empty_exp = sync_rcu_exp_done(rnp);
532497 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
533498 np = rcu_next_node_entry(t, rnp);
534499 list_del_init(&t->rcu_node_entry);
....@@ -538,12 +503,12 @@
538503 if (&t->rcu_node_entry == rnp->gp_tasks)
539504 WRITE_ONCE(rnp->gp_tasks, np);
540505 if (&t->rcu_node_entry == rnp->exp_tasks)
541
- rnp->exp_tasks = np;
506
+ WRITE_ONCE(rnp->exp_tasks, np);
542507 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
543508 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
544509 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
545510 if (&t->rcu_node_entry == rnp->boost_tasks)
546
- rnp->boost_tasks = np;
511
+ WRITE_ONCE(rnp->boost_tasks, np);
547512 }
548513
549514 /*
....@@ -552,7 +517,7 @@
552517 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
553518 * so we must take a snapshot of the expedited state.
554519 */
555
- empty_exp_now = sync_rcu_preempt_exp_done(rnp);
520
+ empty_exp_now = sync_rcu_exp_done(rnp);
556521 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
557522 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
558523 rnp->gp_seq,
....@@ -561,138 +526,141 @@
561526 rnp->grplo,
562527 rnp->grphi,
563528 !!rnp->gp_tasks);
564
- rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
529
+ rcu_report_unblock_qs_rnp(rnp, flags);
565530 } else {
566531 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
567532 }
568
-
569
- /* Unboost if we were boosted. */
570
- if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
571
- rt_mutex_futex_unlock(&rnp->boost_mtx);
572533
573534 /*
574535 * If this was the last task on the expedited lists,
575536 * then we need to report up the rcu_node hierarchy.
576537 */
577538 if (!empty_exp && empty_exp_now)
578
- rcu_report_exp_rnp(rcu_state_p, rnp, true);
539
+ rcu_report_exp_rnp(rnp, true);
540
+
541
+ /* Unboost if we were boosted. */
542
+ if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
543
+ rt_mutex_futex_unlock(&rnp->boost_mtx);
544
+
579545 } else {
580546 local_irq_restore(flags);
581547 }
582548 }
583549
584550 /*
585
- * Dump detailed information for all tasks blocking the current RCU
586
- * grace period on the specified rcu_node structure.
551
+ * Is a deferred quiescent-state pending, and are we also not in
552
+ * an RCU read-side critical section? It is the caller's responsibility
553
+ * to ensure it is otherwise safe to report any deferred quiescent
554
+ * states. The reason for this is that it is safe to report a
555
+ * quiescent state during context switch even though preemption
556
+ * is disabled. This function cannot be expected to understand these
557
+ * nuances, so the caller must handle them.
587558 */
588
-static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
559
+static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
560
+{
561
+ return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
562
+ READ_ONCE(t->rcu_read_unlock_special.s)) &&
563
+ rcu_preempt_depth() == 0;
564
+}
565
+
566
+/*
567
+ * Report a deferred quiescent state if needed and safe to do so.
568
+ * As with rcu_preempt_need_deferred_qs(), "safe" involves only
569
+ * not being in an RCU read-side critical section. The caller must
570
+ * evaluate safety in terms of interrupt, softirq, and preemption
571
+ * disabling.
572
+ */
573
+static void rcu_preempt_deferred_qs(struct task_struct *t)
589574 {
590575 unsigned long flags;
591
- struct task_struct *t;
592576
593
- raw_spin_lock_irqsave_rcu_node(rnp, flags);
594
- if (!rcu_preempt_blocked_readers_cgp(rnp)) {
595
- raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
577
+ if (!rcu_preempt_need_deferred_qs(t))
578
+ return;
579
+ local_irq_save(flags);
580
+ rcu_preempt_deferred_qs_irqrestore(t, flags);
581
+}
582
+
583
+/*
584
+ * Minimal handler to give the scheduler a chance to re-evaluate.
585
+ */
586
+static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
587
+{
588
+ struct rcu_data *rdp;
589
+
590
+ rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
591
+ rdp->defer_qs_iw_pending = false;
592
+}
593
+
594
+/*
595
+ * Handle special cases during rcu_read_unlock(), such as needing to
596
+ * notify RCU core processing or task having blocked during the RCU
597
+ * read-side critical section.
598
+ */
599
+static void rcu_read_unlock_special(struct task_struct *t)
600
+{
601
+ unsigned long flags;
602
+ bool preempt_bh_were_disabled =
603
+ !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
604
+ bool irqs_were_disabled;
605
+
606
+ /* NMI handlers cannot block and cannot safely manipulate state. */
607
+ if (in_nmi())
608
+ return;
609
+
610
+ local_irq_save(flags);
611
+ irqs_were_disabled = irqs_disabled_flags(flags);
612
+ if (preempt_bh_were_disabled || irqs_were_disabled) {
613
+ bool exp;
614
+ struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
615
+ struct rcu_node *rnp = rdp->mynode;
616
+
617
+ exp = (t->rcu_blocked_node &&
618
+ READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
619
+ (rdp->grpmask & READ_ONCE(rnp->expmask));
620
+ // Need to defer quiescent state until everything is enabled.
621
+ if (use_softirq && (in_irq() || (exp && !irqs_were_disabled))) {
622
+ // Using softirq, safe to awaken, and either the
623
+ // wakeup is free or there is an expedited GP.
624
+ raise_softirq_irqoff(RCU_SOFTIRQ);
625
+ } else {
626
+ // Enabling BH or preempt does reschedule, so...
627
+ // Also if no expediting, slow is OK.
628
+ // Plus nohz_full CPUs eventually get tick enabled.
629
+ set_tsk_need_resched(current);
630
+ set_preempt_need_resched();
631
+ if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
632
+ !rdp->defer_qs_iw_pending && exp && cpu_online(rdp->cpu)) {
633
+ // Get scheduler to re-evaluate and call hooks.
634
+ // If !IRQ_WORK, FQS scan will eventually IPI.
635
+ init_irq_work(&rdp->defer_qs_iw,
636
+ rcu_preempt_deferred_qs_handler);
637
+ rdp->defer_qs_iw_pending = true;
638
+ irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
639
+ }
640
+ }
641
+ local_irq_restore(flags);
596642 return;
597643 }
598
- t = list_entry(rnp->gp_tasks->prev,
599
- struct task_struct, rcu_node_entry);
600
- list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
601
- /*
602
- * We could be printing a lot while holding a spinlock.
603
- * Avoid triggering hard lockup.
604
- */
605
- touch_nmi_watchdog();
606
- sched_show_task(t);
607
- }
608
- raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
609
-}
610
-
611
-/*
612
- * Dump detailed information for all tasks blocking the current RCU
613
- * grace period.
614
- */
615
-static void rcu_print_detail_task_stall(struct rcu_state *rsp)
616
-{
617
- struct rcu_node *rnp = rcu_get_root(rsp);
618
-
619
- rcu_print_detail_task_stall_rnp(rnp);
620
- rcu_for_each_leaf_node(rsp, rnp)
621
- rcu_print_detail_task_stall_rnp(rnp);
622
-}
623
-
624
-static void rcu_print_task_stall_begin(struct rcu_node *rnp)
625
-{
626
- pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
627
- rnp->level, rnp->grplo, rnp->grphi);
628
-}
629
-
630
-static void rcu_print_task_stall_end(void)
631
-{
632
- pr_cont("\n");
633
-}
634
-
635
-/*
636
- * Scan the current list of tasks blocked within RCU read-side critical
637
- * sections, printing out the tid of each.
638
- */
639
-static int rcu_print_task_stall(struct rcu_node *rnp)
640
-{
641
- struct task_struct *t;
642
- int ndetected = 0;
643
-
644
- if (!rcu_preempt_blocked_readers_cgp(rnp))
645
- return 0;
646
- rcu_print_task_stall_begin(rnp);
647
- t = list_entry(rnp->gp_tasks->prev,
648
- struct task_struct, rcu_node_entry);
649
- list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
650
- pr_cont(" P%d", t->pid);
651
- ndetected++;
652
- }
653
- rcu_print_task_stall_end();
654
- return ndetected;
655
-}
656
-
657
-/*
658
- * Scan the current list of tasks blocked within RCU read-side critical
659
- * sections, printing out the tid of each that is blocking the current
660
- * expedited grace period.
661
- */
662
-static int rcu_print_task_exp_stall(struct rcu_node *rnp)
663
-{
664
- struct task_struct *t;
665
- int ndetected = 0;
666
-
667
- if (!rnp->exp_tasks)
668
- return 0;
669
- t = list_entry(rnp->exp_tasks->prev,
670
- struct task_struct, rcu_node_entry);
671
- list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
672
- pr_cont(" P%d", t->pid);
673
- ndetected++;
674
- }
675
- return ndetected;
644
+ rcu_preempt_deferred_qs_irqrestore(t, flags);
676645 }
677646
678647 /*
679648 * Check that the list of blocked tasks for the newly completed grace
680649 * period is in fact empty. It is a serious bug to complete a grace
681650 * period that still has RCU readers blocked! This function must be
682
- * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock
683
- * must be held by the caller.
651
+ * invoked -before- updating this rnp's ->gp_seq.
684652 *
685653 * Also, if there are blocked tasks on the list, they automatically
686654 * block the newly created grace period, so set up ->gp_tasks accordingly.
687655 */
688
-static void
689
-rcu_preempt_check_blocked_tasks(struct rcu_state *rsp, struct rcu_node *rnp)
656
+static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
690657 {
691658 struct task_struct *t;
692659
693660 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
661
+ raw_lockdep_assert_held_rcu_node(rnp);
694662 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
695
- dump_blkd_tasks(rsp, rnp, 10);
663
+ dump_blkd_tasks(rnp, 10);
696664 if (rcu_preempt_has_tasks(rnp) &&
697665 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
698666 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
....@@ -705,139 +673,67 @@
705673 }
706674
707675 /*
708
- * Check for a quiescent state from the current CPU. When a task blocks,
709
- * the task is recorded in the corresponding CPU's rcu_node structure,
710
- * which is checked elsewhere.
711
- *
712
- * Caller must disable hard irqs.
676
+ * Check for a quiescent state from the current CPU, including voluntary
677
+ * context switches for Tasks RCU. When a task blocks, the task is
678
+ * recorded in the corresponding CPU's rcu_node structure, which is checked
679
+ * elsewhere, hence this function need only check for quiescent states
680
+ * related to the current CPU, not to those related to tasks.
713681 */
714
-static void rcu_preempt_check_callbacks(void)
682
+static void rcu_flavor_sched_clock_irq(int user)
715683 {
716
- struct rcu_state *rsp = &rcu_preempt_state;
717684 struct task_struct *t = current;
718685
719
- if (t->rcu_read_lock_nesting == 0) {
720
- rcu_preempt_qs();
686
+ lockdep_assert_irqs_disabled();
687
+ if (user || rcu_is_cpu_rrupt_from_idle()) {
688
+ rcu_note_voluntary_context_switch(current);
689
+ }
690
+ if (rcu_preempt_depth() > 0 ||
691
+ (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
692
+ /* No QS, force context switch if deferred. */
693
+ if (rcu_preempt_need_deferred_qs(t)) {
694
+ set_tsk_need_resched(t);
695
+ set_preempt_need_resched();
696
+ }
697
+ } else if (rcu_preempt_need_deferred_qs(t)) {
698
+ rcu_preempt_deferred_qs(t); /* Report deferred QS. */
699
+ return;
700
+ } else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
701
+ rcu_qs(); /* Report immediate QS. */
721702 return;
722703 }
723
- if (t->rcu_read_lock_nesting > 0 &&
724
- __this_cpu_read(rcu_data_p->core_needs_qs) &&
725
- __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm) &&
704
+
705
+ /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
706
+ if (rcu_preempt_depth() > 0 &&
707
+ __this_cpu_read(rcu_data.core_needs_qs) &&
708
+ __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
726709 !t->rcu_read_unlock_special.b.need_qs &&
727
- time_after(jiffies, rsp->gp_start + HZ))
710
+ time_after(jiffies, rcu_state.gp_start + HZ))
728711 t->rcu_read_unlock_special.b.need_qs = true;
729
-}
730
-
731
-/**
732
- * call_rcu() - Queue an RCU callback for invocation after a grace period.
733
- * @head: structure to be used for queueing the RCU updates.
734
- * @func: actual callback function to be invoked after the grace period
735
- *
736
- * The callback function will be invoked some time after a full grace
737
- * period elapses, in other words after all pre-existing RCU read-side
738
- * critical sections have completed. However, the callback function
739
- * might well execute concurrently with RCU read-side critical sections
740
- * that started after call_rcu() was invoked. RCU read-side critical
741
- * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
742
- * and may be nested.
743
- *
744
- * Note that all CPUs must agree that the grace period extended beyond
745
- * all pre-existing RCU read-side critical section. On systems with more
746
- * than one CPU, this means that when "func()" is invoked, each CPU is
747
- * guaranteed to have executed a full memory barrier since the end of its
748
- * last RCU read-side critical section whose beginning preceded the call
749
- * to call_rcu(). It also means that each CPU executing an RCU read-side
750
- * critical section that continues beyond the start of "func()" must have
751
- * executed a memory barrier after the call_rcu() but before the beginning
752
- * of that RCU read-side critical section. Note that these guarantees
753
- * include CPUs that are offline, idle, or executing in user mode, as
754
- * well as CPUs that are executing in the kernel.
755
- *
756
- * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
757
- * resulting RCU callback function "func()", then both CPU A and CPU B are
758
- * guaranteed to execute a full memory barrier during the time interval
759
- * between the call to call_rcu() and the invocation of "func()" -- even
760
- * if CPU A and CPU B are the same CPU (but again only if the system has
761
- * more than one CPU).
762
- */
763
-void call_rcu(struct rcu_head *head, rcu_callback_t func)
764
-{
765
- __call_rcu(head, func, rcu_state_p, -1, 0);
766
-}
767
-EXPORT_SYMBOL_GPL(call_rcu);
768
-
769
-/**
770
- * synchronize_rcu - wait until a grace period has elapsed.
771
- *
772
- * Control will return to the caller some time after a full grace
773
- * period has elapsed, in other words after all currently executing RCU
774
- * read-side critical sections have completed. Note, however, that
775
- * upon return from synchronize_rcu(), the caller might well be executing
776
- * concurrently with new RCU read-side critical sections that began while
777
- * synchronize_rcu() was waiting. RCU read-side critical sections are
778
- * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
779
- *
780
- * See the description of synchronize_sched() for more detailed
781
- * information on memory-ordering guarantees. However, please note
782
- * that -only- the memory-ordering guarantees apply. For example,
783
- * synchronize_rcu() is -not- guaranteed to wait on things like code
784
- * protected by preempt_disable(), instead, synchronize_rcu() is -only-
785
- * guaranteed to wait on RCU read-side critical sections, that is, sections
786
- * of code protected by rcu_read_lock().
787
- */
788
-void synchronize_rcu(void)
789
-{
790
- RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
791
- lock_is_held(&rcu_lock_map) ||
792
- lock_is_held(&rcu_sched_lock_map),
793
- "Illegal synchronize_rcu() in RCU read-side critical section");
794
- if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
795
- return;
796
- if (rcu_gp_is_expedited())
797
- synchronize_rcu_expedited();
798
- else
799
- wait_rcu_gp(call_rcu);
800
-}
801
-EXPORT_SYMBOL_GPL(synchronize_rcu);
802
-
803
-/**
804
- * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
805
- *
806
- * Note that this primitive does not necessarily wait for an RCU grace period
807
- * to complete. For example, if there are no RCU callbacks queued anywhere
808
- * in the system, then rcu_barrier() is within its rights to return
809
- * immediately, without waiting for anything, much less an RCU grace period.
810
- */
811
-void rcu_barrier(void)
812
-{
813
- _rcu_barrier(rcu_state_p);
814
-}
815
-EXPORT_SYMBOL_GPL(rcu_barrier);
816
-
817
-/*
818
- * Initialize preemptible RCU's state structures.
819
- */
820
-static void __init __rcu_init_preempt(void)
821
-{
822
- rcu_init_one(rcu_state_p);
823712 }
824713
825714 /*
826715 * Check for a task exiting while in a preemptible-RCU read-side
827
- * critical section, clean up if so. No need to issue warnings,
828
- * as debug_check_no_locks_held() already does this if lockdep
829
- * is enabled.
716
+ * critical section, clean up if so. No need to issue warnings, as
717
+ * debug_check_no_locks_held() already does this if lockdep is enabled.
718
+ * Besides, if this function does anything other than just immediately
719
+ * return, there was a bug of some sort. Spewing warnings from this
720
+ * function is like as not to simply obscure important prior warnings.
830721 */
831722 void exit_rcu(void)
832723 {
833724 struct task_struct *t = current;
834725
835
- if (likely(list_empty(&current->rcu_node_entry)))
726
+ if (unlikely(!list_empty(&current->rcu_node_entry))) {
727
+ rcu_preempt_depth_set(1);
728
+ barrier();
729
+ WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
730
+ } else if (unlikely(rcu_preempt_depth())) {
731
+ rcu_preempt_depth_set(1);
732
+ } else {
836733 return;
837
- t->rcu_read_lock_nesting = 1;
838
- barrier();
839
- t->rcu_read_unlock_special.b.blocked = true;
734
+ }
840735 __rcu_read_unlock();
736
+ rcu_preempt_deferred_qs(current);
841737 }
842738
843739 /*
....@@ -845,7 +741,7 @@
845741 * specified number of elements.
846742 */
847743 static void
848
-dump_blkd_tasks(struct rcu_state *rsp, struct rcu_node *rnp, int ncheck)
744
+dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
849745 {
850746 int cpu;
851747 int i;
....@@ -857,23 +753,23 @@
857753 raw_lockdep_assert_held_rcu_node(rnp);
858754 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
859755 __func__, rnp->grplo, rnp->grphi, rnp->level,
860
- (long)rnp->gp_seq, (long)rnp->completedqs);
756
+ (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
861757 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
862758 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
863759 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
864760 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
865
- __func__, READ_ONCE(rnp->gp_tasks), rnp->boost_tasks,
866
- rnp->exp_tasks);
761
+ __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
762
+ READ_ONCE(rnp->exp_tasks));
867763 pr_info("%s: ->blkd_tasks", __func__);
868764 i = 0;
869765 list_for_each(lhp, &rnp->blkd_tasks) {
870766 pr_cont(" %p", lhp);
871
- if (++i >= 10)
767
+ if (++i >= ncheck)
872768 break;
873769 }
874770 pr_cont("\n");
875771 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
876
- rdp = per_cpu_ptr(rsp->rda, cpu);
772
+ rdp = per_cpu_ptr(&rcu_data, cpu);
877773 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
878774 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
879775 cpu, ".o"[onl],
....@@ -884,7 +780,23 @@
884780
885781 #else /* #ifdef CONFIG_PREEMPT_RCU */
886782
887
-static struct rcu_state *const rcu_state_p = &rcu_sched_state;
783
+/*
784
+ * If strict grace periods are enabled, and if the calling
785
+ * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
786
+ * report that quiescent state and, if requested, spin for a bit.
787
+ */
788
+void rcu_read_unlock_strict(void)
789
+{
790
+ struct rcu_data *rdp;
791
+
792
+ if (!IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ||
793
+ irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
794
+ return;
795
+ rdp = this_cpu_ptr(&rcu_data);
796
+ rcu_report_qs_rdp(rdp);
797
+ udelay(rcu_unlock_delay);
798
+}
799
+EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
888800
889801 /*
890802 * Tell them what RCU they are running.
....@@ -896,12 +808,73 @@
896808 }
897809
898810 /*
899
- * Because preemptible RCU does not exist, we never have to check for
900
- * CPUs being in quiescent states.
811
+ * Note a quiescent state for PREEMPTION=n. Because we do not need to know
812
+ * how many quiescent states passed, just if there was at least one since
813
+ * the start of the grace period, this just sets a flag. The caller must
814
+ * have disabled preemption.
901815 */
902
-static void rcu_preempt_note_context_switch(bool preempt)
816
+static void rcu_qs(void)
903817 {
818
+ RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
819
+ if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
820
+ return;
821
+ trace_rcu_grace_period(TPS("rcu_sched"),
822
+ __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
823
+ __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
824
+ if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
825
+ return;
826
+ __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
827
+ rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
904828 }
829
+
830
+/*
831
+ * Register an urgently needed quiescent state. If there is an
832
+ * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
833
+ * dyntick-idle quiescent state visible to other CPUs, which will in
834
+ * some cases serve for expedited as well as normal grace periods.
835
+ * Either way, register a lightweight quiescent state.
836
+ */
837
+void rcu_all_qs(void)
838
+{
839
+ unsigned long flags;
840
+
841
+ if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
842
+ return;
843
+ preempt_disable();
844
+ /* Load rcu_urgent_qs before other flags. */
845
+ if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
846
+ preempt_enable();
847
+ return;
848
+ }
849
+ this_cpu_write(rcu_data.rcu_urgent_qs, false);
850
+ if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
851
+ local_irq_save(flags);
852
+ rcu_momentary_dyntick_idle();
853
+ local_irq_restore(flags);
854
+ }
855
+ rcu_qs();
856
+ preempt_enable();
857
+}
858
+EXPORT_SYMBOL_GPL(rcu_all_qs);
859
+
860
+/*
861
+ * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
862
+ */
863
+void rcu_note_context_switch(bool preempt)
864
+{
865
+ trace_rcu_utilization(TPS("Start context switch"));
866
+ rcu_qs();
867
+ /* Load rcu_urgent_qs before other flags. */
868
+ if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
869
+ goto out;
870
+ this_cpu_write(rcu_data.rcu_urgent_qs, false);
871
+ if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
872
+ rcu_momentary_dyntick_idle();
873
+ rcu_tasks_qs(current, preempt);
874
+out:
875
+ trace_rcu_utilization(TPS("End context switch"));
876
+}
877
+EXPORT_SYMBOL_GPL(rcu_note_context_switch);
905878
906879 /*
907880 * Because preemptible RCU does not exist, there are never any preempted
....@@ -921,66 +894,47 @@
921894 }
922895
923896 /*
924
- * Because preemptible RCU does not exist, we never have to check for
925
- * tasks blocked within RCU read-side critical sections.
897
+ * Because there is no preemptible RCU, there can be no deferred quiescent
898
+ * states.
926899 */
927
-static void rcu_print_detail_task_stall(struct rcu_state *rsp)
900
+static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
928901 {
902
+ return false;
929903 }
930
-
931
-/*
932
- * Because preemptible RCU does not exist, we never have to check for
933
- * tasks blocked within RCU read-side critical sections.
934
- */
935
-static int rcu_print_task_stall(struct rcu_node *rnp)
936
-{
937
- return 0;
938
-}
939
-
940
-/*
941
- * Because preemptible RCU does not exist, we never have to check for
942
- * tasks blocked within RCU read-side critical sections that are
943
- * blocking the current expedited grace period.
944
- */
945
-static int rcu_print_task_exp_stall(struct rcu_node *rnp)
946
-{
947
- return 0;
948
-}
904
+static void rcu_preempt_deferred_qs(struct task_struct *t) { }
949905
950906 /*
951907 * Because there is no preemptible RCU, there can be no readers blocked,
952908 * so there is no need to check for blocked tasks. So check only for
953909 * bogus qsmask values.
954910 */
955
-static void
956
-rcu_preempt_check_blocked_tasks(struct rcu_state *rsp, struct rcu_node *rnp)
911
+static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
957912 {
958913 WARN_ON_ONCE(rnp->qsmask);
959914 }
960915
961916 /*
962
- * Because preemptible RCU does not exist, it never has any callbacks
963
- * to check.
917
+ * Check to see if this CPU is in a non-context-switch quiescent state,
918
+ * namely user mode and idle loop.
964919 */
965
-static void rcu_preempt_check_callbacks(void)
920
+static void rcu_flavor_sched_clock_irq(int user)
966921 {
967
-}
922
+ if (user || rcu_is_cpu_rrupt_from_idle()) {
968923
969
-/*
970
- * Because preemptible RCU does not exist, rcu_barrier() is just
971
- * another name for rcu_barrier_sched().
972
- */
973
-void rcu_barrier(void)
974
-{
975
- rcu_barrier_sched();
976
-}
977
-EXPORT_SYMBOL_GPL(rcu_barrier);
924
+ /*
925
+ * Get here if this CPU took its interrupt from user
926
+ * mode or from the idle loop, and if this is not a
927
+ * nested interrupt. In this case, the CPU is in
928
+ * a quiescent state, so note it.
929
+ *
930
+ * No memory barrier is required here because rcu_qs()
931
+ * references only CPU-local variables that other CPUs
932
+ * neither access nor modify, at least not while the
933
+ * corresponding CPU is online.
934
+ */
978935
979
-/*
980
- * Because preemptible RCU does not exist, it need not be initialized.
981
- */
982
-static void __init __rcu_init_preempt(void)
983
-{
936
+ rcu_qs();
937
+ }
984938 }
985939
986940 /*
....@@ -995,7 +949,7 @@
995949 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
996950 */
997951 static void
998
-dump_blkd_tasks(struct rcu_state *rsp, struct rcu_node *rnp, int ncheck)
952
+dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
999953 {
1000954 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
1001955 }
....@@ -1095,20 +1049,21 @@
10951049
10961050 trace_rcu_utilization(TPS("Start boost kthread@init"));
10971051 for (;;) {
1098
- rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1052
+ WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
10991053 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1100
- rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1054
+ rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1055
+ READ_ONCE(rnp->exp_tasks));
11011056 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1102
- rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1057
+ WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
11031058 more2boost = rcu_boost(rnp);
11041059 if (more2boost)
11051060 spincnt++;
11061061 else
11071062 spincnt = 0;
11081063 if (spincnt > 10) {
1109
- rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1064
+ WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
11101065 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1111
- schedule_timeout_interruptible(2);
1066
+ schedule_timeout_idle(2);
11121067 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
11131068 spincnt = 0;
11141069 }
....@@ -1131,8 +1086,6 @@
11311086 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
11321087 __releases(rnp->lock)
11331088 {
1134
- struct task_struct *t;
1135
-
11361089 raw_lockdep_assert_held_rcu_node(rnp);
11371090 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
11381091 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
....@@ -1142,13 +1095,12 @@
11421095 (rnp->gp_tasks != NULL &&
11431096 rnp->boost_tasks == NULL &&
11441097 rnp->qsmask == 0 &&
1145
- ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1098
+ (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
11461099 if (rnp->exp_tasks == NULL)
1147
- rnp->boost_tasks = rnp->gp_tasks;
1100
+ WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
11481101 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1149
- t = rnp->boost_kthread_task;
1150
- if (t)
1151
- rcu_wake_cond(t, rnp->boost_kthread_status);
1102
+ rcu_wake_cond(rnp->boost_kthread_task,
1103
+ READ_ONCE(rnp->boost_kthread_status));
11521104 } else {
11531105 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
11541106 }
....@@ -1160,7 +1112,7 @@
11601112 */
11611113 static bool rcu_is_callbacks_kthread(void)
11621114 {
1163
- return __this_cpu_read(rcu_cpu_kthread_task) == current;
1115
+ return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
11641116 }
11651117
11661118 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
....@@ -1178,34 +1130,35 @@
11781130 * already exist. We only create this kthread for preemptible RCU.
11791131 * Returns zero if all is well, a negated errno otherwise.
11801132 */
1181
-static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1182
- struct rcu_node *rnp)
1133
+static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
11831134 {
1184
- int rnp_index = rnp - &rsp->node[0];
1135
+ int rnp_index = rnp - rcu_get_root();
11851136 unsigned long flags;
11861137 struct sched_param sp;
11871138 struct task_struct *t;
11881139
1189
- if (rcu_state_p != rsp)
1190
- return 0;
1140
+ if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1141
+ return;
11911142
11921143 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1193
- return 0;
1144
+ return;
11941145
1195
- rsp->boost = 1;
1146
+ rcu_state.boost = 1;
1147
+
11961148 if (rnp->boost_kthread_task != NULL)
1197
- return 0;
1149
+ return;
1150
+
11981151 t = kthread_create(rcu_boost_kthread, (void *)rnp,
11991152 "rcub/%d", rnp_index);
1200
- if (IS_ERR(t))
1201
- return PTR_ERR(t);
1153
+ if (WARN_ON_ONCE(IS_ERR(t)))
1154
+ return;
1155
+
12021156 raw_spin_lock_irqsave_rcu_node(rnp, flags);
12031157 rnp->boost_kthread_task = t;
12041158 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
12051159 sp.sched_priority = kthread_prio;
12061160 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
12071161 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1208
- return 0;
12091162 }
12101163
12111164 /*
....@@ -1244,18 +1197,19 @@
12441197 static void __init rcu_spawn_boost_kthreads(void)
12451198 {
12461199 struct rcu_node *rnp;
1247
- rcu_for_each_leaf_node(rcu_state_p, rnp)
1248
- (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1200
+
1201
+ rcu_for_each_leaf_node(rnp)
1202
+ rcu_spawn_one_boost_kthread(rnp);
12491203 }
12501204
12511205 static void rcu_prepare_kthreads(int cpu)
12521206 {
1253
- struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1207
+ struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
12541208 struct rcu_node *rnp = rdp->mynode;
12551209
12561210 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
12571211 if (rcu_scheduler_fully_active)
1258
- (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1212
+ rcu_spawn_one_boost_kthread(rnp);
12591213 }
12601214
12611215 #else /* #ifdef CONFIG_RCU_BOOST */
....@@ -1289,25 +1243,24 @@
12891243
12901244 #endif /* #else #ifdef CONFIG_RCU_BOOST */
12911245
1292
-#if !defined(CONFIG_RCU_FAST_NO_HZ) || defined(CONFIG_PREEMPT_RT_FULL)
1246
+#if !defined(CONFIG_RCU_FAST_NO_HZ)
12931247
12941248 /*
1295
- * Check to see if any future RCU-related work will need to be done
1296
- * by the current CPU, even if none need be done immediately, returning
1297
- * 1 if so. This function is part of the RCU implementation; it is -not-
1298
- * an exported member of the RCU API.
1249
+ * Check to see if any future non-offloaded RCU-related work will need
1250
+ * to be done by the current CPU, even if none need be done immediately,
1251
+ * returning 1 if so. This function is part of the RCU implementation;
1252
+ * it is -not- an exported member of the RCU API.
12991253 *
1300
- * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1301
- * any flavor of RCU.
1254
+ * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1255
+ * CPU has RCU callbacks queued.
13021256 */
13031257 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
13041258 {
13051259 *nextevt = KTIME_MAX;
1306
- return rcu_cpu_has_callbacks(NULL);
1260
+ return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1261
+ !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
13071262 }
1308
-#endif /* !defined(CONFIG_RCU_FAST_NO_HZ) || defined(CONFIG_PREEMPT_RT_FULL) */
13091263
1310
-#if !defined(CONFIG_RCU_FAST_NO_HZ)
13111264 /*
13121265 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
13131266 * after it.
....@@ -1324,23 +1277,14 @@
13241277 {
13251278 }
13261279
1327
-/*
1328
- * Don't bother keeping a running count of the number of RCU callbacks
1329
- * posted because CONFIG_RCU_FAST_NO_HZ=n.
1330
- */
1331
-static void rcu_idle_count_callbacks_posted(void)
1332
-{
1333
-}
1334
-
13351280 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
13361281
13371282 /*
13381283 * This code is invoked when a CPU goes idle, at which point we want
13391284 * to have the CPU do everything required for RCU so that it can enter
1340
- * the energy-efficient dyntick-idle mode. This is handled by a
1341
- * state machine implemented by rcu_prepare_for_idle() below.
1285
+ * the energy-efficient dyntick-idle mode.
13421286 *
1343
- * The following three proprocessor symbols control this state machine:
1287
+ * The following preprocessor symbol controls this:
13441288 *
13451289 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
13461290 * to sleep in dyntick-idle mode with RCU callbacks pending. This
....@@ -1349,83 +1293,67 @@
13491293 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
13501294 * system. And if you are -that- concerned about energy efficiency,
13511295 * just power the system down and be done with it!
1352
- * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1353
- * permitted to sleep in dyntick-idle mode with only lazy RCU
1354
- * callbacks pending. Setting this too high can OOM your system.
13551296 *
1356
- * The values below work well in practice. If future workloads require
1297
+ * The value below works well in practice. If future workloads require
13571298 * adjustment, they can be converted into kernel config parameters, though
13581299 * making the state machine smarter might be a better option.
13591300 */
13601301 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1361
-#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
13621302
13631303 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
13641304 module_param(rcu_idle_gp_delay, int, 0644);
1365
-static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1366
-module_param(rcu_idle_lazy_gp_delay, int, 0644);
13671305
13681306 /*
1369
- * Try to advance callbacks for all flavors of RCU on the current CPU, but
1370
- * only if it has been awhile since the last time we did so. Afterwards,
1371
- * if there are any callbacks ready for immediate invocation, return true.
1307
+ * Try to advance callbacks on the current CPU, but only if it has been
1308
+ * awhile since the last time we did so. Afterwards, if there are any
1309
+ * callbacks ready for immediate invocation, return true.
13721310 */
13731311 static bool __maybe_unused rcu_try_advance_all_cbs(void)
13741312 {
13751313 bool cbs_ready = false;
1376
- struct rcu_data *rdp;
1377
- struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1314
+ struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
13781315 struct rcu_node *rnp;
1379
- struct rcu_state *rsp;
13801316
13811317 /* Exit early if we advanced recently. */
1382
- if (jiffies == rdtp->last_advance_all)
1318
+ if (jiffies == rdp->last_advance_all)
13831319 return false;
1384
- rdtp->last_advance_all = jiffies;
1320
+ rdp->last_advance_all = jiffies;
13851321
1386
- for_each_rcu_flavor(rsp) {
1387
- rdp = this_cpu_ptr(rsp->rda);
1388
- rnp = rdp->mynode;
1322
+ rnp = rdp->mynode;
13891323
1390
- /*
1391
- * Don't bother checking unless a grace period has
1392
- * completed since we last checked and there are
1393
- * callbacks not yet ready to invoke.
1394
- */
1395
- if ((rcu_seq_completed_gp(rdp->gp_seq,
1396
- rcu_seq_current(&rnp->gp_seq)) ||
1397
- unlikely(READ_ONCE(rdp->gpwrap))) &&
1398
- rcu_segcblist_pend_cbs(&rdp->cblist))
1399
- note_gp_changes(rsp, rdp);
1324
+ /*
1325
+ * Don't bother checking unless a grace period has
1326
+ * completed since we last checked and there are
1327
+ * callbacks not yet ready to invoke.
1328
+ */
1329
+ if ((rcu_seq_completed_gp(rdp->gp_seq,
1330
+ rcu_seq_current(&rnp->gp_seq)) ||
1331
+ unlikely(READ_ONCE(rdp->gpwrap))) &&
1332
+ rcu_segcblist_pend_cbs(&rdp->cblist))
1333
+ note_gp_changes(rdp);
14001334
1401
- if (rcu_segcblist_ready_cbs(&rdp->cblist))
1402
- cbs_ready = true;
1403
- }
1335
+ if (rcu_segcblist_ready_cbs(&rdp->cblist))
1336
+ cbs_ready = true;
14041337 return cbs_ready;
14051338 }
1406
-
1407
-#ifndef CONFIG_PREEMPT_RT_FULL
14081339
14091340 /*
14101341 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
14111342 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1412
- * caller to set the timeout based on whether or not there are non-lazy
1413
- * callbacks.
1343
+ * caller about what to set the timeout.
14141344 *
14151345 * The caller must have disabled interrupts.
14161346 */
14171347 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
14181348 {
1419
- struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1349
+ struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
14201350 unsigned long dj;
14211351
14221352 lockdep_assert_irqs_disabled();
14231353
1424
- /* Snapshot to detect later posting of non-lazy callback. */
1425
- rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1426
-
1427
- /* If no callbacks, RCU doesn't need the CPU. */
1428
- if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1354
+ /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1355
+ if (rcu_segcblist_empty(&rdp->cblist) ||
1356
+ rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
14291357 *nextevt = KTIME_MAX;
14301358 return 0;
14311359 }
....@@ -1436,84 +1364,59 @@
14361364 invoke_rcu_core();
14371365 return 1;
14381366 }
1439
- rdtp->last_accelerate = jiffies;
1367
+ rdp->last_accelerate = jiffies;
14401368
1441
- /* Request timer delay depending on laziness, and round. */
1442
- if (!rdtp->all_lazy) {
1443
- dj = round_up(rcu_idle_gp_delay + jiffies,
1444
- rcu_idle_gp_delay) - jiffies;
1445
- } else {
1446
- dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1447
- }
1369
+ /* Request timer and round. */
1370
+ dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1371
+
14481372 *nextevt = basemono + dj * TICK_NSEC;
14491373 return 0;
14501374 }
1451
-#endif /* #ifndef CONFIG_PREEMPT_RT_FULL */
14521375
14531376 /*
1454
- * Prepare a CPU for idle from an RCU perspective. The first major task
1455
- * is to sense whether nohz mode has been enabled or disabled via sysfs.
1456
- * The second major task is to check to see if a non-lazy callback has
1457
- * arrived at a CPU that previously had only lazy callbacks. The third
1458
- * major task is to accelerate (that is, assign grace-period numbers to)
1459
- * any recently arrived callbacks.
1377
+ * Prepare a CPU for idle from an RCU perspective. The first major task is to
1378
+ * sense whether nohz mode has been enabled or disabled via sysfs. The second
1379
+ * major task is to accelerate (that is, assign grace-period numbers to) any
1380
+ * recently arrived callbacks.
14601381 *
14611382 * The caller must have disabled interrupts.
14621383 */
14631384 static void rcu_prepare_for_idle(void)
14641385 {
14651386 bool needwake;
1466
- struct rcu_data *rdp;
1467
- struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1387
+ struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
14681388 struct rcu_node *rnp;
1469
- struct rcu_state *rsp;
14701389 int tne;
14711390
14721391 lockdep_assert_irqs_disabled();
1473
- if (rcu_is_nocb_cpu(smp_processor_id()))
1392
+ if (rcu_segcblist_is_offloaded(&rdp->cblist))
14741393 return;
14751394
14761395 /* Handle nohz enablement switches conservatively. */
14771396 tne = READ_ONCE(tick_nohz_active);
1478
- if (tne != rdtp->tick_nohz_enabled_snap) {
1479
- if (rcu_cpu_has_callbacks(NULL))
1397
+ if (tne != rdp->tick_nohz_enabled_snap) {
1398
+ if (!rcu_segcblist_empty(&rdp->cblist))
14801399 invoke_rcu_core(); /* force nohz to see update. */
1481
- rdtp->tick_nohz_enabled_snap = tne;
1400
+ rdp->tick_nohz_enabled_snap = tne;
14821401 return;
14831402 }
14841403 if (!tne)
14851404 return;
14861405
14871406 /*
1488
- * If a non-lazy callback arrived at a CPU having only lazy
1489
- * callbacks, invoke RCU core for the side-effect of recalculating
1490
- * idle duration on re-entry to idle.
1491
- */
1492
- if (rdtp->all_lazy &&
1493
- rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1494
- rdtp->all_lazy = false;
1495
- rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1496
- invoke_rcu_core();
1497
- return;
1498
- }
1499
-
1500
- /*
15011407 * If we have not yet accelerated this jiffy, accelerate all
15021408 * callbacks on this CPU.
15031409 */
1504
- if (rdtp->last_accelerate == jiffies)
1410
+ if (rdp->last_accelerate == jiffies)
15051411 return;
1506
- rdtp->last_accelerate = jiffies;
1507
- for_each_rcu_flavor(rsp) {
1508
- rdp = this_cpu_ptr(rsp->rda);
1509
- if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1510
- continue;
1412
+ rdp->last_accelerate = jiffies;
1413
+ if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
15111414 rnp = rdp->mynode;
15121415 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1513
- needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1416
+ needwake = rcu_accelerate_cbs(rnp, rdp);
15141417 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
15151418 if (needwake)
1516
- rcu_gp_kthread_wake(rsp);
1419
+ rcu_gp_kthread_wake();
15171420 }
15181421 }
15191422
....@@ -1524,240 +1427,58 @@
15241427 */
15251428 static void rcu_cleanup_after_idle(void)
15261429 {
1430
+ struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1431
+
15271432 lockdep_assert_irqs_disabled();
1528
- if (rcu_is_nocb_cpu(smp_processor_id()))
1433
+ if (rcu_segcblist_is_offloaded(&rdp->cblist))
15291434 return;
15301435 if (rcu_try_advance_all_cbs())
15311436 invoke_rcu_core();
15321437 }
15331438
1534
-/*
1535
- * Keep a running count of the number of non-lazy callbacks posted
1536
- * on this CPU. This running counter (which is never decremented) allows
1537
- * rcu_prepare_for_idle() to detect when something out of the idle loop
1538
- * posts a callback, even if an equal number of callbacks are invoked.
1539
- * Of course, callbacks should only be posted from within a trace event
1540
- * designed to be called from idle or from within RCU_NONIDLE().
1541
- */
1542
-static void rcu_idle_count_callbacks_posted(void)
1543
-{
1544
- __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1545
-}
1546
-
1547
-/*
1548
- * Data for flushing lazy RCU callbacks at OOM time.
1549
- */
1550
-static atomic_t oom_callback_count;
1551
-static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1552
-
1553
-/*
1554
- * RCU OOM callback -- decrement the outstanding count and deliver the
1555
- * wake-up if we are the last one.
1556
- */
1557
-static void rcu_oom_callback(struct rcu_head *rhp)
1558
-{
1559
- if (atomic_dec_and_test(&oom_callback_count))
1560
- wake_up(&oom_callback_wq);
1561
-}
1562
-
1563
-/*
1564
- * Post an rcu_oom_notify callback on the current CPU if it has at
1565
- * least one lazy callback. This will unnecessarily post callbacks
1566
- * to CPUs that already have a non-lazy callback at the end of their
1567
- * callback list, but this is an infrequent operation, so accept some
1568
- * extra overhead to keep things simple.
1569
- */
1570
-static void rcu_oom_notify_cpu(void *unused)
1571
-{
1572
- struct rcu_state *rsp;
1573
- struct rcu_data *rdp;
1574
-
1575
- for_each_rcu_flavor(rsp) {
1576
- rdp = raw_cpu_ptr(rsp->rda);
1577
- if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) {
1578
- atomic_inc(&oom_callback_count);
1579
- rsp->call(&rdp->oom_head, rcu_oom_callback);
1580
- }
1581
- }
1582
-}
1583
-
1584
-/*
1585
- * If low on memory, ensure that each CPU has a non-lazy callback.
1586
- * This will wake up CPUs that have only lazy callbacks, in turn
1587
- * ensuring that they free up the corresponding memory in a timely manner.
1588
- * Because an uncertain amount of memory will be freed in some uncertain
1589
- * timeframe, we do not claim to have freed anything.
1590
- */
1591
-static int rcu_oom_notify(struct notifier_block *self,
1592
- unsigned long notused, void *nfreed)
1593
-{
1594
- int cpu;
1595
-
1596
- /* Wait for callbacks from earlier instance to complete. */
1597
- wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1598
- smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1599
-
1600
- /*
1601
- * Prevent premature wakeup: ensure that all increments happen
1602
- * before there is a chance of the counter reaching zero.
1603
- */
1604
- atomic_set(&oom_callback_count, 1);
1605
-
1606
- for_each_online_cpu(cpu) {
1607
- smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1608
- cond_resched_tasks_rcu_qs();
1609
- }
1610
-
1611
- /* Unconditionally decrement: no need to wake ourselves up. */
1612
- atomic_dec(&oom_callback_count);
1613
-
1614
- return NOTIFY_OK;
1615
-}
1616
-
1617
-static struct notifier_block rcu_oom_nb = {
1618
- .notifier_call = rcu_oom_notify
1619
-};
1620
-
1621
-static int __init rcu_register_oom_notifier(void)
1622
-{
1623
- register_oom_notifier(&rcu_oom_nb);
1624
- return 0;
1625
-}
1626
-early_initcall(rcu_register_oom_notifier);
1627
-
16281439 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1629
-
1630
-#ifdef CONFIG_RCU_FAST_NO_HZ
1631
-
1632
-static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1633
-{
1634
- struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1635
- unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1636
-
1637
- sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1638
- rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1639
- ulong2long(nlpd),
1640
- rdtp->all_lazy ? 'L' : '.',
1641
- rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1642
-}
1643
-
1644
-#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1645
-
1646
-static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1647
-{
1648
- *cp = '\0';
1649
-}
1650
-
1651
-#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1652
-
1653
-/* Initiate the stall-info list. */
1654
-static void print_cpu_stall_info_begin(void)
1655
-{
1656
- pr_cont("\n");
1657
-}
1658
-
1659
-/*
1660
- * Print out diagnostic information for the specified stalled CPU.
1661
- *
1662
- * If the specified CPU is aware of the current RCU grace period
1663
- * (flavor specified by rsp), then print the number of scheduling
1664
- * clock interrupts the CPU has taken during the time that it has
1665
- * been aware. Otherwise, print the number of RCU grace periods
1666
- * that this CPU is ignorant of, for example, "1" if the CPU was
1667
- * aware of the previous grace period.
1668
- *
1669
- * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1670
- */
1671
-static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1672
-{
1673
- unsigned long delta;
1674
- char fast_no_hz[72];
1675
- struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1676
- struct rcu_dynticks *rdtp = rdp->dynticks;
1677
- char *ticks_title;
1678
- unsigned long ticks_value;
1679
-
1680
- /*
1681
- * We could be printing a lot while holding a spinlock. Avoid
1682
- * triggering hard lockup.
1683
- */
1684
- touch_nmi_watchdog();
1685
-
1686
- ticks_value = rcu_seq_ctr(rsp->gp_seq - rdp->gp_seq);
1687
- if (ticks_value) {
1688
- ticks_title = "GPs behind";
1689
- } else {
1690
- ticks_title = "ticks this GP";
1691
- ticks_value = rdp->ticks_this_gp;
1692
- }
1693
- print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1694
- delta = rcu_seq_ctr(rdp->mynode->gp_seq - rdp->rcu_iw_gp_seq);
1695
- pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%#lx softirq=%u/%u fqs=%ld %s\n",
1696
- cpu,
1697
- "O."[!!cpu_online(cpu)],
1698
- "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1699
- "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1700
- !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' :
1701
- rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' :
1702
- "!."[!delta],
1703
- ticks_value, ticks_title,
1704
- rcu_dynticks_snap(rdtp) & 0xfff,
1705
- rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1706
- rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1707
- READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1708
- fast_no_hz);
1709
-}
1710
-
1711
-/* Terminate the stall-info list. */
1712
-static void print_cpu_stall_info_end(void)
1713
-{
1714
- pr_err("\t");
1715
-}
1716
-
1717
-/* Zero ->ticks_this_gp for all flavors of RCU. */
1718
-static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1719
-{
1720
- rdp->ticks_this_gp = 0;
1721
- rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1722
-}
1723
-
1724
-/* Increment ->ticks_this_gp for all flavors of RCU. */
1725
-static void increment_cpu_stall_ticks(void)
1726
-{
1727
- struct rcu_state *rsp;
1728
-
1729
- for_each_rcu_flavor(rsp)
1730
- raw_cpu_inc(rsp->rda->ticks_this_gp);
1731
-}
17321440
17331441 #ifdef CONFIG_RCU_NOCB_CPU
17341442
17351443 /*
17361444 * Offload callback processing from the boot-time-specified set of CPUs
1737
- * specified by rcu_nocb_mask. For each CPU in the set, there is a
1738
- * kthread created that pulls the callbacks from the corresponding CPU,
1739
- * waits for a grace period to elapse, and invokes the callbacks.
1740
- * The no-CBs CPUs do a wake_up() on their kthread when they insert
1741
- * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1742
- * has been specified, in which case each kthread actively polls its
1743
- * CPU. (Which isn't so great for energy efficiency, but which does
1744
- * reduce RCU's overhead on that CPU.)
1445
+ * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
1446
+ * created that pull the callbacks from the corresponding CPU, wait for
1447
+ * a grace period to elapse, and invoke the callbacks. These kthreads
1448
+ * are organized into GP kthreads, which manage incoming callbacks, wait for
1449
+ * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1450
+ * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
1451
+ * do a wake_up() on their GP kthread when they insert a callback into any
1452
+ * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1453
+ * in which case each kthread actively polls its CPU. (Which isn't so great
1454
+ * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
17451455 *
17461456 * This is intended to be used in conjunction with Frederic Weisbecker's
17471457 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
17481458 * running CPU-bound user-mode computations.
17491459 *
1750
- * Offloading of callback processing could also in theory be used as
1751
- * an energy-efficiency measure because CPUs with no RCU callbacks
1752
- * queued are more aggressive about entering dyntick-idle mode.
1460
+ * Offloading of callbacks can also be used as an energy-efficiency
1461
+ * measure because CPUs with no RCU callbacks queued are more aggressive
1462
+ * about entering dyntick-idle mode.
17531463 */
17541464
17551465
1756
-/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1466
+/*
1467
+ * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1468
+ * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1469
+ * comma-separated list of CPUs and/or CPU ranges. If an invalid list is
1470
+ * given, a warning is emitted and all CPUs are offloaded.
1471
+ */
17571472 static int __init rcu_nocb_setup(char *str)
17581473 {
17591474 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1760
- cpulist_parse(str, rcu_nocb_mask);
1475
+ if (!strcasecmp(str, "all"))
1476
+ cpumask_setall(rcu_nocb_mask);
1477
+ else
1478
+ if (cpulist_parse(str, rcu_nocb_mask)) {
1479
+ pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1480
+ cpumask_setall(rcu_nocb_mask);
1481
+ }
17611482 return 1;
17621483 }
17631484 __setup("rcu_nocbs=", rcu_nocb_setup);
....@@ -1768,6 +1489,117 @@
17681489 return 0;
17691490 }
17701491 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1492
+
1493
+/*
1494
+ * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1495
+ * After all, the main point of bypassing is to avoid lock contention
1496
+ * on ->nocb_lock, which only can happen at high call_rcu() rates.
1497
+ */
1498
+int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1499
+module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1500
+
1501
+/*
1502
+ * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
1503
+ * lock isn't immediately available, increment ->nocb_lock_contended to
1504
+ * flag the contention.
1505
+ */
1506
+static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1507
+ __acquires(&rdp->nocb_bypass_lock)
1508
+{
1509
+ lockdep_assert_irqs_disabled();
1510
+ if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1511
+ return;
1512
+ atomic_inc(&rdp->nocb_lock_contended);
1513
+ WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1514
+ smp_mb__after_atomic(); /* atomic_inc() before lock. */
1515
+ raw_spin_lock(&rdp->nocb_bypass_lock);
1516
+ smp_mb__before_atomic(); /* atomic_dec() after lock. */
1517
+ atomic_dec(&rdp->nocb_lock_contended);
1518
+}
1519
+
1520
+/*
1521
+ * Spinwait until the specified rcu_data structure's ->nocb_lock is
1522
+ * not contended. Please note that this is extremely special-purpose,
1523
+ * relying on the fact that at most two kthreads and one CPU contend for
1524
+ * this lock, and also that the two kthreads are guaranteed to have frequent
1525
+ * grace-period-duration time intervals between successive acquisitions
1526
+ * of the lock. This allows us to use an extremely simple throttling
1527
+ * mechanism, and further to apply it only to the CPU doing floods of
1528
+ * call_rcu() invocations. Don't try this at home!
1529
+ */
1530
+static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1531
+{
1532
+ WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1533
+ while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1534
+ cpu_relax();
1535
+}
1536
+
1537
+/*
1538
+ * Conditionally acquire the specified rcu_data structure's
1539
+ * ->nocb_bypass_lock.
1540
+ */
1541
+static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1542
+{
1543
+ lockdep_assert_irqs_disabled();
1544
+ return raw_spin_trylock(&rdp->nocb_bypass_lock);
1545
+}
1546
+
1547
+/*
1548
+ * Release the specified rcu_data structure's ->nocb_bypass_lock.
1549
+ */
1550
+static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1551
+ __releases(&rdp->nocb_bypass_lock)
1552
+{
1553
+ lockdep_assert_irqs_disabled();
1554
+ raw_spin_unlock(&rdp->nocb_bypass_lock);
1555
+}
1556
+
1557
+/*
1558
+ * Acquire the specified rcu_data structure's ->nocb_lock, but only
1559
+ * if it corresponds to a no-CBs CPU.
1560
+ */
1561
+static void rcu_nocb_lock(struct rcu_data *rdp)
1562
+{
1563
+ lockdep_assert_irqs_disabled();
1564
+ if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1565
+ return;
1566
+ raw_spin_lock(&rdp->nocb_lock);
1567
+}
1568
+
1569
+/*
1570
+ * Release the specified rcu_data structure's ->nocb_lock, but only
1571
+ * if it corresponds to a no-CBs CPU.
1572
+ */
1573
+static void rcu_nocb_unlock(struct rcu_data *rdp)
1574
+{
1575
+ if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1576
+ lockdep_assert_irqs_disabled();
1577
+ raw_spin_unlock(&rdp->nocb_lock);
1578
+ }
1579
+}
1580
+
1581
+/*
1582
+ * Release the specified rcu_data structure's ->nocb_lock and restore
1583
+ * interrupts, but only if it corresponds to a no-CBs CPU.
1584
+ */
1585
+static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1586
+ unsigned long flags)
1587
+{
1588
+ if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1589
+ lockdep_assert_irqs_disabled();
1590
+ raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1591
+ } else {
1592
+ local_irq_restore(flags);
1593
+ }
1594
+}
1595
+
1596
+/* Lockdep check that ->cblist may be safely accessed. */
1597
+static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1598
+{
1599
+ lockdep_assert_irqs_disabled();
1600
+ if (rcu_segcblist_is_offloaded(&rdp->cblist))
1601
+ lockdep_assert_held(&rdp->nocb_lock);
1602
+}
17711603
17721604 /*
17731605 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
....@@ -1798,442 +1630,523 @@
17981630 }
17991631
18001632 /*
1801
- * Kick the leader kthread for this NOCB group. Caller holds ->nocb_lock
1633
+ * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock
18021634 * and this function releases it.
18031635 */
1804
-static void __wake_nocb_leader(struct rcu_data *rdp, bool force,
1805
- unsigned long flags)
1636
+static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1637
+ unsigned long flags)
18061638 __releases(rdp->nocb_lock)
18071639 {
1808
- struct rcu_data *rdp_leader = rdp->nocb_leader;
1640
+ bool needwake = false;
1641
+ struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
18091642
18101643 lockdep_assert_held(&rdp->nocb_lock);
1811
- if (!READ_ONCE(rdp_leader->nocb_kthread)) {
1812
- raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1644
+ if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1645
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1646
+ TPS("AlreadyAwake"));
1647
+ rcu_nocb_unlock_irqrestore(rdp, flags);
18131648 return;
18141649 }
1815
- if (rdp_leader->nocb_leader_sleep || force) {
1816
- /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1817
- WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1650
+
1651
+ if (READ_ONCE(rdp->nocb_defer_wakeup) > RCU_NOCB_WAKE_NOT) {
1652
+ WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
18181653 del_timer(&rdp->nocb_timer);
1819
- raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1820
- smp_mb(); /* ->nocb_leader_sleep before swake_up_one(). */
1821
- swake_up_one(&rdp_leader->nocb_wq);
1822
- } else {
1823
- raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
18241654 }
1655
+ rcu_nocb_unlock_irqrestore(rdp, flags);
1656
+ raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1657
+ if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1658
+ WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1659
+ needwake = true;
1660
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1661
+ }
1662
+ raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1663
+ if (needwake)
1664
+ wake_up_process(rdp_gp->nocb_gp_kthread);
18251665 }
18261666
18271667 /*
1828
- * Kick the leader kthread for this NOCB group, but caller has not
1829
- * acquired locks.
1668
+ * Arrange to wake the GP kthread for this NOCB group at some future
1669
+ * time when it is safe to do so.
18301670 */
1831
-static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1671
+static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1672
+ const char *reason)
18321673 {
1833
- unsigned long flags;
1834
-
1835
- raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1836
- __wake_nocb_leader(rdp, force, flags);
1837
-}
1838
-
1839
-/*
1840
- * Arrange to wake the leader kthread for this NOCB group at some
1841
- * future time when it is safe to do so.
1842
- */
1843
-static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype,
1844
- const char *reason)
1845
-{
1846
- unsigned long flags;
1847
-
1848
- raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
18491674 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
18501675 mod_timer(&rdp->nocb_timer, jiffies + 1);
1851
- WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1852
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, reason);
1853
- raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1676
+ if (rdp->nocb_defer_wakeup < waketype)
1677
+ WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1678
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
18541679 }
18551680
18561681 /*
1857
- * Does the specified CPU need an RCU callback for the specified flavor
1858
- * of rcu_barrier()?
1682
+ * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1683
+ * However, if there is a callback to be enqueued and if ->nocb_bypass
1684
+ * proves to be initially empty, just return false because the no-CB GP
1685
+ * kthread may need to be awakened in this case.
1686
+ *
1687
+ * Note that this function always returns true if rhp is NULL.
18591688 */
1860
-static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1689
+static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1690
+ unsigned long j)
18611691 {
1862
- struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1863
- unsigned long ret;
1864
-#ifdef CONFIG_PROVE_RCU
1865
- struct rcu_head *rhp;
1866
-#endif /* #ifdef CONFIG_PROVE_RCU */
1692
+ struct rcu_cblist rcl;
18671693
1868
- /*
1869
- * Check count of all no-CBs callbacks awaiting invocation.
1870
- * There needs to be a barrier before this function is called,
1871
- * but associated with a prior determination that no more
1872
- * callbacks would be posted. In the worst case, the first
1873
- * barrier in _rcu_barrier() suffices (but the caller cannot
1874
- * necessarily rely on this, not a substitute for the caller
1875
- * getting the concurrency design right!). There must also be
1876
- * a barrier between the following load an posting of a callback
1877
- * (if a callback is in fact needed). This is associated with an
1878
- * atomic_inc() in the caller.
1879
- */
1880
- ret = atomic_long_read(&rdp->nocb_q_count);
1881
-
1882
-#ifdef CONFIG_PROVE_RCU
1883
- rhp = READ_ONCE(rdp->nocb_head);
1884
- if (!rhp)
1885
- rhp = READ_ONCE(rdp->nocb_gp_head);
1886
- if (!rhp)
1887
- rhp = READ_ONCE(rdp->nocb_follower_head);
1888
-
1889
- /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1890
- if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1891
- rcu_scheduler_fully_active) {
1892
- /* RCU callback enqueued before CPU first came online??? */
1893
- pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1894
- cpu, rhp->func);
1895
- WARN_ON_ONCE(1);
1694
+ WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1695
+ rcu_lockdep_assert_cblist_protected(rdp);
1696
+ lockdep_assert_held(&rdp->nocb_bypass_lock);
1697
+ if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1698
+ raw_spin_unlock(&rdp->nocb_bypass_lock);
1699
+ return false;
18961700 }
1897
-#endif /* #ifdef CONFIG_PROVE_RCU */
1898
-
1899
- return !!ret;
1701
+ /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1702
+ if (rhp)
1703
+ rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1704
+ rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1705
+ rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1706
+ WRITE_ONCE(rdp->nocb_bypass_first, j);
1707
+ rcu_nocb_bypass_unlock(rdp);
1708
+ return true;
19001709 }
19011710
19021711 /*
1903
- * Enqueue the specified string of rcu_head structures onto the specified
1904
- * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1905
- * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1906
- * counts are supplied by rhcount and rhcount_lazy.
1712
+ * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1713
+ * However, if there is a callback to be enqueued and if ->nocb_bypass
1714
+ * proves to be initially empty, just return false because the no-CB GP
1715
+ * kthread may need to be awakened in this case.
1716
+ *
1717
+ * Note that this function always returns true if rhp is NULL.
1718
+ */
1719
+static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1720
+ unsigned long j)
1721
+{
1722
+ if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1723
+ return true;
1724
+ rcu_lockdep_assert_cblist_protected(rdp);
1725
+ rcu_nocb_bypass_lock(rdp);
1726
+ return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1727
+}
1728
+
1729
+/*
1730
+ * If the ->nocb_bypass_lock is immediately available, flush the
1731
+ * ->nocb_bypass queue into ->cblist.
1732
+ */
1733
+static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1734
+{
1735
+ rcu_lockdep_assert_cblist_protected(rdp);
1736
+ if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1737
+ !rcu_nocb_bypass_trylock(rdp))
1738
+ return;
1739
+ WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1740
+}
1741
+
1742
+/*
1743
+ * See whether it is appropriate to use the ->nocb_bypass list in order
1744
+ * to control contention on ->nocb_lock. A limited number of direct
1745
+ * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
1746
+ * is non-empty, further callbacks must be placed into ->nocb_bypass,
1747
+ * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
1748
+ * back to direct use of ->cblist. However, ->nocb_bypass should not be
1749
+ * used if ->cblist is empty, because otherwise callbacks can be stranded
1750
+ * on ->nocb_bypass because we cannot count on the current CPU ever again
1751
+ * invoking call_rcu(). The general rule is that if ->nocb_bypass is
1752
+ * non-empty, the corresponding no-CBs grace-period kthread must not be
1753
+ * in an indefinite sleep state.
1754
+ *
1755
+ * Finally, it is not permitted to use the bypass during early boot,
1756
+ * as doing so would confuse the auto-initialization code. Besides
1757
+ * which, there is no point in worrying about lock contention while
1758
+ * there is only one CPU in operation.
1759
+ */
1760
+static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1761
+ bool *was_alldone, unsigned long flags)
1762
+{
1763
+ unsigned long c;
1764
+ unsigned long cur_gp_seq;
1765
+ unsigned long j = jiffies;
1766
+ long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1767
+
1768
+ if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1769
+ *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1770
+ return false; /* Not offloaded, no bypassing. */
1771
+ }
1772
+ lockdep_assert_irqs_disabled();
1773
+
1774
+ // Don't use ->nocb_bypass during early boot.
1775
+ if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1776
+ rcu_nocb_lock(rdp);
1777
+ WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1778
+ *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1779
+ return false;
1780
+ }
1781
+
1782
+ // If we have advanced to a new jiffy, reset counts to allow
1783
+ // moving back from ->nocb_bypass to ->cblist.
1784
+ if (j == rdp->nocb_nobypass_last) {
1785
+ c = rdp->nocb_nobypass_count + 1;
1786
+ } else {
1787
+ WRITE_ONCE(rdp->nocb_nobypass_last, j);
1788
+ c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1789
+ if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1790
+ nocb_nobypass_lim_per_jiffy))
1791
+ c = 0;
1792
+ else if (c > nocb_nobypass_lim_per_jiffy)
1793
+ c = nocb_nobypass_lim_per_jiffy;
1794
+ }
1795
+ WRITE_ONCE(rdp->nocb_nobypass_count, c);
1796
+
1797
+ // If there hasn't yet been all that many ->cblist enqueues
1798
+ // this jiffy, tell the caller to enqueue onto ->cblist. But flush
1799
+ // ->nocb_bypass first.
1800
+ if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1801
+ rcu_nocb_lock(rdp);
1802
+ *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1803
+ if (*was_alldone)
1804
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1805
+ TPS("FirstQ"));
1806
+ WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1807
+ WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1808
+ return false; // Caller must enqueue the callback.
1809
+ }
1810
+
1811
+ // If ->nocb_bypass has been used too long or is too full,
1812
+ // flush ->nocb_bypass to ->cblist.
1813
+ if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1814
+ ncbs >= qhimark) {
1815
+ rcu_nocb_lock(rdp);
1816
+ if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1817
+ *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1818
+ if (*was_alldone)
1819
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1820
+ TPS("FirstQ"));
1821
+ WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1822
+ return false; // Caller must enqueue the callback.
1823
+ }
1824
+ if (j != rdp->nocb_gp_adv_time &&
1825
+ rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1826
+ rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1827
+ rcu_advance_cbs_nowake(rdp->mynode, rdp);
1828
+ rdp->nocb_gp_adv_time = j;
1829
+ }
1830
+ rcu_nocb_unlock_irqrestore(rdp, flags);
1831
+ return true; // Callback already enqueued.
1832
+ }
1833
+
1834
+ // We need to use the bypass.
1835
+ rcu_nocb_wait_contended(rdp);
1836
+ rcu_nocb_bypass_lock(rdp);
1837
+ ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1838
+ rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1839
+ rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1840
+ if (!ncbs) {
1841
+ WRITE_ONCE(rdp->nocb_bypass_first, j);
1842
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1843
+ }
1844
+ rcu_nocb_bypass_unlock(rdp);
1845
+ smp_mb(); /* Order enqueue before wake. */
1846
+ if (ncbs) {
1847
+ local_irq_restore(flags);
1848
+ } else {
1849
+ // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1850
+ rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1851
+ if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1852
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1853
+ TPS("FirstBQwake"));
1854
+ __call_rcu_nocb_wake(rdp, true, flags);
1855
+ } else {
1856
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1857
+ TPS("FirstBQnoWake"));
1858
+ rcu_nocb_unlock_irqrestore(rdp, flags);
1859
+ }
1860
+ }
1861
+ return true; // Callback already enqueued.
1862
+}
1863
+
1864
+/*
1865
+ * Awaken the no-CBs grace-period kthead if needed, either due to it
1866
+ * legitimately being asleep or due to overload conditions.
19071867 *
19081868 * If warranted, also wake up the kthread servicing this CPUs queues.
19091869 */
1910
-static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1911
- struct rcu_head *rhp,
1912
- struct rcu_head **rhtp,
1913
- int rhcount, int rhcount_lazy,
1914
- unsigned long flags)
1870
+static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1871
+ unsigned long flags)
1872
+ __releases(rdp->nocb_lock)
19151873 {
1916
- int len;
1917
- struct rcu_head **old_rhpp;
1874
+ unsigned long cur_gp_seq;
1875
+ unsigned long j;
1876
+ long len;
19181877 struct task_struct *t;
19191878
1920
- /* Enqueue the callback on the nocb list and update counts. */
1921
- atomic_long_add(rhcount, &rdp->nocb_q_count);
1922
- /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1923
- old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1924
- WRITE_ONCE(*old_rhpp, rhp);
1925
- atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1926
- smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1927
-
1928
- /* If we are not being polled and there is a kthread, awaken it ... */
1929
- t = READ_ONCE(rdp->nocb_kthread);
1879
+ // If we are being polled or there is no kthread, just leave.
1880
+ t = READ_ONCE(rdp->nocb_gp_kthread);
19301881 if (rcu_nocb_poll || !t) {
1931
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1882
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
19321883 TPS("WakeNotPoll"));
1884
+ rcu_nocb_unlock_irqrestore(rdp, flags);
19331885 return;
19341886 }
1935
- len = atomic_long_read(&rdp->nocb_q_count);
1936
- if (old_rhpp == &rdp->nocb_head) {
1887
+ // Need to actually to a wakeup.
1888
+ len = rcu_segcblist_n_cbs(&rdp->cblist);
1889
+ if (was_alldone) {
1890
+ rdp->qlen_last_fqs_check = len;
19371891 if (!irqs_disabled_flags(flags)) {
19381892 /* ... if queue was empty ... */
1939
- wake_nocb_leader(rdp, false);
1940
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1893
+ wake_nocb_gp(rdp, false, flags);
1894
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
19411895 TPS("WakeEmpty"));
19421896 } else {
1943
- wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1944
- TPS("WakeEmptyIsDeferred"));
1897
+ wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1898
+ TPS("WakeEmptyIsDeferred"));
1899
+ rcu_nocb_unlock_irqrestore(rdp, flags);
19451900 }
1946
- rdp->qlen_last_fqs_check = 0;
19471901 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
19481902 /* ... or if many callbacks queued. */
1949
- if (!irqs_disabled_flags(flags)) {
1950
- wake_nocb_leader(rdp, true);
1951
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1952
- TPS("WakeOvf"));
1953
- } else {
1954
- wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE_FORCE,
1955
- TPS("WakeOvfIsDeferred"));
1903
+ rdp->qlen_last_fqs_check = len;
1904
+ j = jiffies;
1905
+ if (j != rdp->nocb_gp_adv_time &&
1906
+ rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1907
+ rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1908
+ rcu_advance_cbs_nowake(rdp->mynode, rdp);
1909
+ rdp->nocb_gp_adv_time = j;
19561910 }
1957
- rdp->qlen_last_fqs_check = LONG_MAX / 2;
1911
+ smp_mb(); /* Enqueue before timer_pending(). */
1912
+ if ((rdp->nocb_cb_sleep ||
1913
+ !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1914
+ !timer_pending(&rdp->nocb_bypass_timer))
1915
+ wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1916
+ TPS("WakeOvfIsDeferred"));
1917
+ rcu_nocb_unlock_irqrestore(rdp, flags);
19581918 } else {
1959
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1919
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1920
+ rcu_nocb_unlock_irqrestore(rdp, flags);
19601921 }
19611922 return;
19621923 }
19631924
1964
-/*
1965
- * This is a helper for __call_rcu(), which invokes this when the normal
1966
- * callback queue is inoperable. If this is not a no-CBs CPU, this
1967
- * function returns failure back to __call_rcu(), which can complain
1968
- * appropriately.
1969
- *
1970
- * Otherwise, this function queues the callback where the corresponding
1971
- * "rcuo" kthread can find it.
1972
- */
1973
-static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1974
- bool lazy, unsigned long flags)
1925
+/* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1926
+static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
19751927 {
1928
+ unsigned long flags;
1929
+ struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
19761930
1977
- if (!rcu_is_nocb_cpu(rdp->cpu))
1978
- return false;
1979
- __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1980
- if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1981
- trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1982
- (unsigned long)rhp->func,
1983
- -atomic_long_read(&rdp->nocb_q_count_lazy),
1984
- -atomic_long_read(&rdp->nocb_q_count));
1985
- else
1986
- trace_rcu_callback(rdp->rsp->name, rhp,
1987
- -atomic_long_read(&rdp->nocb_q_count_lazy),
1988
- -atomic_long_read(&rdp->nocb_q_count));
1931
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1932
+ rcu_nocb_lock_irqsave(rdp, flags);
1933
+ smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1934
+ __call_rcu_nocb_wake(rdp, true, flags);
1935
+}
1936
+
1937
+/*
1938
+ * No-CBs GP kthreads come here to wait for additional callbacks to show up
1939
+ * or for grace periods to end.
1940
+ */
1941
+static void nocb_gp_wait(struct rcu_data *my_rdp)
1942
+{
1943
+ bool bypass = false;
1944
+ long bypass_ncbs;
1945
+ int __maybe_unused cpu = my_rdp->cpu;
1946
+ unsigned long cur_gp_seq;
1947
+ unsigned long flags;
1948
+ bool gotcbs = false;
1949
+ unsigned long j = jiffies;
1950
+ bool needwait_gp = false; // This prevents actual uninitialized use.
1951
+ bool needwake;
1952
+ bool needwake_gp;
1953
+ struct rcu_data *rdp;
1954
+ struct rcu_node *rnp;
1955
+ unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1956
+ bool wasempty = false;
19891957
19901958 /*
1991
- * If called from an extended quiescent state with interrupts
1992
- * disabled, invoke the RCU core in order to allow the idle-entry
1993
- * deferred-wakeup check to function.
1959
+ * Each pass through the following loop checks for CBs and for the
1960
+ * nearest grace period (if any) to wait for next. The CB kthreads
1961
+ * and the global grace-period kthread are awakened if needed.
19941962 */
1995
- if (irqs_disabled_flags(flags) &&
1996
- !rcu_is_watching() &&
1997
- cpu_online(smp_processor_id()))
1998
- invoke_rcu_core();
1963
+ WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
1964
+ for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1965
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1966
+ rcu_nocb_lock_irqsave(rdp, flags);
1967
+ bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1968
+ if (bypass_ncbs &&
1969
+ (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1970
+ bypass_ncbs > 2 * qhimark)) {
1971
+ // Bypass full or old, so flush it.
1972
+ (void)rcu_nocb_try_flush_bypass(rdp, j);
1973
+ bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1974
+ } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1975
+ rcu_nocb_unlock_irqrestore(rdp, flags);
1976
+ continue; /* No callbacks here, try next. */
1977
+ }
1978
+ if (bypass_ncbs) {
1979
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1980
+ TPS("Bypass"));
1981
+ bypass = true;
1982
+ }
1983
+ rnp = rdp->mynode;
1984
+ if (bypass) { // Avoid race with first bypass CB.
1985
+ WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1986
+ RCU_NOCB_WAKE_NOT);
1987
+ del_timer(&my_rdp->nocb_timer);
1988
+ }
1989
+ // Advance callbacks if helpful and low contention.
1990
+ needwake_gp = false;
1991
+ if (!rcu_segcblist_restempty(&rdp->cblist,
1992
+ RCU_NEXT_READY_TAIL) ||
1993
+ (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1994
+ rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1995
+ raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1996
+ needwake_gp = rcu_advance_cbs(rnp, rdp);
1997
+ wasempty = rcu_segcblist_restempty(&rdp->cblist,
1998
+ RCU_NEXT_READY_TAIL);
1999
+ raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
2000
+ }
2001
+ // Need to wait on some grace period?
2002
+ WARN_ON_ONCE(wasempty &&
2003
+ !rcu_segcblist_restempty(&rdp->cblist,
2004
+ RCU_NEXT_READY_TAIL));
2005
+ if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
2006
+ if (!needwait_gp ||
2007
+ ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
2008
+ wait_gp_seq = cur_gp_seq;
2009
+ needwait_gp = true;
2010
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2011
+ TPS("NeedWaitGP"));
2012
+ }
2013
+ if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2014
+ needwake = rdp->nocb_cb_sleep;
2015
+ WRITE_ONCE(rdp->nocb_cb_sleep, false);
2016
+ smp_mb(); /* CB invocation -after- GP end. */
2017
+ } else {
2018
+ needwake = false;
2019
+ }
2020
+ rcu_nocb_unlock_irqrestore(rdp, flags);
2021
+ if (needwake) {
2022
+ swake_up_one(&rdp->nocb_cb_wq);
2023
+ gotcbs = true;
2024
+ }
2025
+ if (needwake_gp)
2026
+ rcu_gp_kthread_wake();
2027
+ }
19992028
2000
- return true;
2029
+ my_rdp->nocb_gp_bypass = bypass;
2030
+ my_rdp->nocb_gp_gp = needwait_gp;
2031
+ my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2032
+ if (bypass && !rcu_nocb_poll) {
2033
+ // At least one child with non-empty ->nocb_bypass, so set
2034
+ // timer in order to avoid stranding its callbacks.
2035
+ raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2036
+ mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2037
+ raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2038
+ }
2039
+ if (rcu_nocb_poll) {
2040
+ /* Polling, so trace if first poll in the series. */
2041
+ if (gotcbs)
2042
+ trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2043
+ schedule_timeout_idle(1);
2044
+ } else if (!needwait_gp) {
2045
+ /* Wait for callbacks to appear. */
2046
+ trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2047
+ swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2048
+ !READ_ONCE(my_rdp->nocb_gp_sleep));
2049
+ trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2050
+ } else {
2051
+ rnp = my_rdp->mynode;
2052
+ trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2053
+ swait_event_interruptible_exclusive(
2054
+ rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2055
+ rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2056
+ !READ_ONCE(my_rdp->nocb_gp_sleep));
2057
+ trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2058
+ }
2059
+ if (!rcu_nocb_poll) {
2060
+ raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2061
+ if (bypass)
2062
+ del_timer(&my_rdp->nocb_bypass_timer);
2063
+ WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2064
+ raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2065
+ }
2066
+ my_rdp->nocb_gp_seq = -1;
2067
+ WARN_ON(signal_pending(current));
20012068 }
20022069
20032070 /*
2004
- * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2005
- * not a no-CBs CPU.
2071
+ * No-CBs grace-period-wait kthread. There is one of these per group
2072
+ * of CPUs, but only once at least one CPU in that group has come online
2073
+ * at least once since boot. This kthread checks for newly posted
2074
+ * callbacks from any of the CPUs it is responsible for, waits for a
2075
+ * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2076
+ * that then have callback-invocation work to do.
20062077 */
2007
-static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2008
- struct rcu_data *rdp,
2009
- unsigned long flags)
2078
+static int rcu_nocb_gp_kthread(void *arg)
20102079 {
2011
- lockdep_assert_irqs_disabled();
2012
- if (!rcu_is_nocb_cpu(smp_processor_id()))
2013
- return false; /* Not NOCBs CPU, caller must migrate CBs. */
2014
- __call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist),
2015
- rcu_segcblist_tail(&rdp->cblist),
2016
- rcu_segcblist_n_cbs(&rdp->cblist),
2017
- rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags);
2018
- rcu_segcblist_init(&rdp->cblist);
2019
- rcu_segcblist_disable(&rdp->cblist);
2020
- return true;
2080
+ struct rcu_data *rdp = arg;
2081
+
2082
+ for (;;) {
2083
+ WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2084
+ nocb_gp_wait(rdp);
2085
+ cond_resched_tasks_rcu_qs();
2086
+ }
2087
+ return 0;
20212088 }
20222089
20232090 /*
2024
- * If necessary, kick off a new grace period, and either way wait
2025
- * for a subsequent grace period to complete.
2091
+ * Invoke any ready callbacks from the corresponding no-CBs CPU,
2092
+ * then, if there are no more, wait for more to appear.
20262093 */
2027
-static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2094
+static void nocb_cb_wait(struct rcu_data *rdp)
20282095 {
2029
- unsigned long c;
2030
- bool d;
2096
+ unsigned long cur_gp_seq;
20312097 unsigned long flags;
2032
- bool needwake;
2098
+ bool needwake_gp = false;
20332099 struct rcu_node *rnp = rdp->mynode;
20342100
20352101 local_irq_save(flags);
2036
- c = rcu_seq_snap(&rdp->rsp->gp_seq);
2037
- if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
2038
- local_irq_restore(flags);
2039
- } else {
2040
- raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2041
- needwake = rcu_start_this_gp(rnp, rdp, c);
2042
- raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2043
- if (needwake)
2044
- rcu_gp_kthread_wake(rdp->rsp);
2102
+ rcu_momentary_dyntick_idle();
2103
+ local_irq_restore(flags);
2104
+ local_bh_disable();
2105
+ rcu_do_batch(rdp);
2106
+ local_bh_enable();
2107
+ lockdep_assert_irqs_enabled();
2108
+ rcu_nocb_lock_irqsave(rdp, flags);
2109
+ if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2110
+ rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2111
+ raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2112
+ needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2113
+ raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2114
+ }
2115
+ if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2116
+ rcu_nocb_unlock_irqrestore(rdp, flags);
2117
+ if (needwake_gp)
2118
+ rcu_gp_kthread_wake();
2119
+ return;
20452120 }
20462121
2047
- /*
2048
- * Wait for the grace period. Do so interruptibly to avoid messing
2049
- * up the load average.
2050
- */
2051
- trace_rcu_this_gp(rnp, rdp, c, TPS("StartWait"));
2052
- for (;;) {
2053
- swait_event_interruptible_exclusive(
2054
- rnp->nocb_gp_wq[rcu_seq_ctr(c) & 0x1],
2055
- (d = rcu_seq_done(&rnp->gp_seq, c)));
2056
- if (likely(d))
2057
- break;
2058
- WARN_ON(signal_pending(current));
2059
- trace_rcu_this_gp(rnp, rdp, c, TPS("ResumeWait"));
2122
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2123
+ WRITE_ONCE(rdp->nocb_cb_sleep, true);
2124
+ rcu_nocb_unlock_irqrestore(rdp, flags);
2125
+ if (needwake_gp)
2126
+ rcu_gp_kthread_wake();
2127
+ swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2128
+ !READ_ONCE(rdp->nocb_cb_sleep));
2129
+ if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2130
+ /* ^^^ Ensure CB invocation follows _sleep test. */
2131
+ return;
20602132 }
2061
- trace_rcu_this_gp(rnp, rdp, c, TPS("EndWait"));
2062
- smp_mb(); /* Ensure that CB invocation happens after GP end. */
2133
+ WARN_ON(signal_pending(current));
2134
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
20632135 }
20642136
20652137 /*
2066
- * Leaders come here to wait for additional callbacks to show up.
2067
- * This function does not return until callbacks appear.
2138
+ * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
2139
+ * nocb_cb_wait() to do the dirty work.
20682140 */
2069
-static void nocb_leader_wait(struct rcu_data *my_rdp)
2141
+static int rcu_nocb_cb_kthread(void *arg)
20702142 {
2071
- bool firsttime = true;
2072
- unsigned long flags;
2073
- bool gotcbs;
2074
- struct rcu_data *rdp;
2075
- struct rcu_head **tail;
2076
-
2077
-wait_again:
2078
-
2079
- /* Wait for callbacks to appear. */
2080
- if (!rcu_nocb_poll) {
2081
- trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Sleep"));
2082
- swait_event_interruptible_exclusive(my_rdp->nocb_wq,
2083
- !READ_ONCE(my_rdp->nocb_leader_sleep));
2084
- raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2085
- my_rdp->nocb_leader_sleep = true;
2086
- WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2087
- del_timer(&my_rdp->nocb_timer);
2088
- raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2089
- } else if (firsttime) {
2090
- firsttime = false; /* Don't drown trace log with "Poll"! */
2091
- trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Poll"));
2092
- }
2093
-
2094
- /*
2095
- * Each pass through the following loop checks a follower for CBs.
2096
- * We are our own first follower. Any CBs found are moved to
2097
- * nocb_gp_head, where they await a grace period.
2098
- */
2099
- gotcbs = false;
2100
- smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
2101
- for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2102
- rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2103
- if (!rdp->nocb_gp_head)
2104
- continue; /* No CBs here, try next follower. */
2105
-
2106
- /* Move callbacks to wait-for-GP list, which is empty. */
2107
- WRITE_ONCE(rdp->nocb_head, NULL);
2108
- rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2109
- gotcbs = true;
2110
- }
2111
-
2112
- /* No callbacks? Sleep a bit if polling, and go retry. */
2113
- if (unlikely(!gotcbs)) {
2114
- WARN_ON(signal_pending(current));
2115
- if (rcu_nocb_poll) {
2116
- schedule_timeout_interruptible(1);
2117
- } else {
2118
- trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2119
- TPS("WokeEmpty"));
2120
- }
2121
- goto wait_again;
2122
- }
2123
-
2124
- /* Wait for one grace period. */
2125
- rcu_nocb_wait_gp(my_rdp);
2126
-
2127
- /* Each pass through the following loop wakes a follower, if needed. */
2128
- for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2129
- if (!rcu_nocb_poll &&
2130
- READ_ONCE(rdp->nocb_head) &&
2131
- READ_ONCE(my_rdp->nocb_leader_sleep)) {
2132
- raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2133
- my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2134
- raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2135
- }
2136
- if (!rdp->nocb_gp_head)
2137
- continue; /* No CBs, so no need to wake follower. */
2138
-
2139
- /* Append callbacks to follower's "done" list. */
2140
- raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2141
- tail = rdp->nocb_follower_tail;
2142
- rdp->nocb_follower_tail = rdp->nocb_gp_tail;
2143
- *tail = rdp->nocb_gp_head;
2144
- raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2145
- if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2146
- /* List was empty, so wake up the follower. */
2147
- swake_up_one(&rdp->nocb_wq);
2148
- }
2149
- }
2150
-
2151
- /* If we (the leader) don't have CBs, go wait some more. */
2152
- if (!my_rdp->nocb_follower_head)
2153
- goto wait_again;
2154
-}
2155
-
2156
-/*
2157
- * Followers come here to wait for additional callbacks to show up.
2158
- * This function does not return until callbacks appear.
2159
- */
2160
-static void nocb_follower_wait(struct rcu_data *rdp)
2161
-{
2162
- for (;;) {
2163
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("FollowerSleep"));
2164
- swait_event_interruptible_exclusive(rdp->nocb_wq,
2165
- READ_ONCE(rdp->nocb_follower_head));
2166
- if (smp_load_acquire(&rdp->nocb_follower_head)) {
2167
- /* ^^^ Ensure CB invocation follows _head test. */
2168
- return;
2169
- }
2170
- WARN_ON(signal_pending(current));
2171
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeEmpty"));
2172
- }
2173
-}
2174
-
2175
-/*
2176
- * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2177
- * callbacks queued by the corresponding no-CBs CPU, however, there is
2178
- * an optional leader-follower relationship so that the grace-period
2179
- * kthreads don't have to do quite so many wakeups.
2180
- */
2181
-static int rcu_nocb_kthread(void *arg)
2182
-{
2183
- int c, cl;
2184
- unsigned long flags;
2185
- struct rcu_head *list;
2186
- struct rcu_head *next;
2187
- struct rcu_head **tail;
21882143 struct rcu_data *rdp = arg;
21892144
2190
- /* Each pass through this loop invokes one batch of callbacks */
2145
+ // Each pass through this loop does one callback batch, and,
2146
+ // if there are no more ready callbacks, waits for them.
21912147 for (;;) {
2192
- /* Wait for callbacks. */
2193
- if (rdp->nocb_leader == rdp)
2194
- nocb_leader_wait(rdp);
2195
- else
2196
- nocb_follower_wait(rdp);
2197
-
2198
- /* Pull the ready-to-invoke callbacks onto local list. */
2199
- raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2200
- list = rdp->nocb_follower_head;
2201
- rdp->nocb_follower_head = NULL;
2202
- tail = rdp->nocb_follower_tail;
2203
- rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2204
- raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2205
- BUG_ON(!list);
2206
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeNonEmpty"));
2207
-
2208
- /* Each pass through the following loop invokes a callback. */
2209
- trace_rcu_batch_start(rdp->rsp->name,
2210
- atomic_long_read(&rdp->nocb_q_count_lazy),
2211
- atomic_long_read(&rdp->nocb_q_count), -1);
2212
- c = cl = 0;
2213
- while (list) {
2214
- next = list->next;
2215
- /* Wait for enqueuing to complete, if needed. */
2216
- while (next == NULL && &list->next != tail) {
2217
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2218
- TPS("WaitQueue"));
2219
- schedule_timeout_interruptible(1);
2220
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2221
- TPS("WokeQueue"));
2222
- next = list->next;
2223
- }
2224
- debug_rcu_head_unqueue(list);
2225
- local_bh_disable();
2226
- if (__rcu_reclaim(rdp->rsp->name, list))
2227
- cl++;
2228
- c++;
2229
- local_bh_enable();
2230
- cond_resched_tasks_rcu_qs();
2231
- list = next;
2232
- }
2233
- trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2234
- smp_mb__before_atomic(); /* _add after CB invocation. */
2235
- atomic_long_add(-c, &rdp->nocb_q_count);
2236
- atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2148
+ nocb_cb_wait(rdp);
2149
+ cond_resched_tasks_rcu_qs();
22372150 }
22382151 return 0;
22392152 }
....@@ -2250,15 +2163,14 @@
22502163 unsigned long flags;
22512164 int ndw;
22522165
2253
- raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2166
+ rcu_nocb_lock_irqsave(rdp, flags);
22542167 if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2255
- raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2168
+ rcu_nocb_unlock_irqrestore(rdp, flags);
22562169 return;
22572170 }
22582171 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2259
- WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2260
- __wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2261
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2172
+ wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2173
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
22622174 }
22632175
22642176 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
....@@ -2280,11 +2192,16 @@
22802192 do_nocb_deferred_wakeup_common(rdp);
22812193 }
22822194
2195
+void rcu_nocb_flush_deferred_wakeup(void)
2196
+{
2197
+ do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
2198
+}
2199
+
22832200 void __init rcu_init_nohz(void)
22842201 {
22852202 int cpu;
22862203 bool need_rcu_nocb_mask = false;
2287
- struct rcu_state *rsp;
2204
+ struct rcu_data *rdp;
22882205
22892206 #if defined(CONFIG_NO_HZ_FULL)
22902207 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
....@@ -2318,82 +2235,73 @@
23182235 if (rcu_nocb_poll)
23192236 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
23202237
2321
- for_each_rcu_flavor(rsp) {
2322
- for_each_cpu(cpu, rcu_nocb_mask)
2323
- init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2324
- rcu_organize_nocb_kthreads(rsp);
2238
+ for_each_cpu(cpu, rcu_nocb_mask) {
2239
+ rdp = per_cpu_ptr(&rcu_data, cpu);
2240
+ if (rcu_segcblist_empty(&rdp->cblist))
2241
+ rcu_segcblist_init(&rdp->cblist);
2242
+ rcu_segcblist_offload(&rdp->cblist);
23252243 }
2244
+ rcu_organize_nocb_kthreads();
23262245 }
23272246
23282247 /* Initialize per-rcu_data variables for no-CBs CPUs. */
23292248 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
23302249 {
2331
- rdp->nocb_tail = &rdp->nocb_head;
2332
- init_swait_queue_head(&rdp->nocb_wq);
2333
- rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2250
+ init_swait_queue_head(&rdp->nocb_cb_wq);
2251
+ init_swait_queue_head(&rdp->nocb_gp_wq);
23342252 raw_spin_lock_init(&rdp->nocb_lock);
2253
+ raw_spin_lock_init(&rdp->nocb_bypass_lock);
2254
+ raw_spin_lock_init(&rdp->nocb_gp_lock);
23352255 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2256
+ timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2257
+ rcu_cblist_init(&rdp->nocb_bypass);
23362258 }
23372259
23382260 /*
23392261 * If the specified CPU is a no-CBs CPU that does not already have its
2340
- * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2341
- * brought online out of order, this can require re-organizing the
2342
- * leader-follower relationships.
2262
+ * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
2263
+ * for this CPU's group has not yet been created, spawn it as well.
23432264 */
2344
-static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2265
+static void rcu_spawn_one_nocb_kthread(int cpu)
23452266 {
2346
- struct rcu_data *rdp;
2347
- struct rcu_data *rdp_last;
2348
- struct rcu_data *rdp_old_leader;
2349
- struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2267
+ struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2268
+ struct rcu_data *rdp_gp;
23502269 struct task_struct *t;
23512270
23522271 /*
23532272 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
23542273 * then nothing to do.
23552274 */
2356
- if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2275
+ if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
23572276 return;
23582277
2359
- /* If we didn't spawn the leader first, reorganize! */
2360
- rdp_old_leader = rdp_spawn->nocb_leader;
2361
- if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2362
- rdp_last = NULL;
2363
- rdp = rdp_old_leader;
2364
- do {
2365
- rdp->nocb_leader = rdp_spawn;
2366
- if (rdp_last && rdp != rdp_spawn)
2367
- rdp_last->nocb_next_follower = rdp;
2368
- if (rdp == rdp_spawn) {
2369
- rdp = rdp->nocb_next_follower;
2370
- } else {
2371
- rdp_last = rdp;
2372
- rdp = rdp->nocb_next_follower;
2373
- rdp_last->nocb_next_follower = NULL;
2374
- }
2375
- } while (rdp);
2376
- rdp_spawn->nocb_next_follower = rdp_old_leader;
2278
+ /* If we didn't spawn the GP kthread first, reorganize! */
2279
+ rdp_gp = rdp->nocb_gp_rdp;
2280
+ if (!rdp_gp->nocb_gp_kthread) {
2281
+ t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2282
+ "rcuog/%d", rdp_gp->cpu);
2283
+ if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2284
+ return;
2285
+ WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
23772286 }
23782287
2379
- /* Spawn the kthread for this CPU and RCU flavor. */
2380
- t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2381
- "rcuo%c/%d", rsp->abbr, cpu);
2382
- BUG_ON(IS_ERR(t));
2383
- WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2288
+ /* Spawn the kthread for this CPU. */
2289
+ t = kthread_run(rcu_nocb_cb_kthread, rdp,
2290
+ "rcuo%c/%d", rcu_state.abbr, cpu);
2291
+ if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2292
+ return;
2293
+ WRITE_ONCE(rdp->nocb_cb_kthread, t);
2294
+ WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
23842295 }
23852296
23862297 /*
23872298 * If the specified CPU is a no-CBs CPU that does not already have its
2388
- * rcuo kthreads, spawn them.
2299
+ * rcuo kthread, spawn it.
23892300 */
2390
-static void rcu_spawn_all_nocb_kthreads(int cpu)
2301
+static void rcu_spawn_cpu_nocb_kthread(int cpu)
23912302 {
2392
- struct rcu_state *rsp;
2393
-
23942303 if (rcu_scheduler_fully_active)
2395
- for_each_rcu_flavor(rsp)
2396
- rcu_spawn_one_nocb_kthread(rsp, cpu);
2304
+ rcu_spawn_one_nocb_kthread(cpu);
23972305 }
23982306
23992307 /*
....@@ -2407,30 +2315,33 @@
24072315 int cpu;
24082316
24092317 for_each_online_cpu(cpu)
2410
- rcu_spawn_all_nocb_kthreads(cpu);
2318
+ rcu_spawn_cpu_nocb_kthread(cpu);
24112319 }
24122320
2413
-/* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2414
-static int rcu_nocb_leader_stride = -1;
2415
-module_param(rcu_nocb_leader_stride, int, 0444);
2321
+/* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
2322
+static int rcu_nocb_gp_stride = -1;
2323
+module_param(rcu_nocb_gp_stride, int, 0444);
24162324
24172325 /*
2418
- * Initialize leader-follower relationships for all no-CBs CPU.
2326
+ * Initialize GP-CB relationships for all no-CBs CPU.
24192327 */
2420
-static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2328
+static void __init rcu_organize_nocb_kthreads(void)
24212329 {
24222330 int cpu;
2423
- int ls = rcu_nocb_leader_stride;
2424
- int nl = 0; /* Next leader. */
2331
+ bool firsttime = true;
2332
+ bool gotnocbs = false;
2333
+ bool gotnocbscbs = true;
2334
+ int ls = rcu_nocb_gp_stride;
2335
+ int nl = 0; /* Next GP kthread. */
24252336 struct rcu_data *rdp;
2426
- struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2337
+ struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */
24272338 struct rcu_data *rdp_prev = NULL;
24282339
24292340 if (!cpumask_available(rcu_nocb_mask))
24302341 return;
24312342 if (ls == -1) {
2432
- ls = int_sqrt(nr_cpu_ids);
2433
- rcu_nocb_leader_stride = ls;
2343
+ ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2344
+ rcu_nocb_gp_stride = ls;
24342345 }
24352346
24362347 /*
....@@ -2439,47 +2350,142 @@
24392350 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
24402351 */
24412352 for_each_cpu(cpu, rcu_nocb_mask) {
2442
- rdp = per_cpu_ptr(rsp->rda, cpu);
2353
+ rdp = per_cpu_ptr(&rcu_data, cpu);
24432354 if (rdp->cpu >= nl) {
2444
- /* New leader, set up for followers & next leader. */
2355
+ /* New GP kthread, set up for CBs & next GP. */
2356
+ gotnocbs = true;
24452357 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2446
- rdp->nocb_leader = rdp;
2447
- rdp_leader = rdp;
2358
+ rdp->nocb_gp_rdp = rdp;
2359
+ rdp_gp = rdp;
2360
+ if (dump_tree) {
2361
+ if (!firsttime)
2362
+ pr_cont("%s\n", gotnocbscbs
2363
+ ? "" : " (self only)");
2364
+ gotnocbscbs = false;
2365
+ firsttime = false;
2366
+ pr_alert("%s: No-CB GP kthread CPU %d:",
2367
+ __func__, cpu);
2368
+ }
24482369 } else {
2449
- /* Another follower, link to previous leader. */
2450
- rdp->nocb_leader = rdp_leader;
2451
- rdp_prev->nocb_next_follower = rdp;
2370
+ /* Another CB kthread, link to previous GP kthread. */
2371
+ gotnocbscbs = true;
2372
+ rdp->nocb_gp_rdp = rdp_gp;
2373
+ rdp_prev->nocb_next_cb_rdp = rdp;
2374
+ if (dump_tree)
2375
+ pr_cont(" %d", cpu);
24522376 }
24532377 rdp_prev = rdp;
24542378 }
2379
+ if (gotnocbs && dump_tree)
2380
+ pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
24552381 }
24562382
2457
-/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2458
-static bool init_nocb_callback_list(struct rcu_data *rdp)
2383
+/*
2384
+ * Bind the current task to the offloaded CPUs. If there are no offloaded
2385
+ * CPUs, leave the task unbound. Splat if the bind attempt fails.
2386
+ */
2387
+void rcu_bind_current_to_nocb(void)
24592388 {
2460
- if (!rcu_is_nocb_cpu(rdp->cpu))
2461
- return false;
2389
+ if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2390
+ WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2391
+}
2392
+EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
24622393
2463
- /* If there are early-boot callbacks, move them to nocb lists. */
2464
- if (!rcu_segcblist_empty(&rdp->cblist)) {
2465
- rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2466
- rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2467
- atomic_long_set(&rdp->nocb_q_count,
2468
- rcu_segcblist_n_cbs(&rdp->cblist));
2469
- atomic_long_set(&rdp->nocb_q_count_lazy,
2470
- rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2471
- rcu_segcblist_init(&rdp->cblist);
2472
- }
2473
- rcu_segcblist_disable(&rdp->cblist);
2474
- return true;
2394
+/*
2395
+ * Dump out nocb grace-period kthread state for the specified rcu_data
2396
+ * structure.
2397
+ */
2398
+static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2399
+{
2400
+ struct rcu_node *rnp = rdp->mynode;
2401
+
2402
+ pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2403
+ rdp->cpu,
2404
+ "kK"[!!rdp->nocb_gp_kthread],
2405
+ "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2406
+ "dD"[!!rdp->nocb_defer_wakeup],
2407
+ "tT"[timer_pending(&rdp->nocb_timer)],
2408
+ "bB"[timer_pending(&rdp->nocb_bypass_timer)],
2409
+ "sS"[!!rdp->nocb_gp_sleep],
2410
+ ".W"[swait_active(&rdp->nocb_gp_wq)],
2411
+ ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2412
+ ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2413
+ ".B"[!!rdp->nocb_gp_bypass],
2414
+ ".G"[!!rdp->nocb_gp_gp],
2415
+ (long)rdp->nocb_gp_seq,
2416
+ rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2417
+}
2418
+
2419
+/* Dump out nocb kthread state for the specified rcu_data structure. */
2420
+static void show_rcu_nocb_state(struct rcu_data *rdp)
2421
+{
2422
+ struct rcu_segcblist *rsclp = &rdp->cblist;
2423
+ bool waslocked;
2424
+ bool wastimer;
2425
+ bool wassleep;
2426
+
2427
+ if (rdp->nocb_gp_rdp == rdp)
2428
+ show_rcu_nocb_gp_state(rdp);
2429
+
2430
+ pr_info(" CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2431
+ rdp->cpu, rdp->nocb_gp_rdp->cpu,
2432
+ "kK"[!!rdp->nocb_cb_kthread],
2433
+ "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2434
+ "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2435
+ "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2436
+ "sS"[!!rdp->nocb_cb_sleep],
2437
+ ".W"[swait_active(&rdp->nocb_cb_wq)],
2438
+ jiffies - rdp->nocb_bypass_first,
2439
+ jiffies - rdp->nocb_nobypass_last,
2440
+ rdp->nocb_nobypass_count,
2441
+ ".D"[rcu_segcblist_ready_cbs(rsclp)],
2442
+ ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2443
+ ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2444
+ ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2445
+ ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2446
+ rcu_segcblist_n_cbs(&rdp->cblist));
2447
+
2448
+ /* It is OK for GP kthreads to have GP state. */
2449
+ if (rdp->nocb_gp_rdp == rdp)
2450
+ return;
2451
+
2452
+ waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2453
+ wastimer = timer_pending(&rdp->nocb_bypass_timer);
2454
+ wassleep = swait_active(&rdp->nocb_gp_wq);
2455
+ if (!rdp->nocb_gp_sleep && !waslocked && !wastimer && !wassleep)
2456
+ return; /* Nothing untowards. */
2457
+
2458
+ pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c%c %c\n",
2459
+ "lL"[waslocked],
2460
+ "dD"[!!rdp->nocb_defer_wakeup],
2461
+ "tT"[wastimer],
2462
+ "sS"[!!rdp->nocb_gp_sleep],
2463
+ ".W"[wassleep]);
24752464 }
24762465
24772466 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
24782467
2479
-static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2468
+/* No ->nocb_lock to acquire. */
2469
+static void rcu_nocb_lock(struct rcu_data *rdp)
24802470 {
2481
- WARN_ON_ONCE(1); /* Should be dead code. */
2482
- return false;
2471
+}
2472
+
2473
+/* No ->nocb_lock to release. */
2474
+static void rcu_nocb_unlock(struct rcu_data *rdp)
2475
+{
2476
+}
2477
+
2478
+/* No ->nocb_lock to release. */
2479
+static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2480
+ unsigned long flags)
2481
+{
2482
+ local_irq_restore(flags);
2483
+}
2484
+
2485
+/* Lockdep check that ->cblist may be safely accessed. */
2486
+static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2487
+{
2488
+ lockdep_assert_irqs_disabled();
24832489 }
24842490
24852491 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
....@@ -2495,17 +2501,22 @@
24952501 {
24962502 }
24972503
2498
-static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2499
- bool lazy, unsigned long flags)
2504
+static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2505
+ unsigned long j)
2506
+{
2507
+ return true;
2508
+}
2509
+
2510
+static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2511
+ bool *was_alldone, unsigned long flags)
25002512 {
25012513 return false;
25022514 }
25032515
2504
-static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2505
- struct rcu_data *rdp,
2506
- unsigned long flags)
2516
+static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2517
+ unsigned long flags)
25072518 {
2508
- return false;
2519
+ WARN_ON_ONCE(1); /* Should be dead code! */
25092520 }
25102521
25112522 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
....@@ -2521,7 +2532,7 @@
25212532 {
25222533 }
25232534
2524
-static void rcu_spawn_all_nocb_kthreads(int cpu)
2535
+static void rcu_spawn_cpu_nocb_kthread(int cpu)
25252536 {
25262537 }
25272538
....@@ -2529,9 +2540,8 @@
25292540 {
25302541 }
25312542
2532
-static bool init_nocb_callback_list(struct rcu_data *rdp)
2543
+static void show_rcu_nocb_state(struct rcu_data *rdp)
25332544 {
2534
- return false;
25352545 }
25362546
25372547 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
....@@ -2545,12 +2555,12 @@
25452555 * This code relies on the fact that all NO_HZ_FULL CPUs are also
25462556 * CONFIG_RCU_NOCB_CPU CPUs.
25472557 */
2548
-static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2558
+static bool rcu_nohz_full_cpu(void)
25492559 {
25502560 #ifdef CONFIG_NO_HZ_FULL
25512561 if (tick_nohz_full_cpu(smp_processor_id()) &&
2552
- (!rcu_gp_in_progress(rsp) ||
2553
- ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2562
+ (!rcu_gp_in_progress() ||
2563
+ time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
25542564 return true;
25552565 #endif /* #ifdef CONFIG_NO_HZ_FULL */
25562566 return false;
....@@ -2567,7 +2577,7 @@
25672577 }
25682578
25692579 /* Record the current task on dyntick-idle entry. */
2570
-static void rcu_dynticks_task_enter(void)
2580
+static __always_inline void rcu_dynticks_task_enter(void)
25712581 {
25722582 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
25732583 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
....@@ -2575,9 +2585,27 @@
25752585 }
25762586
25772587 /* Record no current task on dyntick-idle exit. */
2578
-static void rcu_dynticks_task_exit(void)
2588
+static __always_inline void rcu_dynticks_task_exit(void)
25792589 {
25802590 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
25812591 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
25822592 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
25832593 }
2594
+
2595
+/* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
2596
+static __always_inline void rcu_dynticks_task_trace_enter(void)
2597
+{
2598
+#ifdef CONFIG_TASKS_TRACE_RCU
2599
+ if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2600
+ current->trc_reader_special.b.need_mb = true;
2601
+#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
2602
+}
2603
+
2604
+/* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
2605
+static __always_inline void rcu_dynticks_task_trace_exit(void)
2606
+{
2607
+#ifdef CONFIG_TASKS_TRACE_RCU
2608
+ if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2609
+ current->trc_reader_special.b.need_mb = false;
2610
+#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
2611
+}