.. | .. |
---|
1 | 1 | // SPDX-License-Identifier: GPL-2.0 |
---|
2 | 2 | /* |
---|
3 | | - * DMA operations that map physical memory directly without using an IOMMU or |
---|
4 | | - * flushing caches. |
---|
| 3 | + * Copyright (C) 2018-2020 Christoph Hellwig. |
---|
| 4 | + * |
---|
| 5 | + * DMA operations that map physical memory directly without using an IOMMU. |
---|
5 | 6 | */ |
---|
| 7 | +#include <linux/memblock.h> /* for max_pfn */ |
---|
6 | 8 | #include <linux/export.h> |
---|
7 | 9 | #include <linux/mm.h> |
---|
8 | | -#include <linux/dma-direct.h> |
---|
| 10 | +#include <linux/dma-map-ops.h> |
---|
9 | 11 | #include <linux/scatterlist.h> |
---|
10 | | -#include <linux/dma-contiguous.h> |
---|
11 | 12 | #include <linux/pfn.h> |
---|
| 13 | +#include <linux/vmalloc.h> |
---|
12 | 14 | #include <linux/set_memory.h> |
---|
13 | | - |
---|
14 | | -#define DIRECT_MAPPING_ERROR 0 |
---|
| 15 | +#include <linux/slab.h> |
---|
| 16 | +#include "direct.h" |
---|
15 | 17 | |
---|
16 | 18 | /* |
---|
17 | | - * Most architectures use ZONE_DMA for the first 16 Megabytes, but |
---|
18 | | - * some use it for entirely different regions: |
---|
| 19 | + * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use |
---|
| 20 | + * it for entirely different regions. In that case the arch code needs to |
---|
| 21 | + * override the variable below for dma-direct to work properly. |
---|
19 | 22 | */ |
---|
20 | | -#ifndef ARCH_ZONE_DMA_BITS |
---|
21 | | -#define ARCH_ZONE_DMA_BITS 24 |
---|
22 | | -#endif |
---|
| 23 | +unsigned int zone_dma_bits __ro_after_init = 24; |
---|
23 | 24 | |
---|
24 | | -/* |
---|
25 | | - * For AMD SEV all DMA must be to unencrypted addresses. |
---|
26 | | - */ |
---|
27 | | -static inline bool force_dma_unencrypted(void) |
---|
| 25 | +static inline dma_addr_t phys_to_dma_direct(struct device *dev, |
---|
| 26 | + phys_addr_t phys) |
---|
28 | 27 | { |
---|
29 | | - return sev_active(); |
---|
| 28 | + if (force_dma_unencrypted(dev)) |
---|
| 29 | + return phys_to_dma_unencrypted(dev, phys); |
---|
| 30 | + return phys_to_dma(dev, phys); |
---|
30 | 31 | } |
---|
31 | 32 | |
---|
32 | | -static bool |
---|
33 | | -check_addr(struct device *dev, dma_addr_t dma_addr, size_t size, |
---|
34 | | - const char *caller) |
---|
| 33 | +static inline struct page *dma_direct_to_page(struct device *dev, |
---|
| 34 | + dma_addr_t dma_addr) |
---|
35 | 35 | { |
---|
36 | | - if (unlikely(dev && !dma_capable(dev, dma_addr, size))) { |
---|
37 | | - if (!dev->dma_mask) { |
---|
38 | | - dev_err(dev, |
---|
39 | | - "%s: call on device without dma_mask\n", |
---|
40 | | - caller); |
---|
41 | | - return false; |
---|
42 | | - } |
---|
| 36 | + return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr))); |
---|
| 37 | +} |
---|
43 | 38 | |
---|
44 | | - if (*dev->dma_mask >= DMA_BIT_MASK(32)) { |
---|
45 | | - dev_err(dev, |
---|
46 | | - "%s: overflow %pad+%zu of device mask %llx\n", |
---|
47 | | - caller, &dma_addr, size, *dev->dma_mask); |
---|
48 | | - } |
---|
49 | | - return false; |
---|
50 | | - } |
---|
51 | | - return true; |
---|
| 39 | +u64 dma_direct_get_required_mask(struct device *dev) |
---|
| 40 | +{ |
---|
| 41 | + phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT; |
---|
| 42 | + u64 max_dma = phys_to_dma_direct(dev, phys); |
---|
| 43 | + |
---|
| 44 | + return (1ULL << (fls64(max_dma) - 1)) * 2 - 1; |
---|
| 45 | +} |
---|
| 46 | + |
---|
| 47 | +static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask, |
---|
| 48 | + u64 *phys_limit) |
---|
| 49 | +{ |
---|
| 50 | + u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit); |
---|
| 51 | + |
---|
| 52 | + /* |
---|
| 53 | + * Optimistically try the zone that the physical address mask falls |
---|
| 54 | + * into first. If that returns memory that isn't actually addressable |
---|
| 55 | + * we will fallback to the next lower zone and try again. |
---|
| 56 | + * |
---|
| 57 | + * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding |
---|
| 58 | + * zones. |
---|
| 59 | + */ |
---|
| 60 | + *phys_limit = dma_to_phys(dev, dma_limit); |
---|
| 61 | + if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits)) |
---|
| 62 | + return GFP_DMA; |
---|
| 63 | + if (*phys_limit <= DMA_BIT_MASK(32) && |
---|
| 64 | + !zone_dma32_are_empty()) |
---|
| 65 | + return GFP_DMA32; |
---|
| 66 | + return 0; |
---|
52 | 67 | } |
---|
53 | 68 | |
---|
54 | 69 | static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) |
---|
55 | 70 | { |
---|
56 | | - dma_addr_t addr = force_dma_unencrypted() ? |
---|
57 | | - __phys_to_dma(dev, phys) : phys_to_dma(dev, phys); |
---|
58 | | - return addr + size - 1 <= dev->coherent_dma_mask; |
---|
| 71 | + dma_addr_t dma_addr = phys_to_dma_direct(dev, phys); |
---|
| 72 | + |
---|
| 73 | + if (dma_addr == DMA_MAPPING_ERROR) |
---|
| 74 | + return false; |
---|
| 75 | + return dma_addr + size - 1 <= |
---|
| 76 | + min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); |
---|
59 | 77 | } |
---|
60 | 78 | |
---|
61 | | -void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, |
---|
62 | | - gfp_t gfp, unsigned long attrs) |
---|
| 79 | +static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, |
---|
| 80 | + gfp_t gfp) |
---|
63 | 81 | { |
---|
64 | | - unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
---|
65 | | - int page_order = get_order(size); |
---|
| 82 | + int node = dev_to_node(dev); |
---|
66 | 83 | struct page *page = NULL; |
---|
67 | | - void *ret; |
---|
| 84 | + u64 phys_limit; |
---|
68 | 85 | |
---|
69 | | - /* we always manually zero the memory once we are done: */ |
---|
70 | | - gfp &= ~__GFP_ZERO; |
---|
| 86 | + WARN_ON_ONCE(!PAGE_ALIGNED(size)); |
---|
71 | 87 | |
---|
72 | | - /* GFP_DMA32 and GFP_DMA are no ops without the corresponding zones: */ |
---|
73 | | - if (dev->coherent_dma_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS)) |
---|
74 | | - gfp |= GFP_DMA; |
---|
75 | | - if (dev->coherent_dma_mask <= DMA_BIT_MASK(32) && !(gfp & GFP_DMA)) |
---|
76 | | - gfp |= GFP_DMA32; |
---|
77 | | - |
---|
78 | | -again: |
---|
79 | | - /* CMA can be used only in the context which permits sleeping */ |
---|
80 | | - if (gfpflags_allow_blocking(gfp)) { |
---|
81 | | - page = dma_alloc_from_contiguous(dev, count, page_order, |
---|
82 | | - gfp & __GFP_NOWARN); |
---|
83 | | - if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { |
---|
84 | | - dma_release_from_contiguous(dev, page, count); |
---|
85 | | - page = NULL; |
---|
86 | | - } |
---|
87 | | - } |
---|
88 | | - if (!page) |
---|
89 | | - page = alloc_pages_node(dev_to_node(dev), gfp, page_order); |
---|
90 | | - |
---|
| 88 | + gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, |
---|
| 89 | + &phys_limit); |
---|
| 90 | + page = dma_alloc_contiguous(dev, size, gfp); |
---|
91 | 91 | if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { |
---|
92 | | - __free_pages(page, page_order); |
---|
| 92 | + dma_free_contiguous(dev, page, size); |
---|
| 93 | + page = NULL; |
---|
| 94 | + } |
---|
| 95 | +again: |
---|
| 96 | + if (!page) |
---|
| 97 | + page = alloc_pages_node(node, gfp, get_order(size)); |
---|
| 98 | + if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { |
---|
| 99 | + dma_free_contiguous(dev, page, size); |
---|
93 | 100 | page = NULL; |
---|
94 | 101 | |
---|
95 | 102 | if (IS_ENABLED(CONFIG_ZONE_DMA32) && |
---|
96 | | - dev->coherent_dma_mask < DMA_BIT_MASK(64) && |
---|
97 | | - !(gfp & (GFP_DMA32 | GFP_DMA))) { |
---|
| 103 | + phys_limit < DMA_BIT_MASK(64) && |
---|
| 104 | + !(gfp & (GFP_DMA32 | GFP_DMA)) && |
---|
| 105 | + !zone_dma32_are_empty()) { |
---|
98 | 106 | gfp |= GFP_DMA32; |
---|
99 | 107 | goto again; |
---|
100 | 108 | } |
---|
101 | 109 | |
---|
102 | | - if (IS_ENABLED(CONFIG_ZONE_DMA) && |
---|
103 | | - dev->coherent_dma_mask < DMA_BIT_MASK(32) && |
---|
104 | | - !(gfp & GFP_DMA)) { |
---|
| 110 | + if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) { |
---|
105 | 111 | gfp = (gfp & ~GFP_DMA32) | GFP_DMA; |
---|
106 | 112 | goto again; |
---|
107 | 113 | } |
---|
108 | 114 | } |
---|
109 | 115 | |
---|
| 116 | + return page; |
---|
| 117 | +} |
---|
| 118 | + |
---|
| 119 | +static void *dma_direct_alloc_from_pool(struct device *dev, size_t size, |
---|
| 120 | + dma_addr_t *dma_handle, gfp_t gfp) |
---|
| 121 | +{ |
---|
| 122 | + struct page *page; |
---|
| 123 | + u64 phys_mask; |
---|
| 124 | + void *ret; |
---|
| 125 | + |
---|
| 126 | + gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, |
---|
| 127 | + &phys_mask); |
---|
| 128 | + page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok); |
---|
110 | 129 | if (!page) |
---|
111 | 130 | return NULL; |
---|
112 | | - ret = page_address(page); |
---|
113 | | - if (force_dma_unencrypted()) { |
---|
114 | | - set_memory_decrypted((unsigned long)ret, 1 << page_order); |
---|
115 | | - *dma_handle = __phys_to_dma(dev, page_to_phys(page)); |
---|
116 | | - } else { |
---|
117 | | - *dma_handle = phys_to_dma(dev, page_to_phys(page)); |
---|
118 | | - } |
---|
119 | | - memset(ret, 0, size); |
---|
| 131 | + *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); |
---|
120 | 132 | return ret; |
---|
121 | 133 | } |
---|
122 | 134 | |
---|
123 | | -/* |
---|
124 | | - * NOTE: this function must never look at the dma_addr argument, because we want |
---|
125 | | - * to be able to use it as a helper for iommu implementations as well. |
---|
126 | | - */ |
---|
127 | | -void dma_direct_free(struct device *dev, size_t size, void *cpu_addr, |
---|
128 | | - dma_addr_t dma_addr, unsigned long attrs) |
---|
| 135 | +void *dma_direct_alloc(struct device *dev, size_t size, |
---|
| 136 | + dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) |
---|
129 | 137 | { |
---|
130 | | - unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
---|
131 | | - unsigned int page_order = get_order(size); |
---|
| 138 | + struct page *page; |
---|
| 139 | + void *ret; |
---|
| 140 | + int err; |
---|
132 | 141 | |
---|
133 | | - if (force_dma_unencrypted()) |
---|
134 | | - set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order); |
---|
135 | | - if (!dma_release_from_contiguous(dev, virt_to_page(cpu_addr), count)) |
---|
136 | | - free_pages((unsigned long)cpu_addr, page_order); |
---|
| 142 | + size = PAGE_ALIGN(size); |
---|
| 143 | + if (attrs & DMA_ATTR_NO_WARN) |
---|
| 144 | + gfp |= __GFP_NOWARN; |
---|
| 145 | + |
---|
| 146 | + if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && |
---|
| 147 | + !force_dma_unencrypted(dev)) { |
---|
| 148 | + page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO); |
---|
| 149 | + if (!page) |
---|
| 150 | + return NULL; |
---|
| 151 | + /* remove any dirty cache lines on the kernel alias */ |
---|
| 152 | + if (!PageHighMem(page)) |
---|
| 153 | + arch_dma_prep_coherent(page, size); |
---|
| 154 | + *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); |
---|
| 155 | + /* return the page pointer as the opaque cookie */ |
---|
| 156 | + return page; |
---|
| 157 | + } |
---|
| 158 | + |
---|
| 159 | + if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && |
---|
| 160 | + !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && |
---|
| 161 | + !dev_is_dma_coherent(dev)) |
---|
| 162 | + return arch_dma_alloc(dev, size, dma_handle, gfp, attrs); |
---|
| 163 | + |
---|
| 164 | + /* |
---|
| 165 | + * Remapping or decrypting memory may block. If either is required and |
---|
| 166 | + * we can't block, allocate the memory from the atomic pools. |
---|
| 167 | + */ |
---|
| 168 | + if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && |
---|
| 169 | + !gfpflags_allow_blocking(gfp) && |
---|
| 170 | + (force_dma_unencrypted(dev) || |
---|
| 171 | + (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev)))) |
---|
| 172 | + return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); |
---|
| 173 | + |
---|
| 174 | + /* we always manually zero the memory once we are done */ |
---|
| 175 | + page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO); |
---|
| 176 | + if (!page) |
---|
| 177 | + return NULL; |
---|
| 178 | + |
---|
| 179 | + if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && |
---|
| 180 | + !dev_is_dma_coherent(dev)) || |
---|
| 181 | + (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) { |
---|
| 182 | + /* remove any dirty cache lines on the kernel alias */ |
---|
| 183 | + arch_dma_prep_coherent(page, size); |
---|
| 184 | + |
---|
| 185 | + /* create a coherent mapping */ |
---|
| 186 | + ret = dma_common_contiguous_remap(page, size, |
---|
| 187 | + dma_pgprot(dev, PAGE_KERNEL, attrs), |
---|
| 188 | + __builtin_return_address(0)); |
---|
| 189 | + if (!ret) |
---|
| 190 | + goto out_free_pages; |
---|
| 191 | + if (force_dma_unencrypted(dev)) { |
---|
| 192 | + err = set_memory_decrypted((unsigned long)ret, |
---|
| 193 | + PFN_UP(size)); |
---|
| 194 | + if (err) |
---|
| 195 | + goto out_free_pages; |
---|
| 196 | + } |
---|
| 197 | + memset(ret, 0, size); |
---|
| 198 | + goto done; |
---|
| 199 | + } |
---|
| 200 | + |
---|
| 201 | + if (PageHighMem(page)) { |
---|
| 202 | + /* |
---|
| 203 | + * Depending on the cma= arguments and per-arch setup |
---|
| 204 | + * dma_alloc_contiguous could return highmem pages. |
---|
| 205 | + * Without remapping there is no way to return them here, |
---|
| 206 | + * so log an error and fail. |
---|
| 207 | + */ |
---|
| 208 | + dev_info(dev, "Rejecting highmem page from CMA.\n"); |
---|
| 209 | + goto out_free_pages; |
---|
| 210 | + } |
---|
| 211 | + |
---|
| 212 | + ret = page_address(page); |
---|
| 213 | + if (force_dma_unencrypted(dev)) { |
---|
| 214 | + err = set_memory_decrypted((unsigned long)ret, |
---|
| 215 | + PFN_UP(size)); |
---|
| 216 | + if (err) |
---|
| 217 | + goto out_free_pages; |
---|
| 218 | + } |
---|
| 219 | + |
---|
| 220 | + memset(ret, 0, size); |
---|
| 221 | + |
---|
| 222 | + if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && |
---|
| 223 | + !dev_is_dma_coherent(dev)) { |
---|
| 224 | + arch_dma_prep_coherent(page, size); |
---|
| 225 | + ret = arch_dma_set_uncached(ret, size); |
---|
| 226 | + if (IS_ERR(ret)) |
---|
| 227 | + goto out_encrypt_pages; |
---|
| 228 | + } |
---|
| 229 | +done: |
---|
| 230 | + *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); |
---|
| 231 | + return ret; |
---|
| 232 | + |
---|
| 233 | +out_encrypt_pages: |
---|
| 234 | + if (force_dma_unencrypted(dev)) { |
---|
| 235 | + err = set_memory_encrypted((unsigned long)page_address(page), |
---|
| 236 | + PFN_UP(size)); |
---|
| 237 | + /* If memory cannot be re-encrypted, it must be leaked */ |
---|
| 238 | + if (err) |
---|
| 239 | + return NULL; |
---|
| 240 | + } |
---|
| 241 | +out_free_pages: |
---|
| 242 | + dma_free_contiguous(dev, page, size); |
---|
| 243 | + return NULL; |
---|
137 | 244 | } |
---|
138 | 245 | |
---|
139 | | -dma_addr_t dma_direct_map_page(struct device *dev, struct page *page, |
---|
140 | | - unsigned long offset, size_t size, enum dma_data_direction dir, |
---|
141 | | - unsigned long attrs) |
---|
| 246 | +void dma_direct_free(struct device *dev, size_t size, |
---|
| 247 | + void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) |
---|
142 | 248 | { |
---|
143 | | - dma_addr_t dma_addr = phys_to_dma(dev, page_to_phys(page)) + offset; |
---|
| 249 | + if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && |
---|
| 250 | + !force_dma_unencrypted(dev)) { |
---|
| 251 | + /* cpu_addr is a struct page cookie, not a kernel address */ |
---|
| 252 | + dma_free_contiguous(dev, cpu_addr, size); |
---|
| 253 | + return; |
---|
| 254 | + } |
---|
144 | 255 | |
---|
145 | | - if (!check_addr(dev, dma_addr, size, __func__)) |
---|
146 | | - return DIRECT_MAPPING_ERROR; |
---|
147 | | - return dma_addr; |
---|
| 256 | + if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && |
---|
| 257 | + !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && |
---|
| 258 | + !dev_is_dma_coherent(dev)) { |
---|
| 259 | + arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); |
---|
| 260 | + return; |
---|
| 261 | + } |
---|
| 262 | + |
---|
| 263 | + /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ |
---|
| 264 | + if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && |
---|
| 265 | + dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size))) |
---|
| 266 | + return; |
---|
| 267 | + |
---|
| 268 | + if (force_dma_unencrypted(dev)) |
---|
| 269 | + set_memory_encrypted((unsigned long)cpu_addr, PFN_UP(size)); |
---|
| 270 | + |
---|
| 271 | + if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) |
---|
| 272 | + vunmap(cpu_addr); |
---|
| 273 | + else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED)) |
---|
| 274 | + arch_dma_clear_uncached(cpu_addr, size); |
---|
| 275 | + |
---|
| 276 | + dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size); |
---|
148 | 277 | } |
---|
| 278 | + |
---|
| 279 | +struct page *dma_direct_alloc_pages(struct device *dev, size_t size, |
---|
| 280 | + dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) |
---|
| 281 | +{ |
---|
| 282 | + struct page *page; |
---|
| 283 | + void *ret; |
---|
| 284 | + |
---|
| 285 | + if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && |
---|
| 286 | + force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp)) |
---|
| 287 | + return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); |
---|
| 288 | + |
---|
| 289 | + page = __dma_direct_alloc_pages(dev, size, gfp); |
---|
| 290 | + if (!page) |
---|
| 291 | + return NULL; |
---|
| 292 | + if (PageHighMem(page)) { |
---|
| 293 | + /* |
---|
| 294 | + * Depending on the cma= arguments and per-arch setup |
---|
| 295 | + * dma_alloc_contiguous could return highmem pages. |
---|
| 296 | + * Without remapping there is no way to return them here, |
---|
| 297 | + * so log an error and fail. |
---|
| 298 | + */ |
---|
| 299 | + dev_info(dev, "Rejecting highmem page from CMA.\n"); |
---|
| 300 | + goto out_free_pages; |
---|
| 301 | + } |
---|
| 302 | + |
---|
| 303 | + ret = page_address(page); |
---|
| 304 | + if (force_dma_unencrypted(dev)) { |
---|
| 305 | + if (set_memory_decrypted((unsigned long)ret, PFN_UP(size))) |
---|
| 306 | + goto out_free_pages; |
---|
| 307 | + } |
---|
| 308 | + memset(ret, 0, size); |
---|
| 309 | + *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); |
---|
| 310 | + return page; |
---|
| 311 | +out_free_pages: |
---|
| 312 | + dma_free_contiguous(dev, page, size); |
---|
| 313 | + return NULL; |
---|
| 314 | +} |
---|
| 315 | + |
---|
| 316 | +void dma_direct_free_pages(struct device *dev, size_t size, |
---|
| 317 | + struct page *page, dma_addr_t dma_addr, |
---|
| 318 | + enum dma_data_direction dir) |
---|
| 319 | +{ |
---|
| 320 | + void *vaddr = page_address(page); |
---|
| 321 | + |
---|
| 322 | + /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ |
---|
| 323 | + if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && |
---|
| 324 | + dma_free_from_pool(dev, vaddr, size)) |
---|
| 325 | + return; |
---|
| 326 | + |
---|
| 327 | + if (force_dma_unencrypted(dev)) |
---|
| 328 | + set_memory_encrypted((unsigned long)vaddr, PFN_UP(size)); |
---|
| 329 | + |
---|
| 330 | + dma_free_contiguous(dev, page, size); |
---|
| 331 | +} |
---|
| 332 | + |
---|
| 333 | +#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ |
---|
| 334 | + defined(CONFIG_SWIOTLB) |
---|
| 335 | +void dma_direct_sync_sg_for_device(struct device *dev, |
---|
| 336 | + struct scatterlist *sgl, int nents, enum dma_data_direction dir) |
---|
| 337 | +{ |
---|
| 338 | + struct scatterlist *sg; |
---|
| 339 | + int i; |
---|
| 340 | + |
---|
| 341 | + for_each_sg(sgl, sg, nents, i) { |
---|
| 342 | + phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); |
---|
| 343 | + |
---|
| 344 | + if (unlikely(is_swiotlb_buffer(paddr))) |
---|
| 345 | + swiotlb_tbl_sync_single(dev, paddr, sg->length, |
---|
| 346 | + dir, SYNC_FOR_DEVICE); |
---|
| 347 | + |
---|
| 348 | + if (!dev_is_dma_coherent(dev)) |
---|
| 349 | + arch_sync_dma_for_device(paddr, sg->length, |
---|
| 350 | + dir); |
---|
| 351 | + } |
---|
| 352 | +} |
---|
| 353 | +#endif |
---|
| 354 | + |
---|
| 355 | +#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ |
---|
| 356 | + defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ |
---|
| 357 | + defined(CONFIG_SWIOTLB) |
---|
| 358 | +void dma_direct_sync_sg_for_cpu(struct device *dev, |
---|
| 359 | + struct scatterlist *sgl, int nents, enum dma_data_direction dir) |
---|
| 360 | +{ |
---|
| 361 | + struct scatterlist *sg; |
---|
| 362 | + int i; |
---|
| 363 | + |
---|
| 364 | + for_each_sg(sgl, sg, nents, i) { |
---|
| 365 | + phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); |
---|
| 366 | + |
---|
| 367 | + if (!dev_is_dma_coherent(dev)) |
---|
| 368 | + arch_sync_dma_for_cpu(paddr, sg->length, dir); |
---|
| 369 | + |
---|
| 370 | + if (unlikely(is_swiotlb_buffer(paddr))) |
---|
| 371 | + swiotlb_tbl_sync_single(dev, paddr, sg->length, dir, |
---|
| 372 | + SYNC_FOR_CPU); |
---|
| 373 | + |
---|
| 374 | + if (dir == DMA_FROM_DEVICE) |
---|
| 375 | + arch_dma_mark_clean(paddr, sg->length); |
---|
| 376 | + } |
---|
| 377 | + |
---|
| 378 | + if (!dev_is_dma_coherent(dev)) |
---|
| 379 | + arch_sync_dma_for_cpu_all(); |
---|
| 380 | +} |
---|
| 381 | + |
---|
| 382 | +void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, |
---|
| 383 | + int nents, enum dma_data_direction dir, unsigned long attrs) |
---|
| 384 | +{ |
---|
| 385 | + struct scatterlist *sg; |
---|
| 386 | + int i; |
---|
| 387 | + |
---|
| 388 | + for_each_sg(sgl, sg, nents, i) |
---|
| 389 | + dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir, |
---|
| 390 | + attrs); |
---|
| 391 | +} |
---|
| 392 | +#endif |
---|
149 | 393 | |
---|
150 | 394 | int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, |
---|
151 | 395 | enum dma_data_direction dir, unsigned long attrs) |
---|
.. | .. |
---|
154 | 398 | struct scatterlist *sg; |
---|
155 | 399 | |
---|
156 | 400 | for_each_sg(sgl, sg, nents, i) { |
---|
157 | | - BUG_ON(!sg_page(sg)); |
---|
158 | | - |
---|
159 | | - sg_dma_address(sg) = phys_to_dma(dev, sg_phys(sg)); |
---|
160 | | - if (!check_addr(dev, sg_dma_address(sg), sg->length, __func__)) |
---|
161 | | - return 0; |
---|
| 401 | + sg->dma_address = dma_direct_map_page(dev, sg_page(sg), |
---|
| 402 | + sg->offset, sg->length, dir, attrs); |
---|
| 403 | + if (sg->dma_address == DMA_MAPPING_ERROR) |
---|
| 404 | + goto out_unmap; |
---|
162 | 405 | sg_dma_len(sg) = sg->length; |
---|
163 | 406 | } |
---|
164 | 407 | |
---|
165 | 408 | return nents; |
---|
| 409 | + |
---|
| 410 | +out_unmap: |
---|
| 411 | + dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); |
---|
| 412 | + return 0; |
---|
| 413 | +} |
---|
| 414 | + |
---|
| 415 | +dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, |
---|
| 416 | + size_t size, enum dma_data_direction dir, unsigned long attrs) |
---|
| 417 | +{ |
---|
| 418 | + dma_addr_t dma_addr = paddr; |
---|
| 419 | + |
---|
| 420 | + if (unlikely(!dma_capable(dev, dma_addr, size, false))) { |
---|
| 421 | + dev_err_once(dev, |
---|
| 422 | + "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", |
---|
| 423 | + &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); |
---|
| 424 | + WARN_ON_ONCE(1); |
---|
| 425 | + return DMA_MAPPING_ERROR; |
---|
| 426 | + } |
---|
| 427 | + |
---|
| 428 | + return dma_addr; |
---|
| 429 | +} |
---|
| 430 | + |
---|
| 431 | +int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, |
---|
| 432 | + void *cpu_addr, dma_addr_t dma_addr, size_t size, |
---|
| 433 | + unsigned long attrs) |
---|
| 434 | +{ |
---|
| 435 | + struct page *page = dma_direct_to_page(dev, dma_addr); |
---|
| 436 | + int ret; |
---|
| 437 | + |
---|
| 438 | + ret = sg_alloc_table(sgt, 1, GFP_KERNEL); |
---|
| 439 | + if (!ret) |
---|
| 440 | + sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); |
---|
| 441 | + return ret; |
---|
| 442 | +} |
---|
| 443 | + |
---|
| 444 | +bool dma_direct_can_mmap(struct device *dev) |
---|
| 445 | +{ |
---|
| 446 | + return dev_is_dma_coherent(dev) || |
---|
| 447 | + IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP); |
---|
| 448 | +} |
---|
| 449 | + |
---|
| 450 | +int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, |
---|
| 451 | + void *cpu_addr, dma_addr_t dma_addr, size_t size, |
---|
| 452 | + unsigned long attrs) |
---|
| 453 | +{ |
---|
| 454 | + unsigned long user_count = vma_pages(vma); |
---|
| 455 | + unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
---|
| 456 | + unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr)); |
---|
| 457 | + int ret = -ENXIO; |
---|
| 458 | + |
---|
| 459 | + vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); |
---|
| 460 | + |
---|
| 461 | + if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) |
---|
| 462 | + return ret; |
---|
| 463 | + |
---|
| 464 | + if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff) |
---|
| 465 | + return -ENXIO; |
---|
| 466 | + return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff, |
---|
| 467 | + user_count << PAGE_SHIFT, vma->vm_page_prot); |
---|
166 | 468 | } |
---|
167 | 469 | |
---|
168 | 470 | int dma_direct_supported(struct device *dev, u64 mask) |
---|
169 | 471 | { |
---|
170 | | -#ifdef CONFIG_ZONE_DMA |
---|
171 | | - /* |
---|
172 | | - * This check needs to be against the actual bit mask value, so |
---|
173 | | - * use __phys_to_dma() here so that the SME encryption mask isn't |
---|
174 | | - * part of the check. |
---|
175 | | - */ |
---|
176 | | - if (mask < __phys_to_dma(dev, DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))) |
---|
177 | | - return 0; |
---|
178 | | -#else |
---|
| 472 | + u64 min_mask = (max_pfn - 1) << PAGE_SHIFT; |
---|
| 473 | + |
---|
179 | 474 | /* |
---|
180 | 475 | * Because 32-bit DMA masks are so common we expect every architecture |
---|
181 | 476 | * to be able to satisfy them - either by not supporting more physical |
---|
182 | 477 | * memory, or by providing a ZONE_DMA32. If neither is the case, the |
---|
183 | 478 | * architecture needs to use an IOMMU instead of the direct mapping. |
---|
184 | | - * |
---|
185 | | - * This check needs to be against the actual bit mask value, so |
---|
186 | | - * use __phys_to_dma() here so that the SME encryption mask isn't |
---|
| 479 | + */ |
---|
| 480 | + if (mask >= DMA_BIT_MASK(32)) |
---|
| 481 | + return 1; |
---|
| 482 | + |
---|
| 483 | + /* |
---|
| 484 | + * This check needs to be against the actual bit mask value, so use |
---|
| 485 | + * phys_to_dma_unencrypted() here so that the SME encryption mask isn't |
---|
187 | 486 | * part of the check. |
---|
188 | 487 | */ |
---|
189 | | - if (mask < __phys_to_dma(dev, DMA_BIT_MASK(32))) |
---|
190 | | - return 0; |
---|
191 | | -#endif |
---|
192 | | - /* |
---|
193 | | - * Upstream PCI/PCIe bridges or SoC interconnects may not carry |
---|
194 | | - * as many DMA address bits as the device itself supports. |
---|
195 | | - */ |
---|
196 | | - if (dev->bus_dma_mask && mask > dev->bus_dma_mask) |
---|
197 | | - return 0; |
---|
198 | | - return 1; |
---|
| 488 | + if (IS_ENABLED(CONFIG_ZONE_DMA)) |
---|
| 489 | + min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits)); |
---|
| 490 | + return mask >= phys_to_dma_unencrypted(dev, min_mask); |
---|
199 | 491 | } |
---|
200 | 492 | |
---|
201 | | -int dma_direct_mapping_error(struct device *dev, dma_addr_t dma_addr) |
---|
| 493 | +size_t dma_direct_max_mapping_size(struct device *dev) |
---|
202 | 494 | { |
---|
203 | | - return dma_addr == DIRECT_MAPPING_ERROR; |
---|
| 495 | + /* If SWIOTLB is active, use its maximum mapping size */ |
---|
| 496 | + if (is_swiotlb_active() && |
---|
| 497 | + (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE)) |
---|
| 498 | + return swiotlb_max_mapping_size(dev); |
---|
| 499 | + return SIZE_MAX; |
---|
204 | 500 | } |
---|
205 | 501 | |
---|
206 | | -const struct dma_map_ops dma_direct_ops = { |
---|
207 | | - .alloc = dma_direct_alloc, |
---|
208 | | - .free = dma_direct_free, |
---|
209 | | - .map_page = dma_direct_map_page, |
---|
210 | | - .map_sg = dma_direct_map_sg, |
---|
211 | | - .dma_supported = dma_direct_supported, |
---|
212 | | - .mapping_error = dma_direct_mapping_error, |
---|
213 | | -}; |
---|
214 | | -EXPORT_SYMBOL(dma_direct_ops); |
---|
| 502 | +bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr) |
---|
| 503 | +{ |
---|
| 504 | + return !dev_is_dma_coherent(dev) || |
---|
| 505 | + is_swiotlb_buffer(dma_to_phys(dev, dma_addr)); |
---|
| 506 | +} |
---|
| 507 | + |
---|
| 508 | +/** |
---|
| 509 | + * dma_direct_set_offset - Assign scalar offset for a single DMA range. |
---|
| 510 | + * @dev: device pointer; needed to "own" the alloced memory. |
---|
| 511 | + * @cpu_start: beginning of memory region covered by this offset. |
---|
| 512 | + * @dma_start: beginning of DMA/PCI region covered by this offset. |
---|
| 513 | + * @size: size of the region. |
---|
| 514 | + * |
---|
| 515 | + * This is for the simple case of a uniform offset which cannot |
---|
| 516 | + * be discovered by "dma-ranges". |
---|
| 517 | + * |
---|
| 518 | + * It returns -ENOMEM if out of memory, -EINVAL if a map |
---|
| 519 | + * already exists, 0 otherwise. |
---|
| 520 | + * |
---|
| 521 | + * Note: any call to this from a driver is a bug. The mapping needs |
---|
| 522 | + * to be described by the device tree or other firmware interfaces. |
---|
| 523 | + */ |
---|
| 524 | +int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start, |
---|
| 525 | + dma_addr_t dma_start, u64 size) |
---|
| 526 | +{ |
---|
| 527 | + struct bus_dma_region *map; |
---|
| 528 | + u64 offset = (u64)cpu_start - (u64)dma_start; |
---|
| 529 | + |
---|
| 530 | + if (dev->dma_range_map) { |
---|
| 531 | + dev_err(dev, "attempt to add DMA range to existing map\n"); |
---|
| 532 | + return -EINVAL; |
---|
| 533 | + } |
---|
| 534 | + |
---|
| 535 | + if (!offset) |
---|
| 536 | + return 0; |
---|
| 537 | + |
---|
| 538 | + map = kcalloc(2, sizeof(*map), GFP_KERNEL); |
---|
| 539 | + if (!map) |
---|
| 540 | + return -ENOMEM; |
---|
| 541 | + map[0].cpu_start = cpu_start; |
---|
| 542 | + map[0].dma_start = dma_start; |
---|
| 543 | + map[0].offset = offset; |
---|
| 544 | + map[0].size = size; |
---|
| 545 | + dev->dma_range_map = map; |
---|
| 546 | + return 0; |
---|
| 547 | +} |
---|
| 548 | +EXPORT_SYMBOL_GPL(dma_direct_set_offset); |
---|